TASK 210:
SUBSURFACE SITE INVESTIGATION

REPLACEMENT OF COOPER STREET BRIDGE OVER HARBOR BROOK

MERIDEN, CONNECTICUT

CONNDOT BRIDGE NO. 04839

CITY OF MERIDEN
142 East Main Street
Meriden, Connecticut 06450

Prepared by:

RED TECHNOLOGIES, LLC
10 Northwood Drive
Bloomfield, Connecticut 06002

Project No. 14-385

FEBRUARY 2015
QUALITY ASSURANCE/QUALITY CONTROL.

TASK 210:
SUBSURFACE SITE INVESTIGATION

Replacement of Cooper Street Bridge over Harbor Brook
Cooper Street Bridge No. 04839
Meriden, Connecticut

The following personnel have reviewed this report for accuracy, content and quality of presentation:

_________________________ 2-13-2015
Todd Mahler Date
Project Manager

_________________________ 2-13-2015
Louis H. Muratore Date
Division Manager/Senior Project Manager
TABLE OF CONTENTS

1.0 INTRODUCTION ... 4

2.0 SITE DESCRIPTION ... 4

3.0 ENVIRONMENTAL SETTING ... 4

3.1 Geology .. 4

3.2 Water Quality Classifications ... 5

4.0 REGULATORY CRITERIA .. 5

4.1 Applicable Regulatory Criteria ... 5

5.0 SUBSURFACE INVESTIGATION ACTIVITIES ... 6

5.1 Soil Borings & Soil Analyses ... 7

5.2 Sediment Sample Collection and Analyses ... 7

5.3 Surface Water Sample Collection & Analyses .. 7

5.4 Groundwater Sample Collection & Analyses .. 7

5.5 Project Quality Assurance/Quality Control Practices ... 8

6.0 SUBSURFACE INVESTIGATION RESULTS ... 9

6.1 Soil Sample Results .. 9

6.2 Sediment Sample Results .. 10

6.3 Surface Water Sample Results .. 12

6.4 Groundwater Sample Results ... 13

6.5 Quality Assurance/Quality Control Sample Results ... 14

7.0 SUMMARY AND CONCLUSIONS .. 14

7.1 Soil – Area of Environmental Concern (AOEC) ... 14

7.2 Sediment – Low Level Area of Environmental Concern (LL-AOEC) 15

7.3 Groundwater – Area of Environmental Concern (GW-AOEC) .. 15

8.0 RECOMMENDATIONS .. 15

9.0 REFERENCES ... 16

10.0 DISCLAIMER AND LIMITATIONS ... 17

FIGURES:

- Figure 1 Site Location Map
- Figure 2 Environmental Sampling Location Map

TABLES:

- Table 1 Summary of Soil Analytical Data
- Table 2 Summary of Sediment Analytical Data
- Table 3 Summary of Surface Water Analytical Data
- Table 4 Summary of Groundwater Analytical Data

APPENDICES:

- Appendix A Soil Boring Logs
- Appendix B DQA/DUE Worksheets
- Appendix C Laboratory Analytical Reports
1.0 INTRODUCTION

RED TECHNOLOGIES, LLC (RED) on behalf of WMC Consulting Engineers (WMC) has conducted a Task 210: Subsurface Site Investigation in association with the Replacement of Cooper Street Bridge over Harbor Brook (“Site”) located in Meriden, Connecticut. A Site Location Map is presented as Figure 1.

Based upon a review of the Preliminary Design plans with WMC, the project will include the replacement of Bridge No. 04839, Cooper Street over Harbor Brook in Meriden, with a sixty (60) foot clear span structure. This bridge replacement is part of an overall city wide Harbor Brook Flood Control Project, and as a result there will be hydraulic improvements to reduce future flooding. These improvements include widening of the bridge, channel grading, utility and drainage updates and relocations, and roadway repaving within the disturbed area (approximately one hundred and fifty (150) feet).

According to the latest (Year 2001) State of Connecticut Department of Transportation bridge inspection report for Cooper Street Bridge, the existing stone masonry arch is rated as in fair but deteriorating condition. A visual inspection confirmed these findings, which included sidewalk settling, mortar loss and voids in the existing parapets, arch and footings. Additionally, it has been determined the existing structure is hydraulically inadequate.

The purpose of this Task 210: Subsurface Site Investigation is to verify the absence or presence and location of subsurface contamination, and to assess the potential pollutant soil, sediment and groundwater impacts to be encountered during excavation activities associated with the construction of the new bridge, roadway and storm water conveyance modifications. A Site Plan depicting the environmental sampling locations referenced throughout this report is attached as Figure 2.

2.0 SITE DESCRIPTION

The City of Meriden is proposing the replacement of the existing bridge (ConnDOT Bridge No. 04839) with a sixty (60) foot clear span structure located in Meriden, Connecticut. The Site is located in a well-developed mixed residential/industrial area in the central section of the town of Meriden, Connecticut, approximately 1/2 of a mile south of Interstate 691.

Cooper Street generally traverses in an east-west direction from Cook Avenue (Route 71) to the west to South Colony Street to the east. Cooper Street carries one lane of bi-directional traffic and is approximately twenty five (25) feet in width at the bridge. Overhead utility lines cross along the northern side of the bridge. Subsurface water, gas and sewer lines are presumed to cross Harbor Brook below the bridge and/or roadway deck.

3.0 ENVIRONMENTAL SETTING

3.1 Geology

Based on information referenced on the Connecticut Department of Energy and Environmental Protection (CTDEEP) “Surficial Materials Map” the project encompasses two geologic areas.

The central and western portion of the project limits is composed of sand overlying fines. Sand is of variable thickness, commonly in inclined forest beds and overlies thinly bedded fines of variable thickness (distal deltaic deposits overlying lake-bottom sediment).
The eastern portion of the project limits is composed of gravel and sand within individual layers and as alternating layers. Sand and gravel layers generally range from 25 to 50 percent gravel particles and from 50 to 75 percent sand particles. Layers are well to poorly sorted; bedding may be distorted and faulted due to postdepositional collapse. It is likely that some deposits within this map unit actually are gravel or sand and gravel overlying sand. It is less likely that some of these deposits are sand fluvial deposits or delta-topset beds (Stone et. al., 1992).

Based on information obtained during subsurface investigation activities, the overburden material at the Site is generally composed of dark reddish-brown medium to fine sands overlying reddish-brown silts and clay. The stratigraphic change generally occurs at a depth of approximately four feet (4) below ground surface (ft bgs) across the Site.

3.2 Water Quality Classifications

According to the CTDEEP, the project site is located in a “GB” groundwater area. The “GB” classification is designated for groundwater that has been degraded due to regional usage and is not suitable for potable use without treatment.

Harbor Brook is listed as a Class “B” inland surface water body. The Class “B” surface water classification is assigned to: fish and wildlife habitat; recreational use; agricultural and industrial supply and other legitimate uses including navigation.

4.0 Regulatory Criteria

The Remedial Standard Regulations (RSRs) form the basis for evaluation of Site conditions with respect to environmental impacts and the associated risk factors to human health and the environment. The CTDEEP adopted the revised RSRs (Sections 22a-133k-1 to 3 and 22a-133q-1) as of June 27, 2013 and are used to determine whether sufficient remediation has been conducted at sites that are required by statute, regulation or administrative order to be remediated, or for those sites that are remediated through a formal voluntary remediation process.

The RSRs provide: (1) baseline specific criteria that may be used at any site to determine whether or not remediation is necessary, (2) self-implementing alternatives to the baseline criteria for specific circumstances, (3) self-implementing exceptions to the baseline criteria for specific circumstances, and (4) an opportunity to request approval of site-specific alternatives to the self-implementing standards and the options for remediation from the CTDEEP Commissioner.

4.1 Applicable Regulatory Criteria

The groundwater beneath the Site is classified by the CTDEEP as “GB”. A “GB” groundwater classification indicates that groundwater has been degraded due to regional usage and is not suitable for potable use without treatment.

Soil Criteria:

Based on the groundwater classification, the following Connecticut RSR criteria are applicable to soils on the Site:

- **Residential (Res) Direct Exposure Criteria (DEC):** The Res DEC are applicable to soils located within fifteen (15) feet of the ground surface.
- **GB Pollutant Mobility Criteria (PMC):** The GB PMC is applicable to soils located above the seasonal-low water table.

Residential Direct Exposure Criteria

The purpose of the Res DEC is to protect human health from risks associated with the direct contact with or ingestion of various common soil contaminants. As previously stated, the Res
DEC are applicable to soil within approximately fifteen (15) feet of the ground surface. Concentrations of contaminants are evaluated based upon mass-based analyses and different criteria are established for residential and industrial/commercial properties. The use of the less stringent commercial/industrial standards requires the implantation of an environmental land use restriction.

The Res DEC is not applicable to inaccessible soils, including soil more than four (4) feet below the ground surface, two feet below pavement greater than three (3) inches thick, or below an existing building, provided that an Environmental Land Use Restriction (ELUR) is placed in effect for the property.

Pollutant Mobility Criteria
The purpose of the PMC is to evaluate the potential for contaminants to leach from the soil in concentrations that may degrade groundwater quality. Different numerical criteria are established for “GA” and “GAA” groundwater areas, versus “GB” groundwater areas. Since the Site is situated in a “GB” groundwater area, the less stringent criteria apply.

Groundwater Criteria: The following RSR criteria applicable to *groundwater* located within a GB area are:

- **Surface-Water Protection Criteria (SWPC):** The SWPC is applicable to ground water prior to it discharging into a surface-water body.
- **Residential Ground-Water Volatilization Criteria (Res Vol):** The Res Vol is applicable to VOCs in ground water within 15 feet of the ground surface or a building.

Surface Water Protection Criteria. The purpose of the Surface Water Protection Criteria standards are to ensure that groundwater discharging to a surface water body will not adversely affect surface water quality.

Residential Volatilization Criteria. The purpose of the Volatilization Criteria standard is to ensure that volatile organic compounds (VOCs) in groundwater do not pose an unacceptable risk to human health due to the inhalation of VOCs that may enter into a structure on the property. The Volatilization Criteria only apply when impacted groundwater is located within fifteen feet of the ground surface or any structure.

Please note groundwater concentration(s) will not be compared to RSR criteria for the purpose of this report as the ConnDOT has had numerous discussions with CTDEEP staff with regard to groundwater encountered during “Construction Projects” and the applicability of the RSRs to these situations. Based on the guidance provided by CTDEEP, groundwater samples collected for “Construction Projects” will be compared to the effluent limits for the *General Permit for the Discharge of Groundwater Remediation Wastewater Directly to Surface Water* and the *General Permit for the Discharge of Groundwater Remediation Wastewater Directly to Sanitary Sewer* to determine if Groundwater Areas of Environmental Concern (GW AOECs) exist within the project limits.

5.0 Subsurface Investigation Activities

RED pre-marked the Site and contacted Call Before You Dig (CBYD) on December 30, 2015 to identify utilities adjacent to proposed soil boring (SB) locations. Due to the close proximity of soil boring locations relative to subsurface utilities, RED provided oversight of ground penetrating radar (GPR) activities on January 6, 2015. GPR activities were conducted by Metric Earth Services of Milford, Connecticut.
Subsurface investigation activities were conducted between January 8 and January 9, 2015. Samples collected throughout the duration of this project were submitted to Phoenix Environmental Laboratories, Inc. located in Manchester, Connecticut (CT) for analysis of:

- Extractable Total Petroleum Hydrocarbons (ETPH, CT ETPH Method);
- Volatile Organic Compounds (VOCs, EPA Method 8260);
- Polynuclear Aromatic Hydrocarbons (PAHs, EPA Method 8270);
- Polychlorinated Biphenyls (PCBs, EPA Method 8082);
- Total 8 RCRA Metals (EPA Method 6010);
- Synthetic Precipitation Leaching Procedure for the 8 RCRA Metals (6010 SPLP);
- Pesticides (EPA Method 8081); and
- Herbicides (EPA Method 8151)

A site plan depicting the sample locations is presented on Figure 2. A copy of the laboratory reports is provided in Appendix C.

5.1 Soil Borings & Soil Analyses
On January 8 and 9, 2015, eight (8) Geoprobe® borings (SB-1 through SB-8) were advanced to a maximum depth of ten (10) feet below ground surface (ft bgs) within the areas of anticipated construction activities for the proposed project. The Geoprobe® borings were advanced by Metric Earth Services of Milford, Connecticut under the direction of RED personnel.

The soil boring locations were advanced utilizing a four (4) foot long two (2) inch diameter macro core sampler with dedicated acetate liners. Soil boring logs were generated in the field by visually inspecting soil characteristics (color, type, moisture, presence of odors, staining, etc.). In addition, the soil samples were screened in the field for total volatile organic compounds utilizing a MiniRAE 3000 photoionization detector (PID). The soil boring log describes the soil types encountered, changes in soil stratigraphy, the depth to groundwater, the terminal depth of each boring and the PID response for each interval where a stratigraphic change was observed. Soil boring logs are attached as Appendix A.

Based upon field screening results and visual observations, one soil sample was collected from each soil boring location and submitted for laboratory analysis.

5.2 Sediment Sample Collection and Analyses
On January 9, 2015 three (3) sediment grab samples (SED-1 through SED-3) were collected adjacent to the Cooper Street Bridge. One (1) sediment sample (SED-1) was collected upstream of the bridge, one (1) sediment sample was collected directly below the bridge (SED-2), and one (1) sediment sample was collected downstream of the proposed construction area (SED-3).

5.3 Surface Water Sample Collection & Analyses
On January 9, 2015 two (2) surface water samples (SF-1 and SF-2) were collected from Harbor Brook adjacent to Cooper Street Bridge. The surface water samples SF-1 and SF-2 were collected upstream and downstream of the bridge and proposed construction area, respectively.

5.4 Groundwater Sample Collection & Analyses
On January 19, 2015 two (2) groundwater samples were collected from temporary groundwater monitoring wells (MW-1 and MW-2) from completed soil boring locations designated as SB-3, and SB-8, respectively.
The temporary groundwater monitoring wells were advanced to approximately sixteen (16) ft bgs and were constructed of one (1) inch inner diameter (I.D.), 0.010 inch machine-slotted, polyvinylchloride (PVC) well screen attached with flush threaded joints to one (1) inch I.D. schedule 40 solid riser pipe. The boring annulus surrounding the screened interval was constructed with No.0 Fillpro® sand to approximately one foot above the screened interval. A six (6) inch bentonite clay seal was installed above the filtration sand. Any remaining boring annulus above the clay seal was filled with native soil to the ground surface. The temporary monitoring well construction logs are included with the soil boring logs and are attached as Appendix A.

Prior to the collection of the groundwater samples, a monitoring well survey was conducted to determine the top-of-casing elevations for the purpose of establishing the groundwater flow direction. An arbitrary reference point of one hundred (100.00) feet was used for the purpose of this survey. The groundwater gauging data collected on January 19, 2015 indicates the depth to groundwater ranges from 11.35 ft bgs (MW-1) to 11.40 ft bgs (MW-2).

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Top of casing elevation</th>
<th>Depth to groundwater (ft bgs)</th>
<th>Groundwater Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>101.780</td>
<td>11.35</td>
<td>90.43</td>
</tr>
<tr>
<td>MW-2</td>
<td>101.715</td>
<td>11.40</td>
<td>90.315</td>
</tr>
</tbody>
</table>

5.5 Project Quality Assurance/Quality Control Practices

The CTDEEP’s Quality Assurance and Quality Control (QA/QC) Guidance was used to ensure that the analytical results generated during the investigation are of known and appropriate quality. Specifically, the Laboratory Quality Assurance Control Reasonable Confidence Protocols (RCPs) were utilized for all laboratory analytical methods. The Laboratory Quality Assurance and Quality Control, Data Quality Assessment and Usability Evaluation (DQA/DUE) Guidance were utilized to ensure that the analytical data used is of known and sufficient level of quality for the intended purpose.

All samples collected in the field were stored in a manner that preserved the integrity of the sample chemistry. Samples intended for organic analyses were stored in an ice-filled cooler until delivery to the laboratory. Chain-of-Custody (COC) forms were filled out and accompanied all samples collected as a legal record of possession. The COC was initiated in the field and accompanied the containers during sample collection, transportation to the lab, analysis, and final disposal of the sample.

Quality assurance and quality control (QA/QC) samples were collected and analyzed to assess the quality of the samples collected in terms of the sampling techniques and procedures followed. One (1) field blank was collected during subsurface investigation activities and is designated as “Field Blank” on Table 3. In addition, two (2) trip blanks (one (1) soil and one (1) surface water) prepared and supplied by Phoenix Environmental Laboratories, Inc. were stored in the sample cooler along with the samples collected throughout the duration of the project and is designated as “Trip Blank” on Tables 1 and 3. The field blank was prepared by pouring laboratory supplied de-ionized water over decontaminated sampling equipment and collecting the resulting rinsate. The field blank was analyzed for PAHs and ETPH and the trip blank was analyzed for VOCs.
6.0 **SUBSURFACE INVESTIGATION RESULTS**

The following section provides a summary of the analytical results of the soil, sediment, surface water and groundwater sampling conducted at the site. In summary:

- Eight (8) soil samples were collected from eight (8) soil borings (SB-1 through SB-8).
- Three (3) sediment samples were collected adjacent to the Cooper Street Bridge (SED-1 through SED-3).
- Two (2) surface water samples were collected from Harbor Brook (SF-1 and SF-2).
- Two (2) groundwater samples were collected from two (2) temporary monitoring wells (MW-1 and MW-2).

Samples collected for this project were analyzed for ETPH, VOCs, PAHs, PCBs, total RCRA 8 metals, SPLP RCRA 8 metals (soil and sediment samples only), pesticides and herbicides. A copy of the laboratory reports is provided in Appendix C.

Although the project Site is not subject to the Transfer Act, the Voluntary Cleanup Program, nor the requirements of a Consent Order, the analytical results were compared to the Connecticut RSRs to evaluate the presence of contaminants within the investigated areas. This allows for management of contaminated media in a manner consistent with applicable regulations. The reported concentrations for soils and sediments were compared to the Res DEC and the GB PMC numeric criteria. The reported concentrations of surface water and groundwater samples were compared to the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to a Surface Water and General Permit for the Discharge of Groundwater Remediation Wastewater to a Sanitary Sewer effluent discharge limitations.

6.1 **Soil Sample Results**

A summary of the soil sample analytical results is presented in Table 1. Copies of the laboratory analytical reports for the soil samples are included as Appendix C.

ETPH

ETPH was detected above the reporting limits in the soil samples collected from three (3) of the soil boring locations (SB-3 (2-4’), SB-6 (6-8’) and SB-7 (6-8’)). ETPH concentrations in the soil samples ranged from 110 milligrams per kilogram (mg/kg) in soil sample SB-3 (2-4’) to 1,200 mg/kg in soil sample SB-7 (6-8’).

ETPH was reported at a concentration greater than the Res DEC in soil sample SB-7 (6-8’)

VOCs

One (1) VOC compound (naphthalene) was detected above the reporting limits in soil sample SB-3 (2-4’).

No concentrations of VOCs were reported greater than applicable RSR numeric criteria.

PAHs

PAHs were detected above the reporting limits in the soil samples collected from three (3) of the soil boring locations (SB-3 (2-4’), SB-4 (2-4’) and SB-7 (6-8’). Specifically, concentrations of one or more of following PAHs were detected: acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene and pyrene.
PAH concentrations in the soil samples ranged from 310 micrograms per kilogram (µg/kg) of acenaphthylene in soil sample SB-4 (2-4’) to 46,000 µg/kg of fluoranthene and pyrene in soil sample SB-7 (6-8’).

One or more PAH compounds including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and phenanthrene were reported at concentrations greater than applicable RSR numeric criteria in soil samples SB-3 (2-4’), SB-4 (2-4’) and SB-7 (6-8’).

PCBs

PCBs were not detected above the reporting limits in the soil samples collected as part of this investigation.

Total RCRA 8 Metals

One or more of the total RCRA 8 metals were detected above the reporting limits in the soil samples collected from eight (8) of the soil boring locations (SB-1 through SB-8). Specifically, concentrations of one or more of following total RCRA 8 metals were detected: arsenic, barium, chromium, lead, mercury and silver. Total RCRA 8 metals concentrations in the soil samples ranged from 0.07 mg/kg of mercury in soil sample SB-5 (2-4’) to 230 mg/kg of barium in soil sample SB-2 (6-8’).

No concentrations of total RCRA 8 metals were reported greater than applicable RSR numeric criteria.

SPLP RCRA 8 Metals

One or more of the SPLP RCRA 8 metals were detected above the reporting limits in the soil samples collected from seven (7) of the soil boring locations (SB-1 through SB-5 and SB-7 through SB-8). Specifically, concentrations of one or more of following SPLP RCRA 8 metals were detected: arsenic, barium, chromium and lead. SPLP RCRA 8 metal concentrations in the soil samples ranged from 0.01 milligrams per liter (mg/l) of SPLP lead and chromium in soil samples SB-2 (6-8’) and SB-7 (6-8’), respectively, to 0.237 mg/l of SPLP barium in soil sample SB-2 (6-8’).

No concentrations of SPLP RCRA 8 metals were reported greater than applicable RSR numeric criteria.

Pesticides

One (1) pesticide compound was detected above the reporting limit in one (1) soil sample (SB-4 (2-4)). Specifically, a concentration of 79 µg/kg of chlordane was reported.

No concentrations of pesticides were reported greater than applicable RSR numeric criteria.

Herbicides

Herbicides were not detected above the reporting limits in the soil samples collected as part of this investigation.

6.2 Sediment Sample Results

A summary of the sediment sample analytical results is presented in Table 2. Copies of the laboratory analytical reports for the sediment samples are included as Appendix C.
ETPH
ETPH was detected above the reporting limits in the one (1) sediment sample (SED-2). The ETPH concentration in the sediment sample was reported at 120 mg/kg.

No concentrations of ETPH were reported greater than applicable RSR numeric criteria.

VOCs
VOCs were not detected above the reporting limits in the sediment samples collected as part of this investigation.

PAHs
PAHs were detected above the reporting limits in the sediment samples collected from three (3) of the sediment sample locations (SED-1, SED-2 and SED-3). Specifically, concentrations of one or more of following PAHs were detected: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene and pyrene. PAH concentrations in the sediment samples ranged from 300 µg/kg of benzo(a)anthracene in sediment sample SED-1 to 770 µg/kg of fluoranthene in sediment sample SED-2.

No concentrations of PAHs were reported greater than applicable RSR numeric criteria.

PCBs
PCBs were not detected above the reporting limits in the sediment samples collected as part of this investigation.

Total RCRA 8 Metals
Total RCRA 8 metals were detected above the reporting limits in sediment samples collected from three (3) of the locations (SED-1, SED-2 and SED-3). Specifically, concentrations of one or more of following total RCRA 8 metals were detected: arsenic, barium, cadmium, chromium, lead and silver. Total RCRA 8 metals concentrations in the sediment samples ranged from 0.62 mg/kg of cadmium in sediment sample SED-1 to 156 mg/kg of lead in sediment sample SED-1.

No total RCRA 8 metals concentrations were reported greater than applicable RSR numeric criteria.

SPLP RCRA 8 Metals
SPLP RCRA 8 metals were detected above the reporting limits in sediment samples collected from three (3) of the locations (SED-1, SED-2 and SED-3).

Specifically, concentrations of one or more of following SPLP RCRA 8 metals were detected: barium, chromium and lead. SPLP RCRA 8 metals concentrations in the sediment samples ranged from 0.017 mg/l of chromium in sediment samples SED-1 and SED-2 to 0.072 mg/l of lead in sediment sample SED-1.

No SPLP RCRA 8 metals concentrations were reported greater than applicable RSR numeric criteria.

Pesticides
Pesticides were not detected above the reporting limits in the sediment samples collected as part of this investigation.
Herbicides
Herbicides were not detected above the reporting limits in the sediment samples collected as part of this investigation.

6.3 Surface Water Sample Results
A summary of the surface water sample analytical results is presented in Table 3. Copies of the laboratory analytical reports for the surface water samples are included as Appendix C.

ETPH
ETPH was not detected above the reporting limits in the surface water samples collected as part of this investigation.

VOCs
VOCs were detected above the reporting limits from two (2) surface water samples (SF-1 and SF-2). Specifically, concentrations of one or more of the following VOCs were detected: cis-1,2-dichloroetene and Trichloroethene (TCE). VOC concentrations in the surface water samples ranged from 1.1 \(\mu g/l \) of cis-1,2-dichloroetene in surface water sample SF-1 to 3.5 \(\mu g/l \) of TCE in surface water samples SF-1 and SF-2.

No concentrations of VOCs were reported greater than applicable RSR numeric criteria.

PAHs
One (1) PAH compound was detected above the reporting limit in one (1) surface water sample (SF-1). Specifically, a concentration of 0.02 \(\mu g/l \) of benzo(a)anthracene was reported.

No concentrations of PAHs were reported greater than applicable RSR numeric criteria.

PCBs
PCBs were not detected above the reporting limits in the surface water samples collected as part of this investigation.

Total RCRA 8 Metals
Total RCRA 8 metals were detected above the reporting limits from two (2) surface water samples (SF-1 and SF-2). Specifically, concentrations of the following total RCRA 8 metals were detected: barium and chromium. Total RCRA 8 metals concentrations in the surface water samples ranged from 0.002 mg/l of chromium in surface water sample SF-2 to 0.133 mg/l of barium in surface water sample SF-2.

No total RCRA 8 metals concentrations were reported greater than applicable RSR numeric criteria.

Pesticides
Pesticides were not detected above the reporting limits in the surface water samples collected as part of this investigation.

Herbicides
Herbicides were not detected above the reporting limits in the surface water samples collected as part of this investigation.
6.4 Groundwater Sample Results

A summary of the groundwater sample analytical results is presented in Table 4. Copies of the laboratory analytical reports for the groundwater samples are included as Appendix C.

ETPH

ETPH was not detected above the reporting limits in the groundwater samples collected as part of this investigation.

VOCs

VOCs were not detected above the reporting limits in the groundwater samples collected as part of this investigation.

PAHs

PAHs were detected above the reporting limits in the groundwater samples collected from three (3) groundwater samples (MW-1 through MW-3). Specifically, concentrations of one or more of following PAHs were detected: anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylen, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene and pyrene. PAH concentrations in the groundwater samples ranged from 0.02 μg/L of dibenz(a,h)anthracene in groundwater sample MW-1 to 1.5 μg/l of fluoranthene in groundwater sample MW-2.

Individual PAH compounds dibenz(a,h)anthracene and benzo(a)anthracene were reported in MW-1 and MW-2, respectively, at concentrations greater than the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to Surface Water numeric criteria. Additionally, total PAHs in MW-2 were also reported greater than the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to Surface Water numeric criteria

PCBs

PCBs were not detected above the reporting limits in the groundwater samples collected as part of this investigation.

Total RCRA 8 Metals

Total RCRA 8 metals were detected above the limits in the groundwater samples collected from two (2) groundwater samples (MW-1 and MW-2). Specifically, concentrations of one or more of following total RCRA 8 metals were detected: arsenic, barium, chromium, lead and silver. Total RCRA 8 concentrations in the groundwater samples ranged from 0.0.13 mg/l of arsenic in groundwater sample MW-1 to 0.494 mg/l of barium in groundwater sample MW-1.

Three (3) total RCRA 8 metal concentrations (arsenic, lead and silver) were reported greater than the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to Surface Water numeric criteria in two (2) groundwater samples (MW-1 and MW-2).

Pesticides

Pesticides were not detected above the reporting limits in the groundwater samples collected as part of this investigation.

Herbicides

Herbicides were not detected above the reporting limits in the groundwater samples collected as part of this investigation.
6.5 Quality Assurance/Quality Control Sample Results
A summary of the QA/QC results is presented in Tables 1 through 4. DQA/DUE worksheets are included as Appendix B. Copies of the laboratory analytical reports for the QA/QC samples are included as Appendix C.

As indicated in Section 5.5, one (1) field blank and two (2) trip blanks (one (1) soil and one (1) surface water) were submitted to the laboratory as part of this sampling program for quality assurance/quality control purposes. The field blank and the trip blanks did not exhibit detectable concentrations of any constituents, indicating that the field equipment used for the sampling had been adequately decontaminated and had no influence on the analytical results.

No duplicate samples were collected as part of this investigation.

7.0 SUMMARY AND CONCLUSIONS

Based upon the results of the laboratory analyses performed on soil, sediment, surface water and groundwater samples for this Task 210 investigation, two (2) areas of environmental concern (AOECs) for soil have been identified where contaminants are present at concentrations that exceed the applicable CTDEEP RSR criteria. Groundwater concentrations have identified the presence of PAHs and RCRA 8 metals in all groundwater monitoring wells greater than the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to Surface Water numeric criteria; therefore, the entire project Site has been designated a groundwater area of environmental concern (GW-AOEC).

One (1) low-level area of environmental concern (LLAOEC) for sediment has been identified where contaminants were detected at concentrations below applicable CTDEEP RSR standards, but above laboratory detection limits. Total and SPLP RCRA 8 metals were omitted in the LLAOEC determination as the concentrations are consistent with naturally-occurring background concentrations. The locations of the AOECs and LLAOECs are discussed in the following sections.

Based on the results of this report both soil and groundwater encountered during construction activities will require proper management and disposal in accordance with local and state requirements.

7.1 Soil – Area of Environmental Concern (AOEC)

AOEC #1: SB-7 (6-8’)

Analytical results from the soil sample collected from soil boring SB-7 (6-8’) identified the presence of ETPH and several PAHs at concentrations greater than the Res DEC and/or GB PMC.

AOEC #2: SB-3 (2-4’), SB-4 (2-4’)

Analytical results from the soil samples collected from soil borings SB-3 (2-4’) and SB-4 (2-4’) identified the presence of several PAHs at concentrations greater than the Res DEC and/or the GB PMC. One (1) VOC from SB-3 (2-4’) and ETPH from SB-3 (2-4’) and SB-4 (2-4’) was also identified; however, at a concentration below applicable RSR numeric criteria.
7.2 Sediment – Low Level Area of Environmental Concern (LL-AOEC)

LL-AOEC #A: SED-1 through SED-3

Analytical results from the sediment samples collected from the stream bed identified the presence of various PAHs. Contaminant concentrations collected from this area are below applicable RSR numeric criteria.

7.3 Groundwater – Area of Environmental Concern (GW-AOEC)

GW-AOEC #1: MW-1, MW-2

Analytical results from the groundwater samples identified the presence of several PAHs and RCRA 8 metals at concentrations greater than the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to Surface Water effluent discharge limitations.

8.0 RECOMMENDATIONS

The results of the Task 210 – Subsurface Site Investigation Report for the replacement of the Cooper Street Bridge located in Meriden, Connecticut has identified the presence of PAHs and ETPH at concentrations greater than applicable RSR criteria in soils at depths ranging from zero to ten (0-10) ft bgs. In addition, groundwater has identified the presence PAHs and total RCRA 8 metals at concentrations greater than the CTDEEP General Permit for the Discharge of Groundwater Remediation Wastewater directly to Surface Water effluent discharge limitations. Sediment samples identified the presence of low-level PAH concentrations of PAHs.

Based on the analytical data collected during the subsurface investigation associated with this report, two (2) areas of environmental concern (AOECs) for soil and one (1) groundwater area of environmental concern (GW-AOEC) have been identified. Additionally, one (1) LLAOEC for sediment has been identified. The surface water will not be considered a low-level area of LLAOEC for the purpose of this report as the data collected as part of this investigation is intended to be utilized as baseline data for surface water conditions (pre-construction) in the event construction activities inadvertently result in contaminating to the surface water body.

Special considerations for treatment/disposal, dewatering activities, and worker health & safety must be given to these areas in order to ensure compliance with all local, State and Federal laws. Therefore, RED recommends Task 310 Plans and Specifications be prepared to further assess construction related activities (i.e. proper storage, classification, transport and disposal of contaminated materials), relative to environmental conditions prevalent within the project limits, as well as to specify remedial work to be included in the Contract Bid Documents.
9.0 REFERENCES

Connecticut Department of Environmental Protection, June 2013, *Remediation Standard Regulations*.

10.0 DISCLAIMER AND LIMITATIONS

No other party, other than the Client, shall be entitled to rely on this Report of any information, documents, records, data, interpretations, advice or opinions given to the Client by RED Technologies, LLC (RED) in the performance of its work. The Report related solely to the specific project for which RED has been retained and shall not be used or relied upon by Client or any third party for any variation or extension of this project, any other project or any other purpose without the express written permission of RED. Any unpermitted use by Client or any third party shall be at Client’s or such third party’s own risk and without any liability to RED.

RED has prepared this report in accordance with the contract scope of work, using reasonable efforts to attempt to identify areas of potential liability associated with AOECs at the Site. The conclusions in this report were based solely on RED’s inspections and on readily available records, interviews, and other secondary sources. RED has made no independent investigation of the accuracy of these secondary sources and has assumed them to be accurate and complete. RED does not warrant the accuracy or completeness of information provided by secondary sources. RED does not warrant that all contamination that may exist on the Site has been discovered, that the Site is suitable for any particular purpose or that the Site is clean or free of liability. This report is only meant to fulfill the stated purpose of this specific report. Over time, various aspects of the subject property may change and would require further investigation and subsequent modification of this report’s findings. The ownership of information in this report is reserved entirely to RED and Client. RED should be notified by any party wishing to use any or all parts of this report.

RED has used reasonable care, skill, competence and judgment in the performance of its services for this project consistent with professional standards for those providing similar services at the same time, in the same locale, and under like circumstances. Unless otherwise stated, the work performed by RED should be understood to be exploratory and interpretational in character and any results, findings or recommendations contained in this Report or resulting from the work proposed may include decisions which are judgmental in nature and not necessarily based solely on pure science or engineering. It should be noted that our conclusions might be modified if subsurface conditions were better delineated with additional subsurface exploration including, but not limited to, test pits, soil borings with collection of soil and water samples, and laboratory testing.

Except as expressly provided in this disclaimer and limited warranty section, RED makes no other representation or warranty of any kind whatsoever, oral, or written, expressed or implied; and all implied warranties or merchantability and fitness for a particular purpose, are hereby disclaimed.

RED is engaged in the environmental assessment of Real Estate. RED warrants that it has the expertise in conducting such assessments and further warrants that the assessment will be conducted in accordance with accepted industry practices and standards as to the detection of industrial and hazardous contamination.

RED will not be liable for loss or damage by reason of conditions created subsequent to the date the assessment is performed or for conditions existing before the date the assessment was performed. This report should be considered a reliable assessment of the property condition only as of the date of the assessment. Changing conditions and use of the property could render this report inaccurate or incomplete with the passing of time.

This report is intended to be utilized solely by the client unless otherwise indicated. It may be relied on only by the client unless otherwise indicated and warranties set forth in this report only extend to the client or other designated party.
FIGURES
Legend
- Soil Boring/Temporary Groundwater Monitoring Well
- Soil Boring
- Sediment Sample
- Surface Water Sample
- Limit of Excavation

Soil Boring/Temporary Groundwater Monitoring Well
Soil Boring
Sediment Sample
Surface Water Sample
Limit of Excavation

Environmental Sampling Location Map

Cooper Street Bridge Over Harbor Brook
Meriden, Connecticut

SCALE: AS SHOWN
DATE: 1-26-2015
ADDRESS: Cooper Street Bridge Over Harbor Brook
Meriden, Connecticut

PREPARED FOR
CITY OF MERIDEN

REVISIONS
DATE 10/08/14

P.E. SUBMITTAL

REPLACEMENT OF COOPER STREET BRIDGE OVER HARBOR BROOK ROADWAY PLAN

RED TECHNOLOGIES, LLC
10 Northwood Drive, Bloomfield, CT 06002
(860) 218-2428 | www.redtechnlcom
TABLE I
SUMMARY OF SOIL ANALYTICAL DATA
Cooper Street Bridge over Harbor Brook
Meriden, Connecticut

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>SB-1</th>
<th>SB-2</th>
<th>SB-3/MW-1</th>
<th>SB-4</th>
<th>SB-5</th>
<th>SB-6</th>
<th>SB-7</th>
<th>SB-8/MW-2</th>
<th>Trip Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Depth (ft)</td>
<td>6-8'</td>
<td>6-8'</td>
<td>2-4'</td>
<td>2-4'</td>
<td>2-4'</td>
<td>6-8'</td>
<td>6-8'</td>
<td>8-10'</td>
<td>NA</td>
</tr>
<tr>
<td>VOCs</td>
<td>Res DEC (µg/kg)</td>
<td>GB PMC (µg/kg)</td>
<td>Res DEC (µg/kg)</td>
<td>GB PMC (µg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>NE</td>
<td>NE</td>
<td>< 46</td>
<td>6.3</td>
<td>< 46</td>
<td>6.3</td>
<td>< 46</td>
<td>6.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>1,000,000</td>
<td>800,000</td>
<td>< 280</td>
<td>< 2.5</td>
<td>< 280</td>
<td>< 2.5</td>
<td>< 280</td>
<td>< 2.5</td>
<td>< 2.5</td>
</tr>
<tr>
<td>Anthracene</td>
<td>1,000,000</td>
<td>400,000</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>1,000</td>
<td>1,000</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>1,000</td>
<td>1,000</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>NE</td>
<td>NE</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>NE</td>
<td>NE</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Chrysene</td>
<td>NE</td>
<td>NE</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>NE</td>
<td>NE</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>1,000,000</td>
<td>2,000,000</td>
<td>< 280</td>
<td>< 2.5</td>
<td>< 280</td>
<td>< 2.5</td>
<td>< 280</td>
<td>< 2.5</td>
<td>< 2.5</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>NE</td>
<td>NE</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>1,000,000</td>
<td>40,000</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Pyrene</td>
<td>1,000,000</td>
<td>40,000</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>< 280</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Res DEC (µg/kg)</td>
<td>GB PMC (µg/kg)</td>
<td>Res DEC (µg/kg)</td>
<td>GB PMC (µg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlordane</td>
<td>490</td>
<td>100</td>
<td>< 39</td>
<td>< 46</td>
<td>< 39</td>
<td>< 46</td>
<td>< 39</td>
<td>< 46</td>
<td>< 39</td>
</tr>
<tr>
<td>Herbicides</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Toxic Metals</td>
<td>Res DEC (mg/kg)</td>
<td>GB PMC (mg/L)</td>
<td>Res DEC (mg/kg)</td>
<td>GB PMC (mg/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>9.4</td>
<td>NE</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
<td>2.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Barium</td>
<td>4,700</td>
<td>NE</td>
<td>214</td>
<td>61.5</td>
<td>214</td>
<td>61.5</td>
<td>214</td>
<td>61.5</td>
<td>214</td>
</tr>
<tr>
<td>Chromium (Total)</td>
<td>NE</td>
<td>NE</td>
<td>214</td>
<td>61.5</td>
<td>214</td>
<td>61.5</td>
<td>214</td>
<td>61.5</td>
<td>214</td>
</tr>
<tr>
<td>Lead</td>
<td>9.4</td>
<td>NE</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
</tr>
<tr>
<td>Mercury</td>
<td>NE</td>
<td>< 0.09</td>
<td>< 0.08</td>
<td>< 0.09</td>
<td>< 0.08</td>
<td>< 0.09</td>
<td>< 0.08</td>
<td>< 0.09</td>
<td>< 0.09</td>
</tr>
<tr>
<td>Silver</td>
<td>340</td>
<td>NE</td>
<td>0.16</td>
<td>0.04</td>
<td>0.16</td>
<td>0.04</td>
<td>0.16</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>SPLP Metals</td>
<td>Res DEC (mg/kg)</td>
<td>GB PMC (mg/L)</td>
<td>Res DEC (mg/kg)</td>
<td>GB PMC (mg/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>NE</td>
<td>0.5</td>
<td>< 0.004</td>
</tr>
<tr>
<td>Barium</td>
<td>NE</td>
<td>10</td>
<td>0.137</td>
<td>0.07</td>
<td>0.137</td>
<td>0.07</td>
<td>0.137</td>
<td>0.07</td>
<td>0.137</td>
</tr>
<tr>
<td>Chromium (Total)</td>
<td>NE</td>
<td>0.5</td>
<td>< 0.010</td>
</tr>
<tr>
<td>Lead</td>
<td>NE</td>
<td>0.15</td>
<td>< 0.010</td>
</tr>
<tr>
<td>TPH</td>
<td>Res DEC (mg/kg)</td>
<td>GB PMC (mg/kg)</td>
<td>Res DEC (mg/kg)</td>
<td>GB PMC (mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPH</td>
<td>NE</td>
<td>0.54</td>
<td>< 0.010</td>
</tr>
<tr>
<td>PCBs</td>
<td>Res DEC (µg/kg)</td>
<td>GB PMC (µg/kg)</td>
<td>Res DEC (µg/kg)</td>
<td>GB PMC (µg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td>NE</td>
<td>NE</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes:
- Res DEC - Residential Direct Exposure Criteria
- GB PMC - GB Pollutant Mobility Criteria
- SPLP - Synthetic Precipitate Leaching Procedure
- ETPH - Extractable Total Petroleum Hydrocarbons
- VOCs - Volatile Organic Compounds
- PAHs - Polycyclic Aromatic Hydrocarbons
- PCBs - Polybvinylchloride film
- NA - not applicable
- mg/Kg - milligrams per kilograms
- µg/L - micrograms per liter
- µg/kg - micrograms per kilograms
- ND - not detected
TABLE 2
SUMMARY OF SEDIMENT ANALYTICAL DATA
Cooper Street Bridge over Harbor Brook
Meriden, Connecticut

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>SED-1</th>
<th>SED-2</th>
<th>SED-3</th>
<th>Field Blank</th>
<th>Trip Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Depth (ft):</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

VOCs
<table>
<thead>
<tr>
<th>Res DEC (μg/kg)</th>
<th>GB PMC (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

PAHs
<table>
<thead>
<tr>
<th>Res DEC (μg/kg)</th>
<th>GB PMC (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Benz(a)anthracene: 1,000, 1,000, 300, 320, 430
- Benzo(a)pyrene: 1,000, 1,000, 310, 310, 420
- Benzo(b)fluoranthene: 1,000, 1,000, 470, 430, 590
- Chrysene: NE, NE, 350, 360, 490
- Fluoranthene: 1,000,000, 56,000, 760, 770, 760
- Phenanthrene: 1,000,000, 40,000, 330, 360, 400
- Pyrene: 1,000,000, 40,000, 650, 640, 600

Pesticides
<table>
<thead>
<tr>
<th>Res DEC (μg/kg)</th>
<th>GB PMC (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Herbicides
<table>
<thead>
<tr>
<th>Res DEC (μg/kg)</th>
<th>GB PMC (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Total Metals
<table>
<thead>
<tr>
<th>Res DEC (mg/kg)</th>
<th>GB PMC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic: 10 NE 1.8 0.9 1.5</td>
<td>NA NA</td>
</tr>
<tr>
<td>Barium: 4,700 NE 42.6 47.3 98.4</td>
<td>NA NA</td>
</tr>
<tr>
<td>Cadmium: 34 NE 0.62 <0.38 <0.37</td>
<td>NA NA</td>
</tr>
<tr>
<td>Chromium: NE NE 16.6 11.3 22.4</td>
<td>NA NA</td>
</tr>
<tr>
<td>Lead: 400 NE 156 22 64.3</td>
<td>NA NA</td>
</tr>
<tr>
<td>Silver: 340 NE 1.16 1.59 <0.37</td>
<td>NA NA</td>
</tr>
</tbody>
</table>

SPLP Metals
Res DEC (mg/kg)	GB PMC (mg/L)
SPLP Barium: NE 10 0.042 0.051 0.042	NA NA
SPLP Chromium: NE 0.5 0.017 0.017 <0.010	NA NA
SPLP Lead: NE 0.15 0.072 0.052 0.023	NA NA

ETPH
| Res DEC (mg/kg) | GB PMC (mg/kg) |
| ETPH: 500 2,500 <61 120 <56 | NA NA |

PCBs
<table>
<thead>
<tr>
<th>Res DEC (μg/kg)</th>
<th>GB PMC (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes:
- Res DEC - Residential Direct Exposure Criteria
- GB PMC - GB Pollutant Mobility Criteria
- SPLP - Synthetic Precipitate Leaching Procedure
- ETPH - Extractable Total Petroleum Hydrocarbons
- VOCs - Volatile Organic Compounds
- PAHs - Polyaromatic Hydrocarbons
- PCBs - Polychlorinated Biphenyls
- mg/Kg - milligram per kilogram
- mg/L - milligram per liter
- μg/Kg - microgram per kilogram
- NE - not established
- NA - not analyzed
- N/A - not applicable
- SPLP - not established
- ETPH - not applicable
- mg/Kg - not detected
- μg/Kg - not detected
- Exceedance of one or more RSR criteria
TABLE 3
SUMMARY OF SURFACE WATER ANALYTICAL DATA
Cooper Street Bridge over Harbor Brook
Meriden, Connecticut

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>SF-1</th>
<th>SF-2</th>
<th>Field Blank</th>
<th>Trip Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Depth (ft):</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VOCs</td>
<td>SWPC (µg/L)</td>
<td>Res Vol (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>NE</td>
<td>NE</td>
<td>1.1</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Trichloroethene (TCE)</td>
<td>2,340</td>
<td>219</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>PAHs</td>
<td>SWPC (µg/L)</td>
<td>Res Vol (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>0.03</td>
<td>NE</td>
<td>0.02</td>
<td>ND</td>
</tr>
<tr>
<td>Pesticides</td>
<td>SWPC (µg/L)</td>
<td>Res Vol (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Metals</td>
<td>SWPC (mg/L)</td>
<td>Res Vol (mg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>NE</td>
<td>NE</td>
<td>0.126</td>
<td>0.133</td>
</tr>
<tr>
<td>Chromium</td>
<td>NE</td>
<td>NE</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>ETPH</td>
<td>SWPC (mg/L)</td>
<td>Res Vol (mg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETPH</td>
<td>NE</td>
<td>NE</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PCBs</td>
<td>SWPC (µg/L)</td>
<td>Res Vol (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td>0.5</td>
<td>NE</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes:
- SWPC - Surface Water Protection Criteria
- Res Vol - Residential Groundwater Volatilization Criteria
 - NE - regulatory criteria not established
 - NA - not analyzed
 - ND - not detected
- VOCs - Volatile Organic Compounds
- PAHs - Polyaromatic Hydrocarbons
- PCBs - Polychlorinated biphenyls
- ETPH - Extractable Total Petroleum Hydrocarbons

270 - Exceedance of one or more RSR criteria
Table 4: Summary of Groundwater Analytical Data

Cooper Street Bridge over Harbor Brook
Meriden, Connecticut

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>MW-1</th>
<th>MW-2</th>
<th>Field Blank</th>
<th>Trip Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Depth (ft):</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>1-19-2015</td>
<td>1-19-2015</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Surface Water Discharge Effluent Limits</th>
<th>Sanitary Sewer Discharge Effluent Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total VOCs</td>
<td>10 µg/l</td>
<td>5,000 µg/l</td>
</tr>
<tr>
<td>PAHs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>0.49</td>
<td>NE</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.49</td>
<td>NE</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>0.49</td>
<td>NE</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0.49</td>
<td>NE</td>
</tr>
<tr>
<td>Chrysene</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Dibenzo(a,j)anthracene</td>
<td>0.01</td>
<td>NE</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>0.49</td>
<td>NE</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Pyrene</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Total PAHs</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Pesticides</td>
<td>Compound Specific</td>
<td>Compound Specific</td>
</tr>
<tr>
<td>Herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.000021 (mg/l)</td>
<td>0.1 (mg/l)</td>
</tr>
<tr>
<td>Barium</td>
<td>NE</td>
<td>5 (mg/l)</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.342 (mg/l)</td>
<td>1 (mg/l)</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0098 (mg/l)</td>
<td>0.1 (mg/l)</td>
</tr>
<tr>
<td>Silver</td>
<td>0.005 (mg/l)</td>
<td>0.1 (mg/l)</td>
</tr>
<tr>
<td>ETPH</td>
<td>5 (mg/l)</td>
<td>100 (mg/l)</td>
</tr>
<tr>
<td>PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.1 (mg/l)</td>
<td>1 (mg/l)</td>
</tr>
</tbody>
</table>

Notes:
- GWPC - Ground Water Protection Criteria
- SWPC - Surface Water Protection Criteria
- Res Vol - Residential Groundwater Volatilization Criteria
- NE - regulatory criteria not established
- NA - not analyzed
- ND - not detected
- VOCs - Volatile Organic Compounds
- PAHs - Polyaromatic Hydrocarbons
- PCBs - Polychlorinated biphenyls
- ETPH - Extractable Total Petroleum Hydrocarbons
- µg/L - micrograms/Liter
- mg/L - milligrams/Liter
APPENDIX A
Soil Boring Logs
<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLE COLLECTION (Depth/Time)</th>
<th>TEMPORARY WELL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>0 - 6" Asphalt</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48"</td>
<td>36"</td>
<td><1</td>
<td></td>
<td>6" - 2' - Brown, SILT, some fine sand, trace medium to fine rounded gravel, Dry</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>2' - 4' - Brown, SILT, little clay, trace fine sand, Moist</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>4' - 6' - Brown, FINE SAND and SILT, trace medium semi-rounded gravel, trace medium sand, Moist</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>6' - 8' - Brown, CLAY, some silt, trace fine sand, Wet</td>
<td>6' - 8' @ 1125</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48"</td>
<td>26"</td>
<td><1</td>
<td></td>
<td>6' - 8' - Brown, CLAY, some silt, trace fine sand, Wet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Boring @ 8 ft bgs
PROJECT INFORMATION

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Task 210 Contamination Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>14-385</td>
</tr>
<tr>
<td>Client:</td>
<td>WMC Consulting Engineers</td>
</tr>
<tr>
<td>Date Start/Completion:</td>
<td>1/8/2015</td>
</tr>
<tr>
<td>Drilling Contractor:</td>
<td>Metric Earth Services</td>
</tr>
<tr>
<td>Drilling Method:</td>
<td>Geoprobe®</td>
</tr>
</tbody>
</table>

BORING/WELL INFORMATION

<table>
<thead>
<tr>
<th>Soil Boring No.:</th>
<th>SB-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate Groundwater Depth:</td>
<td>~8' bgs</td>
</tr>
<tr>
<td>Temporary Well Installation Depth:</td>
<td>-</td>
</tr>
<tr>
<td>Slot Size:</td>
<td>-</td>
</tr>
<tr>
<td>Top of Casing Elevation:</td>
<td>-</td>
</tr>
</tbody>
</table>

DEPTH (ft.)

<table>
<thead>
<tr>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLING COLLECTION (Depth/Time)</th>
<th>TEMPORARY WELL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td><1</td>
<td>0 - 6" Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48"</td>
<td>36"</td>
<td><1</td>
<td>6" - 2' - Brown, SILT, some fine sand, little fine angular gravel, Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td><1</td>
<td>2' - 4' - Brown, SILT, some fine sand, little fine very angular gravel, Moist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td><1</td>
<td>2' - 4' - Light Brown, SILT, some fine sand, trace medium sand, trace fine angular gravel, Wet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td><1</td>
<td>2' - 4' - Light Brown, SILT, some fine sand, trace medium sand, trace fine angular gravel, Wet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48"</td>
<td>26"</td>
<td></td>
<td>4' - 8' - Brown, CLAY, some silt, trace fine sand, trace organics (roots, stems), Wet</td>
<td>6' - 8' @ 1000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td><1</td>
<td>4' - 8' - Brown, CLAY, some silt, trace fine sand, trace organics (roots, stems), Wet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>End of Boring @ 8 ft bgs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil Description:
- and = 35-50%
- some = 20-35%
- little = 10-20%
- trace = 1-10%
PROJECT INFORMATION

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Task 210 Contamination Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>14-385</td>
</tr>
<tr>
<td>Client:</td>
<td>WMC Consulting Engineers</td>
</tr>
<tr>
<td>Location:</td>
<td>Meriden, CT</td>
</tr>
<tr>
<td>Date Start/Completion:</td>
<td>1/8/2015</td>
</tr>
<tr>
<td>Drilling Contractor:</td>
<td>Metric Earth Services</td>
</tr>
<tr>
<td>Drilling Method:</td>
<td>Geoprobe®</td>
</tr>
</tbody>
</table>

BORING/WELL INFORMATION

<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLE COLLECTION (Depth/Time)</th>
<th>TEMPORARY WELL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>0 - 2' - Brown, SILT, some silt, little very angular fine gravel, trace medium to fine sand, Dry</td>
<td>-</td>
<td>PVC Well Riser 1"</td>
</tr>
<tr>
<td>2</td>
<td>48"</td>
<td>30"</td>
<td></td>
<td></td>
<td>2' - 4' - Light Brown, FINE SAND, little silt, trace fine angular gravel, Moist</td>
<td>2' - 4" @ 1025</td>
<td>Bentonite Seal</td>
</tr>
<tr>
<td>3</td>
<td>48"</td>
<td>22"</td>
<td></td>
<td></td>
<td>4' - 6' - Brown, FINE SAND, some silt, little medium sand, trace fine angular gravel, Moist</td>
<td>-</td>
<td>0.010" Slot Well Screen 1"</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, CLAY, little silt, trace fine sand, Wet</td>
<td>-</td>
<td>No. 0 Sand</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>8' - 10' - Brown, CLAY, little silt, trace fine sand, Wet</td>
<td>-</td>
<td>No. 0 Sand</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>10' - 12' - Brown, CLAY, little silt, trace fine orange sand, Wet</td>
<td>-</td>
<td>No. 0 Sand</td>
</tr>
</tbody>
</table>

End of Boring @ 12 ft bgs

Soil Description: and = 35-50% some = 20-35% little = 10-20% trace = 1-10%
<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLE COLLECTION (Depth/Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24"</td>
<td>20"</td>
<td>2.6</td>
<td></td>
<td>0 - 2" Brown, FINE SAND, some silt, trace fine semi-angular gravel, trace medium sand, Wet</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24"</td>
<td>19"</td>
<td>8.2</td>
<td></td>
<td>2 - 4" Dark Brown, FINE SAND, some silt, trace fine rounded gravel, Wet @ 1150</td>
<td>2' - 4' @ 1150</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Boring @ 4 ft bgs

Soil Description: and = 35-50% some = 20-35% little = 10-20% trace = 1-10%
Project Information

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Task 210 Contamination Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>14-385</td>
</tr>
<tr>
<td>Client:</td>
<td>WMC Consulting Engineers</td>
</tr>
<tr>
<td>Location:</td>
<td>Meriden, CT</td>
</tr>
<tr>
<td>Date Start/Completion:</td>
<td>1/9/2015</td>
</tr>
<tr>
<td>Drilling Contractor:</td>
<td>Metric Earth Services</td>
</tr>
<tr>
<td>Drilling Method:</td>
<td>Geoprobe®</td>
</tr>
</tbody>
</table>

Boring/Well Information

<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLE COLLECTION (Depth/Time)</th>
<th>TEMPORARY WELL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24"</td>
<td>13"</td>
<td><1</td>
<td>0 - 2" Brown, FINE SAND, little silt, trace fine angular gravel, trace medium sand, Wet</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24"</td>
<td>18"</td>
<td>2 - 4" Brown, FINE SAND, little silt, trace fine rounded gravel, Saturated</td>
<td>2' - 4' @ 1130</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Boring @ 4 ft bgs

Soil Description: and = 35-50% some = 20-35% little = 10-20% trace = 1-10%
Project Information
- **Project Name:** Task 210 Contamination Study
- **Project Number:** 14-385
- **Client:** WMC Consulting Engineers
- **Location:** Meriden, CT
- **Date Start/Completion:** 1/8/2015
- **Drilling Contractor:** Metric Earth Services
- **Drilling Method:** Geoprobe®

Boring/Well Information
- **Soil Boring Depth:** 8'
- **Approximate Groundwater Depth:** ~8' bgs
- **Temporary Well Installation Depth:** Sand:
- **Slot Size:**
- **Screen Length:**
- **Top of Casing Elevation:**

Soil Boring No. SB-6

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>PENETRATION (in)</th>
<th>RECOVERY (in)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLE COLLECTION (Depth/Time)</th>
<th>TEMPORARY WELL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 - 6" Asphalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48"</td>
<td>32"</td>
<td><1</td>
<td></td>
<td>6" - 2" Brown, SILT, some fine sand, trace coarse sand, Dry</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2" - 4" Brown, SILT, some fine sand, little medium coarse sand, Dry</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48"</td>
<td>26"</td>
<td><1</td>
<td></td>
<td>4" - 6" Brown, SILT, little fine sand, Moist</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6" - 8" Brown, SILT, little fine Sand, trace medium sand, Wet</td>
<td>6' - 8" @ 0915</td>
<td>(WELL NOT INSTALLED)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Boring @ 8 ft bgs

Soil Description: and = 35-50% some = 20-35% little = 10-20% trace = 1-10%
<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
<th>SAMPLE COLLECTION (Depth/Time)</th>
<th>TEMPORARY WELL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 - 6" Asphalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6" - 2' - Brown, SILT, some fine sand, little fine angular gravel, Dry</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48"</td>
<td>31"</td>
<td></td>
<td><1</td>
<td>2' - 4' - Brown, SILT, some fine sand, trace fine semi-rounded gravel, trace clay, Dry</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4' - 6' - Brown, SILT, some clay, trace fine sand, trace fine angular gravel, Moist</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48"</td>
<td>28"</td>
<td></td>
<td><1</td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6' - 8' - Brown, MEDIUM SAND, little silt, little medium to fine angular gravel, Wet</td>
<td>6' - 8' @ 1210</td>
<td></td>
</tr>
</tbody>
</table>

End of Boring @ 8 ft bgs
SOIL BORING NO. SB-8/MW-2

PROJECT INFORMATION

- **Project Name:** Task 210 Contamination Study
- **Project Number:** 14-385
- **Client:** WMC Consulting Engineers
- **Location:** Meriden, CT
- **Date Start/Completion:** 1/8/2015
- **Drilling Contractor:** Metric Earth Services
- **Drilling Method:** Geoprobe®

BORING/WELL INFORMATION

- **Soil Boring Depth:** 12'
- **Approximate Groundwater Depth:** 7' bgs
- **Temporary Well Installation Depth:** 12'
- **Slot Size:** 0.010
- **Screen Length:** 10'
- **Top of Casing Elevation:** 101.715

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>PENETRATION (in.)</th>
<th>RECOVERY (in.)</th>
<th>PID (PPM)</th>
<th>LITHOLOGY</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0 - 2"</td>
<td>BRICK, some medium sand, little angular medium gravel, Dry</td>
</tr>
<tr>
<td>2</td>
<td>48"</td>
<td>32"</td>
<td></td>
<td>2' - 4"</td>
<td>BRICK, little silt, trace medium sand, trace medium to fine angular gravel, Dry</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0 - 6"</td>
<td>BRICK, some fine sand, trace fine angular gravel, Moist</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>6' - 8"</td>
<td>Brown, SILT, little fine sand, trace clay, Wet</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>8' - 10"</td>
<td>Brown, SILT, little fine sand, trace clay, trace fine angular gravel, Wet</td>
</tr>
<tr>
<td>6</td>
<td>48"</td>
<td>40"</td>
<td></td>
<td>10' - 12"</td>
<td>Brown, MEDIUM to FINE SAND, little silt, trace clay, Saturated</td>
</tr>
</tbody>
</table>

End of Boring @ 12 ft bgs

Soil Description: and = 35-50%
 some = 20-35%
 little = 10-20%
 trace = 1-10%
APPENDIX B
DQA/DUE Worksheets
Data Quality Assessment Worksheet

Project Name: Meriden CT Task 210
Red Tech File Number: 14-385
Reviewer: F. Mastele
Date Samples Collected: 1/8/2015
Laboratory: Phoenix Environmental Laboratories, Inc.
Sample Group #: BH61515 to BH61522

<table>
<thead>
<tr>
<th>Sample Number(s)</th>
<th>Compounds</th>
<th>Quality Control Nonconformance</th>
<th>Percent Recovery</th>
<th>Relative Percent Difference</th>
<th>High/Low Bias</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH61515, BH61516, BH61517, BH61518, BH61519 and BH61520</td>
<td>2,4-D, 2,4-DB, Dichloroprop</td>
<td>MS/MSD</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>One or more analytes exceeds the method criteria. These analytes were not reported in the samples, therefore no sample variability is suspected.</td>
</tr>
<tr>
<td>BH61515, BH61516, BH61517, BH61518, BH61519 and BH61520</td>
<td>2,4-D, 2,4-DB, Dichloroprop</td>
<td>RPD</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>One or more analytes exceeds the method criteria. These analytes were not reported in the samples, therefore no sample variability is suspected.</td>
</tr>
</tbody>
</table>

Note other QC nonconformances below (data package inspection, reasonable confidence, chain of custody, sample result, sample preservation and holding time evaluations).

Notes:
- **Bias High:** Reported results may be lower. Reporting limit (RL) acceptable as reported.
- **Bias Low:** Reported results may be higher. RL may be higher than reported.
- **IC:** Initial calibration
- **CC:** Continuing calibration
- **MS/MSD:** Matrix spike/matrix spike duplicate
- **RPD:** Relative percent difference
- **LCS:** Laboratory control sample
- **LCSD:** Laboratory control sample duplicate
- **PP:** Poorly performing compounds
Data Usability Evaluation Worksheet

Project Name: *Meriden, CT Task 210*

Red Tech File Number: 14-385

Reviewer: F. Mastele

Date Samples Collected: 1/8/2015

Laboratory: Phoenix Environmental Laboratories, Inc.

Sample Group #: BH61515 to BH61522

Describe the intended use of the data: *Determination of soil classification for excavation and disposal.*

<table>
<thead>
<tr>
<th>Nonconformance DQA Review Elements</th>
<th>Briefly Summarize DQA Nonconformances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Report Inspection</td>
<td>None.</td>
</tr>
<tr>
<td>Reasonable Confidence Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Chain of Custody Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Sample Result Evaluation</td>
<td>According to the answers to Questions 4 and 6 on the Laboratory supplied QA/QC form, all QA/QC performance criteria specified in the CTDEEP Reasonable Confidence Protocol documents were not achieved and results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents were not reported for all analytical methods referenced in this laboratory report package. Data usability was not affected by these deficiencies.</td>
</tr>
<tr>
<td>Sample Preservation and Holding Time Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Laboratory Control Samples</td>
<td>None.</td>
</tr>
<tr>
<td>Surrogates</td>
<td>None.</td>
</tr>
<tr>
<td>Site Specific Matrix Spikes, Matrix Spike Duplicates and Relative Percent Difference</td>
<td>The MS/MSD RPD for one or more analytes exceeds the method criteria. These analytes were not reported in the samples, therefore no sample variability is suspected. The compounds affected are 2,4-D, 2,4-DB and Dichloroprop. Data usability was not affected by these deficiencies.</td>
</tr>
<tr>
<td>Tentatively Identified Compounds</td>
<td>None.</td>
</tr>
<tr>
<td>Other QC Data</td>
<td>None.</td>
</tr>
</tbody>
</table>
Data Usability Evaluation Worksheet

Provide a summary statement describing how the analytical data set relied upon is of adequate quality and of sufficient accuracy, precision, and sensitivity for the intended purpose. Questions for the environmental professional to consider during the DUE include, but are not limited to, the following. Please see the text of this guidance for additional information.

How will the analytical data be used?
- Will the analytical results be used to determine compliance with RSR criteria?
- Will the analytical results be used to determine whether a release has occurred?
- Will remediation be conducted?
- Has remediation been conducted?
- Are the results going to be used to guide further investigation?
- Are the results going to be used to guide further remediation (including monitored natural attenuation of groundwater)?
- Will the analytical results be used to evaluate seasonal variability, or homogeneity in an environmental sample?

Laboratory QC Information
- Are significant QC variances reported?
- Are the identified QC nonconformances related to results for substances that are reported as "ND", and the reporting limits are significantly less than RSR criteria?
- Are the nonconformances related to poorly performing compounds that are not constituents of concern?
- Are the nonconformances related to substances that are not constituents of concern?
- Is the reported bias high or low? For cases with low bias, are the results well below applicable RSR criteria or are they close to applicable RSR criteria?
- How do the nonconformances affect "NDs" and reported concentrations?

DQOs
- Were the DQO's precision, accuracy, representativeness, comparability, completeness and sensitivity met?
- Are all critical samples usable for the intended purpose(s)?
- Does sample homogeneity or heterogeneity affect the representativeness of the samples?

CSM
- Do any analytical QC nonconformances create significant data gaps in the Conceptual Site Model?
- Evaluate the entire body of information (type, amount, and quality of data) available for the specific area/release for which the data are presumed to be representative. Determine whether any newer data corroborate the older results and whether both sets of data are consistent with the CSM.
- Consider the risk of being wrong based on risk to potential receptors and the risk to human health and the environment.
- Consider the source of data (e.g., whether the data were generated by the environmental professional's own firm or some other firm, the environmental professional's own involvement with the project, method of collection for the samples, and reporting methods by other firms/laboratories generating the data). Perform a critical review of these data to evaluate its reliability.
- Consider any other site-specific factors.

Pre-RCP Data - See Section 4.5 for information to consider.
Data Quality Assessment Worksheet

Project Name: Meriden CT Task 210
Red Tech File Number: 14-385
Reviewer: F. Mastele
Date Samples Collected: 1/9/2015
Laboratory: Phoenix Environmental Laboratories, Inc.
Sample Group #: BH61987, BH61996, BH63049 and BH63050

<table>
<thead>
<tr>
<th>Sample Number(s)</th>
<th>Compounds</th>
<th>Quality Control Nonconformance</th>
<th>Percent Recovery</th>
<th>Relative Percent Difference</th>
<th>High/Low Bias</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH61987, BH61996, BH63049, BH63050</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>All QA/QC performance criteria specified in the Reasonable Confidence Protocol documents were achieved.</td>
</tr>
</tbody>
</table>

Notes:
Bias High: Reported results may be lower. Reporting limit (RL) acceptable as reported.
Bias Low: Reported results may be higher. RL may be higher than reported.
IC: Initial calibration
CC: Continuing calibration.
MS/MSD: Matrix spike/matrix spike duplicate.
LCS: Laboratory control sample.
LCSD: Laboratory control sample duplicate.
PP: Poorly performing compounds.

Note other QC nonconformances below (data package inspection, reasonable confidence, chain of custody, sample result, sample preservation and holding time evaluations).
Describe the intended use of the data: Determination of sediment and soil classification for excavation and disposal.

<table>
<thead>
<tr>
<th>Nonconformance DQA Review Elements</th>
<th>Briefly Summarize DQA Nonconformances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Report Inspection</td>
<td>None.</td>
</tr>
<tr>
<td>Reasonable Confidence Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Chain of Custody Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Sample Result Evaluation</td>
<td>According to the answer to Question 6 on the Laboratory supplied QA/QC form, results were not reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents for all analytical methods referenced in this laboratory report package. Data usability was not affected by these deficiencies.</td>
</tr>
<tr>
<td>Sample Preservation and Holding Time Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Laboratory Control Samples</td>
<td>None.</td>
</tr>
<tr>
<td>Surrogates</td>
<td>None.</td>
</tr>
<tr>
<td>Site Specific Matrix Spikes and Matrix Spike Duplicates</td>
<td>None.</td>
</tr>
<tr>
<td>Tentatively Identified Compounds</td>
<td>None.</td>
</tr>
<tr>
<td>Other QC Data</td>
<td>None.</td>
</tr>
</tbody>
</table>
Data Usability Evaluation Worksheet

Provide a summary statement describing how the analytical data set relied upon is of adequate quality and of sufficient accuracy, precision, and sensitivity for the intended purpose. Questions for the environmental professional to consider during the DUE include, but are not limited to, the following. Please see the text of this guidance for additional information.

How will the analytical data be used?

- Will the analytical results be used to determine compliance with RSR criteria?
- Will the analytical results be used to determine whether a release has occurred?
- Will remediation be conducted?
- Has remediation been conducted?
- Are the results going to be used to guide further investigation?
- Are the results going to be used to guide further remediation (including monitored natural attenuation of groundwater)?
- Will the analytical results be used to evaluate seasonal variability, or homogeneity in an environmental sample?

Laboratory QC Information

- Are significant QC variances reported?
- Are the identified QC nonconformances related to results for substances that are reported as "ND", and the reporting limits are significantly less than RSR criteria?
- Are the nonconformances related to poorly performing compounds that are not constituents of concern?
- Are the nonconformances related to substances that are not constituents of concern?
- Is the reported bias high or low? For cases with low bias, are the results well below applicable RSR criteria or are they close to applicable RSR criteria?
- How do the nonconformances affect "NDs" and reported concentrations?

DQOs

- Were the DQO's precision, accuracy, representativeness, comparability, completeness and sensitivity met?
- Are all critical samples usable for the intended purpose(s)?
- Does sample homogeneity or heterogeneity affect the representativeness of the samples?

CSM

- Do any analytical QC nonconformances create significant data gaps in the Conceptual Site Model?
- Evaluate the entire body of information (type, amount, and quality of data) available for the specific area/release for which the data are presumed to be representative. Determine whether any newer data corroborate the older results and whether both sets of data are consistent with the CSM.
- Consider the risk of being wrong based on risk to potential receptors and the risk to human health and the environment.
- Consider the source of data (e.g., whether the data were generated by the environmental professional's own firm or some other firm, the environmental professional's own involvement with the project, method of collection for the samples, and reporting methods by other firms/laboratories generating the data). Perform a critical review of these data to evaluate its reliability.
- Consider any other site-specific factors.

Pre-RCP Data - See Section 4.5 for information to consider.
Data Quality Assessment Worksheet

Project Name: Meriden CT Task 210
Red Tech File Number: 14-385
Reviewer: F. Mastale
Date Samples Collected: 1/19/2015
Laboratory: Phoenix Environmental Laboratories, Inc.
Sample Group #: BH64992-BH64993

<table>
<thead>
<tr>
<th>Sample Number(s)</th>
<th>Compounds</th>
<th>Quality Control Nonconformance</th>
<th>Percent Recovery</th>
<th>Relative Percent Difference</th>
<th>High/Low Bias</th>
<th>Comments</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH64992, BH64993</td>
<td>ETPH</td>
<td>LCS, LCDS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH64992, BH64993</td>
<td>Bromomethane, Dichlorodifluoromethane</td>
<td>LCS, LCDS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH64992, BH64993</td>
<td>2-Hexanone, Acetone</td>
<td>IC</td>
<td>31%</td>
<td>11%</td>
<td>NA</td>
<td>%RSD >20%</td>
<td></td>
</tr>
<tr>
<td>BH64992, BH64993</td>
<td>Methyl Ethyl Ketone</td>
<td>IC</td>
<td>22%</td>
<td>2%</td>
<td>NA</td>
<td>%RSD >20%</td>
<td></td>
</tr>
<tr>
<td>BH64992, BH64993</td>
<td>Methylene Chloride</td>
<td>IC</td>
<td>21%</td>
<td>1%</td>
<td>NA</td>
<td>%RSD >20%</td>
<td></td>
</tr>
<tr>
<td>BH64992, BH64993</td>
<td>Bromoform</td>
<td>CC</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Did not meet minimum response factors.</td>
<td></td>
</tr>
</tbody>
</table>

Note other QC nonconformances below (data package inspection, reasonable confidence, chain of custody, sample result, sample preservation and holding time evaluations).

Notes:
- Bias High: Reported results may be lower. Reporting limit (RL) acceptable as reported.
- Bias Low: Reported results may be higher. RL may be higher than reported.
- IC: Initial calibration
- CC: Continuing calibration
- MS/MSD: Matrix spike/matrix spike duplicate
- LCS: Laboratory control sample
- LCSD: Laboratory control sample duplicate
- PP: Poorly performing compounds
Describe the intended use of the data: Groundwater Contamination.

<table>
<thead>
<tr>
<th>Nonconformance DQA Review Elements</th>
<th>Briefly Summarize DQA Nonconformances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Report Inspection</td>
<td>None.</td>
</tr>
<tr>
<td>Reasonable Confidence Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Chain of Custody Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Sample Result Evaluation</td>
<td>According to the answers to Questions 4 and 6 on the Laboratory supplied QA/QC form, all QA/QC performance criteria specified in the CTDEEP Reasonable Confidence Protocol documents were not achieved and results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents were not reported for all analytical methods referenced in this laboratory report package. Data usability was not affected by these deficiencies.</td>
</tr>
<tr>
<td>Sample Preservation and Holding Time Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>Laboratory Control Samples</td>
<td>The LCS and/or the LCSD recovery is below the method criteria for ETPH, Bromomethane and Dichlorodifluoromethane in samples MW-1 and MW-2. All of the other QC is acceptable, therefore no significant bias is suspected. Data validation is not affected since all results are "not detected" for all samples in this batch for these compounds. Data usability was not affected by these deficiencies.</td>
</tr>
<tr>
<td>Surrogates</td>
<td>None.</td>
</tr>
<tr>
<td>Site Specific Matrix Spikes and Matrix Spike Duplicates</td>
<td>None.</td>
</tr>
<tr>
<td>Tentatively Identified Compounds</td>
<td>None.</td>
</tr>
<tr>
<td>Other QC Data</td>
<td>Continuing calibration did not meet method specifications. The continuing calibration %D for the compound list was less than 15% except for the following compounds DCBP, Endrin Ketone, TCMX, d-BHC. A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds. Continuing calibration for the following compounds did not meet recommended response factors: 2-chlorophenol, 2-nitrophenol, Bis(2-chloroethyl)ether and Bromoform. Data validation is not affected since sample results were "not detected". Initial Calibration Verification: The following compounds had %RSDs >20%. 2-Hexanone, Acetone, Methyl Ethyl Ketone and Methylene Chloride. Data validation is not affected since sample results were "not detected". Data usability was not affected by these deficiencies.</td>
</tr>
</tbody>
</table>
Data Usability Evaluation Worksheet

Provide a summary statement describing how the analytical data set relied upon is of adequate quality and of sufficient accuracy, precision, and sensitivity for the intended purpose. Questions for the environmental professional to consider during the DUE include, but are not limited to, the following. Please see the text of this guidance for additional information.

How will the analytical data be used?
- Will the analytical results be used to determine compliance with RSR criteria?
- Will the analytical results be used to determine whether a release has occurred?
- Will remediation be conducted?
- Has remediation been conducted?
- Are the results going to be used to guide further investigation?
- Are the results going to be used to guide further remediation (including monitored natural attenuation of groundwater)?
- Will the analytical results be used to evaluate seasonal variability, or homogeneity in an environmental sample?

Laboratory QC Information
- Are significant QC variances reported?
- Are the identified QC nonconformances related to results for substances that are reported as "ND", and the reporting limits are significantly less than RSR criteria?
- Are the nonconformances related to poorly performing compounds that are not constituents of concern?
- Are the nonconformances related to substances that are not constituents of concern?
- Is the reported bias high or low? For cases with low bias, are the results well below applicable RSR criteria or are they close to applicable RSR criteria?
- How do the nonconformances affect "NDs" and reported concentrations?

DQOs
- Were the DQO's precision, accuracy, representativeness, comparability, completeness and sensitivity met?
- Are all critical samples usable for the intended purpose(s)?
- Does sample homogeneity or heterogeneity affect the representativeness of the samples?

CSM
- Do any analytical QC nonconformances create significant data gaps in the Conceptual Site Model?
- Evaluate the entire body of information (type, amount, and quality of data) available for the specific area/release for which the data are presumed to be representative. Determine whether any newer data corroborate the older results and whether both sets of data are consistent with the CSM.
- Consider the risk of being wrong based on risk to potential receptors and the risk to human health and the environment.
- Consider the source of data (e.g., whether the data were generated by the environmental professional's own firm or some other firm, the environmental professional's own involvement with the project, method of collection for the samples, and reporting methods by other firms/laboratories generating the data). Perform a critical review of these data to evaluate its reliability.
- Consider any other site-specific factors.

Pre-RCP Data - See Section 4.5 for information to consider.
APPENDIX C
Laboratory Analytical Reports
Friday, January 16, 2015

Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Project ID: COOPER ST., BRIDGE
Sample ID#s: BH61515 - BH61522

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller
Laboratory Director

NELAC - #NY11301 NJ Lab Registration #CT-003
CT Lab Registration #PH-0618 NY Lab Registration #11301
MA Lab Registration #MA-CT-007 PA Lab Registration #68-03530
ME Lab Registration #CT-007 RI Lab Registration #63
NH Lab Registration #213693-A,B VT Lab Registration #VT11301
Analysis Report

January 16, 2015

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
- **Matrix:** SOIL
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC 01/08/15
- **Received by:** LB 01/09/15
- **Analyzed by:** see “By” below

Laboratory Data
- **SDG ID:** GBH61515
- **Phoenix ID:** BH61515

Project ID:
- COOPER ST., BRIDGE

Client ID:
- SB-6 6-8

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.38</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.5</td>
<td>0.8</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>54.5</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.38</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>12.3</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.07</td>
<td>0.07</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>8.45</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 10</td>
<td>10</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>86</td>
<td></td>
<td>%</td>
<td>01/09/15</td>
<td></td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC/H</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CB/T</td>
<td>SW846-3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>480</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>96</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprope</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>96</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>65</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>TPH by GC (Extractable Products)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>58</td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>81</td>
<td></td>
<td>%</td>
<td>01/10/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>103</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>94</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>3.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>38</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>3.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.5</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>38</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>150</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- % DCBP: 93
 - 01/12/15 CE 30 - 150 %
- % TCMX: 94
 - 01/12/15 CE 30 - 150 %

Volatiles

- 1,1,1,2-Tetrachloroethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,1,1-Trichloroethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,1,2,2-Tetrachloroethane: ND 3.1 ug/Kg 01/09/15 JLI SW8260
- 1,1,2-Trichloroethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,1-Dichloroethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,1-Dichloropropene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2,3-Trichlorobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2,3-Trichloropropane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2,4-Trichlorobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2,4-Trimethylbenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2-Dibromo-3-chloropropane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2-Dibromoethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2-Dichlorobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2-Dichloroethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,2-Dichloropropane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,3,5-Trimethylbenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,3-Dichlorobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,3-Dichloropropane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 1,4-Dichlorobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 2,2-Dichloropropane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 2-Chlorotoluene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 2-Hexanone: ND 26 ug/Kg 01/09/15 JLI SW8260
- 2-Isopropyltoluene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 4-Chlorotoluene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- 4-Methyl-2-pentanone: ND 26 ug/Kg 01/09/15 JLI SW8260
- Acetone: ND 31 ug/Kg 01/09/15 JLI SW8260
- Acrylonitrile: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Benzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Bromobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Bromochloromethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Bromodichloromethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Bromoform: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Bromomethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Carbon Disulfide: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Carbon tetrachloride: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Chlorobenzene: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Chloroethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Chloroform: ND 5.2 ug/Kg 01/09/15 JLI SW8260
- Chloromethane: ND 5.2 ug/Kg 01/09/15 JLI SW8260
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>31</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>5.2</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Date/Time</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>01/09/15</td>
<td>JLI 70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>01/09/15</td>
<td>JLI 70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>01/09/15</td>
<td>JLI 70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>01/09/15</td>
<td>JLI 70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>73</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>72</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>86</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 16, 2015

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
Matrix: SOIL
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC
Received by: LB
Analyzed by: see "By" below

Laboratory Data
SDG ID: GBH61515
Phoenix ID: BH61516

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.48</td>
<td>0.48</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.0</td>
<td>1.0</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>230</td>
<td>0.48</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.48</td>
<td>0.48</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>39.2</td>
<td>0.48</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.08</td>
<td>0.08</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>11.1</td>
<td>0.48</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.9</td>
<td>1.9</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>0.005</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.237</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>0.045</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>71</td>
<td></td>
<td>%</td>
<td>01/09/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC/H</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CB/T</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>
Chlorinated Herbicides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>580</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>120</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>120</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCAA</td>
<td>64</td>
<td>01/12/15</td>
<td>BB</td>
<td>30 - 150%</td>
</tr>
</tbody>
</table>

TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>69</td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% n-Pentacosane</td>
<td>87</td>
<td>01/10/15</td>
<td>JRB</td>
<td>50 - 150%</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>%</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCBP</td>
<td>115</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150%</td>
</tr>
<tr>
<td>% TCMX</td>
<td>98</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150%</td>
</tr>
</tbody>
</table>

Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>46</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>46</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>180</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>102</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>96</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.7</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.7</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>37</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>12</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropytoluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>12</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>12</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- % 1,2-dichlorobenzene-d4: 101 % 01/09/15 JLI 70 - 130 %
- % Bromofluorobenzene: 94 % 01/09/15 JLI 70 - 130 %
- % Dibromofluoromethane: 102 % 01/09/15 JLI 70 - 130 %
- % Toluene-d8: 95 % 01/09/15 JLI 70 - 130 %

Polynuclear Aromatic HC

- 2-Methylnaphthalene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Acenaphthene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Acenaphthylene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Anthracene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Benz(a)anthracene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Benzo(a)pyrene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Benzo(b)fluoranthene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Benzo(g,h,i)perylene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Benzo(k)fluoranthene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Chrysene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Dibenzo(a,h)anthracene: ND 320 ug/Kg 01/09/15 DD SW 8270
- Fluoranthene: ND 320 ug/Kg 01/09/15 DD SW 8270
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>320</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>320</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>320</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>320</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>320</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>68</td>
<td></td>
<td>%</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>67</td>
<td></td>
<td>%</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>102</td>
<td></td>
<td>%</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 16, 2015

FOR:
Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
- **Matrix:** SOIL
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC
- **Received by:** LB
- **Analyzed by:** see "By" below

Date	**Time**
01/08/15 | 10:25
01/09/15 | 14:28

Laboratory Data

SDG ID: GBH61515
Phoenix ID: BH61517

Project ID: COOPER ST., BRIDGE
Client ID: SB-3/MW-1 2-4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.38</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>3.8</td>
<td>0.8</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>214</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.38</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>34.3</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.09</td>
<td>0.09</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>23.3</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.5</td>
<td>1.5</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.070</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Solid</td>
<td>77</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>SW846</td>
</tr>
</tbody>
</table>

- **Completed:**
- **CC/H SW3545**
- **CC SW3545**
- **JJ/VH SW3545**
- **EPA 3545**
- **E1312/SW7470**
- **I/E1312/SW7470**
- **/D SW8151**
- **I SW7471**
- **/I SW8151**
- **EPA 1312**
- **CB/T SW5035**

Total Metals Digest Completed
Field Extraction Completed

Page 11 of 36
Chlorinated Herbicides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>53</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>53</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>53</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>530</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>53</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>ND</td>
<td>110</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>110</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- **% DCAA**: 65 %
 - Date/Time: 01/12/15
 - By: BB
 - Reference: 30 - 150 %

TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>110</td>
<td>64</td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>**</td>
<td></td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- **% n-Pentacosane**: 79 %
 - Date/Time: 01/10/15
 - By: JRB
 - Reference: 50 - 150 %

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>430</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- **% DCBP**: 113 %
 - Date/Time: 01/12/15
 - By: AW
 - Reference: 30 - 150 %

- **% TCMX**: 95 %
 - Date/Time: 01/12/15
 - By: AW
 - Reference: 30 - 150 %

Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>4.3</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>43</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>4.3</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>15</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
</tbody>
</table>

Page 12 of 36
Ver 1
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.7</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>15</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>8.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>43</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>170</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>119</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>85</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Vocatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.2</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>26</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>26</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>32</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.2</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>32</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>11</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>26</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>11</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>ND</td>
<td>11</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>5.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>97</td>
<td>%</td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>88</td>
<td>%</td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>104</td>
<td>%</td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>93</td>
<td>%</td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>570</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>750</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>1800</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>1700</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>2500</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylenene</td>
<td>620</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>700</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>1700</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>3800</td>
<td>300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>
Parameter | **Result** | **RL/PQL** | **Units** | **Date/Time** | **By** | **Reference**
--- | --- | --- | --- | --- | --- | ---
Fluorene | 420 | 300 | ug/Kg | 01/09/15 | DD | SW 8270
Indeno(1,2,3-cd)pyrene | 590 | 300 | ug/Kg | 01/09/15 | DD | SW 8270
Naphthalene | ND | 300 | ug/Kg | 01/09/15 | DD | SW 8270
Phenanthrene | 3200 | 300 | ug/Kg | 01/09/15 | DD | SW 8270
Pyrene | 3500 | 300 | ug/Kg | 01/09/15 | DD | SW 8270

QA/QC Surrogates

% 2-Fluorobiphenyl	81	%	01/09/15	DD	30 - 130 %
Nitrobenzene-d5	87	%	01/09/15	DD	30 - 130 %
Terphenyl-d14	78	%	01/09/15	DD	30 - 130 %

Comments:

TPH Comment:
Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Pesticide Comment:
Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report

January 16, 2015

Sample Information
- **Matrix:** SOIL
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- Collected by: JC
- Received by: LB
- Analyzed by: see "By" below

Laboratory Data
- **SDG ID:** GBH61515
- **Phoenix ID:** BH61518

Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.41</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.2</td>
<td>0.8</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>72.0</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.41</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>17.2</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.09</td>
<td>0.09</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>8.74</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.6</td>
<td>1.6</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.139</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>0.020</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>84</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC/H</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CB/T</td>
<td>SW846-3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>49</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>49</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>49</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>490</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>49</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>98</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroproop</td>
<td>ND</td>
<td>49</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>98</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>69</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>TPH by GC (Extractable Products)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>58</td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>79</td>
<td></td>
<td>%</td>
<td>01/10/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>107</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>88</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlor dane</td>
<td>ND</td>
<td>39</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>3.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>7.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>39</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>160</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>78</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>86</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>2.8</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>23</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>23</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>28</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>2.8</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>28</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>9.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylen chloride</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>9.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>ND</td>
<td>9.3</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>101</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>95</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>96</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Polynuclear Aromatic HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>
Fluorene
Indeno(1,2,3-cd)pyrene
Naphthalene
Phenanthrene
Pyrene

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Fluorobiphenyl</td>
<td>78</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Nitrobenzene-d5</td>
<td>76</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Terphenyl-d14</td>
<td>94</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report
January 16, 2015

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
Matrix: SOIL
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC
Received by: LB
Analyzed by: see “By” below

Laboratory Data
SDG ID: GBH61515
Phoenix ID: BH61519

Project ID: COOPER ST., BRIDGE
Client ID: SB-7 6-8

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.35</td>
<td>0.35</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.6</td>
<td>0.7</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>61.5</td>
<td>0.35</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.35</td>
<td>0.35</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>14.5</td>
<td>0.35</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.24</td>
<td>0.09</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>22.0</td>
<td>0.35</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.4</td>
<td>1.4</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.055</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>0.043</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>86</td>
<td></td>
<td>%</td>
<td>01/09/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC/H</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>J/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>J/C/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CB/T</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>480</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>96</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>96</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>68</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>TPH by GC (Extractable Products)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. Petroleum HC</td>
<td>1200</td>
<td>58</td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>**</td>
<td></td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>67</td>
<td></td>
<td>%</td>
<td>01/10/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>99</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>91</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>39</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlor dane</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>39</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>150</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>15</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>77</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>390</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>1500</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>Diluted Out</td>
<td>%</td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
<td></td>
</tr>
<tr>
<td>% TCMX</td>
<td>Diluted Out</td>
<td>%</td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
<td></td>
</tr>
<tr>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.2</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichloroethene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>27</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>27</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>32</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.2</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>32</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>11</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>11</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>11</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>5.4</td>
<td>ug/Kg</td>
<td>01/10/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>101</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>96</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>97</td>
<td>%</td>
<td></td>
<td>01/10/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>16000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>37000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>24000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>30000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>9400</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>11000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>33000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>4100</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>46000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>Fluorene</td>
<td>4400</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>10000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>40000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>Pyrene</td>
<td>37000</td>
<td>2600</td>
<td>ug/Kg</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>Diluted Out</td>
<td></td>
<td>%</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>Diluted Out</td>
<td></td>
<td>%</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>Diluted Out</td>
<td></td>
<td>%</td>
<td>01/11/15</td>
<td>DD</td>
</tr>
</tbody>
</table>

Comments:

Semi-Volatile Comment:
Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

TPH Comment:
Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Pesticide Comment:
Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 16, 2015

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
Matrix: SOIL
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC
Received by: LB
Analyzed by: see "By" below

Laboratory Data
SDG ID: GBH61515
Phoenix ID: BH61520

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.46</td>
<td>0.46</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.6</td>
<td>0.9</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>227</td>
<td>0.46</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.46</td>
<td>0.46</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>29.6</td>
<td>0.46</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.09</td>
<td>0.09</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>7.18</td>
<td>0.46</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.9</td>
<td>1.9</td>
<td>mg/Kg</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.137</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>0.017</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/12/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>71</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC/H</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>JC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td>CB/T</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>
Chlorinated Herbicides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>580</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>120</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>58</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>120</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCAA</td>
<td>95</td>
<td>%</td>
<td>01/12/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>69</td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/10/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% n-Pentacosane</td>
<td>77</td>
<td>%</td>
<td>01/10/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>460</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCBP</td>
<td>107</td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>82</td>
<td>%</td>
<td>01/12/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>46</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>4.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>9.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>% DCBP</td>
<td>75</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150%</td>
</tr>
<tr>
<td>% TCMX</td>
<td>76</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>CE</td>
<td>30 - 150%</td>
</tr>
<tr>
<td>Volatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>4.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>35</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>35</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>41</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.1</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>41</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>14</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>14</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>14</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>6.9</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Result</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-dichlorobenzene-d4</td>
<td>95</td>
<td>01/09/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Bromofluorobenzene</td>
<td>86</td>
<td>01/09/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>102</td>
<td>01/09/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>94</td>
<td>01/09/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benza(anthracene)</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD SW 8270</td>
</tr>
</tbody>
</table>
Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>330</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Fluorobiphenyl</td>
<td>79</td>
<td>%</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Nitrobenzene-d5</td>
<td>75</td>
<td>%</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Terphenyl-d14</td>
<td>88</td>
<td>%</td>
<td>01/09/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 16, 2015

Sample Information
- **Matrix:** SOIL
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC
- **Received by:** LB
- **Analyzed by:** see "By" below

Laboratory Data
- **SDG ID:** GBH61515
- **Phoenix ID:** BH61521

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Solid</td>
<td>100</td>
<td>1</td>
<td>%</td>
<td>01/08/15</td>
<td></td>
<td>SW846</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>

Laboratory Data

Volatile Organic Compounds:

- **1,1,1,2-Tetrachloroethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,1,1-Trichloroethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,1,2,2-Tetrachloroethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,1,2-Trichloroethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,1-Dichloroethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,1-Dichloroethene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,1-Dichloropropene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2,3-Trichlorobenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2,3-Trichloropropane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2,4-Trichlorobenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2,4-Trimethylbenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2-Dibromo-3-chloropropane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2-Dibromoethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2-Dichlorobenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2-Dichloroethane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,2-Dichloropropane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,3,5-Trimethylbenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,3-Dichlorobenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,3-Dichloropropane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **1,4-Dichlorobenzene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **2,2-Dichloropropane:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **2-Chlorotoluene:** ND 250 ug/Kg 01/09/15 JLI SW8260
- **2-Hexanone:** ND 1300 ug/Kg 01/09/15 JLI SW8260
- **2-Isopropyltoluene:** ND 250 ug/Kg 01/09/15 JLI SW8260

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>1300</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>5000</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethen Ketone</td>
<td>ND</td>
<td>3000</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>100</td>
<td>%</td>
<td>01/09/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>98</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>JLI</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>98</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>JLI</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>97</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>JLI</td>
</tr>
</tbody>
</table>

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an `as received` basis, and are not corrected for dry weight.

TRIP BLANK INCLUDED

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report

January 16, 2015

Sample Information
- **Matrix:** SOIL
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC
- **Received by:** LB
- **Analyzed by:** see "By" below

Laboratory Data
- **SDG ID:** GBH61515
- **Phoenix ID:** BH61522

Project ID: COOPER ST., BRIDGE
Client ID: TRIP BLANK LOW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Solid</td>
<td>100</td>
<td>1</td>
<td>%</td>
<td>01/08/15</td>
<td></td>
<td>SW846</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/08/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>

Volatiles

<table>
<thead>
<tr>
<th>compound</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>25</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>
Project ID: COOPER ST., BRIDGE
Client ID: TRIP BLANK LOW
Phoenix I.D.: BH61522

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>25</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylen chloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/09/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>99</td>
<td>%</td>
<td>01/09/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>97</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>JLI</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>97</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>JLI</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>97</td>
<td>%</td>
<td></td>
<td>01/09/15</td>
<td>JLI</td>
</tr>
</tbody>
</table>

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

TRIP BLANK INCLUDED

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

January 16, 2015

Reviewed and Released by: Ethan Lee, Project Manager
QA/QC Report

January 16, 2015

QA/QC Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank Result</th>
<th>Sample Result</th>
<th>Dup Result</th>
<th>Dup RPD</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP Metals - SPLP Extraction</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.004</td>
<td><0.004</td>
<td>NC</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
<td>103</td>
<td>105</td>
<td>1.9</td>
<td>75 - 125</td>
<td>20</td>
</tr>
<tr>
<td>Barium</td>
<td>0.010</td>
<td><0.010</td>
<td>NC</td>
<td>102</td>
<td>102</td>
<td>0.0</td>
<td>105</td>
<td>107</td>
<td>1.9</td>
<td>75 - 125</td>
<td>20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.005</td>
<td><0.005</td>
<td>NC</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>105</td>
<td>105</td>
<td>0.0</td>
<td>75 - 125</td>
<td>20</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.010</td>
<td><0.010</td>
<td>NC</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>104</td>
<td>105</td>
<td>1.0</td>
<td>75 - 125</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>0.010</td>
<td><0.010</td>
<td>NC</td>
<td>99.1</td>
<td>99.8</td>
<td>0.7</td>
<td>102</td>
<td>104</td>
<td>1.9</td>
<td>75 - 125</td>
<td>20</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.020</td>
<td><0.020</td>
<td>NC</td>
<td>102</td>
<td>102</td>
<td>0.0</td>
<td>104</td>
<td>107</td>
<td>2.8</td>
<td>75 - 125</td>
<td>20</td>
</tr>
<tr>
<td>Silver</td>
<td>0.010</td>
<td><0.010</td>
<td>NC</td>
<td>97.8</td>
<td>98.0</td>
<td>0.2</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>75 - 125</td>
<td>20</td>
</tr>
</tbody>
</table>

ICP Metals - Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank Result</th>
<th>Sample Result</th>
<th>Dup Result</th>
<th>Dup RPD</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>2.0</td>
<td>2.43</td>
<td>NC</td>
<td>104</td>
<td>101</td>
<td>2.9</td>
<td>95.0</td>
<td>93.9</td>
<td>1.2</td>
<td>75 - 125</td>
<td>30</td>
</tr>
<tr>
<td>Barium</td>
<td>230</td>
<td>235</td>
<td>2.20</td>
<td>116</td>
<td>115</td>
<td>0.9</td>
<td>113</td>
<td>105</td>
<td>7.3</td>
<td>75 - 125</td>
<td>30</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.48</td>
<td><0.42</td>
<td>NC</td>
<td>95.2</td>
<td>94.6</td>
<td>0.6</td>
<td>97.2</td>
<td>96.1</td>
<td>1.1</td>
<td>75 - 125</td>
<td>30</td>
</tr>
<tr>
<td>Chromium</td>
<td>39.2</td>
<td>40.0</td>
<td>2.00</td>
<td>110</td>
<td>108</td>
<td>1.8</td>
<td>106</td>
<td>104</td>
<td>1.9</td>
<td>75 - 125</td>
<td>30</td>
</tr>
<tr>
<td>Lead</td>
<td>11.1</td>
<td>10.9</td>
<td>1.80</td>
<td>97.4</td>
<td>96.5</td>
<td>0.9</td>
<td>97.9</td>
<td>96.6</td>
<td>1.3</td>
<td>75 - 125</td>
<td>30</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.9</td>
<td><1.7</td>
<td>NC</td>
<td>98.3</td>
<td>95.2</td>
<td>3.2</td>
<td>87.2</td>
<td>86.5</td>
<td>0.8</td>
<td>75 - 125</td>
<td>30</td>
</tr>
<tr>
<td>Silver</td>
<td><0.48</td>
<td><0.42</td>
<td>NC</td>
<td>110</td>
<td>104</td>
<td>5.6</td>
<td>103</td>
<td>103</td>
<td>0.0</td>
<td>75 - 125</td>
<td>30</td>
</tr>
</tbody>
</table>

Mercury - Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank Result</th>
<th>Sample Result</th>
<th>Dup Result</th>
<th>Dup RPD</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.24</td>
<td>0.21</td>
<td>NC</td>
<td>105</td>
<td>102</td>
<td>2.9</td>
<td>98.5</td>
<td>85.2</td>
<td>14.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
</tbody>
</table>

Comment:

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Mercury - Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank Result</th>
<th>Sample Result</th>
<th>Dup Result</th>
<th>Dup RPD</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td><0.0002</td>
<td><0.0002</td>
<td>NC</td>
<td>92.5</td>
<td>89.4</td>
<td>3.4</td>
<td>94.8</td>
<td>86.1</td>
<td>9.6</td>
<td>70 - 130</td>
<td>20</td>
</tr>
</tbody>
</table>

Comment:

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.
QA/QC Report

January 16, 2015

QA/QC Data

SDG I.D.: GBH61515

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA/QC Batch 296633, QC Sample No: BH61283 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC - Soil

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102

Fax (860) 645-0823

Environmental Laboratories, Inc.

SDG I.D.: GBH61515

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>85</td>
<td>87</td>
<td>2.3</td>
<td>83</td>
<td>68</td>
<td>19.9</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>95</td>
<td>99</td>
<td>4.1</td>
<td>90</td>
<td>75</td>
<td>18.2</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>90</td>
<td>95</td>
<td>5.4</td>
<td>88</td>
<td>70</td>
<td>22.8</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>97</td>
<td>102</td>
<td>5.0</td>
<td>96</td>
<td>77</td>
<td>22.0</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>ND</td>
<td>98</td>
<td>102</td>
<td>4.0</td>
<td>94</td>
<td>76</td>
<td>21.2</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>95</td>
<td>101</td>
<td>6.1</td>
<td>93</td>
<td>74</td>
<td>22.8</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ND</td>
<td>96</td>
<td>99</td>
<td>3.1</td>
<td>91</td>
<td>76</td>
<td>20.1</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>98</td>
<td>99</td>
<td>1.0</td>
<td>93</td>
<td>76</td>
<td>20.1</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>93</td>
<td>99</td>
<td>6.3</td>
<td>93</td>
<td>77</td>
<td>18.8</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>99</td>
<td>104</td>
<td>4.9</td>
<td>95</td>
<td>77</td>
<td>20.9</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>94</td>
<td>75</td>
<td>22.5</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ND</td>
<td>116</td>
<td>117</td>
<td>0.9</td>
<td>114</td>
<td>100</td>
<td>13.1</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>95</td>
<td>102</td>
<td>7.1</td>
<td>93</td>
<td>77</td>
<td>18.8</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
<td>94</td>
<td>75</td>
<td>22.5</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>87</td>
<td>88</td>
<td>1.1</td>
<td>84</td>
<td>69</td>
<td>19.6</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>97</td>
<td>101</td>
<td>4.0</td>
<td>97</td>
<td>78</td>
<td>21.7</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>118</td>
<td>120</td>
<td>1.7</td>
<td>120</td>
<td>106</td>
<td>12.4</td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>86</td>
<td>86</td>
<td>89</td>
<td>3.4</td>
<td>85</td>
<td>65</td>
<td>24.3</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>77</td>
<td>83</td>
<td>84</td>
<td>1.2</td>
<td>79</td>
<td>60</td>
<td>27.3</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>126</td>
<td>118</td>
<td>116</td>
<td>1.7</td>
<td>116</td>
<td>97</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Chlorinated Herbicides - Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA/QC Batch 296750, QC Sample No: BH61519 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volatiles - Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA/QC Batch 296804, QC Sample No: BH61520 (BH61515, BH61516, BH61520 (50, 1X) , BH61521 (50X) , BH61522)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Blank</td>
<td>LCS %</td>
<td>LCS SD %</td>
<td>LCS RPD</td>
<td>MS %</td>
<td>MSD %</td>
<td>MS RPD</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>101</td>
<td>105</td>
<td>3.9</td>
<td>95</td>
<td>96</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>107</td>
<td>112</td>
<td>4.6</td>
<td>89</td>
<td>91</td>
<td>2.2</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>103</td>
<td>108</td>
<td>4.7</td>
<td>99</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>95</td>
<td>103</td>
<td>8.1</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>99</td>
<td>105</td>
<td>5.9</td>
<td>93</td>
<td>89</td>
<td>4.4</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>90</td>
<td>95</td>
<td>5.4</td>
<td>103</td>
<td>105</td>
<td>1.9</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>95</td>
<td>101</td>
<td>6.1</td>
<td>101</td>
<td>103</td>
<td>2.0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>103</td>
<td>115</td>
<td>11.0</td>
<td>92</td>
<td>91</td>
<td>1.1</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>103</td>
<td>112</td>
<td>8.4</td>
<td>98</td>
<td>97</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>100</td>
<td>107</td>
<td>6.8</td>
<td>102</td>
<td>104</td>
<td>1.9</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>102</td>
<td>109</td>
<td>6.6</td>
<td>96</td>
<td>98</td>
<td>2.1</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>105</td>
<td>111</td>
<td>5.6</td>
<td>100</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>99</td>
<td>105</td>
<td>5.9</td>
<td>100</td>
<td>102</td>
<td>2.0</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>95</td>
<td>102</td>
<td>7.1</td>
<td>100</td>
<td>103</td>
<td>3.0</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>102</td>
<td>109</td>
<td>6.6</td>
<td>96</td>
<td>97</td>
<td>1.0</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>94</td>
<td>101</td>
<td>7.2</td>
<td>100</td>
<td>102</td>
<td>2.0</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>104</td>
<td>110</td>
<td>5.6</td>
<td>95</td>
<td>99</td>
<td>4.1</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>100</td>
<td>105</td>
<td>4.9</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>89</td>
<td>96</td>
<td>7.6</td>
<td>84</td>
<td>84</td>
<td>0.0</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>102</td>
<td>110</td>
<td>7.5</td>
<td>101</td>
<td>103</td>
<td>2.0</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>94</td>
<td>103</td>
<td>9.1</td>
<td>100</td>
<td>103</td>
<td>3.0</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>93</td>
<td>102</td>
<td>9.2</td>
<td>88</td>
<td>84</td>
<td>4.7</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>88</td>
<td>97</td>
<td>9.7</td>
<td>65</td>
<td>62</td>
<td>4.7</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>94</td>
<td>99</td>
<td>5.2</td>
<td>86</td>
<td>84</td>
<td>2.4</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>103</td>
<td>108</td>
<td>4.7</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>102</td>
<td>110</td>
<td>7.5</td>
<td>100</td>
<td>102</td>
<td>2.0</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>105</td>
<td>112</td>
<td>6.5</td>
<td>98</td>
<td>97</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>108</td>
<td>114</td>
<td>5.4</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>112</td>
<td>121</td>
<td>7.7</td>
<td>97</td>
<td>100</td>
<td>3.0</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>105</td>
<td>108</td>
<td>2.8</td>
<td>64</td>
<td>75</td>
<td>15.8</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>106</td>
<td>112</td>
<td>5.5</td>
<td>85</td>
<td>89</td>
<td>4.6</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>106</td>
<td>112</td>
<td>5.5</td>
<td>96</td>
<td>100</td>
<td>4.1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>100</td>
<td>105</td>
<td>4.9</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>103</td>
<td>103</td>
<td>0.0</td>
<td>42</td>
<td>44</td>
<td>4.7</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>101</td>
<td>107</td>
<td>5.8</td>
<td>90</td>
<td>91</td>
<td>1.1</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>100</td>
<td>102</td>
<td>2.0</td>
<td>94</td>
<td>95</td>
<td>1.1</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>102</td>
<td>108</td>
<td>5.7</td>
<td>99</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>111</td>
<td>119</td>
<td>7.0</td>
<td>102</td>
<td>105</td>
<td>2.9</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>114</td>
<td>120</td>
<td>5.1</td>
<td>102</td>
<td>102</td>
<td>0.0</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>104</td>
<td>113</td>
<td>8.3</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>110</td>
<td>115</td>
<td>4.4</td>
<td>96</td>
<td>97</td>
<td>1.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>104</td>
<td>109</td>
<td>4.7</td>
<td>100</td>
<td>102</td>
<td>2.0</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>96</td>
<td>103</td>
<td>7.0</td>
<td>102</td>
<td>105</td>
<td>2.9</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>101</td>
<td>108</td>
<td>6.7</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>99</td>
<td>103</td>
<td>4.0</td>
<td>98</td>
<td>101</td>
<td>3.0</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>86</td>
<td>93</td>
<td>7.8</td>
<td>81</td>
<td>81</td>
<td>0.0</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>101</td>
<td>108</td>
<td>6.7</td>
<td>92</td>
<td>91</td>
<td>1.1</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>100</td>
<td>106</td>
<td>5.8</td>
<td>90</td>
<td>88</td>
<td>2.2</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>100</td>
<td>110</td>
<td>9.5</td>
<td>94</td>
<td>95</td>
<td>1.1</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>91</td>
<td>96</td>
<td>5.3</td>
<td>103</td>
<td>104</td>
<td>1.0</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>92</td>
<td>99</td>
<td>7.3</td>
<td>100</td>
<td>102</td>
<td>2.0</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>103</td>
<td>108</td>
<td>4.7</td>
<td>101</td>
<td>103</td>
<td>2.0</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>97</td>
<td>104</td>
<td>7.0</td>
<td>101</td>
<td>104</td>
<td>2.9</td>
</tr>
</tbody>
</table>
QA/QC Data

Parameter	**Blank**	**LCS %**	**LCSD %**	**LCS RPD %**	**MS %**	**MSD %**	**MS RPD %**	**% Rec Limits**	**% RPD Limits**
sec-Butylbenzene | ND | 101 | 108 | 6.7 | 99 | 102 | 3.0 | 70 - 130 | 30
Styrene | ND | 104 | 109 | 4.7 | 102 | 105 | 2.9 | 70 - 130 | 30
tert-Butylbenzene | ND | 101 | 108 | 6.7 | 99 | 101 | 2.0 | 70 - 130 | 30
Tetrachloroethene | ND | 99 | 103 | 4.0 | 100 | 103 | 3.0 | 70 - 130 | 30
Tetrahydrofuran (THF) | ND | 91 | 101 | 10.4 | 86 | 84 | 2.4 | 70 - 130 | 30
Toluene | ND | 102 | 108 | 5.7 | 99 | 101 | 2.0 | 70 - 130 | 30
trans-1,2-Dichloroethene | ND | 102 | 106 | 3.8 | 96 | 97 | 1.0 | 70 - 130 | 30
trans-1,3-Dichloropropene | ND | 113 | 121 | 6.8 | 104 | 104 | 0.0 | 70 - 130 | 30
trans-1,4-dichloro-2-butene | ND | 105 | 118 | 11.7 | 97 | 98 | 1.0 | 70 - 130 | 30
Trichloroethene | ND | 105 | 112 | 6.5 | 97 | 100 | 3.0 | 70 - 130 | 30
Trichlorofluoromethane | ND | 108 | 111 | 2.7 | 31 | 31 | 0.0 | 70 - 130 | 30
Trichlorotrifluoroethane | ND | 107 | 112 | 4.6 | 91 | 94 | 3.2 | 70 - 130 | 30
Vinyl chloride | ND | 102 | 106 | 3.8 | 102 | 104 | 1.9 | 70 - 130 | 30
% 1,2-dichlorobenzene-d4 | 101 | 101 | 102 | 1.0 | 102 | 101 | 1.0 | 70 - 130 | 30
% Bromofluoromethane | 95 | 100 | 1.0 | 101 | 100 | 1.0 | 70 - 130 | 30
% Dibromofluoromethane | 99 | 1.0 | 103 | 100 | 3.0 | 98 | 99 | 1.0 | 70 - 130 | 30
% Toluene-d8 | 96 | 1.0 | 100 | 101 | 1.0 | 101 | 100 | 1.0 | 70 - 130 | 30

Comment:
Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 296733, QC Sample No: BH61525 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)

Pesticides - Soil

Parameter	**Blank**	**LCS %**	**LCSD %**	**LCS RPD %**	**MS %**	**MSD %**	**MS RPD %**	**% Rec Limits**	**% RPD Limits**
4,4'-DDD | ND | 94 | 91 | 3.2 | 95 | 91 | 4.3 | 40 - 140 | 30
4,4'-DDE | ND | 93 | 92 | 1.1 | 91 | 87 | 4.5 | 40 - 140 | 30
4,4'-DDT | ND | 89 | 87 | 2.3 | 90 | 85 | 5.7 | 40 - 140 | 30
a-BHC | ND | 98 | 95 | 3.1 | 98 | 98 | 0.0 | 40 - 140 | 30
a-Chlordane | ND | 97 | 95 | 2.1 | 93 | 89 | 4.4 | 40 - 140 | 30
Alachlor | ND | NA | NC | NA | NA | NA | 40 - 140 | 30
Aldrin | ND | 98 | 95 | 3.1 | 96 | 92 | 4.3 | 40 - 140 | 30
b-BHC | ND | 94 | 92 | 2.2 | 93 | 91 | 2.2 | 40 - 140 | 30
Chlordane | ND | 102 | 100 | 2.0 | 94 | 91 | 3.2 | 40 - 140 | 30
d-BHC | ND | 91 | 85 | 6.8 | 89 | 86 | 3.4 | 40 - 140 | 30
Dieldrin | ND | 94 | 92 | 2.2 | 90 | 86 | 4.5 | 40 - 140 | 30
Endosulfan I | ND | 93 | 93 | 0.0 | 91 | 89 | 2.2 | 40 - 140 | 30
Endosulfan II | ND | 72 | 76 | 5.4 | 88 | 85 | 3.5 | 40 - 140 | 30
Endosulfan sulfate | ND | 64 | 55 | 15.1 | 73 | 69 | 5.6 | 40 - 140 | 30
Endrin | ND | 113 | 110 | 2.7 | 115 | 108 | 6.3 | 40 - 140 | 30
Endrin aldehyde | ND | 65 | 62 | 4.7 | 89 | 88 | 1.1 | 40 - 140 | 30
Endrin ketone | ND | 75 | 69 | 8.3 | 81 | 77 | 5.1 | 40 - 140 | 30
g-BHC | ND | 96 | 93 | 3.2 | 95 | 95 | 0.0 | 40 - 140 | 30
g-Chlordane | ND | 102 | 100 | 2.0 | 94 | 91 | 3.2 | 40 - 140 | 30
Heptachlor | ND | 97 | 94 | 3.1 | 95 | 93 | 2.1 | 40 - 140 | 30
Heptachlor epoxide | ND | 95 | 93 | 2.1 | 92 | 89 | 3.3 | 40 - 140 | 30
Methoxychlor | ND | 86 | 83 | 3.6 | 85 | 86 | 1.2 | 40 - 140 | 30
Toxaphene | ND | NA | NC | NA | NA | NA | 40 - 140 | 30
% DCBP | 92 | 93 | 91 | 2.2 | 88 | 84 | 4.7 | 30 - 150 | 30
% TCMX | 91 | 96 | 93 | 3.2 | 93 | 91 | 2.2 | 30 - 150 | 30

QA/QC Batch 296734, QC Sample No: BH61525 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)

TPH by GC (Extractable Products) - Soil

Parameter	**Blank**	**LCS %**	**LCSD %**	**LCS RPD %**	**MS %**	**MSD %**	**MS RPD %**	**% Rec Limits**	**% RPD Limits**
Ext. Petroleum HC | ND | 71 | 68 | 4.3 | 87 | 88 | 1.1 | 60 - 120 | 30
% n-Pentacosane | 87 | 88 | 84 | 4.7 | 72 | 75 | 4.1 | 50 - 150 | 30

SDG I.D.: GBH61515
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LSCD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>84</td>
<td>86</td>
<td>2.4</td>
<td>76</td>
<td>77</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>40</td>
<td>40</td>
<td>0.0</td>
<td>66</td>
<td>66</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>90</td>
<td>90</td>
<td>0.0</td>
<td>85</td>
<td>85</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>40</td>
<td>40</td>
<td>0.0</td>
<td>66</td>
<td>66</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>40</td>
<td>40</td>
<td>0.0</td>
<td>66</td>
<td>66</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>90</td>
<td>90</td>
<td>0.0</td>
<td>85</td>
<td>85</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>90</td>
<td>90</td>
<td>0.0</td>
<td>85</td>
<td>85</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>40</td>
<td>40</td>
<td>0.0</td>
<td>66</td>
<td>66</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>40</td>
<td>40</td>
<td>0.0</td>
<td>66</td>
<td>66</td>
<td>1.3</td>
<td>40 - 140</td>
<td>30</td>
</tr>
<tr>
<td>% DCBP (Surrogate Rec)</td>
<td>105</td>
<td>102</td>
<td>2.9</td>
<td>85</td>
<td>93</td>
<td>9.0</td>
<td>30 - 150</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>% TCMX (Surrogate Rec)</td>
<td>89</td>
<td>90</td>
<td>4.3</td>
<td>75</td>
<td>78</td>
<td>3.9</td>
<td>30 - 150</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls - Soil

Volatiles - Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LSCD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>Rec Limits</th>
<th>RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>103</td>
<td>104</td>
<td>1.0</td>
<td>97</td>
<td>101</td>
<td>4.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>97</td>
<td>95</td>
<td>2.1</td>
<td>93</td>
<td>100</td>
<td>7.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>97</td>
<td>96</td>
<td>1.0</td>
<td>94</td>
<td>99</td>
<td>5.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>96</td>
<td>99</td>
<td>3.1</td>
<td>97</td>
<td>102</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>95</td>
<td>93</td>
<td>2.1</td>
<td>93</td>
<td>100</td>
<td>7.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>97</td>
<td>95</td>
<td>2.1</td>
<td>84</td>
<td>89</td>
<td>5.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>95</td>
<td>95</td>
<td>0.0</td>
<td>96</td>
<td>102</td>
<td>6.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>99</td>
<td>99</td>
<td>0.0</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>90</td>
<td>89</td>
<td>1.1</td>
<td>91</td>
<td>96</td>
<td>5.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>97</td>
<td>98</td>
<td>1.0</td>
<td>96</td>
<td>100</td>
<td>4.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>95</td>
<td>93</td>
<td>2.1</td>
<td>98</td>
<td>101</td>
<td>3.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>92</td>
<td>89</td>
<td>3.3</td>
<td>93</td>
<td>102</td>
<td>9.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>97</td>
<td>100</td>
<td>3.0</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>98</td>
<td>97</td>
<td>1.0</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>96</td>
<td>97</td>
<td>1.0</td>
<td>94</td>
<td>99</td>
<td>5.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
<td>96</td>
<td>102</td>
<td>6.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>97</td>
<td>96</td>
<td>1.0</td>
<td>97</td>
<td>102</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>96</td>
<td>96</td>
<td>0.0</td>
<td>97</td>
<td>100</td>
<td>3.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>96</td>
<td>97</td>
<td>1.0</td>
<td>94</td>
<td>99</td>
<td>5.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>95</td>
<td>94</td>
<td>1.1</td>
<td>97</td>
<td>100</td>
<td>3.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>100</td>
<td>96</td>
<td>4.1</td>
<td>91</td>
<td>98</td>
<td>7.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>97</td>
<td>95</td>
<td>2.1</td>
<td>97</td>
<td>103</td>
<td>6.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>83</td>
<td>85</td>
<td>2.4</td>
<td>85</td>
<td>92</td>
<td>7.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>99</td>
<td>98</td>
<td>1.0</td>
<td>99</td>
<td>105</td>
<td>5.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>96</td>
<td>94</td>
<td>2.1</td>
<td>98</td>
<td>101</td>
<td>3.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>87</td>
<td>89</td>
<td>2.3</td>
<td>88</td>
<td>94</td>
<td>6.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>96</td>
<td>80</td>
<td>18.2</td>
<td>58</td>
<td>62</td>
<td>6.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>86</td>
<td>87</td>
<td>1.2</td>
<td>88</td>
<td>95</td>
<td>7.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>95</td>
<td>96</td>
<td>1.0</td>
<td>95</td>
<td>101</td>
<td>6.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>97</td>
<td>97</td>
<td>0.0</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>97</td>
<td>96</td>
<td>1.0</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>101</td>
<td>103</td>
<td>2.0</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>104</td>
<td>105</td>
<td>1.0</td>
<td>93</td>
<td>99</td>
<td>6.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>92</td>
<td>90</td>
<td>2.2</td>
<td>60</td>
<td>73</td>
<td>19.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>96</td>
<td>93</td>
<td>3.2</td>
<td>79</td>
<td>86</td>
<td>8.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>93</td>
<td>101</td>
<td>8.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>96</td>
<td>96</td>
<td>0.0</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
</tbody>
</table>
QA/QC Data

SDG I.D.: GBH61515

Parameter Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>90</td>
<td>86</td>
<td>4.5</td>
<td>41</td>
<td>43</td>
<td>4.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>95</td>
<td>94</td>
<td>1.1</td>
<td>87</td>
<td>92</td>
<td>5.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>89</td>
<td>87</td>
<td>2.3</td>
<td>90</td>
<td>95</td>
<td>5.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>95</td>
<td>95</td>
<td>0.0</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>105</td>
<td>107</td>
<td>1.9</td>
<td>97</td>
<td>101</td>
<td>6.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>ND</td>
<td>106</td>
<td>107</td>
<td>0.9</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>97</td>
<td>102</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>98</td>
<td>99</td>
<td>1.0</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>100</td>
<td>100</td>
<td>0.0</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>96</td>
<td>93</td>
<td>3.2</td>
<td>98</td>
<td>104</td>
<td>5.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>96</td>
<td>96</td>
<td>0.0</td>
<td>97</td>
<td>101</td>
<td>4.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>85</td>
<td>85</td>
<td>0.0</td>
<td>81</td>
<td>88</td>
<td>8.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>94</td>
<td>96</td>
<td>2.1</td>
<td>89</td>
<td>93</td>
<td>4.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>95</td>
<td>93</td>
<td>2.1</td>
<td>83</td>
<td>89</td>
<td>7.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>96</td>
<td>95</td>
<td>1.0</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>96</td>
<td>95</td>
<td>1.0</td>
<td>99</td>
<td>104</td>
<td>4.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>91</td>
<td>89</td>
<td>2.2</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>98</td>
<td>98</td>
<td>0.0</td>
<td>98</td>
<td>102</td>
<td>4.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>98</td>
<td>96</td>
<td>2.1</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>98</td>
<td>97</td>
<td>1.0</td>
<td>98</td>
<td>104</td>
<td>5.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
<td>99</td>
<td>104</td>
<td>4.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>96</td>
<td>94</td>
<td>2.1</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>95</td>
<td>95</td>
<td>0.0</td>
<td>97</td>
<td>103</td>
<td>6.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>82</td>
<td>85</td>
<td>3.6</td>
<td>89</td>
<td>94</td>
<td>5.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>96</td>
<td>97</td>
<td>1.0</td>
<td>97</td>
<td>101</td>
<td>4.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>96</td>
<td>94</td>
<td>2.1</td>
<td>91</td>
<td>99</td>
<td>8.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>109</td>
<td>109</td>
<td>0.0</td>
<td>98</td>
<td>104</td>
<td>5.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>102</td>
<td>101</td>
<td>1.0</td>
<td>93</td>
<td>99</td>
<td>6.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>97</td>
<td>98</td>
<td>1.0</td>
<td>96</td>
<td>102</td>
<td>6.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>97</td>
<td>96</td>
<td>1.0</td>
<td>29</td>
<td>31</td>
<td>6.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>98</td>
<td>96</td>
<td>2.1</td>
<td>88</td>
<td>93</td>
<td>5.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>90</td>
<td>89</td>
<td>1.1</td>
<td>100</td>
<td>106</td>
<td>5.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>102</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>102</td>
<td>101</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>98</td>
<td>100</td>
<td>103</td>
<td>3.0</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>101</td>
<td>101</td>
<td>99</td>
<td>2.0</td>
<td>98</td>
<td>99</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>97</td>
<td>101</td>
<td>100</td>
<td>0.0</td>
<td>100</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

- **m** = This parameter is outside laboratory ms/msd specified recovery limits.
- **r** = This parameter is outside laboratory rpd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference
LCS - Laboratory Control Sample
LCSD - Laboratory Control Sample Duplicate
MS - Matrix Spike
MS Dup - Matrix Spike Duplicate
NC - No Criteria
Intf - Interference
Sample Criteria Exceedences Report

GBH61515 - REDTECH

<table>
<thead>
<tr>
<th>SampNo</th>
<th>Acode</th>
<th>Phoenix Analyte</th>
<th>Criteria</th>
<th>Result</th>
<th>RL</th>
<th>Criteria</th>
<th>RL Criteria</th>
<th>Analysis Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*** No Data to Display ***</td>
</tr>
</tbody>
</table>

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.
Reasonable Confidence Protocol

Laboratory Analysis QA/QC Certification Form

<table>
<thead>
<tr>
<th>Laboratory Name: Phoenix Environmental Labs, Inc.</th>
<th>Client: Red Technologies, LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location: COOPER ST., BRIDGE</td>
<td>Project Number:</td>
</tr>
<tr>
<td>Laboratory Sample ID(s): BH61515, BH61516, BH61517, BH61518, BH61519, BH61520, BH61521, BH61522</td>
<td></td>
</tr>
<tr>
<td>Sampling Date(s): 1/8/2015</td>
<td></td>
</tr>
</tbody>
</table>

RCP Methods Used:

<table>
<thead>
<tr>
<th>Method Code</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1311/1312</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>6010</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7470/7471</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>8081</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>EPH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8082</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>8151</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>8260</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>8270</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>ETPH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9010/9012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?

- Yes
- No

1a. Were the method specified preservation and holding time requirements met?

- Yes
- No

1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)

- Yes
- No
- NA

2. Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?

- Yes
- No

3. Were samples received at an appropriate temperature (< 6 Degrees C)?

- Yes
- No

- Yes
- No

5a. Were reporting limits specified or referenced on the chain-of-custody?

- Yes
- No

5b. Were these reporting limits met?

- Yes
- No
- NA

6. For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?

- Yes
- No
- NA

7. Are project-specific matrix spikes and laboratory duplicates included in the data set?

- Yes
- No
- NA

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

<table>
<thead>
<tr>
<th>Authorized Signature: Ethan Lee</th>
<th>Date: Friday, January 16, 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Name: Ethan Lee</td>
<td>Position: Project Manager</td>
</tr>
</tbody>
</table>
Metals Analysis:
The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:
The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-fid1 01/09/15-2 (BH61517, BH61519)
Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

Printed Name: Jeff Bucko
Position: Chemist
Date: 1/9/2015

Instrument: Aufid-d1 01/09/15-2 (BH61515, BH61516, BH61518, BH61520)
Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

Printed Name: Jeff Bucko
Position: Chemist
Date: 1/9/2015

QC (Batch Specific)
---------- Sample No: BH61525, QA/QC Batch: 296734 ----------

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Herbicide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 296750 (Samples: BH61515, BH61516, BH61517, BH61518, BH61519, BH61520) ----

The MS/MSD RPD for one or more analytes exceeds the method criteria. These analytes were not reported in the samples, therefore no sample variability is suspected. (2,4-D, 2,4-DB, Dichloroprop)

The MS/MSD RPD for one or more surrogates exceeds the method criteria, therefore there may be variability in the reported result. (%DCAA)

Instrument: Au-ecd12 01/12/15-1 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)

Initial Calibration ECD12 -N1714AI/BI
The initial calibration RSD for the compound list was less than 20% except for the following compounds: none

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Brian B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/12/2015</td>
</tr>
</tbody>
</table>

QC (Site Specific)

----------- Sample No: BH61519, QA/QC Batch: 296750 -----------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 30 - 150 with the following exceptions: None.

All MSD recoveries were within 30 - 150 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: % DCAA (Surrogate Rec)(71.1%), 2,4-D(42.9%), 2,4-DB(34.5%), Dichloroprop(35.3%)

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 01/12/15-1 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.
The initial calibration met all criteria including a standard run at or below the reporting level.
All calibration verification standards (ICV, CCV) met criteria.
All calibration blank verification standards (ICB, CCB) met criteria.
The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and...
RCP Certification Report
January 16, 2015

no further action is taken.

Printed Name: Rick Schweitzer
Position: Chemist
Date: 1/12/2015

QC (Site Specific)
--------- Sample No: BH61519, QA/QC Batch: 296785 ---------

All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
All MS recoveries were within 75 - 125 with the following exceptions: None.
All MSD recoveries were within 75 - 125 with the following exceptions: None.
All MS/MSD RPDs were less than 30% with the following exceptions: None.

QC (Batch Specific)
--------- Sample No: BH61591, QA/QC Batch: 296789 ---------

All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

ICP Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 01/12/15-1 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)

The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name: Laura Kinnin
Position: Chemist
Date: 1/12/2015
QC (Site Specific)
---------- Sample No: BH61516, QA/QC Batch: 296730 ----------
All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
All MS recoveries were within 75 - 125 with the following exceptions: None.
All MSD recoveries were within 75 - 125 with the following exceptions: None.
All MS/MSD RPDs were less than 30% with the following exceptions: None.

QC (Batch Specific)
---------- Sample No: BH60360, QA/QC Batch: 296556 ----------
All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PAH Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem19.01/09/15-1 (BH61515, BH61516, BH61517, BH61518, BH61520)
Initial Calibration Verification (CHEM19/BN_0106):
100% of target compounds met criteria.
The following compounds had %RSDs >20%: None.
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM19/0109_04-BN_0106):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Printed Name: Damien Drobinski
Position: Chemist
Date: 1/9/2015
RCP Certification Report
January 16, 2015

QC (Batch Specific)
---------- Sample No: BH61283, QA/QC Batch: 296633 ----------
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd48 01/12/15-1 (BH61519, BH61520)
8082 Narration:
The initial calibration RSD for the compound list was less than 15% except for the following compounds: none
The continuing calibration standards were within acceptance criteria except for the following compounds: none
The initial calibration (PC107AI) RSD for the compound list was less than 20% except for the following compounds: None.
The initial calibration (PC107BI) RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.
Printed Name: Adam Werner
Position: Chemist
Date: 1/12/2015

Instrument: Au-ecd6 01/12/15-1 (BH61517, BH61518)
8082 Narration:
The initial calibration RSD for the compound list was less than 15% except for the following compounds: none
The continuing calibration standards were within acceptance criteria except for the following compounds: none
The initial calibration (PC1230AI) RSD for the compound list was less than 20% except for the following compounds: None.
The initial calibration (PC1230BI) RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.
Printed Name: Adam Werner
Position: Chemist
Date: 1/12/2015
RCP Certification Report
January 16, 2015

SDG I.D.: GBH61515

Instrument: Au-ecd8 01/12/15-1 (BH61515, BH61516)

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none

The continuing calibration standards were within acceptance criteria except for the following compounds: none

The initial calibration (PC107AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC107BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Adam Werner
Position: Chemist
Date: 1/12/2015

QC (Batch Specific)

-------- Sample No: BH61719, QA/QC Batch: 296731 --------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd35 01/13/15-1 (BH61519)

8081 Narration:

Endrin and DDT breakdown was evaluated and does not exceed 15%.

The continuing calibration standards were within acceptance criteria except for the following compounds: None

The initial calibration (PS1230AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS1230BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:

113A019 - Endrin aldehyde (-28%)
113A038 - Methoxychlor (-16%)

A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.
RCP Certification Report
January 16, 2015

Printed Name: Carol Eddy
Position: Chemist
Date: 1/13/2015

Instrument: Au-ecd4 01/12/15-1 (BH61515, BH61516, BH61517, BH61518, BH61519, BH61520)

8081 Narration:
Endrin and DDT breakdown was evaluated and is below 15%.
The initial calibration RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration standards were within acceptance criteria except for the following compounds: None.
The initial calibration (PS1222AI) RSD for the compound list was less than 20% except for the following compounds: None.
The initial calibration (PS1222BI) RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration %D for the compound list was less than 15% except for the following compounds:
112A019 - Endrin (16%)
112A031 - Endrin Aldehyde (-17%)
112A039 - Endrin (17%)
A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/12/2015

Instrument: Au-ecd4 01/14/15-1 (BH61519)

8081 Narration:
Endrin and DDT breakdown was evaluated and is below 15%.
The initial calibration RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration standards were within acceptance criteria except for the following compounds: None.
The initial calibration (PS1222AI) RSD for the compound list was less than 20% except for the following compounds: None.
The initial calibration (PS1222BI) RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/14/2015
RCP Certification Report
January 16, 2015

QC (Batch Specific)
----------- Sample No: BH61525, QA/QC Batch: 296733 -----------
All LCS recoveries were within 40 - 140 with the following exceptions: None.
All LCSD recoveries were within 40 - 140 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem06 01/11/15-1 (BH61519)
The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.
Initial Calibration Verification (CHEM06/SV_0109):
98% of target compounds met criteria.
The following compounds had %RSDs >20%; 2,4-Dinitrophenol (22%), 4,6-Dinitro-2-methylphenol (25%)
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM06/0111_02-SV_0109):
98% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: 3,3'-dichlorobenzidine (31%)[30%], Benzidine (36%)[30%]
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: 2-nitrophenol (.075)[0.1], Hexachlorobenzene (.076)[0.1]
The following compounds did not meet minimum response factors: None.

Printed Name: Damien Drobinski
Position: Chemist
Date: 1/11/2015

QC (Batch Specific)
----------- Sample No: BH61283, QA/QC Batch: 296633 -----------
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

VOA Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem15 01/09/15-1 (BH61515, BH61516, BH61520, BH61521, BH61522)
Initial Calibration Verification (CHEM15/voa5g_0108):
99% of target compounds met criteria.
The following compounds had %RSDs >20%: Acetone (22%)
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification #1 (CHEM15/0109B02-voa5g_0108):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Continuing Calibration Verification #2 (CHEM15/0109B03-voa5g_0108):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Instrument: Chem15 01/09/15-2 (BH61517, BH61518, BH61519)
Initial Calibration Verification (CHEM15/voa5g_0108):
99% of target compounds met criteria.
The following compounds had %RSDs >20%: Acetone (22%)
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM15/0109B25-voa5g_0108):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.
QC (Batch Specific)

------------- Sample No: BH61520, QA/QC Batch: 296804 ------------

All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

------------- Sample No: BH61731, QA/QC Batch: 296812 ------------

All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 6°C with cooling initiated.
(Note acceptance criteria is above freezing up to 6°C)
<table>
<thead>
<tr>
<th>Phoenix Sample #</th>
<th>Customer Sample Identification</th>
<th>Sample Matrix</th>
<th>Date Sampled</th>
<th>Time Sampled</th>
<th>Analysis Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>(01515)</td>
<td>SB-6 (6-8)</td>
<td>S</td>
<td>1-8-15</td>
<td>09:15</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>(01514)</td>
<td>SB-2 (6-8)</td>
<td></td>
<td>10:00</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>(01517)</td>
<td>SB-3/ww-1(2-4)</td>
<td></td>
<td>10:25</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>(01518)</td>
<td>SB-1 (6-8)</td>
<td></td>
<td>11:25</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>(01519)</td>
<td>SB-7 (6-8)</td>
<td></td>
<td>12:10</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>(01520)</td>
<td>SB-2/ww-2(8-10)</td>
<td></td>
<td>13:00</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>(01521)</td>
<td>Trip Blank H</td>
<td>TB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(01522)</td>
<td>TB H</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Relinquished by: [Signature]
Accepted by: [Signature]

Date: 1-9-15
Time: 12:00

Turnaround:
- 1 Day*
- 2 Days*
- 3 Days*
- Standard
- Other

SURCHARGE APPLIES
- Other

State where samples were collected: CT

Data Format:
- Excel
- PDF
- GIS/Key
- EQuIS
- Other

Data Package:
- ASP-A
- NJ Reduced Deliv. *
- NJ Hazsite EDD
- Phoenix Std Report
- Other
Thursday, January 29, 2015

Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Project ID: COOPER ST BRIDGE
Sample ID#s: BH61987 - BH61996, BH63049 - BH63050

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller
Laboratory Director

NELAC - #NY11301
CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
ME Lab Registration #CT-007
NH Lab Registration #213693-A,B
NJ Lab Registration #CT-003
NY Lab Registration #11301
PA Lab Registration #68-03530
RI Lab Registration #63
VT Lab Registration #VT11301
Sample Information
Matrix: SEDIMENT
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC
Received by: SW
Analyzed by: see "By" below

Laboratory Data
SDG ID: GBH61987
Phoenix ID: BH61987

Parameter Result RL/PQL Units Date/Time By Reference
Silver 1.16 0.40 mg/Kg 01/13/15 LK SW6010
Arsenic 1.8 0.8 mg/Kg 01/13/15 LK SW6010
Barium 42.6 0.40 mg/Kg 01/13/15 LK SW6010
Cadmium 0.62 0.40 mg/Kg 01/13/15 LK SW6010
Chromium 16.6 0.40 mg/Kg 01/13/15 LK SW6010
Mercury < 0.08 0.08 mg/kg 01/14/15 RS SW-7471
Lead 156 4.0 mg/Kg 01/13/15 LK SW6010
Selenium < 2.0 2.0 mg/Kg 01/13/15 LK SW6010
SPLP Silver < 0.010 0.010 mg/L 01/13/15 EK SW6010
SPLP Arsenic < 0.004 0.004 mg/L 01/13/15 EK SW6010
SPLP Barium 0.042 0.010 mg/L 01/13/15 EK SW6010
SPLP Cadmium < 0.005 0.005 mg/L 01/13/15 EK SW6010
SPLP Chromium 0.017 0.010 mg/L 01/13/15 EK SW6010
SPLP Mercury < 0.0005 0.0005 mg/L 01/13/15 RS SW7470
SPLP Lead 0.072 0.010 mg/L 01/13/15 EK SW6010
SPLP Selenium < 0.020 0.020 mg/L 01/13/15 EK SW6010
SPLP Metals Digestion Completed 01/13/15 I/I SW846-3005
Percent Solid 82 % 01/12/15 I SW846
Soil Extraction for PCB Completed 01/12/15 BC SW3545
Soil Extraction for Pesticide Completed 01/12/15 BC/H SW3545
Soil Extraction SVOA PAH Completed 01/12/15 BJ/V SW3545
Extraction of CT ETPH Completed 01/12/15 BC/V 3545
Mercury Digestion Completed 01/14/15 I/I SW7471
Soil Extraction for Herbicide Completed 01/12/15 P/D SW8151
SPLP Digestion Mercury Completed 01/13/15 I/E1312/SW7470
SPLP Extraction for Metals Completed 01/12/15 I EPA 1312
Total Metals Digest Completed 01/12/15 CB/T SW846-3050
Field Extraction Completed 01/09/15 SW5035
Chlorinated Herbicides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>50</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>50</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>50</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>50</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>100</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>50</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinooseb</td>
<td>ND</td>
<td>100</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCAA</td>
<td>65</td>
<td></td>
<td>%</td>
<td>01/14/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>61</td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% n-Pentacosane</td>
<td>78</td>
<td></td>
<td>%</td>
<td>01/14/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>400</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCBP</td>
<td>127</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>123</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4’-DDD</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4’-DDE</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4’-DDT</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlor dane</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>40</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>160</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>8.0</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>40</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>160</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>88</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>101</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Trichloroethane</td>
<td>ND</td>
<td>1.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>4.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Trichloroethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,5-Trichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloroethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>33</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>33</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>40</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>40</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>13</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>13</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>13</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>6.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>104</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>92</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>104</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>98</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Polynuclear Aromatic HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>300</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>310</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>470</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>350</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>760</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>
Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>330</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>650</td>
<td>280</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Fluorobiphenyl</td>
<td>85</td>
<td>%</td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Nitrobenzene-d5</td>
<td>86</td>
<td>%</td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Terphenyl-d14</td>
<td>98</td>
<td>%</td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

Pesticide Comment:
Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report

January 29, 2015

Sample Information
- **Matrix:** SEDIMENT
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC 01/09/15
- **Received by:** SW 01/12/15
- **Analyzed by:** see "By" below

Laboratory Data

SDG ID: GBH61987
Phoenix ID: BH61988

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1.59</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.9</td>
<td>0.8</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>47.3</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.38</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>11.3</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.07</td>
<td>0.07</td>
<td>mg/kg</td>
<td>01/14/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>22.0</td>
<td>0.38</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.9</td>
<td>1.9</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.051</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>0.017</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>0.032</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Solid</td>
<td>92</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BCH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>P/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>CB/T</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td></td>
<td>SW5035</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>45</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>45</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>45</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>450</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>45</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>90</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>45</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>90</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>62</td>
<td></td>
<td>%</td>
<td>01/14/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>TPH by GC (Extractable Products)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. Petroleum HC</td>
<td>120</td>
<td>53</td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>**</td>
<td></td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>77</td>
<td></td>
<td>%</td>
<td>01/14/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>360</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>108</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>105</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>3.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>36</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>3.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.4</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>7.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>36</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>140</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>85</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>95</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.5</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichlooroethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlooroethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>29</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>29</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>35</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>5.9</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>
Parameter Result RL/ PQL Units Date/Time By Reference

cis-1,2-Dichloroethene ND 5.9 ug/Kg 01/12/15 JLI SW8260

cis-1,3-Dichloropropene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Dibromochloromethane ND 3.5 ug/Kg 01/12/15 JLI SW8260

Dibromomethane ND 5.9 ug/Kg 01/12/15 JLI SW8260

Dichlorodifluoromethane ND 5.9 ug/Kg 01/12/15 JLI SW8260

Ethylbenzene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Hexachlorobutadiene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Isopropylbenzene ND 5.9 ug/Kg 01/12/15 JLI SW8260

m&p-Xylene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Methyl Ethyl Ketone ND 35 ug/Kg 01/12/15 JLI SW8260

Methyl t-butyl ether (MTBE) ND 12 ug/Kg 01/12/15 JLI SW8260

Methylene chloride ND 5.9 ug/Kg 01/12/15 JLI SW8260

n-Butylbenzene ND 5.9 ug/Kg 01/12/15 JLI SW8260

n-Propylbenzene ND 5.9 ug/Kg 01/12/15 JLI SW8260

o-Xylene ND 5.9 ug/Kg 01/12/15 JLI SW8260

p-Isopropyltoluene ND 5.9 ug/Kg 01/12/15 JLI SW8260

sec-Butylbenzene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Styrene ND 5.9 ug/Kg 01/12/15 JLI SW8260

tert-Butylbenzene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Tetrachloroethene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Tetrahydrofuran (THF) ND 12 ug/Kg 01/12/15 JLI SW8260

Toluene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Total Xylenes ND 5.9 ug/Kg 01/12/15 JLI SW8260

trans-1,2-Dichloroethene ND 5.9 ug/Kg 01/12/15 JLI SW8260

trans-1,3-Dichloropropene ND 5.9 ug/Kg 01/12/15 JLI SW8260

trans-1,4-dichloro-2-butene ND 12 ug/Kg 01/12/15 JLI SW8260

Trichloroethene ND 5.9 ug/Kg 01/12/15 JLI SW8260

Trichlorofluoromethane ND 5.9 ug/Kg 01/12/15 JLI SW8260

Trichlorotrifluoroethane ND 5.9 ug/Kg 01/12/15 JLI SW8260

Vinyl chloride ND 5.9 ug/Kg 01/12/15 JLI SW8260

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-dichlorobenzene-d4</td>
<td>103</td>
<td>%</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Bromofluorobenzene</td>
<td>94</td>
<td>%</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>102</td>
<td>%</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>96</td>
<td>%</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>320</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>310</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>430</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>360</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>770</td>
<td>250 ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>360</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>Pyrene</td>
<td>640</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>56</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>56</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>57</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>DD</td>
</tr>
</tbody>
</table>

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

TPH Comment:
Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C14 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015
Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 29, 2015

FOR: Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information

Matrix: SEDIMENT
Location Code: REDTECH
Rush Request: Standard
P.O. #: 14-385

Custody Information

Collected by: JC
Received by: SW
Analyzed by: see "By" below

Date Time
01/09/15 9:45
01/12/15 15:57

Laboratory Data

SDG ID: GBH61987
Phoenix ID: BH61989

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.37</td>
<td>0.37</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.5</td>
<td>0.7</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>98.4</td>
<td>0.37</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.37</td>
<td>0.37</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>22.4</td>
<td>0.37</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.08</td>
<td>0.08</td>
<td>mg/kg</td>
<td>01/14/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>64.3</td>
<td>0.37</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.8</td>
<td>1.8</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.042</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>0.023</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>87</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BCH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>P/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>CB/T</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>
Chlorinated Herbicides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>480</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>96</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>48</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>96</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- **% DCAA**: ND

TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>56</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- **% n-Pentacosane**: 78%

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>380</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- **% DCBP**: 135%
- **% TCMX**: 125%

Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4’-DDD</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4’-DDE</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4’-DDT</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>3.8</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>38</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>3.8</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.5</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>7.6</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>38</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>150</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>94</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>104</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>25</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>25</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>105</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>93</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>103</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>98</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>430</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>420</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>590</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(kl)fluoranthene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>490</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>ND</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>760</td>
<td>260</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>
Parameter | **Result** | **RL/ PQL** | **Units** | **Date/Time** | **By** | **Reference**
---|---|---|---|---|---|---
Fluorene | ND | 260 | ug/Kg | 01/13/15 | DD | SW 8270
Indeno(1,2,3-cd)pyrene | ND | 260 | ug/Kg | 01/13/15 | DD | SW 8270
Naphthalene | ND | 260 | ug/Kg | 01/13/15 | DD | SW 8270
Phenanthrene | 400 | 260 | ug/Kg | 01/13/15 | DD | SW 8270
Pyrene | 600 | 260 | ug/Kg | 01/13/15 | DD | SW 8270

Parameter	**Result**	**RL/ PQL**	**Units**	**Date/Time**	**By**	**Reference**

QA/QC Surrogates

% 2-Fluorobiphenyl | 92 | % | 01/13/15 | DD | 30 - 130 %
% Nitrobenzene-d5 | 89 | % | 01/13/15 | DD | 30 - 130 %
% Terphenyl-d14 | 78 | % | 01/13/15 | DD | 30 - 130 %

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 29, 2015

FOR: Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
Matrix: SOIL
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC
Received by: SW
Analyzed by: see "By" below

Laboratory Data
SDG ID: GBH61987
Phoenix ID: BH61990

Project ID: COOPER ST BRIDGE
Client ID: SB-4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.39</td>
<td>0.39</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.2</td>
<td>0.8</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>61.6</td>
<td>0.39</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.39</td>
<td>0.39</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>18.4</td>
<td>0.39</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.08</td>
<td>0.08</td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>46.4</td>
<td>0.39</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.6</td>
<td>1.6</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.065</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>0.015</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>79</td>
<td></td>
<td>%</td>
<td>01/12/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC/H</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>JJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>P/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>CB/T</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Field Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td></td>
<td>SW5035</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>520</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>100</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprope</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>100</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>52</td>
<td></td>
<td>%</td>
<td>01/14/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>TPH by GC (Extractable Products)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. Petroleum HC</td>
<td>150</td>
<td>63</td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>**</td>
<td></td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>83</td>
<td></td>
<td>%</td>
<td>01/14/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>410</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>120</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>111</td>
<td></td>
<td>%</td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>4.1</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>79</td>
<td>41</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>4.1</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>1.7</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>41</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>170</td>
<td>ug/Kg</td>
<td>01/16/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>113</td>
<td>%</td>
<td></td>
<td>01/16/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>94</td>
<td>%</td>
<td></td>
<td>01/16/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>36</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.6</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>36</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>12</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>12</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>12</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>6.1</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>101</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>90</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>106</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>99</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Polynuclear Aromatic HC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>310</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>730</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>2400</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>2400</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>3400</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>1000</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>1400</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Chrysene</td>
<td>2900</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>4800</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>980</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>3700</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>3600</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>81</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>82</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>68</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

TPH Comment:
**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Pesticide Comment:
Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 29, 2015

FOR: Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
Matrix: SOIL
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC
Received by: SW
Analyzed by: see “By” below

Laboratory Data
SDG ID: GBH61987
Phoenix ID: BH61991

Project ID: COOPER ST BRIDGE
Client ID: SB-5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1.19</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.3</td>
<td>0.8</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>135</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.41</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>17.3</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.07</td>
<td>0.07</td>
<td>mg/Kg</td>
<td>01/14/15</td>
<td>RS</td>
<td>SW-7471</td>
</tr>
<tr>
<td>Lead</td>
<td>21.8</td>
<td>0.41</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 1.6</td>
<td>1.6</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Silver</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Barium</td>
<td>0.051</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Cadmium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Chromium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Mercury</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>SPLP Lead</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Selenium</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>EK</td>
<td>SW6010</td>
</tr>
<tr>
<td>SPLP Metals Digest</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I/I</td>
<td>SW846-3005</td>
</tr>
<tr>
<td>Percent Solid</td>
<td>79</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>I</td>
<td>SW846</td>
</tr>
<tr>
<td>Soil Extraction for PCB Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BCH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction for Pesticide Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC</td>
<td>SW3545</td>
</tr>
<tr>
<td>Soil Extraction SVOA PAH Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BJ/VH</td>
<td>SW3545</td>
</tr>
<tr>
<td>Extraction of CT ETPH Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>BC/V</td>
<td>3545</td>
</tr>
<tr>
<td>Mercury Digestion Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>I/I</td>
<td>SW7471</td>
</tr>
<tr>
<td>Soil Extraction for Herbicide Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>P/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>SPLP Digestion Mercury Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/13/15</td>
<td>I/I</td>
<td>E1312/SW7470</td>
</tr>
<tr>
<td>SPLP Extraction for Metals Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>I</td>
<td>EPA 1312</td>
</tr>
<tr>
<td>Total Metals Digest Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/12/15</td>
<td>CB/T</td>
<td>SW846-3050</td>
</tr>
<tr>
<td>Field Extraction Completed</td>
<td></td>
<td></td>
<td></td>
<td>01/09/15</td>
<td></td>
<td>SW5035</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>520</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>100</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>52</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>100</td>
<td>ug/Kg</td>
<td>01/14/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>61</td>
<td>%</td>
<td></td>
<td>01/14/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>TPH by GC (Extractable Products)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>62</td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/Kg</td>
<td>01/13/15</td>
<td>JRB</td>
<td>CT ETPH/8015</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>80</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>420</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>AW</td>
<td>SW 8082</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP</td>
<td>141</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% TCMX</td>
<td>124</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>4.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>42</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>4.2</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>8.3</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>nd</td>
<td>1.7</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>8.3</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>8.3</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>42</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>170</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>g-BHC</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>8.3</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>8.3</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>42</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>170</td>
<td>ug/Kg</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td>93</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>% DCBP</td>
<td>102</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Volatiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethylene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td>4.7</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>39</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>39</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>47</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>7.8</td>
<td>ug/Kg</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.7</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>47</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>16</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>16</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>16</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>7.8</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- % 1,2-dichlorobenzene-d4: 106 %, 01/12/15, JLI 70 - 130 %
- % Bromofluorobenzene: 94 %, 01/12/15, JLI 70 - 130 %
- % Dibromofluoromethane: 102 %, 01/12/15, JLI 70 - 130 %
- % Toluene-d8: 99 %, 01/12/15, JLI 70 - 130 %

Polynuclear Aromatic HC

- 2-Methylnaphthalene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Acenaphthen: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Acenaphthylene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Anthracene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Benz(a)anthracene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Benzo(a)pyrene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Benzo(b)fluoranthene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Benzo(ghi)perylene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Benzo(k)fluoranthene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Chrysene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Dibenz(a,h)anthracene: ND 290 ug/Kg, 01/13/15, DD SW 8270
- Fluoranthene: ND 290 ug/Kg, 01/13/15, DD SW 8270
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>290</td>
<td>ug/Kg</td>
<td>01/13/15</td>
<td>DD</td>
<td>SW 8270</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Fluorobiphenyl</td>
<td>64</td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Nitrobenzene-d5</td>
<td>62</td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>Terphenyl-d14</td>
<td>66</td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Sample Information
- **Matrix:** SEDIMENT
- **Location Code:** REDTECH
- **Rush Request:** Standard
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC
- **Received by:** SW
- **Analyzed by:** see “By” below

Laboratory Data
- **SDG ID:** GBH61987
- **Phoenix ID:** BH61992

Laboratory Report

FOR: Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Analysis Report
January 29, 2015

Project ID: COOPER ST BRIDGE
Client ID: TRIP BLANK LL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Solid</td>
<td>100</td>
<td>1</td>
<td>%</td>
<td>01/09/15</td>
<td></td>
<td>SW846</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>

Volatiles

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>25</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>25</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>3.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>30</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>10</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>5.0</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>106</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>95</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>101</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

Results are reported on an `as received` basis, and are not corrected for dry weight. TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 29, 2015

FOR: Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
- Matrix: SEDIMENT
- Location Code: REDTECH
- Rush Request: Standard
- P.O.#: 14-385

Custody Information
- Collected by: JC
- Received by: SW
- Analyzed by: see "By" below

Date	Time
01/09/15 | 0:00
01/12/15 | 15:57

Laboratory Data
- SDG ID: GBH61987
- Phoenix ID: BH61993

Project ID: COOPER ST BRIDGE
Client ID: TRIP BLANK HL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Solid</td>
<td>100</td>
<td>1</td>
<td>%</td>
<td>01/09/15</td>
<td></td>
<td>SW846</td>
</tr>
<tr>
<td>Field Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/09/15</td>
<td></td>
<td>SW5035</td>
</tr>
</tbody>
</table>

Volatiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>1300</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

Page 29 of 45
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>1300</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>5000</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>ND</td>
<td>3000</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>500</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>250</td>
<td>ug/Kg</td>
<td>01/12/15</td>
<td>JLI</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>105</td>
<td>%</td>
<td>01/12/15</td>
<td>JLI</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>96</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>100</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
<td>JLI</td>
</tr>
</tbody>
</table>

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:
Results are reported on an “as received” basis, and are not corrected for dry weight. TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015
Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 29, 2015

For:
Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
- **Matrix:** SURFACE WATER
- **Location Code:** REDTECH
- **Rush Request:** 24 Hour
- **P.O. #:** 14-385

Custody Information
- **Collected by:** JC
01/09/15
10:40
- **Received by:** SW
01/12/15
15:57
- **Analyzed by:** see "By" below

Laboratory Data
- **SDG ID:** GBH61987
Phoenix ID: BH61994

Project ID: COOPER ST BRIDGE
Client ID: SF-1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>0.126</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.003</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.002</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-Volatile Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Metals Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TPH by GC (Extractable Products)
- **Ext. Petroleum HC**
Identification
QA/QC Surrogates
% n-Pentacosane

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>0.07</td>
<td>01/18/15</td>
<td>JRB CTETPH/8015D</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td>mg/L</td>
<td>01/18/15</td>
<td>JRB CTETPH/8015D</td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>NR</td>
<td>%</td>
<td>01/18/15</td>
<td>JRB 50 - 150 %</td>
</tr>
</tbody>
</table>

Volatiles
- **1,1,2-Tetrachloroethane**
1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane
1,1-Dichloroethane
1,1-Dichloroethene
1,1-Dichloropropene
1,2,3-Trichlorobenzene
1,2,3-Trichloropropane

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>Units</th>
<th>Date/Time</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>01/12/15</td>
<td>HM SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.60</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.70</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>1.1</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3.5</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>106</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>101</td>
<td>%</td>
<td></td>
<td>01/12/15</td>
</tr>
<tr>
<td>Semivolatiles by SIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>0.02</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ND</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>0.01</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>0.07</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/13/15</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>54</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>60</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>78</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
</tr>
</tbody>
</table>
Parameter Result RL/PQL Units Date/Time By Reference

Comments:

NR= Not reported. Sample run from SIM extract. No surrogate to report.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015
Reviewed and Released by: Ethan Lee, Project Manager
Sample Information

<table>
<thead>
<tr>
<th>Matrix:</th>
<th>SURFACE WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Code:</td>
<td>REDTECH</td>
</tr>
<tr>
<td>Rush Request:</td>
<td>24 Hour</td>
</tr>
<tr>
<td>P.O. #:</td>
<td>14-385</td>
</tr>
</tbody>
</table>

Custody Information

<table>
<thead>
<tr>
<th>Collected by:</th>
<th>JC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received by:</td>
<td>SW</td>
</tr>
<tr>
<td>Analyzed by:</td>
<td>see “By” below</td>
</tr>
</tbody>
</table>

Laboratory Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>0.133</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.002</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.002</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/13/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
</tbody>
</table>

Completed
- Mercury Digestion
- Semi-Volatile Extraction
- Total Metals Digestion

TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>0.07</td>
<td>mg/L</td>
<td>01/18/15</td>
<td>JRB</td>
<td>CTETPH/8015D</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>01/18/15</td>
<td>JRB</td>
<td>CTETPH/8015D</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% n-Pentacosane</td>
<td>NR</td>
<td></td>
<td>%</td>
<td>01/18/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
</tbody>
</table>

Volatiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.70</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>3.5</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/12/15</td>
<td>HM</td>
<td>SW8260</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- % 1,2-dichlorobenzene-d4: 101% 01/12/15 HM 70 - 130%
- % Bromofluorobenzene: 99% 01/12/15 HM 70 - 130%
- % Dibromofluoromethane: 103% 01/12/15 HM 70 - 130%
- % Toluene-d8: 101% 01/12/15 HM 70 - 130%

Semivolatiles by SIM

- 2-Methylnaphthalene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Acenaphthene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Acenaphthylene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Anthracene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Benz(a)anthracene: ND 0.02 ug/L 01/13/15 DD 8270(SIM)
- Benzo(a)pyrene: ND 0.02 ug/L 01/13/15 DD 8270(SIM)
- Benzo(b)fluoranthene: ND 0.02 ug/L 01/13/15 DD 8270(SIM)
- Benzo(ghi)perylene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Benzo(k)fluoranthene: ND 0.02 ug/L 01/13/15 DD 8270(SIM)
- Chrysene: ND 0.02 ug/L 01/13/15 DD 8270(SIM)
- Dibenz(a,h)anthracene: ND 0.01 ug/L 01/13/15 DD 8270(SIM)
- Fluoranthene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Fluorene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Indeno(1,2,3-cd)pyrene: ND 0.02 ug/L 01/13/15 DD 8270(SIM)
- Naphthalene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)
- Phenanthrene: ND 0.07 ug/L 01/13/15 DD 8270(SIM)
- Pyrene: ND 0.10 ug/L 01/13/15 DD 8270(SIM)

QA/QC Surrogates

- % 2-Fluorobiphenyl: 54% 01/13/15 DD 30 - 130%
- % Nitrobenzene-d5: 65% 01/13/15 DD 30 - 130%
- % Terphenyl-d14: 80% 01/13/15 DD 30 - 130%
Parameter Result RL/PQL Units Date/Time By Reference

Comments:

NR = Not reported. Sample run from SIM extract. No surrogate to report.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report
January 29, 2015

FOR: Attn: Mr Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
Matrix: WATER
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by: JC 01/09/15 11:00
Received by: SW 01/12/15 15:57
Analyzed by: see “By” below

Laboratory Data
SDG ID: GBH61987
Phoenix ID: BH61996

Project ID: COOPER ST BRIDGE
Client ID: FIELD BLANK

Parameter Result RL/ PQL Units Date/Time By Reference

Semi-Volatile Extraction
Completed

TPH by GC (Extractable Products)
Ext. Petroleum HC ND 0.07 mg/L 01/18/15 JRB CTETPH/8015D
Identification ND mg/L 01/18/15 JRB CTETPH/8015D

QA/QC Surrogates
% n-Pentacosane NR % 01/18/15 JRB 50 - 150 %

Semivolatiles by SIM
2-Methylnaphthalene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Acenaphthene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Acenaphthylene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Anthracene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Benz(a)anthracene 0.03 0.02 ug/L 01/13/15 DD 8270(SIM)
Benzo(a)pyrene ND 0.02 ug/L 01/13/15 DD 8270(SIM)
Benzo(b)fluoranthene ND 0.02 ug/L 01/13/15 DD 8270(SIM)
Benzo(ghi)perylene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Benzo(k)fluoranthene ND 0.02 ug/L 01/13/15 DD 8270(SIM)
Chrysene 0.02 0.02 ug/L 01/13/15 DD 8270(SIM)
Dibenz(a,h)anthracene ND 0.01 ug/L 01/13/15 DD 8270(SIM)
Fluoranthene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Fluorene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Indeno(1,2,3-cd)pyrene ND 0.02 ug/L 01/13/15 DD 8270(SIM)
Naphthalene ND 0.10 ug/L 01/13/15 DD 8270(SIM)
Phenantherene ND 0.07 ug/L 01/13/15 DD 8270(SIM)
Pyrene ND 0.10 ug/L 01/13/15 DD 8270(SIM)

QA/QC Surrogates
% 2-Fluorobiphenyl 49 % 01/13/15 DD 30 - 130 %
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Nitrobenzene-d5</td>
<td>53</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>93</td>
<td>%</td>
<td></td>
<td>01/13/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>

Comments:

NR= Not reported. Sample run from SIM extract. No surrogate to report.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Analysis Report
January 29, 2015

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06020

Sample Information
Matrix: SURFACE WATER
Location Code: REDTECH
Rush Request: Standard
P.O. #: 14-385

Custody Information
Collected by: JC
Received by: LB
Analyzed by: see "By" below

Laboratory Data
SDG ID: GBH61987
Phoenix ID: BH63049

Project ID: COOPER STREET BRIDGE
Client ID: SF-1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/16/15</td>
<td>F/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>PCB Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>L</td>
<td>SW3510C</td>
</tr>
<tr>
<td>Extraction for Pest (2 Liter)</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>L</td>
<td>SW3510</td>
</tr>
</tbody>
</table>

Chlorinated Herbicides

- 2,4,5-T: ND 1.3 ug/L 01/19/15 BB SW8151
- 2,4,5-TP (Silvex): ND 1.3 ug/L 01/19/15 BB SW8151
- 2,4-D: ND 1.3 ug/L 01/19/15 BB SW8151
- 2,4-DB: ND 13 ug/L 01/19/15 BB SW8151
- Dalapon: ND 1.3 ug/L 01/19/15 BB SW8151
- Dicamba: ND 2.6 ug/L 01/19/15 BB SW8151
- Dichloroprop: ND 1.3 ug/L 01/19/15 BB SW8151
- Dinoseb: ND 2.6 ug/L 01/19/15 BB SW8151

QA/QC Surrogates

- % DCAA: 92 % 01/19/15 BB 30 - 150 %

Polychlorinated Biphenyls

- PCB-1016: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1221: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1232: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1242: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1248: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1254: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1260: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1262: ND 0.11 ug/L 01/15/15 AW 8082
- PCB-1268: ND 0.11 ug/L 01/15/15 AW 8082

QA/QC Surrogates

- % DCBP: 75 % 01/15/15 AW 30 - 150 %
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% TCMX</td>
<td>64</td>
<td></td>
<td>%</td>
<td>01/15/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

Pesticides

- **4,4’ -DDD**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **4,4’ -DDE**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **4,4’ -DDT**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **a-BHC**
 - ND
 - 0.027 ug/L
 - 01/15/15
 - CE SW8081

- **Alachlor**
 - ND
 - 0.080 ug/L
 - 01/15/15
 - CE SW8081

- **Aldrin**
 - ND
 - 0.002 ug/L
 - 01/15/15
 - CE SW8081

- **b-BHC**
 - ND
 - 0.005 ug/L
 - 01/15/15
 - CE SW8081

- **Chlordane**
 - ND
 - 0.32 ug/L
 - 01/15/15
 - CE SW8081

- **d-BHC**
 - ND
 - 0.027 ug/L
 - 01/15/15
 - CE SW8081

- **Dieldrin**
 - ND
 - 0.005 ug/L
 - 01/15/15
 - CE SW8081

- **Endosulfan I**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **Endosulfan II**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **Endosulfan Sulfate**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **Endrin**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **Endrin Aldehyde**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **Endrin ketone**
 - ND
 - 0.053 ug/L
 - 01/15/15
 - CE SW8081

- **g-BHC (Lindane)**
 - ND
 - 0.027 ug/L
 - 01/15/15
 - CE SW8081

- **Heptachlor**
 - ND
 - 0.027 ug/L
 - 01/15/15
 - CE SW8081

- **Heptachlor epoxide**
 - ND
 - 0.027 ug/L
 - 01/15/15
 - CE SW8081

- **Methoxychlor**
 - ND
 - 0.11 ug/L
 - 01/15/15
 - CE SW8081

- **Toxaphene**
 - ND
 - 1.1 ug/L
 - 01/15/15
 - CE SW8081

QA/QC Surrogates

- **%DCBP (Surrogate Rec)**
 - 86
 - %
 - 01/15/15
 - CE 30 - 150 %

- **%TCMX (Surrogate Rec)**
 - 80
 - %
 - 01/15/15
 - CE 30 - 150 %

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 29, 2015
Reviewed and Released by: Ethan Lee, Project Manager
Laboratory Data

SDG ID: GBH61987
Phoenix ID: BH63050

Project ID: COOPER STREET BRIDGE
Client ID: SF-2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/16/15</td>
<td>F/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>PCB Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>L</td>
<td>SW3510C</td>
</tr>
<tr>
<td>Extraction for Pest (2 Liter)</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/14/15</td>
<td>L</td>
<td>SW3510</td>
</tr>
</tbody>
</table>

Chlorinated Herbicides

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>13</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/19/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCAA</td>
<td>84</td>
<td>%</td>
<td></td>
<td>01/19/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>PCB</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1016</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1221</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1232</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1242</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1248</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1254</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1260</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1262</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>1268</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>AW</td>
<td>8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DCBP</td>
<td>71</td>
<td>%</td>
<td></td>
<td>01/15/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>
Parameter Result RL/PQL Units Date/Time By Reference

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% TCMX</td>
<td>64</td>
<td></td>
<td>%</td>
<td>01/15/15</td>
<td>AW</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>0.028</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>0.082</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>0.002</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>0.006</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>0.33</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>0.028</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>0.006</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan Sulfate</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin Aldehyde</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>0.055</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>g-BHC (Lindane)</td>
<td>ND</td>
<td>0.028</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>0.028</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>0.028</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>0.11</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>1.1</td>
<td>ug/L</td>
<td>01/15/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DCBP (Surrogate Rec)</td>
<td>74</td>
<td>%</td>
<td></td>
<td>01/15/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
<tr>
<td>%TCMX (Surrogate Rec)</td>
<td>74</td>
<td>%</td>
<td></td>
<td>01/15/15</td>
<td>CE</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>

RL/PQL = Reporting/Practical Quantitation Level ND = Not Detected BRL = Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.
This report must not be reproduced except in full as defined by the attached chain of custody.

[Signature]

Phyllis Shiller, Laboratory Director
January 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager
QA/QC Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>Sample Result</th>
<th>Dup Result</th>
<th>Dup RPD</th>
<th>LCS %</th>
<th>LCS SD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS SD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA/QC Batch 296986, QC Sample No: BH58509 (BH61987, BH61988, BH61989, BH61990, BH61991)</td>
<td></td>
</tr>
<tr>
<td>Mercury - Soil</td>
<td>BRL</td>
<td><0.08</td>
<td><0.08</td>
<td>NC</td>
<td>103</td>
<td>100</td>
<td>3.0</td>
<td>103</td>
<td>95.3</td>
<td>7.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
</tbody>
</table>
| Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

QA/QC Batch 296871, QC Sample No: BH61809 (BH61994, BH61995)												
ICP Metals - Aqueous												
Arsenic	BRL	0.005	0.004	NC	113	112	0.9	111	113	1.8	75 - 125	20
Barium	BRL	0.077	0.077	0	109	108	0.9	105	107	1.9	75 - 125	20
Cadmium	BRL	<0.001	<0.001	NC	106	105	0.9	105	106	0.9	75 - 125	20
Chromium	BRL	0.003	0.004	NC	103	102	1.0	102	105	2.9	75 - 125	20
Lead	BRL	0.003	0.003	NC	105	105	0.0	102	104	1.9	75 - 125	20
Selenium	BRL	<0.010	<0.010	NC	109	109	0.0	106	108	1.9	75 - 125	20
Silver	BRL	<0.001	<0.001	NC	101	102	1.0	99.2	101	1.8	75 - 125	20
QA/QC Batch 296847, QC Sample No: BH61843 (BH61987, BH61988, BH61989, BH61990, BH61991)												
ICP Metals - Soil												
Arsenic	BRL	1.1	1.09	NC	104	108	3.8	96.5	94.3	2.3	75 - 125	30
Barium	BRL	74.7	75.1	0.50	112	117	4.4	>130	101	NC	75 - 125	30
Cadmium	BRL	<0.37	<0.39	NC	93.9	96.1	2.3	96.1	94.6	1.6	75 - 125	30
Chromium	BRL	16.4	15.5	5.60	106	109	2.8	98.8	97.4	1.4	75 - 125	30
Lead	BRL	5.30	4.88	8.30	93.5	97.3	4.0	93.9	92.4	1.6	75 - 125	30
Selenium	BRL	<1.5	<1.5	NC	93.4	96.1	2.8	82.6	81.3	1.6	75 - 125	30
Silver	BRL	<0.37	<0.39	NC	102	103	1.0	99.0	97.1	1.9	75 - 125	30
QA/QC Batch 296886, QC Sample No: BH61880 (BH61987, BH61988, BH61989, BH61990, BH61991, BH61994, BH61995, BH61996)												
Mercury - Water	BRL	<0.0002	<0.0002	NC	111	112	0.9	115	103	11.0	70 - 130	20
Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.												

QA/QC Batch 296887, QC Sample No: BH61997 (BH61987, BH61988, BH61989, BH61990, BH61991)												
ICP Metals - SPLP Extraction												
Arsenic	BRL	<0.004	<0.004	NC	104	107	2.8	105	103	1.9	75 - 125	20
Barium	BRL	0.023	0.023	NC	106	107	0.9	108	105	2.8	75 - 125	20
Cadmium	BRL	<0.005	<0.005	NC	106	108	1.9	106	104	1.9	75 - 125	20
Chromium	BRL	<0.010	<0.010	NC	104	105	1.0	104	102	1.9	75 - 125	20
Lead	BRL	<0.010	<0.010	NC	102	104	1.9	102	100	2.0	75 - 125	20
Selenium	BRL	<0.020	<0.020	NC	100	103	3.0	102	99.7	2.3	75 - 125	20
Silver	BRL	<0.010	<0.010	NC	101	101	0.0	101	98.8	2.2	75 - 125	20

m = This parameter is outside laboratory ms/msd specified recovery limits.
QA/QC Report

January 29, 2015

QA/QC Data

SDG I.D.: GBH61987

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA/QC Batch 296845, QC Sample No: BH61508 (BH61994, BH61995, BH61996)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polynuclear Aromatic HC - Surface Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>74</td>
<td>73</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>68</td>
<td>67</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>75</td>
<td>75</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>76</td>
<td>76</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>ND</td>
<td>80</td>
<td>80</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ND</td>
<td>72</td>
<td>72</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ND</td>
<td>79</td>
<td>80</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>60</td>
<td>59</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ND</td>
<td>82</td>
<td>81</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>76</td>
<td>77</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>64</td>
<td>64</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ND</td>
<td>75</td>
<td>72</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>73</td>
<td>71</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ND</td>
<td>62</td>
<td>62</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>57</td>
<td>57</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ND</td>
<td>68</td>
<td>68</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td>ND</td>
<td>77</td>
<td>73</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>53</td>
<td>59</td>
<td>60</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>72</td>
<td>69</td>
<td>66</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 296755, QC Sample No: BH61796 (BH61987, BH61988, BH61989, BH61990, BH61991)									
Polychlorinated Biphenyls - Sediment, Soil									
PCB-1016	ND	86	93	7.8					
PCB-1221	ND	86	93	7.8					
PCB-1232	ND	86	93	7.8					
PCB-1242	ND	86	93	7.8					
PCB-1248	ND	86	93	7.8					
PCB-1254	ND	86	93	7.8					
PCB-1260	ND	88	94	6.6					
PCB-1262	ND	88	94	6.6					
PCB-1268	ND	88	94	6.6					
% DCBP (Surrogate Rec)	96	94	103	9.1					
% TCMX (Surrogate Rec)	93	91	99	8.4					

Comment:

MS/MSD could not be reported for this batch due to PCBs in the unspiked sample. -aw
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS</th>
<th>LSCD</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
</table>

Chlorinated Herbicides - Sediment, Soil

- 2,4,5-T
- 2,4,5-TP (Silvex)
- 2,4-D
- 2,4-DB
- Dalapon
- Dicamba
- Dichlorprop
- Dinoeb
- % DCAA (Surrogate Rec)

Polynuclear Aromatic HC - Sediment, Soil

- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benz(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(ghi)perylene
- Benzo(k)fluoranthene
- Chrysene
- Dibenz(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene
- % 2-Fluorobiphenyl
- % Nitrobenzene-d5
- % Terphenyl-d14

Pesticides - Sediment, Soil

- 4,4'-DDD
- 4,4'-DDE
- 4,4'-DDT
- a-BHC
- a-Chlordane
- Alachlor
- Aldrin
- b-BHC
- Chlordane
- d-BHC
- Dieldrin
- Endosulfan I
- Endosulfan II

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)
QA/QC Data

Parameter	**Blank**	**LCS %**	**LCSD %**	**LCS RPD**	**MS %**	**MSD %**	**MS RPD**	**% Rec Limits**	**% RPD Limits**
Endosulfan sulfate | ND | 64 | 55 | 15.1 | 71 | 76 | 6.8 | 40 - 140 | 30
Endrin | ND | 93 | 98 | 5.2 | 96 | 102 | 6.1 | 40 - 140 | 30
Endrin aldehyde | ND | 57 | 42 | 30.3 | 73 | 77 | 5.3 | 40 - 140 | 30
Endrin ketone | ND | 85 | 77 | 9.9 | 87 | 102 | 15.9 | 40 - 140 | 30
g-BHC | ND | 85 | 85 | 0.0 | 85 | 90 | 5.7 | 40 - 140 | 30
g-Chlordane | ND | 88 | 92 | 4.4 | 89 | 95 | 6.5 | 40 - 140 | 30
Heptachlor | ND | 86 | 87 | 1.2 | 85 | 91 | 6.8 | 40 - 140 | 30
Heptachlor epoxide | ND | 88 | 89 | 1.1 | 89 | 94 | 5.5 | 40 - 140 | 30
Methoxychlor | ND | 92 | 91 | 1.1 | 93 | 100 | 7.3 | 40 - 140 | 30
Toxaphene | ND | NA | NA | NC | NA | NA | NC | 40 - 140 | 30
% DCBP | 100 | 96 | 96 | 0.0 | 87 | 99 | 12.9 | 30 - 150 | 30
% TCMX | 87 | 89 | 89 | 0.0 | 85 | 91 | 6.8 | 30 - 150 | 30

Volatiles - Sediment, Soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
</table>
1,1,1,2-Tetrachloroethane | ND | 102 | 103 | 1.0 | 89 | 85 | 4.6 | 70 - 130 | 30
1,1-Trichloroethane | ND | 102 | 103 | 1.0 | 90 | 90 | 0.0 | 70 - 130 | 30
1,1,2,2-Tetrachloroethane | ND | 105 | 105 | 0.0 | 98 | 95 | 3.1 | 70 - 130 | 30
1,1,2-Trichloroethane | ND | 99 | 100 | 1.0 | 86 | 81 | 6.0 | 70 - 130 | 30
1,1-Dichloroethane | ND | 98 | 100 | 2.0 | 90 | 91 | 1.1 | 70 - 130 | 30
1,1-Dichloroethene | ND | 109 | 109 | 0.0 | 90 | 92 | 2.2 | 70 - 130 | 30
1,1-Dichloropropene | ND | 104 | 102 | 1.9 | 89 | 88 | 1.1 | 70 - 130 | 30
1,2,3-Trichlorobenzene | ND | 88 | 102 | 14.7 | 51 | 33 | 42.9 | 70 - 130 | 30
1,2,3-Trichloropropane | ND | 98 | 95 | 3.1 | 103 | 102 | 1.0 | 70 - 130 | 30
1,2,4-Trichlorobenzene | ND | 120 | 107 | 11.5 | 57 | 40 | 35.1 | 70 - 130 | 30
1,2,4-Trichlorobenzene | ND | 97 | 97 | 0.0 | 93 | 89 | 4.4 | 70 - 130 | 30
1,2-Dichlorobenzene | ND | 98 | 99 | 1.0 | 85 | 74 | 13.8 | 70 - 130 | 30
1,2-Dichloroethane | ND | 102 | 104 | 1.9 | 85 | 81 | 4.8 | 70 - 130 | 30
1,2-Dichloroethene | ND | 92 | 100 | 8.3 | 81 | 70 | 14.6 | 70 - 130 | 30
1,2-Dichloropropene | ND | 100 | 101 | 1.0 | 90 | 89 | 1.1 | 70 - 130 | 30
1,2-Dichloropropane | ND | 102 | 103 | 1.0 | 90 | 88 | 2.2 | 70 - 130 | 30
1,3,5-Trimethylbenzene | ND | 105 | 103 | 1.9 | 97 | 92 | 5.3 | 70 - 130 | 30
1,3-Dichlorobenzene | ND | 104 | 101 | 2.9 | 86 | 77 | 11.0 | 70 - 130 | 30
1,3-Dichloropropane | ND | 101 | 101 | 0.0 | 91 | 92 | 1.1 | 70 - 130 | 30
1,4-Dichlorobenzene | ND | 101 | 99 | 2.0 | 84 | 76 | 10.0 | 70 - 130 | 30
2,2-Dichloropropane | ND | 103 | 104 | 1.0 | 87 | 88 | 1.1 | 70 - 130 | 30
2-Chlorotoluene | ND | 101 | 98 | 3.0 | 95 | 89 | 6.5 | 70 - 130 | 30
2-Hexanone | ND | 88 | 86 | 2.3 | 74 | 60 | 20.9 | 70 - 130 | 30
2-Isopropyltoluene | ND | 103 | 102 | 1.0 | 91 | 81 | 11.6 | 70 - 130 | 30
4-Chlorotoluene | ND | 101 | 98 | 3.0 | 95 | 89 | 6.5 | 70 - 130 | 30
4-Methyl-2-pentanone | ND | 98 | 97 | 1.0 | 83 | 74 | 11.5 | 70 - 130 | 30
Acetone | ND | 90 | 89 | 1.1 | 65 | 57 | 13.1 | 70 - 130 | 30
Acrylonitrile | ND | 97 | 99 | 2.0 | 83 | 74 | 11.5 | 70 - 130 | 30
Benzene | ND | 103 | 105 | 1.9 | 90 | 89 | 1.1 | 70 - 130 | 30
Bromobenzene | ND | 100 | 100 | 0.0 | 97 | 94 | 3.1 | 70 - 130 | 30
Bromochloromethane | ND | 105 | 105 | 0.0 | 92 | 93 | 1.1 | 70 - 130 | 30
Bromodichloromethane | ND | 105 | 106 | 0.9 | 89 | 86 | 3.4 | 70 - 130 | 30
Bromoform | ND | 109 | 101 | 7.6 | 88 | 75 | 16.0 | 70 - 130 | 30
Bromomethane | ND | 112 | 108 | 3.6 | 85 | 70 | 19.4 | 70 - 130 | 30
Carbon Disulfide | ND | 115 | 114 | 0.9 | 87 | 85 | 2.3 | 70 - 130 | 30
Carbon tetrachloride | ND | 102 | 102 | 0.0 | 89 | 87 | 2.3 | 70 - 130 | 30
Chlorobenzene | ND | 100 | 100 | 0.0 | 88 | 84 | 4.7 | 70 - 130 | 30
Chloroethane | ND | 101 | 102 | 1.0 | 87 | 91 | 4.5 | 70 - 130 | 30

QA/QC Batch 296903, QC Sample No: BH61843 (BH61987, BH61988, BH61989, BH61990, BH61991, BH61992, BH61993 (50X))
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>101</td>
<td>101</td>
<td>0.0</td>
<td>91</td>
<td>91</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>83</td>
<td>81</td>
<td>2.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
<td>88</td>
<td>89</td>
<td>1.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>110</td>
<td>111</td>
<td>0.9</td>
<td>88</td>
<td>80</td>
<td>9.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>106</td>
<td>107</td>
<td>0.9</td>
<td>92</td>
<td>88</td>
<td>4.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
<td>88</td>
<td>87</td>
<td>1.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>115</td>
<td>116</td>
<td>0.9</td>
<td>87</td>
<td>87</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>103</td>
<td>103</td>
<td>0.0</td>
<td>89</td>
<td>86</td>
<td>3.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>109</td>
<td>106</td>
<td>2.8</td>
<td>58</td>
<td>37</td>
<td>44.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>ND</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>104</td>
<td>102</td>
<td>1.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>94</td>
<td>93</td>
<td>1.1</td>
<td>74</td>
<td>65</td>
<td>12.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>97</td>
<td>97</td>
<td>0.0</td>
<td>83</td>
<td>84</td>
<td>1.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>98</td>
<td>97</td>
<td>1.0</td>
<td>85</td>
<td>85</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>100</td>
<td>103</td>
<td>3.0</td>
<td>59</td>
<td>41</td>
<td>36.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>104</td>
<td>100</td>
<td>3.9</td>
<td>79</td>
<td>66</td>
<td>17.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>97</td>
<td>94</td>
<td>3.1</td>
<td>99</td>
<td>96</td>
<td>3.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>104</td>
<td>101</td>
<td>2.9</td>
<td>88</td>
<td>83</td>
<td>5.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>104</td>
<td>103</td>
<td>1.0</td>
<td>90</td>
<td>80</td>
<td>11.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>104</td>
<td>103</td>
<td>1.0</td>
<td>91</td>
<td>80</td>
<td>12.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>108</td>
<td>107</td>
<td>0.9</td>
<td>87</td>
<td>77</td>
<td>12.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>97</td>
<td>90</td>
<td>7.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>98</td>
<td>97</td>
<td>1.0</td>
<td>85</td>
<td>83</td>
<td>2.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>103</td>
<td>104</td>
<td>1.0</td>
<td>87</td>
<td>85</td>
<td>2.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>106</td>
<td>106</td>
<td>0.0</td>
<td>89</td>
<td>91</td>
<td>2.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>111</td>
<td>111</td>
<td>0.0</td>
<td>88</td>
<td>81</td>
<td>8.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>108</td>
<td>110</td>
<td>1.8</td>
<td>102</td>
<td>92</td>
<td>10.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>104</td>
<td>104</td>
<td>0.0</td>
<td>90</td>
<td>87</td>
<td>3.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>110</td>
<td>110</td>
<td>0.0</td>
<td>93</td>
<td>95</td>
<td>2.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>109</td>
<td>109</td>
<td>0.0</td>
<td>90</td>
<td>90</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>102</td>
<td>101</td>
<td>1.0</td>
<td>90</td>
<td>93</td>
<td>3.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment:
Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 296852, QC Sample No: BH61988 (BH61987, BH61988, BH61989, BH61990, BH61991)

TPH by GC (Extractable Products) - Sediment, Soil

| Ext. Petroleum HC | ND | 88 | 80 | 9.5 | 72 | 66 | 8.7 | 60 - 120 | 30 |
| % n-Pentacosane | 89 | 94 | 86 | 8.9 | 86 | 82 | 4.8 | 50 - 150 | 30 |

QA/QC Batch 296917, QC Sample No: BH62003 (BH61994, BH61995, BH61996)

Volatiles - Surface Water

<p>| 1,1,1,2-Tetrachloroethane | ND | 105 | 104 | 1.0 | 91 | 112 | 20.7 | 70 - 130 | 30 |
| 1,1,1-Trichloroethane | ND | 104 | 100 | 3.9 | 85 | 112 | 27.4 | 70 - 130 | 30 |
| 1,1,2,2-Tetrachloroethane | ND | 103 | 101 | 2.0 | 87 | 105 | 18.8 | 70 - 130 | 30 |
| 1,1,2-Trichloroethane | ND | 100 | 101 | 1.0 | 89 | 108 | 19.3 | 70 - 130 | 30 |
| 1,1-Dichloroethane | ND | 103 | 99 | 4.0 | 87 | 109 | 22.4 | 70 - 130 | 30 |
| 1,1-Dichloroethene | ND | 102 | 96 | 6.1 | 77 | 103 | 28.9 | 70 - 130 | 30 |
| 1,1-Dichloropropene | ND | 101 | 98 | 3.0 | 79 | 107 | 30.1 | 70 - 130 | 30 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPDL</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPDL</th>
<th>% Rec Limits</th>
<th>% RPDL Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
<td>89</td>
<td>102</td>
<td>13.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>98</td>
<td>96</td>
<td>2.1</td>
<td>85</td>
<td>104</td>
<td>20.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>90</td>
<td>106</td>
<td>16.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>99</td>
<td>94</td>
<td>5.2</td>
<td>87</td>
<td>108</td>
<td>21.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>104</td>
<td>103</td>
<td>1.0</td>
<td>91</td>
<td>112</td>
<td>20.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>102</td>
<td>105</td>
<td>2.9</td>
<td>92</td>
<td>110</td>
<td>17.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>100</td>
<td>98</td>
<td>2.0</td>
<td>90</td>
<td>107</td>
<td>17.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>97</td>
<td>97</td>
<td>0.0</td>
<td>84</td>
<td>103</td>
<td>20.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>100</td>
<td>99</td>
<td>1.0</td>
<td>87</td>
<td>106</td>
<td>19.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>104</td>
<td>99</td>
<td>4.9</td>
<td>85</td>
<td>108</td>
<td>23.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>103</td>
<td>99</td>
<td>4.0</td>
<td>89</td>
<td>108</td>
<td>19.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>97</td>
<td>96</td>
<td>1.0</td>
<td>86</td>
<td>107</td>
<td>21.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>99</td>
<td>98</td>
<td>1.0</td>
<td>89</td>
<td>106</td>
<td>17.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>105</td>
<td>99</td>
<td>5.9</td>
<td>82</td>
<td>98</td>
<td>17.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>105</td>
<td>98</td>
<td>6.9</td>
<td>88</td>
<td>110</td>
<td>22.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>86</td>
<td>90</td>
<td>4.5</td>
<td>81</td>
<td>101</td>
<td>22.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>105</td>
<td>101</td>
<td>3.9</td>
<td>86</td>
<td>110</td>
<td>24.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>101</td>
<td>98</td>
<td>3.0</td>
<td>88</td>
<td>108</td>
<td>20.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>90</td>
<td>91</td>
<td>1.1</td>
<td>83</td>
<td>101</td>
<td>19.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>97</td>
<td>94</td>
<td>3.1</td>
<td>80</td>
<td>105</td>
<td>27.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>102</td>
<td>98</td>
<td>4.0</td>
<td>87</td>
<td>107</td>
<td>20.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>104</td>
<td>100</td>
<td>3.9</td>
<td>85</td>
<td>108</td>
<td>23.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>104</td>
<td>101</td>
<td>2.9</td>
<td>89</td>
<td>109</td>
<td>20.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>106</td>
<td>104</td>
<td>1.9</td>
<td>93</td>
<td>111</td>
<td>17.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>104</td>
<td>102</td>
<td>1.9</td>
<td>89</td>
<td>109</td>
<td>20.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>110</td>
<td>109</td>
<td>0.9</td>
<td>95</td>
<td>118</td>
<td>21.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>107</td>
<td>109</td>
<td>1.9</td>
<td>88</td>
<td>108</td>
<td>20.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>102</td>
<td>98</td>
<td>4.0</td>
<td>76</td>
<td>101</td>
<td>28.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>104</td>
<td>100</td>
<td>3.9</td>
<td>81</td>
<td>111</td>
<td>31.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>101</td>
<td>99</td>
<td>2.0</td>
<td>88</td>
<td>108</td>
<td>20.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>101</td>
<td>97</td>
<td>4.0</td>
<td>77</td>
<td>99</td>
<td>25.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>104</td>
<td>100</td>
<td>3.9</td>
<td>90</td>
<td>110</td>
<td>20.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>102</td>
<td>97</td>
<td>5.0</td>
<td>77</td>
<td>100</td>
<td>26.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>105</td>
<td>103</td>
<td>1.9</td>
<td>91</td>
<td>113</td>
<td>21.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>105</td>
<td>104</td>
<td>1.0</td>
<td>89</td>
<td>107</td>
<td>18.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>105</td>
<td>104</td>
<td>1.0</td>
<td>92</td>
<td>114</td>
<td>21.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>100</td>
<td>100</td>
<td>0.0</td>
<td>89</td>
<td>109</td>
<td>20.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>113</td>
<td>107</td>
<td>5.5</td>
<td>67</td>
<td>103</td>
<td>42.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>104</td>
<td>101</td>
<td>2.9</td>
<td>86</td>
<td>110</td>
<td>24.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>106</td>
<td>104</td>
<td>1.9</td>
<td>86</td>
<td>109</td>
<td>23.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>101</td>
<td>97</td>
<td>4.0</td>
<td>84</td>
<td>109</td>
<td>25.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>101</td>
<td>99</td>
<td>2.0</td>
<td>86</td>
<td>109</td>
<td>23.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>91</td>
<td>89</td>
<td>2.2</td>
<td>81</td>
<td>99</td>
<td>20.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>86</td>
<td>104</td>
<td>18.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methylenec chloride</td>
<td>ND</td>
<td>97</td>
<td>93</td>
<td>4.2</td>
<td>85</td>
<td>102</td>
<td>18.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>102</td>
<td>102</td>
<td>0.0</td>
<td>88</td>
<td>103</td>
<td>15.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>99</td>
<td>96</td>
<td>3.1</td>
<td>83</td>
<td>105</td>
<td>23.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>97</td>
<td>93</td>
<td>4.2</td>
<td>85</td>
<td>108</td>
<td>23.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>87</td>
<td>109</td>
<td>22.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>104</td>
<td>100</td>
<td>3.9</td>
<td>85</td>
<td>109</td>
<td>24.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>104</td>
<td>98</td>
<td>5.9</td>
<td>84</td>
<td>108</td>
<td>25.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>103</td>
<td>101</td>
<td>2.0</td>
<td>89</td>
<td>110</td>
<td>21.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>103</td>
<td>98</td>
<td>5.0</td>
<td>85</td>
<td>109</td>
<td>24.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Parameter</td>
<td>Blank</td>
<td>LCS</td>
<td>LCSD %</td>
<td>LCS RPD</td>
<td>MS</td>
<td>MSD</td>
<td>MS RPD</td>
<td>% Rec Limits</td>
<td>% RPD Limits</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>102</td>
<td>98</td>
<td>4.0</td>
<td>83</td>
<td>111</td>
<td>28.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>93</td>
<td>93</td>
<td>0.0</td>
<td>83</td>
<td>100</td>
<td>18.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>104</td>
<td>102</td>
<td>1.9</td>
<td>86</td>
<td>110</td>
<td>24.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>109</td>
<td>104</td>
<td>4.7</td>
<td>86</td>
<td>111</td>
<td>25.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>106</td>
<td>106</td>
<td>0.0</td>
<td>90</td>
<td>107</td>
<td>17.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>107</td>
<td>105</td>
<td>1.9</td>
<td>90</td>
<td>107</td>
<td>17.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>106</td>
<td>102</td>
<td>3.8</td>
<td>86</td>
<td>111</td>
<td>25.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>101</td>
<td>97</td>
<td>4.0</td>
<td>77</td>
<td>107</td>
<td>32.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>102</td>
<td>99</td>
<td>3.0</td>
<td>78</td>
<td>108</td>
<td>32.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>98</td>
<td>95</td>
<td>3.1</td>
<td>76</td>
<td>103</td>
<td>30.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>97</td>
<td>100</td>
<td>99</td>
<td>1.0</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>96</td>
<td>100</td>
<td>99</td>
<td>1.0</td>
<td>100</td>
<td>100</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>95</td>
<td>105</td>
<td>104</td>
<td>1.0</td>
<td>106</td>
<td>108</td>
<td>1.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>101</td>
<td>101</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
</tbody>
</table>

Comment:
A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 297071, QC Sample No: BH62633 (BH63049, BH63050)

Pesticides - Surface Water

<table>
<thead>
<tr>
<th>Compound</th>
<th>Blank</th>
<th>LCS</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>89</td>
<td>87</td>
<td>2.3</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>86</td>
<td>86</td>
<td>0.0</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>78</td>
<td>78</td>
<td>0.0</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>85</td>
<td>83</td>
<td>2.4</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>a-Chlordane</td>
<td>ND</td>
<td>78</td>
<td>77</td>
<td>1.3</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>80</td>
<td>78</td>
<td>2.5</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>83</td>
<td>82</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>80</td>
<td>79</td>
<td>1.3</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>83</td>
<td>81</td>
<td>2.4</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>81</td>
<td>80</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>84</td>
<td>82</td>
<td>2.4</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>86</td>
<td>84</td>
<td>2.4</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>82</td>
<td>81</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>ND</td>
<td>81</td>
<td>80</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>ND</td>
<td>81</td>
<td>86</td>
<td>6.0</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>89</td>
<td>85</td>
<td>4.6</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>g-BHC</td>
<td>ND</td>
<td>83</td>
<td>82</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>g-Chlordane</td>
<td>ND</td>
<td>80</td>
<td>79</td>
<td>1.3</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>79</td>
<td>77</td>
<td>2.6</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>81</td>
<td>80</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>76</td>
<td>75</td>
<td>1.3</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>81</td>
<td>80</td>
<td>1.2</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>% DCBP</td>
<td>89</td>
<td>58</td>
<td>69</td>
<td>17.3</td>
<td>40</td>
<td>150</td>
<td>20</td>
<td>40 - 150</td>
<td>20</td>
</tr>
<tr>
<td>% TCMX</td>
<td>99</td>
<td>89</td>
<td>80</td>
<td>10.7</td>
<td>40</td>
<td>150</td>
<td>20</td>
<td>40 - 150</td>
<td>20</td>
</tr>
</tbody>
</table>

QA/QC Batch 297070, QC Sample No: BH62633 (BH63049, BH63050)

Polychlorinated Biphenyls - Surface Water

<table>
<thead>
<tr>
<th>Compound</th>
<th>Blank</th>
<th>LCS</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>100</td>
<td>104</td>
<td>3.9</td>
<td>40</td>
<td>140</td>
<td>20</td>
<td>40 - 140</td>
<td>20</td>
</tr>
<tr>
<td>Parameter</td>
<td>Blank</td>
<td>LCS</td>
<td>LCSD</td>
<td>MS</td>
<td>MSD</td>
<td>MS</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>105</td>
<td>109</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCBP (Surrogate Rec)</td>
<td>91</td>
<td>74</td>
<td>86</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% TCMX (Surrogate Rec)</td>
<td>81</td>
<td>81</td>
<td>89</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chlorinated Herbicides - Surface Water

2,4,5-T ND 89 86 3.4 40 - 140 20
2,4,5-TP (Silvex) ND 86 81 6.0 40 - 140 20
2,4-D ND 89 102 13.6 40 - 140 20
2,4-DB ND 81 75 7.7 40 - 140 20
Dalapon ND 82 79 3.7 40 - 140 20
Dicamba ND 88 84 4.7 40 - 140 20
Dichlorprop ND 81 79 2.5 40 - 140 20
Dinoseb ND 88 80 9.5 40 - 140 20
% DCAA (Surrogate Rec) | 89 | 79 | 77 | 2.6 | 30 - 150 | 20 |

m = This parameter is outside laboratory ms/msd specified recovery limits.
r = This parameter is outside laboratory rpd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference
LCS - Laboratory Control Sample
LCSD - Laboratory Control Sample Duplicate
MS - Matrix Spike
MS Dup - Matrix Spike Duplicate
NC - No Criteria
Intf - Interference

Phyliss Shiller, Laboratory Director
January 29, 2015
Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

*** No Data to Display ***
Reasonable Confidence Protocol
Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc.	Client: Red Technologies, LLC
Project Location: COOPER ST BRIDGE	Project Number:
Laboratory Sample ID(s): BH61987, BH61988, BH61989, BH61990, BH61991, BH61992, BH61993, BH61994, BH61995, BH61996	
Sampling Date(s): 1/9/2015	
RCP Methods Used:	
✓ 1311/1312 ✓ 6010 ✓ 7000 □ 7196 ✓ 7470/7471 ✓ 8081 □ EPH □ TO15	
✓ 8082 ✓ 8151 ✓ 8260 ✓ 8270 ✓ ETPH □ 9010/9012 □ VPH	

1. For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents? ✓ Yes □ No

1a. Were the method specified preservation and holding time requirements met? ✓ Yes □ No

1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) □ Yes □ No ✓ NA

2. Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)? ✓ Yes □ No

3. Were samples received at an appropriate temperature (< 6 Degrees C)? ✓ Yes □ No □ NA

4. Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? ✓ Yes □ No

5a. Were reporting limits specified or referenced on the chain-of-custody? □ Yes ✓ No

5b. Were these reporting limits met? □ Yes □ No ✓ NA

6. For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents? □ Yes ✓ No □ NA

7. Are project-specific matrix spikes and laboratory duplicates included in the data set? ✓ Yes □ No □ NA

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature: [Signature]
Printed Name: Ethan Lee
Position: Project Manager
Date: Thursday, January 29, 2015
BH61987, BH61988, BH61989, BH61990, BH61991, BH61994, BH61995 - The client requested a short list of analytes from the 6010 RCP Metals list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

BH61987, BH61988, BH61989, BH61990, BH61991, BH61994, BH61995, BH61996 - The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-fid1 01/13/15-1 (BH61988)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Jeff Bucko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/13/2015</td>
</tr>
</tbody>
</table>

Instrument: Au-fid1 01/13/15-2 (BH61989)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Jeff Bucko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/13/2015</td>
</tr>
</tbody>
</table>

Instrument: Au-fid1 01/14/15-1 (BH61987, BH61988, BH61990)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Jeff Bucko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/14/2015</td>
</tr>
</tbody>
</table>

Instrument: AU-xl2 01/13/15-2 (BH61991)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.
As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36

Printed Name: Jeff Bucko
Position: Chemist
Date: 1/13/2015

Instrument: Au-xl2 01/17/15-1 (BH61994, BH61995, BH61996)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

Printed Name: Jeff Bucko
Position: Chemist
Date: 1/17/2015

Instrument: Au-ecd12 01/19/15-1 (BH63049, BH63050)

Initial Calibration ECD12 -HRB107AI/BI
The initial calibration RSD for the compound list was less than 20% except for the following compounds: none

--- Sample No: BH61988, QA/QC Batch: 296852 ---

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 50 - 150 with the following exceptions: None.

All MSD recoveries were within 50 - 150 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Herbicide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd12 01/19/15-1 (BH63049, BH63050)

Initial Calibration ECD12 -HRB107AI/BI
The initial calibration RSD for the compound list was less than 20% except for the following compounds: none

Printed Name: Brian B
Position: Chemist
Date: 1/19/2015
RCP Certification Report
January 29, 2015

SDG I.D.: GBH61987

Instrument: Au-ecd7 01/14/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991)

Initial Calibration ECD7 - N25AI/BI

The initial calibration RSD for the compound list was less than 20% except for the following compounds: none

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Brian B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/14/2015</td>
</tr>
</tbody>
</table>

QC (Site Specific)

-------- Sample No: BH63049, QA/QC Batch: 297240 --------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

** QC (Batch Specific)

-------- Sample No: BH61823, QA/QC Batch: 296869 --------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 01/13/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991, BH61994, BH61995)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Rick Schweitzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/13/2015</td>
</tr>
</tbody>
</table>

Instrument: Merlin 01/14/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991)
The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not. The initial calibration met all criteria including a standard run at or below the reporting level. All calibration verification standards (ICV, CCV) met criteria. All calibration blank verification standards (ICB, CCB) met criteria. The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name: Rick Schweitzer
Position: Chemist
Date: 1/14/2015

QC (Batch Specific)

--------- Sample No: BH58509, QA/QC Batch: 296986 ---------
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

--------- Sample No: BH61880, QA/QC Batch: 296886 ---------
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 01/12/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991)
The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name: Laura Kinnin
Position: Chemist
Date: 1/12/2015

Instrument: Arcos 01/13/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991)
The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name: Laura Kinnin
Position: Chemist
Date: 1/13/2015

Instrument: Blue 01/13/15-1 (BH61994, BH61995)

The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name: Laura Kinnin
Position: Chemist
Date: 1/13/2015

QC (Batch Specific)

---------- Sample No: BH61809, QA/QC Batch: 296871 ----------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

---------- Sample No: BH61843, QA/QC Batch: 296847 ----------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

---------- Sample No: BH61997, QA/QC Batch: 296887 ----------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem19 01/12/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991)
RCP Certification Report
January 29, 2015

Initial Calibration Verification (CHEM19/BN_0106):
100% of target compounds met criteria.
The following compounds had %RSDs >20%: None.
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM19/0112_04-BN_0106):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Printed Name: Damien Drobinski
Position: Chemist
Date: 1/12/2015

QC (Batch Specific)
--------- Sample No: BH61508, QA/QC Batch: 296845 ---------
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

--------- Sample No: BH61823, QA/QC Batch: 296834 ---------
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd3 01/13/15-1 (BH61990, BH61991)

8082 Narration:
The initial calibration RSD for the compound list was less than 15% except for the following compounds: none

The continuing calibration standards were within acceptance criteria except for the following compounds: none

The initial calibration (PC106A1) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC106B1) RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Adam Werner
Position: Chemist
Date: 1/13/2015

Instrument: Au-ecd5 01/13/15-1 (BH61987, BH61988, BH61989)

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none.

The continuing calibration standards were within acceptance criteria except for the following compounds: none.

The initial calibration (PC106AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC106BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Adam Werner
Position: Chemist
Date: 1/13/2015

Instrument: Au-ecd6 01/15/15-1 (BH63049, BH63050)

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none.

The continuing calibration standards were within acceptance criteria except for the following compounds: none.

The initial calibration (PC1230AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC1230BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Adam Werner
Position: Chemist
Date: 1/15/2015

QC Comments: QC Batch 296755 01/09/15 (BH61987, BH61988, BH61989, BH61990, BH61991)

MS/MSD could not be reported for this batch due to PCBs in the unspiked sample. -aw
RCP Certification Report
January 29, 2015

SDG I.D.: GBH61987

QC (Batch Specific)
------------- Sample No: BH61796, QA/QC Batch: 296755 ------------
All LCS recoveries were within 40 - 140 with the following exceptions: None.
All LCSD recoveries were within 40 - 140 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
------------- Sample No: BH62633, QA/QC Batch: 297070 -------------
All LCS recoveries were within 40 - 140 with the following exceptions: None.
All LCSD recoveries were within 40 - 140 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PEST Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-eccd13 01/16/15-1 (BH61990)

8081 Narration:
Endrin and DDT breakdown was evaluated and does not exceed 15%. The initial calibration (PS0115AI) RSD for the compound list was less than 20% except for the following compounds: None.
The continuing calibration %D for the compound list was less than 15% except for the following compounds:
116B015 - Endrin aldehyde (-23%)
116B020 - Endrin aldehyde (-21%), Endrin Ketone (-19%)
116B032 - Endrin Ketone (-22%)
A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/16/2015

Instrument: Au-eccd35 01/13/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991)

8081 Narration:
Endrin and DDT breakdown was evaluated and does not exceed 15%.
The continuing calibration standards were within acceptance criteria except for the following compounds: None
The initial calibration
(PS1230AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS1230BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:
113A019 - Endrin aldehyde (-28%)
113A038 - Methoxychlor (-16%)
A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/13/2015

Instrument: Au-ecd35 01/15/15-1 (BH63049, BH63050)
8081 Narration:
Endrin and DDT breakdown was evaluated and does not exceed 15%.

The initial calibration standards were within acceptance criteria except for the following compounds: None.
The initial calibration (PS1230AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS1230BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:
115A028 - Endrin aldehyde (-17%)
A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/15/2015

Instrument: Au-ecd4 01/14/15-1 (BH61990)
8081 Narration:
Endrin and DDT breakdown was evaluated and is below 15%.

The initial calibration RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration standards were within acceptance criteria except for the following compounds: None.
The initial calibration (PS1222AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS1222BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.
RCP Certification Report
January 29, 2015

SDG I.D.: GBH61987

Printed Name: Carol Eddy
Position: Chemist
Date: 1/14/2015

Instrument: Au-ecd4 01/15/15-1 (BH61990)

8081 Narration:

Endrin and DDT breakdown was evaluated and is below 15%.

The initial calibration RSD for the compound list was less than 20% except for the following compounds: None

The continuing calibration standards were within acceptance criteria except for the following compounds: None

The initial calibration (PS1222AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS1222BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:

115A029 - 4,4'-DDT (-19%), Endrin (18%), Endrin Aldehyde (-16%), Methoxychlor (-24%)
115A044 - 4,4'-DDT (-18%), Endrin (19%), Methoxychlor (-29%)
115A054 - Endrin (18%)

A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/15/2015

QC (Batch Specific)

----------- Sample No: BH61843, QA/QC Batch: 296764 -----------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

----------- Sample No: BH62633, QA/QC Batch: 297071 -----------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem04 01/13/15-1 (BH61994, BH61995, BH61996)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable.

Initial Calibration Verification (CHEM04/SIM_0105):
98% of target compounds met criteria.
The following compounds had %RSDs >20%: Bis(2-ethylhexyl)phthalate (22%)The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0113_02-SIM_0105):
96% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: Pentachloronitrobenzene (-34%)[30%], Pentachlorophenol (-43%)[30%]
The following compounds did not meet maximum % deviations: Pentachloronitrobenzene (-43%)[40%]
The following compounds did not meet recommended response factors: 2-chlorophenol (.740)[0.8], 2-nitrophenol (.039)[0.1], Bis(2-chloroethyl)ether (.648)[0.7]
The following compounds did not meet minimum response factors: None.

Printed Name: Damien Drobinski
Position: Chemist
Date: 1/13/2015

QC (Batch Specific)

-------- Sample No: BH61508, QA/QC Batch: 296845 --------

All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem03 01/12/15-1 (BH61987, BH61988, BH61989, BH61990, BH61991, BH61992, BH61993)

Initial Calibration Verification (CHEM03/RCPS_0108):
99% of target compounds met criteria.
The following compounds had %RSDs >20%: Trichlorofluoromethane (22%)
The following compounds did not meet a minimum response factor of 0.01: None.
Continuing Calibration Verification (CHEM03/0112L04-RCPS_0108):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Printed Name: Jane Li
Position: Chemist
Date: 1/12/2015

Instrument: Chem17 01/12/15-1 (BH61994, BH61995)

Initial Calibration Verification (CHEM17/VOA_0108):
99% of target compounds met criteria.
The following compounds had %RSDs >20%: Bromomethane (32%)
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM17/0112S02-VOA_0108):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Printed Name: Harry Mullin
Position: Chemist
Date: 1/12/2015

QC Comments: QC Batch 296917 01/12/15 (BH61994, BH61995)
A blank MS/MSD was analyzed with this batch.
QC (Batch Specific)

------------- Sample No: BH61843, QA/QC Batch: 296903 -------------

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

------------- Sample No: BH62003, QA/QC Batch: 296917 -------------

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples in this delivery group were received at 6°C.
(Note acceptance criteria is above freezing up to 6°C)
CHAIN OF CUSTODY RECORD

Customer: RED Technologies LLC
Address: 10 Northwood Dr, Bloomfield, CT 06002
Project: Cooper St Bridge
Report to: Todd Mohler
Invoice to: Todd Mohler

Client Sample - Information - Identification

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Matrix</th>
<th>Date Sampled</th>
<th>Time Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01987</td>
<td>SED-1</td>
<td>1-9-15</td>
<td>10:10</td>
</tr>
<tr>
<td>L01988</td>
<td>SED-2</td>
<td>09:29</td>
<td></td>
</tr>
<tr>
<td>L01989</td>
<td>SED-3</td>
<td>09:45</td>
<td></td>
</tr>
<tr>
<td>L01990</td>
<td>SB-4 (2-4)</td>
<td>11:50</td>
<td></td>
</tr>
<tr>
<td>L01991</td>
<td>SB-5 (2-4)</td>
<td>11:30</td>
<td></td>
</tr>
<tr>
<td>L01992</td>
<td>East Block-LI</td>
<td>10:15</td>
<td></td>
</tr>
<tr>
<td>L01993</td>
<td>TB-High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis Request

CT - EPRI - 88720 - PCR-011 - Processed 8-10-88

Data Format
- Excel
- PDF
- GIS/Map

Data Package
- Tier & Checklist
- Full Data Package
- Phoenix Site Report

State where samples were collected:
CT - SURCHARGE APPLIES

Comments, Special Requirements or Regulations:

11/3 SW John - run EPRI and PAA only - he will supply more volume with chain at a later date.
CHAIN OF CUSTODY RECORD

PHOENIX Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040

Email: info@phoenixlab.com **Fax: (860) 645-0823**

Client Services (860) 645-8726

Customer: RED Technologies LLC
Address: 10 Nantucket Dr, Bloomfield, CT 06002

Project: Cross St Bridge
Report to: Todd Mahler
Invoice to: Todd Mahler

Matrix Code:
DW = Drinking Water
GW = Ground Water
SW = Surface Water
WW = Waste Water
RW = Raw Water
SS = Sediment
SL = Sludge
SD = Solid
W = Wipe
OIL = Oil
B = Bulk
L = Liquid

PHOENIX USE ONLY

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Customer Sample Identification</th>
<th>Sample Matrix</th>
<th>Date Sampled</th>
<th>Time Sampled</th>
<th>Analysis Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>01994</td>
<td>SF-1</td>
<td>SW</td>
<td>1-9-15</td>
<td>1040</td>
<td></td>
</tr>
<tr>
<td>01995</td>
<td>SF-2</td>
<td>SW</td>
<td>1-9-15</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>01996</td>
<td>Field Blank</td>
<td></td>
<td>1-9-15</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>01997</td>
<td>Field Blank</td>
<td>TB</td>
<td>1-9-15</td>
<td>1300</td>
<td></td>
</tr>
</tbody>
</table>

Sample Specifics:

- **Time:** 15:00
- **Date:** 1-9-15
- **Sample #:** 01994

Remarks:

- **11/15 emailed ref field blank also **

Data Format: Excel

Data Package:

- **Surcharge Applies:**
- **Pour Key:**
- **Budget:**
- **Report:**
- **Other:**

State where samples were collected: CT

Comments, Special Requirements or Regulations:

- **Turnaround:** 3 Days*
- Other:

Rationale:

- **High:**
- **Low:**
- **None:**

Acceptance:

- **Accepted by:**
- **RED Print:**

Contact Options:

- **Fax:** 860-218-1418
- **Email:** jhutchins@phoenixlab.com
Lisa Arnold

Thank you,

Phoenix Environmental Laboratories

Please let me know how to proceed at your earliest convenience.

Lisa noticed on the sets of chains that notes are starting to appear in small volume.

<table>
<thead>
<tr>
<th>Date:</th>
<th>Subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4-35</td>
<td>To:</td>
</tr>
<tr>
<td></td>
<td>From:</td>
</tr>
<tr>
<td>1987</td>
<td>Email:</td>
</tr>
</tbody>
</table>

Phoenix 12-GB61276 & GB611997

I wasn't sure if anyone had called or emailed you on the surface water samples... I noticed on the sets of chains that notes are starting to appear in small volume.
Thank you,

Lisa

Good morning,

Subject: Cooper St Bridge P.O 1-4-385
To: Lisa Arndt
CC: Phoenix Enviro, Phoenix Environmental Laboratories

Sent: Thursday, January 13, 2014 8:47 AM
From: Lisa@phoenixlabs.com

Hi Lisa,

I am calling to confirm that I sent you the sample from the Cooper St Bridge (P.O 1-4-385). I am not sure if you have received it.

Has anyone heard of or handled this sample before? Are you aware of the quantity of sample that was sent? Is this the correct sample?

Also, there is another sample from Cooper St Bridge (P.O 1-4-3385) that we need to confirm. Is this the correct sample?

Thank you,

Lisa Arndt
That is ok. I figured you would just run for SVOCs and ETPH for the field blanks that were submitted.

Good morning,

I forgot to mention the 2 Field Blanks would need additional sample volume as well. Sorry for this confusion.

Thank you,
Lisa

Good morning,

I noticed on the sets of chains that notes are stating not enough sample volume on the surface water samples...I wasn't sure if anyone had called or emailed you last night when noticed.

Please let me know how to proceed at your earliest convenience.
Phoenix ID GBH61987 & GBH61997

Thank you,

Lisa Arnold
Client Services Representative
Phoenix Environmental Laboratories
587 East Middle Turnpike
Manchester, CT 06040
Ph: 1-860-645-1102
Fx: 1-860-645-0823

1/15/2015
CHAIN OF CUSTODY RECORD

Customer: RED Technologies, LLC
Address: 10 Northfield Dr, Bloomfield, CT 06002
Project: Cooper St Bridge
Report to: Todd Mohler
Invoice to: Todd Mohler

Material:
- DW = Drinking Water
- GW = Ground Water
- SW = Surface Water
- WW = Wastewater
- RWS = Raw Water
- SL = Sludge
- SM = Soil
- SD = Solid
- W = Wipe

Sample Details:
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Customer Sample Identification</th>
<th>Matrix</th>
<th>Date Sampled</th>
<th>Time Sampled</th>
<th>BI</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>101994</td>
<td>SF-1</td>
<td>SW</td>
<td>1-15</td>
<td>10:40</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>101995</td>
<td>SF-2</td>
<td>SW</td>
<td>1-15</td>
<td>10:30</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>101996</td>
<td>Field Blank</td>
<td>SW</td>
<td>1-15</td>
<td>11:00</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Request:
- CT = CT-1040
- FT = FT-1002
- MP = MP-1040
- SG = SG-1004
- SF = SF-1005
- SN = SN-1004
- SW = SW-1005
- X = X-1006
- Y = Y-1007
- Z = Z-1008

Relinquished by: RED Technologies
Accepted by: RED Technologies
Date: 1-15-15
Time: 10:00

Comments, Special Requirements or Regulations:
- 115 emailed ref Field Blank also
- Missed Total RCRRA metals

State where samples were collected: CT

SURCHARGE APPLIES
From: John Cuscovitch [jcuscovitch@redtechllc.com]
Sent: Thursday, January 22, 2015 4:07 PM
To: lisa@phoenixlabs.com
Subject: RE: Cooper and Center St Bridge

Good afternoon Lisa,

While I was going through the lab data I noticed a few things that I was wondering if you could fix?

Center St - BH61997-BH62003 sediment samples and surface water samples were combine into one lab report. They were done on separate chains. BH63051 has the remaining surface water analysis we could not preform before. Can you please merge with BH62003 into one lab report?

Cooper St - BH61987-BH61996 sediment samples and surface water samples were combine into one lab report. They were also done on spate chains. BH61987 SB-4 and SB-5 are labeled as SED-4 and SED-5 please change. BH63049 has the remaining surface water analysis we could not preform before. Can you please merge with BH61996 into one lab report?

Please let me know if you have any questions.

From: lisa@phoenixlabs.com [mailto:lisa@phoenixlabs.com]
Sent: Thursday, January 15, 2015 12:29 PM
To: John Cuscovitch
Subject: Cooper and Center St Bridge

Hi John,

So, I noticed on the new chains from yesterday we are analyzing only on Surface Waters on SF-1 and SF-2 for PCBs, Herbicides & Pesticides. Did not submit samples for Field Blanks.
Our Phoenix IDs GBH63049 & 63051

After all this...I hope you have a great weekend.
Thank you,

Lisa Arnold
Client Services Representative
Phoenix Environmental Laboratories
587 East Middle Turnpike
Manchester, CT 06040
Ph: 1-860-645-1102
Fx: 1-860-645-0823

1/22/2015
Wednesday, January 28, 2015

Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Project ID: COOPER ST., BRIDGE
Sample ID#s: BH64992 - BH64993

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

[Signature]
Phyllis Shiller
Laboratory Director

NELAC - #NY11301
CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
ME Lab Registration #CT-007
NH Lab Registration #213693-A,B
NJ Lab Registration #CT-003
NY Lab Registration #11301
PA Lab Registration #68-03530
RI Lab Registration #63
VT Lab Registration #VT11301
Analysis Report
January 28, 2015

FOR: Attn: Mr. Todd Mahler
Red Technologies, LLC
10 Northwood Drive
Bloomfield, CT 06002

Sample Information
- Matrix: GROUND WATER
- Location Code: REDTECH
- Rush Request: Standard
- P.O.#: 14-385

Custody Information
- Collected by:
- Received by: LB
- Analyzed by: see "By" below

Date: 01/19/15
Time: 12:00

Laboratory Data
- SDG ID: GBH64992
- Phoenix ID: BH64992

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.013</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>0.494</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.028</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>Lead</td>
<td>0.014</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/21/15</td>
<td>E/D</td>
<td>3510/3520</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/21/15</td>
<td>I/I</td>
<td>SW7470</td>
</tr>
<tr>
<td>Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/21/15</td>
<td>D/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>PCB Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/15</td>
<td>L</td>
<td>SW3510C</td>
</tr>
<tr>
<td>Extraction for Pest (2 Liter)</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/15</td>
<td>L</td>
<td>SW3510</td>
</tr>
<tr>
<td>Semi-Volatile Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/15</td>
<td>E/D</td>
<td>SW3520</td>
</tr>
<tr>
<td>Total Metals Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/14</td>
<td>AG</td>
<td>SW846 - 3050</td>
</tr>
</tbody>
</table>

Chlorinated Herbicides
- 2,4,5-T
 ND 1.3 ug/L 01/22/15 BB SW8151
- 2,4,5-TP (Silvex)
 ND 1.3 ug/L 01/22/15 BB SW8151
- 2,4-D
 ND 1.3 ug/L 01/22/15 BB SW8151
- 2,4-DB
 ND 13 ug/L 01/22/15 BB SW8151
- Dalapon
 ND 1.3 ug/L 01/22/15 BB SW8151
- Dicamba
 ND 2.5 ug/L 01/22/15 BB SW8151
- Dichlorprop
 ND 1.3 ug/L 01/22/15 BB SW8151
- Dinoseb
 ND 2.5 ug/L 01/22/15 BB SW8151

QA/QC Surrogates
- % DCAA
 76 % 01/22/15 BB 30 - 150 %
TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>0.070</td>
<td>mg/L</td>
<td>01/22/15</td>
<td>JRB</td>
<td>CTETPH/8015D</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>01/22/15</td>
<td>JRB</td>
<td>CTETPH/8015D</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- % n-Pentacosane: 69% 01/22/15 JRB 50 - 150%

Polychlorinated Biphenyls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1262</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
<tr>
<td>PCB-1268</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>AW</td>
<td>8082</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- % DCBP: 54% 01/23/15 AW 30 - 150%
- % TCMX: 72% 01/23/15 AW 30 - 150%

Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-DDD</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>a-BHC</td>
<td>ND</td>
<td>0.025</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Alachlor</td>
<td>ND</td>
<td>0.075</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Aldrin</td>
<td>ND</td>
<td>0.002</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>b-BHC</td>
<td>ND</td>
<td>0.005</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Chlordane</td>
<td>ND</td>
<td>0.30</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>d-BHC</td>
<td>ND</td>
<td>0.025</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>ND</td>
<td>0.015</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endosulfan Sulfate</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin Aldehyde</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>ND</td>
<td>0.050</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>g-BHC (Lindane)</td>
<td>ND</td>
<td>0.025</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>ND</td>
<td>0.025</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>ND</td>
<td>0.025</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/23/15</td>
<td>CE</td>
<td>SW8081</td>
</tr>
</tbody>
</table>

QA/QC Surrogates

- %DCBP (Surrogate Rec): 60% 01/23/15 CE 30 - 150%
- %TCMX (Surrogate Rec): 89% 01/23/15 CE 30 - 150%

Volatiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.60</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.70</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichlooroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/ PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>102</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>99</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>112</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>100</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Semivolatiles by SIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>0.16</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.09</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>0.15</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0.06</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.13</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>0.02</td>
<td>0.01</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.41</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Indenol(1,2,3-cd)pyrene</td>
<td>0.07</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.15</td>
<td>0.07</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Pyrene</td>
<td>0.45</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>66</td>
<td>%</td>
<td></td>
<td>01/22/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>72</td>
<td>%</td>
<td></td>
<td>01/22/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>94</td>
<td>%</td>
<td></td>
<td>01/22/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>
Parameter | Result | RL/PQL | Units | Date/Time | By | Reference
--- | --- | --- | --- | --- | --- | ---

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Pesticide Comment:
Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 28, 2015

Reviewed and Released by: Ethan Lee, Project Manager
Sample Information
Matrix: GROUND WATER
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Custody Information
Collected by:
Received by: LB
Analyzed by: see “By” below

Matrix: GROUND WATER
Location Code: REDTECH
Rush Request: Standard
P.O.#: 14-385

Laboratory Data
SDG ID: GBH64992
Phoenix ID: BH64993

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>0.019</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/22/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Barium</td>
<td>0.254</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.014</td>
<td>0.001</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>RS</td>
<td>SW7470</td>
</tr>
<tr>
<td>Lead</td>
<td>0.036</td>
<td>0.002</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>01/21/15</td>
<td>LK</td>
<td>SW6010</td>
</tr>
<tr>
<td>Extraction of CT ETPH</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/21/15</td>
<td>E/D</td>
<td>3510/3520</td>
</tr>
<tr>
<td>Mercury Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/21/15</td>
<td>I/I</td>
<td>SW7470</td>
</tr>
<tr>
<td>Extraction for Herbicide</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/21/15</td>
<td>D/D</td>
<td>SW8151</td>
</tr>
<tr>
<td>PCB Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/15</td>
<td>L</td>
<td>SW3510C</td>
</tr>
<tr>
<td>Extraction for Pest (2 Liter)</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/15</td>
<td>L</td>
<td>SW3510</td>
</tr>
<tr>
<td>Semi-Volatile Extraction</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/15</td>
<td>E/D</td>
<td>SW3520</td>
</tr>
<tr>
<td>Total Metals Digestion</td>
<td>Completed</td>
<td></td>
<td></td>
<td>01/20/14</td>
<td>AG</td>
<td>SW846 - 3050</td>
</tr>
<tr>
<td>Chlorinated Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>ND</td>
<td>13</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>ND</td>
<td>1.3</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/22/15</td>
<td>BB</td>
<td>SW8151</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DCAA</td>
<td>70</td>
<td>%</td>
<td></td>
<td>01/22/15</td>
<td>BB</td>
<td>30 - 150 %</td>
</tr>
</tbody>
</table>
TPH by GC (Extractable Products)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Petroleum HC</td>
<td>ND</td>
<td>0.070</td>
<td>mg/L</td>
<td>01/22/15</td>
<td>JRB</td>
<td>CTETPH/8015D</td>
</tr>
<tr>
<td>Identification</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>01/22/15</td>
<td>JRB</td>
<td>CTETPH/8015D</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% n-Pentacosane</td>
<td>75</td>
<td></td>
<td>%</td>
<td>01/22/15</td>
<td>JRB</td>
<td>50 - 150 %</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

PCB-1016	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1221	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1232	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1242	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1248	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1254	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1260	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1262	ND	0.10	ug/L	01/23/15	AW	8082
PCB-1268	ND	0.10	ug/L	01/23/15	AW	8082
QA/QC Surrogates						
% DCBP	51		%	01/23/15	AW	30 - 150 %
% TCMX	74		%	01/23/15	AW	30 - 150 %

Pesticides

4,4’ -DDD	ND	0.25	ug/L	01/22/15	CE	SW8081
4,4’ -DDE	ND	0.25	ug/L	01/22/15	CE	SW8081
4,4’ -DDT	ND	0.25	ug/L	01/22/15	CE	SW8081
a-BHC	ND	0.13	ug/L	01/22/15	CE	SW8081
Alachlor	ND	0.38	ug/L	01/22/15	CE	SW8081
Aldrin	ND	0.008	ug/L	01/22/15	CE	SW8081
b-BHC	ND	0.025	ug/L	01/22/15	CE	SW8081
Chlordane	ND	1.5	ug/L	01/22/15	CE	SW8081
d-BHC	ND	0.13	ug/L	01/22/15	CE	SW8081
Dieldrin	ND	0.080	ug/L	01/22/15	CE	SW8081
Endosulfan I	ND	0.25	ug/L	01/22/15	CE	SW8081
Endosulfan II	ND	0.25	ug/L	01/22/15	CE	SW8081
Endosulfan Sulfate	ND	0.25	ug/L	01/22/15	CE	SW8081
Endrin	ND	0.25	ug/L	01/22/15	CE	SW8081
Endrin Aldehyde	ND	0.25	ug/L	01/22/15	CE	SW8081
Endrin ketone	ND	0.25	ug/L	01/22/15	CE	SW8081
g-BHC (Lindane)	ND	0.13	ug/L	01/22/15	CE	SW8081
Heptachlor	ND	0.13	ug/L	01/22/15	CE	SW8081
Heptachlor epoxide	ND	0.13	ug/L	01/22/15	CE	SW8081
Methoxychlor	ND	0.50	ug/L	01/22/15	CE	SW8081
Toxaphene	ND	5.0	ug/L	01/22/15	CE	SW8081
QA/QC Surrogates						
%DCBP (Surrogate Rec)	78		%	01/22/15	CE	30 - 150 %
%TCMX (Surrogate Rec)	97		%	01/22/15	CE	30 - 150 %

Volatiles

<p>| 1,1,1,2-Tetrachloroethane | ND | 1.0 | ug/L | 01/21/15 | MH | SW8260 |
| 1,1,1-Trichloroethane | ND | 1.0 | ug/L | 01/21/15 | MH | SW8260 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL/ PQL</th>
<th>Units</th>
<th>Date/Time</th>
<th>By</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.60</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,3-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.70</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL/PQL</td>
<td>Units</td>
<td>Date/Time</td>
<td>By</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>2.5</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.40</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>5.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>MH</td>
<td>SW8260</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>102</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>98</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>110</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>102</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>MH</td>
<td>70 - 130 %</td>
</tr>
<tr>
<td>Semivolatile by SIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Anthracene</td>
<td>0.14</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>0.55</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.37</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>0.62</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>0.19</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0.30</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.60</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>ND</td>
<td>0.01</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>1.5</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>0.16</td>
<td>0.02</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.75</td>
<td>0.07</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>Pyrene</td>
<td>1.4</td>
<td>0.10</td>
<td>ug/L</td>
<td>01/21/15</td>
<td>DD</td>
<td>8270(SIM)</td>
</tr>
<tr>
<td>QA/QC Surrogates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2-Fluorobiphenyl</td>
<td>70</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Nitrobenzene-d5</td>
<td>62</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
<tr>
<td>% Terphenyl-d14</td>
<td>71</td>
<td>%</td>
<td></td>
<td>01/21/15</td>
<td>DD</td>
<td>30 - 130 %</td>
</tr>
</tbody>
</table>
Parameter | **Result** | **RL/PQL** | **Units** | **Date/Time** | **By** | **Reference**
---|---|---|---|---|---|---

Comments:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director
January 28, 2015

Reviewed and Released by: Ethan Lee, Project Manager
QA/QC Report

January 28, 2015

QA/QC Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank Sample Result</th>
<th>Blank Dup Result</th>
<th>Dup LCS</th>
<th>Dup LCSD</th>
<th>LCS %</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>Limits %</th>
<th>Rec Limits %</th>
<th>RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury - Water</td>
<td></td>
</tr>
<tr>
<td>BRL</td>
<td><0.0002</td>
<td><0.0002</td>
<td>NC</td>
<td>116</td>
<td>107</td>
<td>8.1</td>
<td>106</td>
<td>101</td>
<td>4.8</td>
<td>70 - 130</td>
<td>20</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
</tr>
<tr>
<td>Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.</td>
<td></td>
</tr>
<tr>
<td>ICP Metals - Aqueous</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>BRL</td>
<td><0.004</td>
<td><0.004</td>
<td>NC</td>
<td>96.4</td>
<td>96.4</td>
<td>0.0</td>
<td>96.7</td>
<td>96.5</td>
<td>0.2</td>
<td>75 - 125</td>
</tr>
<tr>
<td>Barium</td>
<td>BRL</td>
<td>0.019</td>
<td>0.019</td>
<td>0</td>
<td>101</td>
<td>99.7</td>
<td>1.3</td>
<td>102</td>
<td>101</td>
<td>1.0</td>
<td>75 - 125</td>
</tr>
<tr>
<td>Cadmium</td>
<td>BRL</td>
<td><0.001</td>
<td><0.001</td>
<td>NC</td>
<td>99.0</td>
<td>98.1</td>
<td>0.9</td>
<td>99.4</td>
<td>98.9</td>
<td>0.5</td>
<td>75 - 125</td>
</tr>
<tr>
<td>Chromium</td>
<td>BRL</td>
<td><0.001</td>
<td><0.001</td>
<td>NC</td>
<td>97.8</td>
<td>96.9</td>
<td>0.9</td>
<td>98.2</td>
<td>97.5</td>
<td>0.7</td>
<td>75 - 125</td>
</tr>
<tr>
<td>Lead</td>
<td>BRL</td>
<td><0.002</td>
<td><0.002</td>
<td>NC</td>
<td>96.3</td>
<td>95.7</td>
<td>0.6</td>
<td>96.5</td>
<td>95.9</td>
<td>0.6</td>
<td>75 - 125</td>
</tr>
<tr>
<td>Selenium</td>
<td>BRL</td>
<td><0.010</td>
<td><0.010</td>
<td>NC</td>
<td>92.9</td>
<td>93.8</td>
<td>1.0</td>
<td>94.2</td>
<td>93.5</td>
<td>0.7</td>
<td>75 - 125</td>
</tr>
<tr>
<td>Silver</td>
<td>BRL</td>
<td><0.001</td>
<td><0.001</td>
<td>NC</td>
<td>96.2</td>
<td>95.4</td>
<td>0.8</td>
<td>96.8</td>
<td>96.1</td>
<td>0.7</td>
<td>75 - 125</td>
</tr>
</tbody>
</table>
QA/QC Report

January 28, 2015

QA/QC Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCSD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
</table>

Chlorinated Herbicides - Ground Water

2,4,5-T ND | 89 | 86 | 3.4 | 40 - 140 | 20 |
2,4,5-TP (Silvex) ND | 86 | 81 | 6.0 | 40 - 140 | 20 |
2,4-D ND | 89 | 102 | 13.6 | 40 - 140 | 20 |
2,4-DB ND | 81 | 75 | 7.7 | 40 - 140 | 20 |
Dalapon ND | 82 | 79 | 3.7 | 40 - 140 | 20 |
Dicamba ND | 88 | 84 | 4.7 | 40 - 140 | 20 |
Dichlorprop ND | 81 | 79 | 2.5 | 40 - 140 | 20 |
Dinoseb ND | 88 | 80 | 9.5 | 40 - 140 | 20 |
% DCAA (Surrogate Rec) 89 | 79 | 77 | 2.6 | 30 - 150 | 20 |

Pesticides - Ground Water

4,4'-DDD ND | 79 | 78 | 1.3 | 40 - 140 | 20 |
4,4'-DDE ND | 79 | 78 | 1.3 | 40 - 140 | 20 |
4,4'-DDT ND | 85 | 84 | 1.2 | 40 - 140 | 20 |
a-BHC ND | 93 | 90 | 3.3 | 40 - 140 | 20 |
a-Chlordane ND | 84 | 83 | 1.2 | 40 - 140 | 20 |
Alachlor ND | NA | NA | NC | 40 - 140 | 20 |
Aldrin ND | 80 | 77 | 3.8 | 40 - 140 | 20 |
b-BHC ND | 97 | 95 | 2.1 | 40 - 140 | 20 |
Chlordane ND | 84 | 82 | 2.4 | 40 - 140 | 20 |
d-BHC ND | 82 | 79 | 3.7 | 40 - 140 | 20 |
Dieldrin ND | 85 | 83 | 2.4 | 40 - 140 | 20 |
Endosulfan I ND | 91 | 89 | 2.2 | 40 - 140 | 20 |
Endosulfan II ND | 88 | 87 | 1.1 | 40 - 140 | 20 |
Endosulfan sulfate ND | 80 | 78 | 2.5 | 40 - 140 | 20 |
Endrin ND | 90 | 89 | 1.1 | 40 - 140 | 20 |
Endrin aldehyde ND | 97 | 97 | 0.0 | 40 - 140 | 20 |
Endrin ketone ND | 80 | 76 | 5.1 | 40 - 140 | 20 |
g-BHC ND | 106 | 99 | 6.8 | 40 - 140 | 20 |
g-Chlordane ND | 84 | 82 | 2.4 | 40 - 140 | 20 |
Heptachlor ND | 86 | 82 | 4.8 | 40 - 140 | 20 |
Heptachlor epoxide ND | 91 | 90 | 1.1 | 40 - 140 | 20 |
Methoxychlor ND | 86 | 85 | 1.2 | 40 - 140 | 20 |
Toxaphene ND | NA | NA | NC | 40 - 140 | 20 |
% DCBP 31 | 71 | 74 | 4.1 | 40 - 150 | 20 |
% TCMX 105 | 103 | 97 | 6.0 | 40 - 150 | 20 |

Comment:

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LCS SD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MS SD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
</table>

QA/QC Batch 297484, QC Sample No: BH64614 (BH64992, BH64993)

Polychlorinated Biphenyls - Ground Water

PCB-1016	ND	94	94	0.0	40 - 140	0.0	20
PCB-1221	ND				40 - 140	0.0	20
PCB-1232	ND				40 - 140	0.0	20
PCB-1242	ND				40 - 140	0.0	20
PCB-1248	ND				40 - 140	0.0	20
PCB-1254	ND				40 - 140	0.0	20
PCB-1260	ND		99	100	1.0	20	
PCB-1262	ND				40 - 140	0.0	20
PCB-1268	ND				40 - 140	0.0	20
% DBCP (Surrogate Rec)	39	73	67	8.6	30 - 150	20	
% TCMX (Surrogate Rec)	90	85	86	1.2	30 - 150	20	

Comment:
A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 297572, QC Sample No: BH64983 (BH64992, BH64993)

Polynuclear Aromatic HC - Ground Water

2-Methylnaphthalene	ND	62	63	1.6	30 - 130	20
Acenaphthene	ND	69	70	1.4	30 - 130	20
Acenaphthylene	ND	82	81	1.2	30 - 130	20
Anthracene	ND	74	74	0.0	30 - 130	20
Benz(a)anthracene	ND	72	72	0.0	30 - 130	20
Benzo(a)pyrene	ND	77	76	1.3	30 - 130	20
Benzo(b)fluoranthene	ND	60	63	4.9	30 - 130	20
Benzo(ghi)perylene	ND	103	98	5.0	30 - 130	20
Chrysene	ND	76	77	1.3	30 - 130	20
Dibenzo(a,h)anthracene	ND	63	66	4.7	30 - 130	20
Fluoranthene	ND	82	78	5.0	30 - 130	20
Fluorene	ND	71	72	1.4	30 - 130	20
Indeno(1,2,3-cd)pyrene	ND	62	65	4.7	30 - 130	20
Naphthalene	ND	64	64	0.0	30 - 130	20
Phenanthrene	ND	75	75	0.0	30 - 130	20
Pyrene	ND	87	81	7.1	30 - 130	20
% 2-Fluorobiphenyl	66	70	69	1.4	30 - 130	20
% Nitrobenzene-d5	69	56	57	1.8	30 - 130	20
% Terphenyl-d14	74	92	85	7.9	30 - 130	20

Comment:
Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 297686, QC Sample No: BH64992 (BH64992, BH64993)

TPH by GC (Extractable Products) - Ground Water

| Ext. Petroleum HC | ND | 60 | 59 | 1.7 | 60 - 120 | 30 |
| n-Pentacosane | 99 | 83 | 75 | 10.1 | 50 - 150 | 20 |

QA/QC Batch 297657, QC Sample No: BH65081 (BH64992, BH64993)

Volatiles - Ground Water

<p>| 1,1,1,2-Tetrachloroethane | ND | 94 | 106 | 12.0 | 99 | 101 | 2.0 | 70 - 130 | 30 |
| 1,1,1-Trichloroethane | ND | 95 | 110 | 14.6 | 110 | 113 | 2.7 | 70 - 130 | 30 |
| 1,1,2-Tetrachloroethane | ND | 96 | 111 | 14.5 | 97 | 95 | 2.1 | 70 - 130 | 30 |
| 1,1,2-Trichloroethane | ND | 91 | 103 | 12.4 | 101 | 100 | 1.0 | 70 - 130 | 30 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blank</th>
<th>LCS %</th>
<th>LSC SD %</th>
<th>LCS RPD</th>
<th>MS %</th>
<th>MSD %</th>
<th>MS RPD</th>
<th>% Rec Limits</th>
<th>% RPD Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>94</td>
<td>102</td>
<td>8.2</td>
<td>101</td>
<td>103</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>99</td>
<td>113</td>
<td>13.2</td>
<td>102</td>
<td>110</td>
<td>7.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>95</td>
<td>106</td>
<td>10.9</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>84</td>
<td>100</td>
<td>17.4</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>96</td>
<td>106</td>
<td>9.9</td>
<td>98</td>
<td>100</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>89</td>
<td>103</td>
<td>14.6</td>
<td>96</td>
<td>98</td>
<td>2.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>93</td>
<td>103</td>
<td>10.2</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>90</td>
<td>103</td>
<td>13.5</td>
<td>94</td>
<td>97</td>
<td>3.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>92</td>
<td>105</td>
<td>13.2</td>
<td>104</td>
<td>101</td>
<td>2.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>93</td>
<td>103</td>
<td>10.2</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>90</td>
<td>104</td>
<td>14.4</td>
<td>109</td>
<td>112</td>
<td>2.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>ND</td>
<td>91</td>
<td>105</td>
<td>14.3</td>
<td>98</td>
<td>98</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>98</td>
<td>107</td>
<td>8.8</td>
<td>95</td>
<td>101</td>
<td>6.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>94</td>
<td>104</td>
<td>10.1</td>
<td>96</td>
<td>100</td>
<td>4.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>93</td>
<td>106</td>
<td>13.1</td>
<td>99</td>
<td>97</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>92</td>
<td>102</td>
<td>10.3</td>
<td>95</td>
<td>99</td>
<td>4.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>99</td>
<td>112</td>
<td>12.3</td>
<td>82</td>
<td>84</td>
<td>2.4</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>97</td>
<td>106</td>
<td>8.9</td>
<td>95</td>
<td>99</td>
<td>4.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>72</td>
<td>81</td>
<td>11.8</td>
<td>86</td>
<td>85</td>
<td>1.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>ND</td>
<td>97</td>
<td>107</td>
<td>9.8</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>95</td>
<td>103</td>
<td>8.1</td>
<td>94</td>
<td>98</td>
<td>4.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>84</td>
<td>99</td>
<td>16.4</td>
<td>103</td>
<td>101</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>81</td>
<td>89</td>
<td>9.4</td>
<td>102</td>
<td>92</td>
<td>10.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND</td>
<td>88</td>
<td>96</td>
<td>16.6</td>
<td>103</td>
<td>97</td>
<td>9.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>95</td>
<td>107</td>
<td>11.9</td>
<td>96</td>
<td>98</td>
<td>2.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>96</td>
<td>106</td>
<td>9.9</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>91</td>
<td>107</td>
<td>16.2</td>
<td>103</td>
<td>101</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>94</td>
<td>112</td>
<td>17.5</td>
<td>107</td>
<td>106</td>
<td>0.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>97</td>
<td>113</td>
<td>15.2</td>
<td>104</td>
<td>105</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>121</td>
<td>141</td>
<td>15.3</td>
<td>107</td>
<td>126</td>
<td>16.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>103</td>
<td>114</td>
<td>10.1</td>
<td>102</td>
<td>106</td>
<td>3.8</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND</td>
<td>96</td>
<td>107</td>
<td>10.8</td>
<td>104</td>
<td>109</td>
<td>4.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>92</td>
<td>103</td>
<td>11.3</td>
<td>96</td>
<td>99</td>
<td>3.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>107</td>
<td>117</td>
<td>8.9</td>
<td>105</td>
<td>112</td>
<td>6.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>92</td>
<td>108</td>
<td>16.0</td>
<td>107</td>
<td>106</td>
<td>0.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>98</td>
<td>112</td>
<td>13.3</td>
<td>101</td>
<td>104</td>
<td>2.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>94</td>
<td>107</td>
<td>12.9</td>
<td>103</td>
<td>102</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>93</td>
<td>108</td>
<td>14.9</td>
<td>95</td>
<td>96</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>94</td>
<td>112</td>
<td>17.5</td>
<td>103</td>
<td>105</td>
<td>1.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>92</td>
<td>107</td>
<td>15.1</td>
<td>104</td>
<td>101</td>
<td>2.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>117</td>
<td>137</td>
<td>15.7</td>
<td>106</td>
<td>111</td>
<td>4.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>97</td>
<td>108</td>
<td>10.7</td>
<td>96</td>
<td>101</td>
<td>5.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>93</td>
<td>104</td>
<td>11.2</td>
<td>93</td>
<td>97</td>
<td>4.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>98</td>
<td>107</td>
<td>8.8</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>ND</td>
<td>96</td>
<td>106</td>
<td>9.9</td>
<td>97</td>
<td>100</td>
<td>3.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ND</td>
<td>75</td>
<td>96</td>
<td>24.6</td>
<td>98</td>
<td>92</td>
<td>6.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methyl t-butyl ether (MTBE)</td>
<td>ND</td>
<td>96</td>
<td>111</td>
<td>14.5</td>
<td>106</td>
<td>104</td>
<td>1.9</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND</td>
<td>91</td>
<td>103</td>
<td>12.4</td>
<td>95</td>
<td>96</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>87</td>
<td>104</td>
<td>17.8</td>
<td>96</td>
<td>96</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>94</td>
<td>105</td>
<td>11.1</td>
<td>93</td>
<td>98</td>
<td>5.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>92</td>
<td>101</td>
<td>9.3</td>
<td>93</td>
<td>99</td>
<td>6.3</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>95</td>
<td>107</td>
<td>11.9</td>
<td>97</td>
<td>101</td>
<td>4.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>96</td>
<td>106</td>
<td>9.9</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Parameter</td>
<td>Blank</td>
<td>LCS %</td>
<td>LCSD %</td>
<td>LCS RPD</td>
<td>MS %</td>
<td>MSD %</td>
<td>MS RPD</td>
<td>% Rec Limits</td>
<td>% RPD Limits</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>98</td>
<td>108</td>
<td>9.7</td>
<td>94</td>
<td>100</td>
<td>6.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>96</td>
<td>109</td>
<td>12.7</td>
<td>99</td>
<td>101</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>97</td>
<td>105</td>
<td>7.9</td>
<td>95</td>
<td>102</td>
<td>7.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>94</td>
<td>104</td>
<td>10.1</td>
<td>94</td>
<td>98</td>
<td>4.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>87</td>
<td>106</td>
<td>19.7</td>
<td>95</td>
<td>98</td>
<td>3.1</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>94</td>
<td>106</td>
<td>12.0</td>
<td>97</td>
<td>99</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>98</td>
<td>111</td>
<td>12.4</td>
<td>98</td>
<td>102</td>
<td>4.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>97</td>
<td>113</td>
<td>15.2</td>
<td>102</td>
<td>100</td>
<td>2.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>trans-1,4-dichloro-2-butene</td>
<td>ND</td>
<td>98</td>
<td>111</td>
<td>12.4</td>
<td>90</td>
<td>88</td>
<td>2.2</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>95</td>
<td>108</td>
<td>12.8</td>
<td>98</td>
<td>103</td>
<td>5.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>99</td>
<td>114</td>
<td>14.1</td>
<td>116</td>
<td>119</td>
<td>2.6</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>106</td>
<td>114</td>
<td>7.3</td>
<td>104</td>
<td>109</td>
<td>4.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND</td>
<td>100</td>
<td>113</td>
<td>12.2</td>
<td>105</td>
<td>110</td>
<td>4.7</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% 1,2-dichlorobenzene-d4</td>
<td>103</td>
<td>101</td>
<td>101</td>
<td>0.0</td>
<td>101</td>
<td>102</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Bromofluorobenzene</td>
<td>97</td>
<td>96</td>
<td>100</td>
<td>4.1</td>
<td>101</td>
<td>101</td>
<td>0.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Dibromofluoromethane</td>
<td>101</td>
<td>99</td>
<td>102</td>
<td>3.0</td>
<td>112</td>
<td>105</td>
<td>6.5</td>
<td>70 - 130</td>
<td>30</td>
</tr>
<tr>
<td>% Toluene-d8</td>
<td>100</td>
<td>101</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
<td>70 - 130</td>
<td>30</td>
</tr>
</tbody>
</table>

Comment:
A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference
LCS - Laboratory Control Sample
LCSD - Laboratory Control Sample Duplicate
MS - Matrix Spike
MS Dup - Matrix Spike Duplicate
NC - No Criteria
Intf - Interference
Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional’s responsibility to determine appropriate compliance.
Reasonable Confidence Protocol
Laboratory Analysis QA/QC Certification Form

<table>
<thead>
<tr>
<th>Laboratory Name:</th>
<th>Phoenix Environmental Labs, Inc.</th>
<th>Client:</th>
<th>Red Technologies, LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location:</td>
<td>COOPER ST., BRIDGE</td>
<td>Project Number:</td>
<td></td>
</tr>
<tr>
<td>Laboratory Sample ID(s):</td>
<td>BH64992, BH64993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Date(s):</td>
<td>1/19/2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCP Methods Used:

<table>
<thead>
<tr>
<th>Method Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1311/1312</td>
<td>☒ 6010</td>
</tr>
<tr>
<td>7000</td>
<td>☐</td>
</tr>
<tr>
<td>7196</td>
<td>☒</td>
</tr>
<tr>
<td>7470/7471</td>
<td>☒</td>
</tr>
<tr>
<td>8081</td>
<td>☒</td>
</tr>
<tr>
<td>EPH</td>
<td>☐</td>
</tr>
<tr>
<td>TO15</td>
<td>☐</td>
</tr>
<tr>
<td>8082</td>
<td>☒</td>
</tr>
<tr>
<td>8151</td>
<td>☒</td>
</tr>
<tr>
<td>8260</td>
<td>☒</td>
</tr>
<tr>
<td>8270</td>
<td>☒</td>
</tr>
<tr>
<td>ETPH</td>
<td>☐</td>
</tr>
<tr>
<td>9010/9012</td>
<td>☐</td>
</tr>
<tr>
<td>VPH</td>
<td>☐</td>
</tr>
</tbody>
</table>

1. For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?
 - ☒ Yes ☐ No

1a. Were the method specified preservation and holding time requirements met?
 - ☒ Yes ☐ No

1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)
 - ☐ Yes ☐ No ☒ NA

2. Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?
 - ☒ Yes ☐ No

3. Were samples received at an appropriate temperature (< 6 Degrees C)?
 - ☒ Yes ☐ No ☐ NA

 - ☐ Yes ☒ No

5a. Were reporting limits specified or referenced on the chain-of-custody?
 - ☐ Yes ☒ No

5b. Were these reporting limits met?
 - ☐ Yes ☐ No ☒ NA

6. For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?
 - ☐ Yes ☒ No ☐ NA

7. Are project-specific matrix spikes and laboratory duplicates included in the data set?
 - ☒ Yes ☐ No ☐ NA

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:
[Signature]

Date: Wednesday, January 28, 2015

Printed Name: Ethan Lee

Position: Project Manager
BH64992, BH64993 - The client requested a short list of analytes from the 6010 RCP Metals list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

BH64992, BH64993 - The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 297686 (Samples: BH64992, BH64993): -----
The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Ext. Petroleum HC)

Instrument: Aufid-d1 01/22/15-1 (BH64992, BH64993)
Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Jeff Bucko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/22/2015</td>
</tr>
</tbody>
</table>

Instrument: Aufid-d1 01/23/15-1 (BH64992)
Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

<table>
<thead>
<tr>
<th>Printed Name</th>
<th>Jeff Bucko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Chemist</td>
</tr>
<tr>
<td>Date</td>
<td>1/23/2015</td>
</tr>
</tbody>
</table>

QC (Site Specific)

----------- Sample No: BH64992, QA/QC Batch: 297686

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: Ext. Petroleum HC(59%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Herbicide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-eccd12 01/22/15-1 (BH64992, BH64993)

Initial Calibration ECD12 - HRB107AI/BI
The initial calibration RSD for the compound list was less than 20% except for the following compounds: none

Printed Name: Brian B
Position: Chemist
Date: 1/22/2015

QC (Batch Specific)

-------- Sample No: BH63049, QA/QC Batch: 297240 --------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 01/21/15-1 (BH64992, BH64993)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.
The initial calibration met all criteria including a standard run at or below the reporting level.
All calibration verification standards (ICV, CCV) met criteria.
All calibration blank verification standards (ICB, CCB) met criteria.
The matrix spike sample is used to identify spectral interfernece for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name: Rick Schweitzer
Position: Chemist
Date: 1/21/2015
RCP Certification Report
January 28, 2015

SDG I.D.: GBH64992

QC (Batch Specific)
------------- Sample No: BH61030, QA/QC Batch: 297610 -------------

All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

ICP Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 01/20/15-1 (BH64992, BH64993)
The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

 Printed Name: Laura Kinnin
 Position: Chemist
 Date: 1/20/2015

Instrument: Arcos 01/21/15-1 (BH64992, BH64993)
The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

 Printed Name: Laura Kinnin
 Position: Chemist
 Date: 1/21/2015

Instrument: Blue 01/22/15-1 (BH64993)
The initial calibration met criteria.
The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.
The continuing calibration blanks were less than the reporting level for the elements reported.
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

 Printed Name: Laura Kinnin
 Position: Chemist
 Date: 1/22/2015
RCP Certification Report
January 28, 2015

QC (Batch Specific)
---------- Sample No: BH62498, QA/QC Batch: 297492 ----------
All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PAH Narration
 Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem07 01/21/15-2 (BH64993)
The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable.

Initial Calibration Verification (CHEM07/BNSIM_0106):
100% of target compounds met criteria.
The following compounds had %RSDs >20%: None.
The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM07/0121_17-BNSIM_0106):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: None.

Printed Name: Damien Drobinski
Position: Chemist
Date: 1/21/2015

QC (Batch Specific)
---------- Sample No: BH64983, QA/QC Batch: 297572 ----------
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PCB Narration
 Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.
RCP Certification Report
January 28, 2015

SDG I.D.: GBH64992

Instrument: Au-eccd24 01/22/15-1 (BH64992)

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none.

The continuing calibration standards were within acceptance criteria except for the following compounds: none.

The initial calibration (PC1231AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC1231BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Adam Werner
Position: Chemist
Date: 1/22/2015

Instrument: Au-eccd3 01/23/15-1 (BH64992, BH64993)

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none.

The continuing calibration standards were within acceptance criteria except for the following compounds: none.

The initial calibration (PC120AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC120BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name: Adam Werner
Position: Chemist
Date: 1/23/2015

Instrument: Au-eccd5 01/22/15-1 (BH64993)

8082 Narration:

The initial calibration RSD for the compound list was less than 15% except for the following compounds: none.

The continuing calibration standards were within acceptance criteria except for the following compounds: none.

The initial calibration (PC116AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC116BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.
RCP Certification Report
January 28, 2015

Printed Name: Adam Werner
Position: Chemist
Date: 1/22/2015

QC Comments: QC Batch 297484 01/19/15 (BH64992, BH64993)
A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QC (Batch Specific)
------------ Sample No: BH64614, QA/QC Batch: 297484 -----------
All LCS recoveries were within 40 - 140 with the following exceptions: None.
All LCSD recoveries were within 40 - 140 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PEST Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd13 01/22/15-1 (BH64992, BH64993)

8081 Narration:
Endrin and DDT breakdown was evaluated and does not exceed 15%. The initial calibration (PS0115AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS0115BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:
122A011 - % DCBP (27%)
122A039 - Endrin Ketone (-16%)
122A052 - % TCMX (20%), d-BHC (17%)
A low "1A" standard was run to demonstrate capability to detect these compounds at the indicated RL. All reported samples were ND for these compounds.

Printed Name: Carol Eddy
Position: Chemist
Date: 1/22/2015

QC Comments: QC Batch 297483 01/19/15 (BH64992, BH64993)
A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD.
QC (Batch Specific)

---------- Sample No: BH64614, QA/QC Batch: 297483 ----------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem04 01/21/15-1 (BH64992)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM04/SIM_0114):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0121_02A-SIM_0114):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-chlorophenol (.726)/[0.8], 2-nitrophenol (.037)/[0.1], Bis(2-chloroethyl)ether (.643)/[0.7]

The following compounds did not meet minimum response factors: None.

Printed Name: Damien Drobinski
Position: Chemist
Date: 1/21/2015

QC (Batch Specific)

---------- Sample No: BH64983, QA/QC Batch: 297572 ----------

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
RCP Certification Report
January 28, 2015

SDG I.D.: GBH64992

VOA Narration
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 297657 (Samples: BH64992, BH64993): -----

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Bromomethane, Dichlorodifluoromethane)

Instrument: Chem02 01/20/15-1 (BH64992, BH64993)

Initial Calibration Verification (CHEM02/RPP_0120):
95% of target compounds met criteria.
The following compounds had %RSDs >20%: 2-Hexanone (31%), Acetone (31%), Methyl Ethyl Ketone (22%), Methylene Chloride (21%) The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM02/0120P15-RPP_0120):
100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.
The following compounds did not meet maximum % deviations: None.
The following compounds did not meet recommended response factors: None.
The following compounds did not meet minimum response factors: Bromoform (.070)[SPCC: 0.1]

QC Comments: QC Batch 297657 01/20/15 (BH64992, BH64993)
A blank MS/MSD was analyzed with this batch.

QC (Batch Specific)
--------- Sample No: BH65081, QA/QC Batch: 297657 ---------

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: Bromomethane(141%), Dichlorodifluoromethane(137%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples in this delivery group were received at 6°C. (Note acceptance criteria is above freezing up to 6°C)
<table>
<thead>
<tr>
<th>Phoenix Sample #</th>
<th>Customer Sample Identification</th>
<th>Sample Matrix</th>
<th>Date Sampled</th>
<th>Time Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>044092</td>
<td>MW-1</td>
<td>Qu</td>
<td>1-19-15</td>
<td>1200</td>
</tr>
<tr>
<td>044093</td>
<td>MW-2</td>
<td></td>
<td></td>
<td>1350</td>
</tr>
</tbody>
</table>

Analysis Request

- CT
 - SWA
 - 300ml
 - 100ml
 - 1.0000ml
 - 1.0000ml

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Accepted by</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED Fridge</td>
<td>RED Fridge</td>
<td>1-19-15</td>
<td>1530</td>
</tr>
<tr>
<td>Tom Smith</td>
<td>RED Fridge</td>
<td>1-30-15</td>
<td>10:25</td>
</tr>
</tbody>
</table>

Comments, Special Requirements or Regulations:

- 1 Bottle Frozen MW-2