PROJECT MANUAL & SPECIFICATIONS

New Building
for
ROCKY HILL
SENIOR / COMMUNITY CENTER

Old Main Street
Rocky Hill, CT 06067

Volume II of II

Issued for Bid
March 2020
Project Manual and Specifications

<table>
<thead>
<tr>
<th>Volume I of II</th>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>000110</td>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>000115</td>
<td>LIST OF DRAWINGS</td>
</tr>
</tbody>
</table>

Bidding and Contract Requirements

- INVITATION TO BID
- INSTRUCTIONS TO BIDDERS
- BID FORM
 - AIA A101 - STANDARD FORM OF AGREEMENT BETWEEN OWNER AND CONTRACTOR
 - AIA A201 - GENERAL CONDITIONS OF THE CONTRACT FOR CONSTRUCTION
 - AIA A305 - CONTRACTORS QUALIFICATION STATEMENT
 - AIA A310 - BID BOND
 - AIA A312 - PERFORMANCE AND PAYMENT BOND
- PREVAILING WAGE RATES
- APPENDIX C - AFFIRM ACTION FORM
- APPENDIX D - NON-COLLUSION FORM

Division 00 - Information Available to Bidders

- 003126 - PRE-RENOVATION HAZARDOUS BUILDING MATERIALS INSPECTION REPORT
- 003126.01 - PHASE II REPORT
- 003132 - GEOTECHNICAL DATA
- 003132 - GEOTECHNICAL REPORT
- 010100 - HAZ MATERIALS GENERAL CONDITIONS
- 010160 - SCHEDULING AND PHASING
- 017001 - HAZ MATERIAL CONTRACT CLOSE OUT
- 020750 - SELECTIVE DEMOLITION FOR HAZARDOUS MATERIALS ABATEMENT
- 020800 - ASBESTOS ABATEMENT
- 020820 - UNIVERSAL WASTE RECLAMATION
- 020900 - LEAD PAINT AWARENESS

Division 01 - General Requirements

- 011000 - SUMMARY | 5 |
- 012300 - ALTERNATES | 3 |
- 012600 - CONTRACT MODIFICATION PROCEDURES | 3 |
- 012900 - PAYMENT PROCEDURES | 5 |
- 013100 - PROJECT MANAGEMENT AND COORDINATION | 10 |
- 013200 - CONSTRUCTION PROGRESS DOCUMENTATION | 9 |
- 013300 - SUBMITAL PROCEDURES | 12 |
- 014000 - QUALITY REQUIREMENTS | 8 |
- 014200 - REFERENCES | 2 |
- 015000 - TEMPORARY FACILITIES AND CONTROLS | 9 |
- 015639 - TEMPORARY TREE AND PLANT PROTECTION | 8 |
- 016000 - PRODUCT REQUIREMENTS | 8 |
- 017300 - EXECUTION | 7 |
- 017329 - CUTTING AND PATCHING | 4 |
- 017700 - CLOSEOUT PROCEDURES | 6 |
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>017823</td>
</tr>
<tr>
<td>017839</td>
</tr>
<tr>
<td>017900</td>
</tr>
<tr>
<td>018119</td>
</tr>
<tr>
<td>019113</td>
</tr>
</tbody>
</table>

DIVISION 02 – EXISTING CONDITIONS

| 024119 | SELECTIVE DEMOLITION | 6 |

DIVISION 03 - CONCRETE

030510	CONCRETE MOISTURE VAPOR REDUCTION ADMIXTURE	6
031000	CONCRETE FORMWORK	3
032000	CONCRETE REINFORCEMENT	3
033000	CAST-IN-PLACE CONCRETE	11

DIVISION 04 - MASONRY

| 042000 | UNIT MASONRY | 23 |
| 047200 | CAST STONE MASONRY | 9 |

DIVISION 05 - METALS

051200	STRUCTURAL STEEL	4
052100	STEEL JOISTS	2
053100	STEEL DECKING	2
055000	METAL FABRICATIONS	8
055213	PIPE AND TUBE RAILINGS	8

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES

061053	MISCELLANEOUS ROUGH CARPENTRY	7
061600	SHEATHING	8
064023	INTERIOR ARCHITECTURAL WOODWORK	12

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

072100	THERMAL INSULATION	8
07226	FLUID-APPLIED MEMBRANE AIR BARRIERS	10
074213.19	INSULATED METAL WALL PANELS	13
074213.63	LINEAR METAL SOFFITS	8
074619	STEEL SIDING	5
075323	ETHYLENE PROPYLENE DIENE MONOMER (EPDM) ROOFING	13
076200	SHEET METAL FLASHING AND TRIM	9
077100	ROOF SPECIALTIES	8
077200	ROOF ACCESSORIES	5
078413	PENETRATION FIRESTOPPING	9
078446	FIRE-RESISTIVE JOINT SYSTEMS	7
079200	JOINT SEALANTS	11
079500	EXPANSION CONTROL	6

DIVISION 08 – OPENINGS

<p>| 081113 | HOLLOW METAL DOORS AND FRAMES | 9 |</p>
<table>
<thead>
<tr>
<th>Division</th>
<th>Section</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW BUILDING FOR ROCKY HILL SENIOR / COMMUNITY CENTER ROCKY HILL, CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081416</td>
<td>FLUSH WOOD DOORS</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>081613</td>
<td>FIBERGLASS DOORS AND FRAMES</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>083113</td>
<td>ACCESS DOORS AND FRAMES</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>083219</td>
<td>CLAD WOOD-FRAMED GLASS DOORS</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>083313</td>
<td>COILING COUNTER DOORS</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>083516</td>
<td>FOLDING GRILLES</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>084113</td>
<td>ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>087100</td>
<td>DOOR HARDWARE</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>087113</td>
<td>AUTOMATIC DOOR OPERATORS</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>088000</td>
<td>GLAZING</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>088300</td>
<td>MIRRORS</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>088713</td>
<td>GLAZING FILMS</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DIVISION 09 – FINISHES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090000</td>
<td>FINISH SCHEDULE</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>092116</td>
<td>GYPSUM BOARD ASSEMBLIES</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>093100</td>
<td>TILING</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>095113</td>
<td>ACoustical PANEL Ceilings</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>096400</td>
<td>WOOD FLOORING</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>096513</td>
<td>RESILIENT BASE AND ACCESSORIES</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>096519</td>
<td>RESILIENT TILE FLOORING</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>096566</td>
<td>RESILIENT ATHLETIC FLOORING</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>096813</td>
<td>TILE CARPETING</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>097200</td>
<td>WALL COVERINGS</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>099100</td>
<td>PAINTING</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>099600</td>
<td>HIGH PERFORMANCE COATINGS</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>099713</td>
<td>THERMAL INSULATING COATING</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>DIVISION 10 - SPECIALTIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101100</td>
<td>VISUAL DISPLAY SURFACES</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>101400</td>
<td>SIGNAGE</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>101443</td>
<td>PHOTOLUMINESCENT EGRESS PATH MARKING SYSTEM</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>102113.19</td>
<td>PLASTIC TOILET COMPARTMENTS</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>102226</td>
<td>OPERABLE PARTITIONS</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>102239</td>
<td>VERTICALLY RETRACTABLE ACOUSTIC WALL</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>102600</td>
<td>WALL PROTECTION</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>102800</td>
<td>TOILET AND BATH ACCESSORIES</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>104116</td>
<td>EMERGENCY KEY CABINETS</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>104400</td>
<td>FIRE PROTECTION SPECIALTIES</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>105113</td>
<td>METAL LOCKERS</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>107516</td>
<td>GROUND-SET FLAGPOLES</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>108213</td>
<td>EQUIPMENT SCREENS</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>DIVISION 11 - EQUIPMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113100</td>
<td>RESIDENTIAL APPLIANCES</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>114000</td>
<td>KITCHEN EQUIPMENT</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

QAM 1934 000110 - 3 of 6
March 2020 - Bid TABLE OF CONTENTS
TABLE OF CONTENTS

DIVISION 12 – FURNISHINGS
- 122220 CURTAIN AND DRAPES .. 5
- 122413 ROLLER WINDOW SHADES ... 7
- 123631 SIMULATED STONE COUNTERTOPS 6
- 129300 SITE FURNISHINGS .. 3

DIVISION 13 – SPECIAL CONSTRUCTION
- 133423 PREFABRICATED CANOPIES .. 5

DIVISION 14 – CONVEYING EQUIPMENT
- 144200 WHEELCHAIR LIFT .. 6

DIVISION 21 – FIRE PROTECTION
- 210500 FIRE PROTECTION BASIC MATERIALS AND METHODS 6
- 210548 VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION SYSTEMS 4
- 211313 FIRE SUPPRESSION SPRINKLERS 8

DIVISION 22 – PLUMBING
- 220510 PLUMBING GENERAL CONDITIONS FOR PLUMBING TRADE 18
- 220511 PLUMBING DEMOLITION .. 2
- 220516 EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING ... 4
- 220517 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING .. 4
- 220519 METERS AND GAGES FOR PLUMBING PIPING 4
- 220529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT ... 6
- 220533 HEAT TRACING FOR PLUMBING PIPING 8
- 220548 VIBRATION AND SEISMIC CONTROLS FOR PLUMBING SYSTEMS ... 6
- 220553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT ... 4
- 220719 PLUMBING PIPING INSULATION 6
- 221005 PLUMBING PIPING ... 14
- 221006 PLUMBING PIPING SPECIALTIES 6
- 221113 FACILITY WATER DISTRIBUTION PIPING 9
- 221250 NATURAL GAS PIPING .. 8
- 221313 FACILITY SANITARY SEWERS ... 8
- 223000 PLUMBING EQUIPMENT .. 4
- 224000 PLUMBING FIXTURES ... 10

VOLUME II OF II
- 000110 TABLE OF CONTENTS ... 6
- 000115 LIST OF DRAWINGS ... 6

DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING
- 230130.51 HVAC AIR-DISTRIBUTION SYSTEM CLEANING 6
- 230500 MECHANICAL GENERAL CONDITIONS 20
- 230501 MECHANICAL DEMOLITION .. 2
- 230516 EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING 4
- 230519 METERS AND GAGES FOR HVAC PIPING 4

QAM 1934
March 2020 - Bid

TABLE OF CONTENTS 000110 - 4 of 6
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>230548</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR HVAC</td>
<td>8</td>
</tr>
<tr>
<td>230553</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
<td>4</td>
</tr>
<tr>
<td>230593</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
<td>12</td>
</tr>
<tr>
<td>230713</td>
<td>DUCT INSULATION</td>
<td>6</td>
</tr>
<tr>
<td>230716</td>
<td>HVAC EQUIPMENT INSULATION</td>
<td>6</td>
</tr>
<tr>
<td>230719</td>
<td>HVAC PIPING INSULATION</td>
<td>6</td>
</tr>
<tr>
<td>230923</td>
<td>DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC</td>
<td>44</td>
</tr>
<tr>
<td>230993</td>
<td>SEQUENCE OF OPERATIONS FOR HVAC CONTROLS</td>
<td>20</td>
</tr>
<tr>
<td>232113</td>
<td>HYDRONIC PIPING</td>
<td>16</td>
</tr>
<tr>
<td>232116</td>
<td>HYDRONIC SPECIALTIES</td>
<td>8</td>
</tr>
<tr>
<td>232300</td>
<td>HYDRONIC PUMPS</td>
<td>8</td>
</tr>
<tr>
<td>232300</td>
<td>REFRIGERANT PIPING</td>
<td>6</td>
</tr>
<tr>
<td>232513</td>
<td>HVAC WATER TREATMENT</td>
<td>6</td>
</tr>
<tr>
<td>233100</td>
<td>HVAC DUCTS AND CASINGS</td>
<td>6</td>
</tr>
<tr>
<td>233300</td>
<td>AIR DUCT ACCESSORIES</td>
<td>6</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC POWER VENTILATORS</td>
<td>4</td>
</tr>
<tr>
<td>233600</td>
<td>AIR TERMINAL UNITS</td>
<td>6</td>
</tr>
<tr>
<td>233700</td>
<td>AIR OUTLETS AND INLETS</td>
<td>4</td>
</tr>
<tr>
<td>235100</td>
<td>BREECHINGS, CHIMNEYS AND STACKS</td>
<td>4</td>
</tr>
<tr>
<td>235240</td>
<td>CONDENSING HOT WATER BOILERS</td>
<td>14</td>
</tr>
<tr>
<td>237215</td>
<td>PACKAGED ROOFTOP UNITS</td>
<td>10</td>
</tr>
<tr>
<td>238126.13</td>
<td>SMALL CAPACITY SPLIT-SYSTEM AIR CONDITIONERS</td>
<td>6</td>
</tr>
<tr>
<td>238200</td>
<td>CONVECTION HEATING AND COOLING UNITS</td>
<td>4</td>
</tr>
<tr>
<td>238300</td>
<td>RADIANT HEATING AND COOLING UNITS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DIVISION 26 – ELECTRICAL</td>
<td></td>
</tr>
<tr>
<td>260502</td>
<td>ELECTRICAL GENERAL CONDITIONS</td>
<td>12</td>
</tr>
<tr>
<td>260505</td>
<td>SELECTIVE DEMOLITION FOR ELECTRICAL</td>
<td>4</td>
</tr>
<tr>
<td>260519</td>
<td>LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
<td>14</td>
</tr>
<tr>
<td>260526</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS</td>
<td>8</td>
</tr>
<tr>
<td>260529</td>
<td>HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS</td>
<td>6</td>
</tr>
<tr>
<td>260533.13</td>
<td>CONDUIT FOR ELECTRICAL SYSTEMS</td>
<td>12</td>
</tr>
<tr>
<td>260533.16</td>
<td>BOXES FOR ELECTRICAL SYSTEMS</td>
<td>8</td>
</tr>
<tr>
<td>260553</td>
<td>IDENTIFICATION FOR ELECTRICAL SYSTEMS</td>
<td>10</td>
</tr>
<tr>
<td>260573</td>
<td>POWER SYSTEM STUDIES</td>
<td>8</td>
</tr>
<tr>
<td>260919</td>
<td>ENCLOSED CONTACTORS</td>
<td>4</td>
</tr>
<tr>
<td>260923</td>
<td>LIGHTING CONTROL DEVICES</td>
<td>10</td>
</tr>
<tr>
<td>262200</td>
<td>LOW-VOLTAGE TRANSFORMERS</td>
<td>8</td>
</tr>
<tr>
<td>262416</td>
<td>PANELBOARDS</td>
<td>10</td>
</tr>
<tr>
<td>262726</td>
<td>WIRING DEVICES</td>
<td>10</td>
</tr>
<tr>
<td>262816.16</td>
<td>ENCLOSED SWITCHES</td>
<td>6</td>
</tr>
<tr>
<td>262913</td>
<td>ENCLOSED CONTROLLERS</td>
<td>10</td>
</tr>
<tr>
<td>264300</td>
<td>SURGE PROTECTIVE DEVICES</td>
<td>6</td>
</tr>
<tr>
<td>265100</td>
<td>INTERIOR LIGHTING</td>
<td>10</td>
</tr>
<tr>
<td>265600</td>
<td>EXTERIOR LIGHTING</td>
<td>8</td>
</tr>
</tbody>
</table>
DIVISION 27 – COMMUNICATIONS
Not included in Specification

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>283100</td>
<td>FIRE DETECTION AND ALARM</td>
<td>14</td>
</tr>
</tbody>
</table>

DIVISION 31 – EARTHWORK

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>311000</td>
<td>SITE CLEARING</td>
<td>6</td>
</tr>
<tr>
<td>312000</td>
<td>EARTH MOVING</td>
<td>15</td>
</tr>
<tr>
<td>312319</td>
<td>DEWATERING</td>
<td>5</td>
</tr>
<tr>
<td>315000</td>
<td>EXCAVATION SUPPORT AND PROTECTION</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 32 – EXTERIOR IMPROVEMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>321216</td>
<td>ASPHALT PAVING</td>
<td>7</td>
</tr>
<tr>
<td>321243</td>
<td>POROUS FLEXIBLE PAVING</td>
<td>6</td>
</tr>
<tr>
<td>321313</td>
<td>CONCRETE PAVING</td>
<td>12</td>
</tr>
<tr>
<td>321373</td>
<td>CONCRETE PAVING JOINT SEALANTS</td>
<td>4</td>
</tr>
<tr>
<td>321723</td>
<td>PAVEMENT MARKINGS</td>
<td>3</td>
</tr>
<tr>
<td>321726</td>
<td>TACTILE WARNING SURFACING</td>
<td>4</td>
</tr>
<tr>
<td>323113</td>
<td>CHAIN LINK FENCES AND GATES</td>
<td>14</td>
</tr>
<tr>
<td>323119</td>
<td>ORNAMENTAL FENCE</td>
<td>6</td>
</tr>
<tr>
<td>329200</td>
<td>TURF AND GRASSES</td>
<td>10</td>
</tr>
<tr>
<td>329300</td>
<td>PLANTS</td>
<td>11</td>
</tr>
<tr>
<td>329400</td>
<td>TOPSOIL</td>
<td>6</td>
</tr>
</tbody>
</table>

DIVISION 33 – UTILITIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>334100</td>
<td>STORM UTILITY DRAINAGE PIPING</td>
<td>9</td>
</tr>
<tr>
<td>334600</td>
<td>SUB DRAINAGE</td>
<td>6</td>
</tr>
</tbody>
</table>

END OF SECTION 000110
<table>
<thead>
<tr>
<th>CS</th>
<th>COVER SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEY</td>
<td>SURVEY</td>
</tr>
<tr>
<td>G1.0</td>
<td>GENERAL INFORMATION</td>
</tr>
<tr>
<td>G1.1</td>
<td>GENERAL INFORMATION</td>
</tr>
<tr>
<td>G1.10</td>
<td>WALL TYPES</td>
</tr>
<tr>
<td>PLP 1</td>
<td>PHASING LOGISTICS PLAN</td>
</tr>
<tr>
<td>R1.0</td>
<td>CODE INFORMATION</td>
</tr>
<tr>
<td>R1.1</td>
<td>CODE PLANS</td>
</tr>
<tr>
<td>R1.1A</td>
<td>CODE PLAN - PART A</td>
</tr>
<tr>
<td>R1.1B</td>
<td>CODE PLAN - PART B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CIVIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.000</td>
</tr>
<tr>
<td>C.001</td>
</tr>
<tr>
<td>C.002</td>
</tr>
<tr>
<td>C.100</td>
</tr>
<tr>
<td>C.201</td>
</tr>
<tr>
<td>C.202</td>
</tr>
<tr>
<td>C.203</td>
</tr>
<tr>
<td>C.300</td>
</tr>
<tr>
<td>C.301</td>
</tr>
<tr>
<td>C.302</td>
</tr>
<tr>
<td>C.303</td>
</tr>
<tr>
<td>C.401</td>
</tr>
<tr>
<td>C.402</td>
</tr>
<tr>
<td>C.501</td>
</tr>
<tr>
<td>C.502</td>
</tr>
<tr>
<td>C.601</td>
</tr>
<tr>
<td>C.602</td>
</tr>
<tr>
<td>C.603</td>
</tr>
<tr>
<td>C.701</td>
</tr>
<tr>
<td>C.702</td>
</tr>
<tr>
<td>C.703</td>
</tr>
<tr>
<td>C.704</td>
</tr>
<tr>
<td>C.705</td>
</tr>
<tr>
<td>C.800</td>
</tr>
<tr>
<td>C.801</td>
</tr>
<tr>
<td>C.802</td>
</tr>
<tr>
<td>C.803</td>
</tr>
<tr>
<td>C.804</td>
</tr>
<tr>
<td>C.805</td>
</tr>
<tr>
<td>C.806</td>
</tr>
<tr>
<td>C.807</td>
</tr>
<tr>
<td>C.808</td>
</tr>
<tr>
<td>C.809</td>
</tr>
<tr>
<td>C.810</td>
</tr>
<tr>
<td>C.811</td>
</tr>
</tbody>
</table>
A9.4 STOREFRONT ELEVATIONS
A9.5 STOREFRONT ELEVATIONS
A9.6 STOREFRONT ELEVATIONS
A9.7 STOREFRONT ELEVATIONS
A9.8 STOREFRONT ELEVATIONS
A9.9 STOREFRONT ELEVATIONS
A9.10 STOREFRONT ELEVATIONS
A9.11 STOREFRONT DETAILS
A10.1A ENLARGED FINISH PLANS- PART A
A10.1B ENLARGED FINISH PLANS- PART B
A11.0 MILLWORK- DRAWINGS & DETAILS
A11.1 MILLWORK- DRAWINGS & DETAILS
A11.2 MILLWORK- DRAWINGS & DETAILS
A11.3 MILLWORK- DRAWINGS & DETAILS
A11.4 MILLWORK- DRAWINGS & DETAILS
A11.5 MILLWORK- DRAWINGS & DETAILS

FOOD SERVICE

FS100 FOOD SERVICE EQUIPMENT PLAN
FS101 FOOD SERVICE EQUIPMENT UTILITY ROUGH IN PLAN
FS102 FOOD SERVICE EQUIPMENT VENTILATION PLAN

STRUCTURAL

S0.1 GENERAL NOTES & ABBREVIATIONS
S0.2 TYPICAL DETAILS - CONCRETE
S0.3 TYPICAL DETAILS - STRUCTURAL STEEL
S1.1A FOUNDATION PLAN - AREA A
S1.1ALT FOUNDATION PLAN-ADD ALTERNATE
S1.1B FOUNDATION PLAN - AREA B
S1.2A ROOF FRAMING PLAN - AREA A
S1.2ALT ROOF FRAMING PLAN-ADD ALT.
S1.2B ROOF FRAMING PLAN - AREA B
S2.1 STRUCTURAL SCHEDULES BASE BID
S2.2 STRUCTURAL SCHEDULES ADD ALT
S2.3 BASE PLATE DETAILS
S2.4 FOUNDATION SECTIONS
S2.5 STRUCTURAL STEEL SECTIONS-ADD ALTERNATE
S2.6 STRUCTURAL STEEL CONNECTIONS
S2.7 STR. STEEL SECTION DETAILS
S2.8 STR. STEEL SECTION DETAILS
S2.9 STR. STEEL SECTION DETAILS
S2.10 STR. STEEL SECTION DETAILS
S3.0 ENTRANCE CANOY DETAILS

MECHANICAL

M0.0 MECHANICAL ABBREVIATIONS, GENERAL NOTES AND SYMBOL LIST
M1.1A MECHANICAL DUCT PLAN - PART 'A'
M1.1B MECHANICAL DUCT PLANS
MECHANICAL

M1.2A MECHANICAL ROOF PLAN - PART 'A'
M1.2B MECHANICAL ROOF PLANS
M2.1A MECHANICAL PIPE PLAN - PART 'A'
M2.1B MECHANICAL PIPE PLANS
M3.0 MECHANICAL DETAILS
M3.1 MECHANICAL DETAILS
M3.2 MECHANICAL DETAILS
M3.3 MECHANICAL PIPING RISER DIAGRAMS
M4.0 MECHANICAL SCHEDULES
M5.0 MECHANICAL CONTROL DIAGRAMS
M5.1 MECHANICAL CONTROL DIAGRAMS
M5.2 MECHANICAL CONTROL DIAGRAMS
M5.3 MECHANICAL CONTROL DIAGRAMS

PLUMBING

P1.0 PLUMBING
P1.0A PLUMBING UNDERSLAB PLAN - PART 'A'
P1.0B PLUMBING UNDERSLAB PLANS
P1.1A PLUMBING DRAINAGE PLAN - PART 'A'
P1.1B PLUMBING DRAINAGE PLANS
P2.1A PLUMBING SUPPLY PLAN - PART 'A'
P2.1B PLUMBING SUPPLY PLANS
P3.0 PLUMBING DETAILS
P4.0 PLUMBING SCHEDULE
PD1.1 PLUMBING DEMOLITION PLAN

FIRE PROTECTION

FP1.1A FIRE PROTECTION PLAN - PART 'A'
FP1.1B FIRE PROTECTION PLANS
FP2.0 FIRE PROTECTION

ELECTRICAL

E0.0 ELECTRICAL ABBREVIATIONS, GENERAL NOTES AND SYMBOL LIST
E1.1A ELECTRICAL LIGHTING RCP - PART 'A'
E1.1B ELECTRICAL LIGHTING RCPS
E2.1A ELECTRICAL POWER PLAN - PART 'A'
E2.1B ELECTRICAL POWER PLANS
E2.2A ROOF POWER PLAN - PART 'A'
E2.2B ROOF POWER PLANS
E3.1 ELECTRICAL SCHEDULES
E3.2 ELECTRICAL SCHEDULES
E4.1 ELECTRICAL DETAILS
E5.1 ELECTRICAL RISER DIAGRAMS
ED1.1 ELECTRICAL LIGHTING DEMOLITION PLAN
ED1.2 ELECTRICAL POWER DEMOLITION PLAN
SE1.1 SITE ELECTRICAL PLAN
SE2.1 SITE ELECTRICAL DETAILS
SECTION 230130.51 - HVAC AIR-DISTRIBUTION SYSTEM CLEANING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Cleaning of HVAC duct systems, equipment, and related components.

1.3 RELATED REQUIREMENTS

A. Section 014000 - Quality Requirements: Additional requirements for testing and inspection agencies.

B. Section 019113 - General Commissioning Requirements: Commissioning requirements that apply to all types of work.

1.4 DEFINITIONS

A. HVAC System: For purposes of this section, the surfaces to be cleaned include all interior surfaces of the heating, air-conditioning and ventilation system from the points where the air enters the system to the points where the air is discharged from the system, including the inside of air distribution equipment, coils, and condensate drain pans; see NADCA ACR for more details.

1.5 REFERENCE STANDARDS

B. NADCA ACR - Assessment, Cleaning and Restoration of HVAC Systems; 2014.

C. UL 181 - Standard for Factory-Made Air Ducts and Air Connectors; current edition, including all revisions.

1.6 QUALITY ASSURANCE

A. Information Available to Contractor: Upon request, Town of Rocky Hill will provide the following:
 1. One copy of original construction drawings of HVAC system.

B. Cleaning Contractor Qualifications: Company specializing in the cleaning and restoration of HVAC systems as specified in this section.
 1. Certified by one of the following:
 a. NADCA, National Air Duct Cleaners Association: www.nadca.com
 b. Nationally recognized certification program and organization dedicated to the cleaning of HVAC systems.
 2. Having minimum of three years documented experience.
 3. Employing for this project a supervisor certified by same organization that certified the cleaning contractor.

PART 2 PRODUCTS

2.1 TOOLS AND EQUIPMENT

A. Vacuum Devices and Other Tools: Exceptionally clean, in good working order, and sealed when brought into the facility.

B. Vacuum Devices That Exhaust Air Inside Building, Including Hand-Held and Wet Vacuums: Equipped with HEPA filtration with 99.97 percent collection efficiency for minimum 0.3-micron size particles and DOP test number.

C. Vacuum Devices That Exhaust Air Outside Building, Including Truck- and Trailer-Mounted Types: Equipped with particulate collection including adequate filtration to contain debris removed from the HVAC system; exhausted in manner that prevents contaminant re-entry to building; compliant with applicable regulations as to outdoor environmental contamination.

2.2 SURFACE TREATMENTS

A. Anti-Microbial Materials: EPA registered specifically for use on non-porous HVAC system surfaces and applied per manufacturer's instructions.

B. Surface Coating for Fibrous Glass Materials: Water-based, zero VOC; flame spread index less that 25, smoke developed index less than 450, Class A, when tested in accordance with ASTM E84.

PART 3 EXECUTION

3.1 PROJECT CONDITIONS

A. Comply with applicable federal, state, and local requirements.
B. Perform cleaning, inspection, and remediation in accordance with the recommendations of NADCA "Assessment, Cleaning and Restoration of HVAC Systems" (ACR) and as specified herein.

C. Where NADCA ACR uses the terms "recommended", "highly recommended", or "ideally" in regard to a certain procedure or activity, do that unless it is clearly inapplicable to the project.

D. Take precautions to prevent introduction of additional hazards into occupied spaces.

E. Obtain Town of Rocky Hill's approval of proposed temporary locations for large equipment.

F. Designate a decontamination area and obtain Town of Rocky Hill's approval.

G. When portions of the facility are to remain occupied or in operation during cleaning activities, provide adequate controls or containment to prevent access to spaces being cleaned by unauthorized persons and provide detailed instructions to Town of Rocky Hill as to these controls or containment.

H. If unforeseen mold or other biological contamination is encountered, notify QA+M architecture immediately, identifying areas affected and extent and type of contamination.

3.2 EXAMINATION

A. Inspect the system as required to determine appropriate methods, tools, equipment, and protection.

B. Start of cleaning work constitutes acceptance of existing conditions.

C. When concealed spaces are later made accessible, examine and document interior conditions prior to beginning cleaning.

D. Document all instances of mold growth, rodent droppings, other biological hazards, and damaged system components.

3.3 PREPARATION

A. When cleaning work might adversely affect life safety systems, including fire and smoke detection, alarm, and control, coordinate scheduling and testing and inspection procedures with authorities having jurisdiction.

B. Ensure that electrical components that might be adversely affected by cleaning are de-energized, locked out, and protected prior to beginning work.

C. Air-Volume Control Devices: Mark the original position of dampers and other air-directional mechanical devices inside the HVAC system prior to starting cleaning.
D. Access to Concealed Spaces: Use existing service openings and make additional service openings as required to accomplish cleaning and inspection.
 1. Do not cut openings in non-HVAC components without obtaining the prior approval of Town of Rocky Hill.
 2. Make new openings in HVAC components in accordance with NADCA Standard 05; do not compromise the structural integrity of the system.
 3. Do not cut service openings into flexible duct; disconnect at ends for cleaning and inspection.

E. Ceiling Tile: Lay-in ceiling tile may be removed to gain access to HVAC systems during the cleaning process; protect tile from damage and reinstall upon completion; replace damaged tile.

3.4 CLEANING

A. Use any cleaning method recommended by NADCA ACR unless otherwise specified; do not use methods prohibited by NADCA ACR, or that will damage HVAC components or other work, or that will significantly alter the integrity of the system.

B. Obtain Town of Rocky Hill's approval before using wet cleaning methods; ensure that drainage is adequate before beginning.

C. Ducts: Mechanically clean all portions of ducts.

D. Hoses, Cables, and Extension Rods: Clean using suitable sanitary damp wipes at the time they are being removed or withdrawn from their normal position.

E. Registers, Diffusers, and Grilles: When removing, take care to prevent containment exposure due to accumulated debris.

F. Collect debris removed during cleaning; ensure that debris is not dispersed outside the HVAC system during the cleaning process.

G. Store contaminated tools and equipment in polyethylene bags until cleaned in the designated decontamination area.

3.5 REPAIR

A. Repair openings cut in the ventilation system so that they do not significantly alter the airflow or adversely impact the facility's indoor air quality.

B. At insulated ducts and components, accomplish repairs in such a manner as to achieve the equivalent thermal value.

C. Reseal new openings in accordance with NADCA Standard 05.
D. Reseal rigid fiber glass duct systems using closure techniques that comply with UL 181 or UL 181A.

E. When new openings are intended to be capable of being re-opened in the future, clearly mark them and report their locations to Town of Rocky Hill in project report documents.

3.6 FIELD QUALITY CONTROL

A. Ensure that the following field quality control activities are completed prior to application of any treatments or coatings and prior to returning HVAC system to normal operation.

B. Visually inspect all portions of the cleaned components; if not visibly clean as defined in NADCA ACR, re-clean and reinspect.

C. Notify QA+M architecture when cleaned components are ready for inspection.

D. When directed, re-clean components until they pass.

E. Submit evidence that all portions of the system required to be cleaned have been cleaned satisfactorily.

3.7 ANTI-MICROBIAL TREATMENT

A. When directed, apply anti-microbial treatment to internal surfaces.

B. Apply anti-microbial agent after removal of surface deposits and debris.

C. Apply anti-microbial treatments and coatings in strict accordance with the manufacturer’s written recommendations and EPA registration listing.

D. Spray coatings directly onto interior ductwork surfaces; do not “fog” into air stream.

3.8 ADJUSTING

A. After satisfactory completion of field quality control activities, restore adjustable devices to original settings, including, but not limited to, dampers, air directional devices, valves, fuses, and circuit breakers.

3.9 WASTE MANAGEMENT

A. Double-bag waste and debris in 6 mil, 0.006 inch thick polyethylene plastic bags.
B. Dispose of debris off-site in accordance with applicable federal, state and local requirements.

END OF SECTION
SECTION 230500 - MECHANICAL GENERAL CONDITIONS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 DESCRIPTION

A. The General Conditions and Supplementary General Conditions are a part of this Division and are to be considered a part of this Contract.

B. Where items of the General Conditions and Supplementary General Conditions are repeated in other Sections of the Specifications, it is merely intended to qualify or to call particular attention to them. It is not intended that any other parts of the General Conditions and Supplementary General Conditions shall be assumed to be omitted if not repeated therein.

C. This Section applies equally and specifically to all Contractors supplying labor and/or equipment and/or materials as required under each Section of this Division.

D. The following information contains specifications of Work in connection with, and in addition to, this Division:
 1. All drawings associated with the project.
 2. All specifications associated with the project.

E. Division of work responsibilities shall be as defined and directed by the Bidding Agent and/or the Bidding General Contractor.

1.3 INTENT

A. It is the intent of the Specifications and Drawings to call for finished work, tested and ready for operation.

B. Furnish, deliver and install any apparatus, appliance, material or Work not shown on Drawings but mentioned in the Specifications, or vice versa, or any incidental accessories necessary to make the Work complete and perfect in all respects and ready for operation, even if not particularly specified, under their respective Section without additional expense to the Owner.

C. Include in the work minor details not usually shown or specified but necessary for proper installation and operation, as though they were hereinafter shown or specified.

D. Provide Engineer written notice of any materials or apparatus believed inadequate or unsuitable; in violation of laws, ordinances, rules or regulations of authorities having jurisdiction; and any necessary items of Work omitted. In the absence of such written notice, it is mutually
agreed that Work under each Section has included the cost of all required items for the accepted, satisfactory functioning of the entire system without extra compensation.

E. The Work indicated is diagrammatic. The Architect and/or Engineer may require as part of this Contract, the relocation of devices to reasonable distances from the general locations shown.

F. Verbal clarifications of the Drawings or Specifications during the bid period are not to be relied upon. Refer any questions or clarifications to the Engineer at least five Working days prior to bidding to allow for issuance of an addendum. After the five-day deadline, Bidder must make a decision and qualify the Bid, if the Bidder feels it necessary.

1.4 DRAWINGS

A. Drawings are diagrammatic and indicate the general arrangement of systems and work included in the Contract. (Do not scale the Drawings.) Consult the Architectural Drawings and Details for exact location of fixtures and equipment; where same are not definitely located, obtain this information from the Architect.

B. Closely follow Drawings in layout of Work; check Drawings of other Divisions to verify spaces in which work will be installed. Maintain maximum headroom. Where space conditions appear inadequate, Engineer shall be notified before proceeding with installations.

C. Engineer may, without extra charge, make reasonable modifications in the layout as needed to prevent conflict with work of other trades and/or for proper execution of the work.

D. Where variances occur between the Drawings and Specifications or within either of the Documents, include the item or arrangement of better quality, greater quantity or higher cost in the Contract price. The Engineer shall decide on the item and the manner in which the work shall be installed.

1.5 SURVEYS AND MEASUREMENTS

A. Before submitting a Bid, the Contractor shall visit the site and shall become thoroughly familiar with all conditions under which the work will be installed. Contractor will be held responsible for any assumptions, omissions or errors made as a result of failure to become familiar with the site and the Contract Documents.

B. Base all measurements, both horizontal and vertical, from established bench marks. All Work shall agree with these established lines and levels. Verify all measurements at the site and check the correctness of same as related to the Work.

C. Should the Contractor discover any discrepancies between actual measurements and those indicated which prevent following good practice or the intent of the Drawings and Specifications, notify the Engineer do not proceed with that Work until instructions have been received from the Engineer.
1.6 CODES AND STANDARDS

A. The Codes and Standards listed below apply to all Work. Where Codes or Standards are mentioned in these Specifications, follow the latest edition or revision.

B. The current adopted editions of the following State or local Codes apply:
 1. 2015 International Building Code
 2. 2018 Connecticut State Building Code
 3. 2015 International Existing Building Code
 4. 2015 International Mechanical Code
 5. 2015 International Plumbing Code
 6. 2017 National Electrical Code (NFPA 70)
 7. 2015 International Energy Conservation Code

C. All materials furnished and all work installed shall comply with the rules and recommendations of the NFPA, the requirements of the local utility companies, the recommendations of the fire insurance rating organization having jurisdiction and the requirements of all Governmental departments having jurisdiction.

D. Include in the Work, without extra cost to the Owner, any labor, materials, testing, services, apparatus and Drawings in order to comply with all applicable laws, ordinances, rules and regulations, whether or not shown on Drawings and/or specified.

1.7 PERMITS AND FEES

A. Give all necessary notices, obtain all permits; pay all Government and State sales taxes and fees where applicable, and other costs, including utility connections or extensions in connection with the Work. File all necessary Drawings, prepare all Documents and obtain all necessary approvals of all Governmental and State departments having jurisdiction, obtain all required certificates of inspections for Work and deliver a copy to the Engineer before request for acceptance and final payment for the Work.

1.8 SEISMIC RESTRAINT

A. General: This project is in a seismic zone per State and/or Local Codes and Ordinances and all materials and equipment shall be installed, supported, and seismically restrained accordingly. Verify current seismic requirements based on project location and with Code requirements.

B. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in the jurisdiction where the Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of vibration isolation bases and seismic restraints that are similar to those required for this Project in material, design, and extent.
C. Shop Drawings: Show designs and calculations, certified by a professional engineer, for the following:
 1. Design Calculations: Calculations for selection of vibration isolators, design of vibration isolation bases, design of seismic supports and selection of seismic restraints for all equipment and materials.
 2. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to the structure and to the supported equipment. Include auxiliary motor slides and rails, and base weights.
 3. Seismic Restraint Details: Detail fabrication and attachment of restraints, supports and snubbers.
 4. Seismic Separation Assemblies: Refer to the Architectural and/or Structural drawings for locations of seismic joints.

D. Installation: Installation shall be carried out in strict accordance with the Seismic Engineer's submittal, current Code, accepted standards and the equipment and material manufacturers' recommendations.

1.9 COORDINATION

A. Carry out all work in conjunction with other trades and give full cooperation in order that all work may proceed with a minimum of delay and interference. Particular emphasis is placed on timely installation of major apparatus and furnishing other Contractors, especially the General Contractor or Construction Manager, with information as to openings, chases, sleeves, bases, inserts, equipment locations, panels, access doors, etc. required by other trades, and to allow for serviceable access to equipment.

B. Mechanical contractors' shall initiate coordination drawings and sections clearly showing how the work is to be installed in relation to the work of other trades, at no extra charge to the Owner. The Contractors’ shall prepare coordination drawings at a scale no less than 1/4”=1'-0", showing the work of all trades, including but not limited to, the following: proposed ductwork installation in detail, including ceiling heights, approved structural steel shop drawings, duct heights, access doors, light fixtures, registers and diffusers, sprinkler piping, electrical distribution conduits, wires, panels and any other electrical work which may conflict with the sheet metal ducts or piping, waste and vent piping, water piping, storm piping, and rain leaders. Provide elevation details showing connections and equipment layout and configuration based on approved submittals. Each shall use a different color code. A coordination meeting of all Contractors involved is then to be held and all possible conflicts are to be resolved. All trades shall sign acceptance of the drawings and then shall submit two (2) prints of each drawing to the Engineer for record.

C. Contractors are required to examine all of the Project Drawings and mutually arrange Work so as to avoid interference. In general, ductwork, heating piping, sprinkler piping and drainage lines take precedence over water, gas and electrical conduits. The Engineer regarding the arrangement of Work, which cannot be agreed upon by the Contractors, will make final decisions. Service of equipment will take precedence.

D. Where the Work of the Contractor will be installed in close proximity to or will interfere with Work of other trades, assist in working out space conditions to make a satisfactory adjustment.
E. If Work is installed before coordinating with other Divisions or so as to cause interference with Work of other Sections, the Contractor causing the interference will make necessary changes to correct the condition without extra charge to the Owner.

F. Initial contact and coordination has been conducted with utility entities for the purpose of the preparation of Bid Documents. The Contractor shall coordinate all final specific utility requirements.

1.10 ACCEPTANCES

A. The equipment, materials, Workmanship, design and arrangement of all Work installed are subject to the review of the Engineer.

B. Within 30 days after the awarding of a Contract, submit to the Engineer for review a list of manufacturers of equipment proposed for the Work. The intent to use the exact makes specified does not relieve the Contractor of the responsibility of submitting such a list.

C. If extensive or unacceptable delivery time is expected on a particular item of equipment specified, notify the Engineer, in writing, within 30 days of the awarding of the Contract. In such instances, deviations may be made pending acceptance by the Engineer or the Owner's representative.

D. Where any specific material, process or method of construction or manufactured article is specified by reference to the catalog or model number of a manufacturer, the Specifications are to be used as a guide and are not intended to take precedence over the basic duty and performance specified or noted on the Drawings. In all cases, verify the duty specified with the specific characteristics of the equipment offered for review. Equipment characteristics are to be used as mandatory requirements where the Contractor proposes to use an acceptable equivalent.

E. If material or equipment is installed before shop drawing review, liability for its removal and replacement is assumed by the Contractor, at no extra charge to the Owner, if, in the opinion of the Engineer, the material or equipment does not meet the intent of the Drawings and Specifications.

F. Failure on the part of the Engineer to reject shop drawings or to reject Work in progress shall not be interpreted as acceptance of Work not in conformance with the Drawings and/or Specifications. Correct Work not in conformance with the Drawings and/or Specifications whenever non-conformance is discovered.

1.11 EQUIPMENT DEVIATIONS

A. Where the Contractor proposes to deviate (substitute or provide an equivalent) from the equipment or materials as hereinafter specified, he shall do so by making a request in writing a minimum of 14 calendar days prior to submitting his bid. The request shall include a detailed description of the proposed deviation, manufacturer's equipment cuts, copy of manufacturer's warranty and a line-by-line comparison detailing how the proposed product differs from the
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

specified product. The proposed deviation must be equivalent or better than the specified product as judged by the Engineer.

1. The Base Bid shall be based on using the materials and equipment as specified and scheduled with no exceptions. Equipment Manufacturers Scheduled on Drawings are considered Base Product Specification and any other acceptable manufacturers listed in the specifications is considered an equipment deviation and subject to the requirements above. When any alternate manufacturer does not qualify acceptable, as determined by the Engineer, provide the Base Product manufacturer at no additional cost to Owner.

2. Where an equivalent manufacturer is listed in the specifications, it may or may not indicate that there is an equal product available. Any products must meet all criteria of the Base Product Specification as determined by the Engineer.

B. Substitutions and Equipment Deviations will not be considered if they have a direct bearing on the changing or revising of Contract Documents or if it involves other Contractor's scope of work or their equipment. Coordination with all trades is required and must be acceptable to all other involved Contractors.

C. Substitutions may be considered for one of the following:
 1. Substitution for Cause: Changes proposed by the Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of warranty terms.
 2. Substitutions for Convenience: Changes proposed by the Contractor that are not required in order to meet other Project requirements, but may offer advantage to either the Owner or Contractor.

D. In these Specifications and on the accompanying Drawings, one or more makes of materials, apparatus or appliances may have been specified for use in this installation. This has been done for convenience in fixing the standard of workmanship, finish and design required for installation. In the event that only one (1) manufacturer of a product is specified and it is found that the manufacturer has discontinued the product, the Contractor shall use an acceptable equivalent product that meets the requirements of an equivalent product, as noted below, and has all the features of the originally specified product. The details of workmanship, finish and design, and the guaranteed performance of any material, apparatus or appliance which the Contractor desires to deviate for those mentioned herein shall also conform to these standards.

E. Where no specific make of material, apparatus or appliance is mentioned, any first-class product made by a reputable manufacturer may be submitted for the Engineer's review.

F. Where two or more names are given as equivalents or where one name only is used and is followed by the words "or acceptable equivalent", the Contractor must use the item named or he may apply for an equipment deviation through the prescribed manner in accordance with this Specification.

G. Equipment, material or devices submitted for review as an "accepted equivalent" shall meet the following requirements:
 1. The equivalent shall have the same construction features such as, but not limited to:
 2. Material thickness, gauge, weight, density, etc.
 3. Welded, riveted, bolted, etc., construction
 4. Finish, undercoatings, corrosion protection
 5. The equivalent shall perform with the same or better operating efficiency.
 6. The equivalent shall have equal or greater reserve capacity.
7. The equivalent shall be locally represented by the manufacturer for service, parts and technical information.

8. The equivalent shall bear the same labels of performance certification as is applicable to the specified item, such as AMCA or ARI labels.

H. Where the Contractor proposes to use an item of equipment other than specified or detailed on the Drawings which requires any redesign of the structure, partitions, foundations, piping, wiring or any other part of the mechanical, electrical or architectural layout, all such redesign and all new drawings and detailing required therefore shall be prepared by the Designers of Record at the expense of the Contractor and at no additional cost to the Owner.

I. Where such accepted deviation or substitution requires a different quantity and arrangement of piping, ductwork, valves, pumps, insulation, wiring, conduit and equipment from that specified or indicated on the Drawings, the Contractor shall, with the acceptance by the Engineer, furnish and install any such additional equipment required by the system at no additional cost to the Owner, including any costs added to other trades due to the substitution.

J. The Engineer shall determine if an "accepted equivalent" to a manufacturer listed in the Specifications is considered acceptable.

1.12 SHOP DRAWINGS

A. Refer to individual specification sections for additional submittal information.

B. The Contractor shall submit for review detailed shop drawings of all equipment and material specified in each section and coordinated ductwork layouts. No material or equipment may be delivered to the job site or installed until the Contractor has received shop drawings for the particular material or equipment which have been properly reviewed.

C. Shop drawings shall be submitted within 60 days after award of Contract before any material or equipment is purchased. The Contractor shall submit for review copies of all shop drawings to be incorporated in the Contract. Refer to the General Conditions and Supplementary General Conditions for the quantity of copies required for submission. Where quantities are not specified, provide seven (9) copies for review.

D. Provide shop drawings for all devices specified under equipment specifications for all systems, materials, equipment and/or devices. Shop drawings shall include manufacturers' names, catalog numbers, cuts, diagrams and other such descriptive data as may be required to identify and accept the equipment. A complete list in each category (example: all fixtures) of all shop drawings, catalog cuts, material lists, etc., shall be submitted to the Engineer at one time. No consideration will be given to a partial shop drawing submittal. Partial submissions shall be rejected.

E. Equipment shop drawings shall contain full range performance curves, graphs, tables or other pertinent data which clearly indicates operational range of a given unit size. Computer generated/plotted curves, based solely on design performance, will not be accepted.

F. All specific options and/or alternatives shall be clearly indicated. Failure to do so shall be grounds for rejection.
G. Submittals shall be marked with the trade involved, i.e., HVAC, plumbing, fire protection, etc. and the specific associated specification section.

H. Where multiple quantities or types of equipment are being submitted, provide a cover sheet (with a list of contents) on the submittal identifying the equipment or material being submitted.

I. Failure to submit shop drawings in ample time for review shall not entitle the Contractor to an extension of Contract time. Contractor must allow for a one week review at the Engineer's office plus normal delivery time to the G.C., Architect, Engineer, and return to the Architect, and G.C. No claim for extension by reason of such default will be allowed, nor shall the Contractor be entitled to purchase, furnish and/or install equipment which has not been reviewed by the Engineer. The Contractor shall incur all costs associated with delay of construction due to equipment and/or materials arriving late due to late or improper shop drawing submittal.

J. The Contractor shall furnish all necessary templates, patterns, etc., for installation work and for the purpose of making adjoining work conform; furnish setting plans and shop details to other trades as required.

K. Acceptance rendered on shop drawings shall not be considered as a guarantee of measurements or building conditions. Where drawings are reviewed, review does not indicate that drawings have been checked in detail; said approval does not in any way relieve the Contractor from his responsibility or necessity of furnishing material or performing work as required by the Contract Drawings and Specifications. Verify available space prior to submitting shop drawings.

L. Acceptance of shop drawings shall not apply to quantity nor relieve Contractor of his responsibility to comply with intent of Drawings and Specifications.

M. Acceptance of shop drawings is final and no further changes will be allowed without the written consent of the Engineer.

N. Shop drawing submittal sheets which may show items that are not being furnished shall have those items crossed off to clearly indicate which items will be furnished.

O. Bidders shall not rely on any verbal clarification of the Drawings and/or Specifications. Any questions shall be referred to the Engineer at least five (5) working days prior to Bidding to allow for issuance of an Addendum. After the five (5) day deadline, Bidder shall make a decision and qualify the Bid, if the Bidder deems if necessary.

P. Contractor shall make any corrections required by Engineer and shall resubmit required number of corrected copies of shop drawings or new samples until accepted. Contractor shall direct specific attention in writing or on resubmitted shop drawings to revisions other than corrections requested by Engineer on previous submissions. Engineer shall review no more than one resubmittal of any shop drawing or sample at Owner's expense. The fees for review of additional resubmittals shall be paid by the Contractor at the Engineer's standard rates.
1.13 CHANGES IN WORK

A. A Change Order is a written order to the Contractor signed by the Owner and the Architect, issued after Contracts have been awarded, authorizing a change in the work or an adjustment in the Contract sum or the Contract time. A Change Order signed by the Contractor indicates his agreement therewith, including the adjustment in the Contract sum or the Contract time.

B. All changes in the work shall follow the recommendations of the AIA "General Conditions of the Contract for Construction", Article 12.

1.14 MANUFACTURER'S IDENTIFICATION

A. All component parts of each item of equipment or device shall bear the manufacturer's nameplate giving name of manufacturer, description, size, type, serial and model number, electrical characteristics, etc., in order to facilitate maintenance or replacement. Nameplate data shall not be obstructed. The nameplate of a Contractor or distributor will not be acceptable.

B. All material and equipment for the electrical portion of the mechanical systems shall bear the label of or be listed by UL, or other accredited authoritative agencies or testing organizations approved by the authority having jurisdiction.

1.15 RECORD DRAWINGS

A. Maintain at the job site a record set of Mechanical Drawings on which any changes in location or routing of all equipment, materials and access panels shall be recorded.

B. At the end of construction, the Contractor shall provide the Owner with a complete set of As-Built Drawings, including all updated coordination drawings, ductwork and piping plans. As-Builts shall be drawn on the latest version of Autocad or compatible software, approved in writing, prior to submittal.

1.16 MATERIALS AND WORKMANSHIP

A. All materials and apparatus required for the work, except as otherwise specifically indicated, shall be new, of first-class quality, and shall be furnished, delivered, erected, connected and finished in every detail and be so selected and arranged as to fit properly into the building spaces. Where no specific type or quality of material is given, a first-class standard article as accepted by industry standards shall be furnished.

B. The Contractor shall furnish the services of an experienced superintendent who shall be constantly in charge of the installation of the work together with all skilled workmen, fitters, metal workers, welders, helpers and laborers required to unload, transfer, erect, connect, adjust, start, operate and test each system.

C. Unless otherwise specifically indicated on the Drawings or Specifications, all equipment and materials shall be installed with the acceptance of the Engineer and in accordance with the
recommendations of the manufacturer. This includes the performance of such tests as the manufacturer recommends.

D. All labor for installation of mechanical systems shall be performed by experienced, skilled tradesmen under the supervision of a licensed journeyman foreman. All work shall be of a quality consistent with good trade practice and shall be installed in a neat, workmanlike manner. The Engineer reserves the right to reject any work which, in his opinion, has been installed in a substandard, dangerous or unserviceable manner. The Contractor shall replace said work in a satisfactory manner at no extra cost to the Owner.

1.17 PROTECTION OF MATERIALS AND EQUIPMENT

A. Work under each Section shall include protecting the work and material of all other Sections from damage by work or workmen and shall include making good all damage thus caused.

B. The Contractor shall be responsible for work and equipment until the facility has been accepted by the Owner. Protect work against theft, injury or damage and carefully store material and equipment received on site which is not immediately installed. Close open ends of work with temporary covers or plugs during construction to prevent entry of foreign material.

C. Work under each Section includes receiving, unloading, uncrating, storing, protecting, setting in place and completely connecting equipment supplied under each Section. Work under each Section shall also include exercising special care in handling and protecting equipment and fixtures, and shall include the cost of replacing any of the equipment and fixtures which are missing or damaged.

D. Equipment and material stored on the job site shall be protected from the weather, vehicles, dirt and/or damage by workmen or machinery. Insure that all electrical or absorbent equipment or material is protected from moisture during storage.

1.18 BASES AND SUPPORTS

A. Unless otherwise specifically noted, the Contractor shall furnish all necessary supports, rails, framing, bases and piers required for all equipment furnished under this Division.

B. Unless otherwise indicated in individual trade Sections, pumps, fans, air handlers, boilers, chillers, tanks, compressors and other rotating machinery shall be mounted on a minimum of six (6") inch high concrete pads which shall be furnished and installed per Division 3. All pads shall be extended six (6") inches beyond machine base in all directions with top edge chamfered. Shop drawings of all foundations and pads shall be submitted to the Engineer for review before they are constructed. The Mechanical Contractor shall field coordinate all required dimensional and necessary loading information.

C. Construction of foundations, supports, pads, bases and piers where mounted on the floor shall be of the same finish quality as the adjacent and surrounding flooring material.

D. Unless otherwise shown, all equipment shall be securely attached to the building structure in an acceptable manner. Attachments shall be of a strong and durable nature; any attachments that
are insufficient, in the opinion of the Engineer, shall be replaced as directed without extra cost to the Owner.

E. All equipment supports shall be designed and constructed such that the equipment will be capable of resisting both vertical and horizontal movement. The equipment shall be positively anchored to the bases or supports to resist vertical movement. The equipment and its supports shall be provided with suitable restraints to resist horizontal movement from any direction as dictated by applicable seismic Codes.

1.19 SLEEVES, INSERTS AND ANCHOR BOLTS

A. The Contractor shall provide, set in place and be held responsible for the location of all sleeves, inserts and anchor bolts required for the work. In the event that failure to do so requires cutting and patching of finished work, it shall be done at the Contractor's expense.

B. It is the responsibility of the Contractor to furnish cast-in-place steel sleeves, inserts and anchors in sufficient time to be installed during initial concrete pours. Where job schedules make this impossible, coordinate and obtain acceptance from the Structural Engineer for alternate installation methods.

C. All pipes and conduits passing through floors, walls or partitions shall be provided with sleeves having an inside diameter one (1") inch larger than the outside diameter of the pipe, conduit or insulation enclosing the pipe.

D. Piping insulation shall run continuous through sleeve.

E. Penetrations through fire-rated walls, ceilings and all floors (except slab on grade) in which piping or ducts pass shall be filled solidly with acceptable fire-stopping material. Sleeves shall be steel or a UL / FM listed and approved assembly.

F. When ducts, piping or conduit penetrate the floor of a mechanical room located above an occupied space, such penetrations shall be made completely watertight, such that a liquid leak shall not pass through the penetration.

1.20 FIRE-STOPS AND SEALS

A. Refer to Division 7 Specification for additional and more specific information.

B. Fire-stopping systems shall be submitted as shop drawing.

C. Penetrations through fire-rated walls, ceiling or floors shall be sealed with a UL approved fire-stop fitting classified for an hourly rating equivalent to the fire rating of the wall, ceiling or floor.

D. Thruwall and floor seals shall be used to provide a positive means of sealing pipes or ducts which pass through the concrete foundation of a structure below grade or below ground water level. Seals shall also be used at entry points through concrete walls or floors which must be sealed.
1.21 CUTTING AND PATCHING

A. All cutting and patching shall be done per Division 1 requirements. The Contractor shall furnish sketches showing the location and sizes of all openings, chases, etc., required for the installation of work.

B. Work under this Division shall include furnishing, locating and setting inserts and/or sleeves required before the floors and walls are built or be responsible for cutting, drilling or chopping where sleeves and inserts were not installed or correctly located. The Contractor shall do all drilling required for the installation of hangers.

C. Exercise extreme caution when core drilling or punching openings in concrete floor slabs in order to avoid cutting or damaging structural members. No structural members or structural slabs/floors shall be cut without the written acceptance of the Structural Engineer and all such cutting shall be done in a manner directed by him.

1.22 SCAFFOLDING, RIGGING, HOISTING

A. The Contractor shall furnish all scaffolding, rigging, hoisting and services necessary for erection and delivery into the premises any equipment and apparatus furnished under this Division. Remove same from premises when no longer required.

1.23 EXCAVATION AND BACKFILLING

A. Excavation and backfilling shall be done per Division 2 of the Specifications.

B. It is the responsibility of the Contractor to coordinate sizes, depths, fill and bedding requirements and any other excavation work required under this Division per code and local utility requirements.

1.24 WATERPROOFING

A. Where any work pierces waterproofing, including waterproof concrete and floors in wet areas, the method of installation shall be reviewed by the Engineer before work is done. The Contractor shall furnish all necessary sleeves, caulking and flashing required to make openings absolutely watertight.

1.25 ACCESSIBILITY AND ACCESS PANELS

A. The Contractor shall be responsible for the sufficiency of the size of shafts and chases, the adequate thickness of partitions, and the adequate clearance in double partitions and hung ceilings for the proper installation of the work.

B. Locate all equipment which must be serviced, operated or maintained in fully accessible positions. Equipment shall include, but not be limited to: motors, controllers, coil, valves, switchgear, drain points, etc. Access doors shall be furnished if required for better
accessibility. Minor deviations from the Drawings may be made to allow better accessibility, but changes of magnitude or which involve extra cost shall not be made without the acceptance of the Engineer.

C. Access doors in walls, ceilings, floors, etc., shall be field coordinated. It is the responsibility of the Contractor to coordinate and provide information regarding the sizes and quantities of access doors required for his work. The Contractor shall arrange his work in such a manner as to minimize the quantity of access doors required, such as grouping shutoff valves in the same area. Where possible, locate valves in already accessible areas, such as lay-in ceilings, etc.

D. On a clean set of prints, the Contractor shall mark in red pencil the location of each required access door, including its size and fire rating (if any), and shall submit the print to the Architect for review before access doors are purchased or installed.

E. Upon completion of the Project, the Contractor shall physically demonstrate that all equipment and devices installed have been located and/or provided with adequate access panels for repair, maintenance and/or operation. Any equipment not so furnished shall be relocated or provided with additional access panels by the installing Contractor at no additional cost to the Owner. All access panel or door locations shall be indicated on Owner's final as-built record drawings.

F. Permanent ladders for access to equipment when shown on Plans shall be furnished and installed. Coordinate exact requirements in field.

1.26 TEMPORARY OPENINGS

A. The Contractor shall ascertain from an examination of the Drawings whether any special temporary openings in the building will be required for the admission of apparatus provided under this Division and shall coordinate the requirements accordingly. In the event of failure of the Contractor to give sufficient notice in time to arrange for these openings during construction, the Contractor shall assume all costs of providing such openings thereafter.

1.27 SHUTDOWNS

A. When installation of a new system requires the temporary shutdown of an existing operating system, the connection of the new system shall be performed at such time as designated by the Owner's representative.

B. The Engineer and the Owner shall be notified of the estimated duration of the shutdown period at least ten (10) days in advance of the date the work is to be performed.

C. Work shall be arranged for continuous performance whenever possible. The Contractor shall provide all necessary labor, including overtime if required, to assure that existing operating services will be shut down only during the time actually required to make necessary connections.
1.28 TAGS AND CHARTS

A. Each valve and piece of apparatus under this Division shall be provided with suitable brass or laminated plastic tags securely fastened with brass chains, screws or rivets. Equipment shall be numbered with laminated plastic tags or neatly stenciled letters two (2") inches high using designations in equipment schedules and/or shall conform to a directory indicating number, location and use of each item. Directories shall be prepared under each Section and shall be glass framed.

B. Directory shall indicate valve tag number and the unit number, floor/area branch line, main line, service or other pertinent data to quickly and easily identify the valve’s purpose.

1.29 ESCUTCHEONS

A. The Contractor shall provide escutcheons on pipes wherever they pass through floors, ceilings, walls or partitions in finished visible locations.

1.30 PAINTING

A. All finish painting in completed areas shall be performed per Division 9 of the Specifications.

B. All materials shipped to the job site under this Division, such as grilles, registers and/or radiation covers, shall have standard manufacturer’s finish, unless otherwise specified by Architect.

C. The Contractor shall paint the interior of all ducts wherever the interior of the duct can be seen through a register or louver. Paint shall be flat black, rust preventative type.

D. All outdoor piping, fittings and hangers shall be properly primed with zinc-rich primer and finished with a minimum of two (2) coats of high grade exterior enamel.

1.31 PIPE EXPANSION

A. All pipe connections shall be installed to allow for freedom of movement of the piping during expansion and contraction without springing. Provide engineered design, layout, details and fabrication, submitted with registered professional engineer sign and seal, of swing joints, expansion loops and expansion joints with proper anchors and guides. Pay particular attention to plastic piping with high coefficients of expansion.

B. Consideration of required seismic lateral restraints shall be given when anchoring piping and making provision for expansion.
1.32 ELECTRICAL CONNECTIONS

A. Unless otherwise specified, all wiring shall be furnished and installed per Division 26 Specifications.

B. All motor controllers not factory mounted on mechanical equipment shall be furnished, mounted, and installed by the Division 26 contractor, and shall be coordinated with this contractor. Provide properly sized overload heaters and all required accessories with all motor controllers. See Division 26 Motor Controllers for motor controller requirements.

C. All power wiring shall be furnished and installed per Division 26 complete from power source to motor or equipment junction box including power wiring through the motor controller and proper means of disconnect per NEC and Division 26. The Division 26 Contractor shall provide all disconnects, unless noted otherwise.

1.33 QUIET OPERATION

A. If noise level is deemed objectionable by the Owner/Engineer, the Contractor shall test and record sound levels in the presence of the Owner/Engineer. The sound level shall be observed on the "A" weighting network of a sound level or sound survey meter. The ASHRAE "Guide and Data Book" provides a means to determine sound level of mechanical equipment when the total of background plus equipment sound levels exceeds the minimum acceptable equipment sound level.

B. If objectionable noises or vibrations of any magnitude are produced and transmitted to occupied portions of the building by apparatus, piping, ducts or other parts of the mechanical work, the Contractor shall make such changes or additions as necessary without extra cost to the Owner.

1.34 MAINTENANCE

A. The Contractor shall provide the necessary skilled labor to assure the proper operation and to provide all required current and preventative maintenance for all equipment and controls provided under this Division until final acceptance of the building by the Owner. The Contractor shall not assume acceptance of the building by the Owner until he receives written notification.

B. The Contractor shall receive calls for any and all problems experienced in the operation of the equipment provided under this Division and he shall take steps to immediately correct any deficiencies that may exist.

C. The Contractor shall provide a check list and shall put a copy of it in the boiler or main mechanical room. The check list shall itemize each piece of equipment furnished under his Section.

D. The Contractor shall certify on this check list that he has examined each piece of equipment and that, in his opinion, it is operating as intended by the manufacturer, it has been properly
lubricated, and that all necessary current and preventative maintenance has been performed as recommended by the manufacturer and by good and accepted practice.

E. The Contractor shall check all controls in the building to ascertain that they are functioning as designed. This shall apply to all thermostats, aquastats, humidistats, freezestats and firestats, etc. This portion of the work shall be performed by the Contractor who installed the controls.

F. During construction, the Contractor shall ensure that all filters are in place on all equipment. If the equipment is operated during construction (see restrictions section of this specification), strict attention shall be paid to maintaining clean and effective filters and cleaning ductwork and equipment. Filters shall be new and/or clean when the system testing and balancing takes place. The Contractor shall bear the cost of all filters and media during construction until final acceptance by the Owner. This requirement shall apply equally to fluid filters and strainers.

G. Where normal preventative maintenance for any piece of equipment requires special tools, the Contractor shall furnish the appropriate tools for that piece of equipment (i.e., special filter removal hooks, valve wrenches, etc.).

1.35 DEMOLITION

A. All required demolition work shall be performed by the Contractor. All demolition work shall be performed in a neat and orderly fashion.

B. Demolition work, if indicated on the drawings, is intended for general information only and is not intended to describe the full extent of demolition work required under this Contract. All existing mechanical work and systems, including but not limited to piping, equipment, ductwork, wiring, controls, hangers, and supports, made obsolete by this project, shall be removed in their entirety under this Contract, unless noted otherwise.

C. After piping, ductwork, equipment, etc., has been removed, neatly cap remaining ductwork and piping, and insulate caps to match the existing adjacent ductwork and piping. In finished areas, all ductwork and piping shall be cut back to a concealed location, i.e., within walls, above ceilings, etc., before capping.

D. Before submitting his Bid, the Contractor shall visit the site with the Contract Documents in hand, and shall inspect all existing systems to determine the extent of demolition work involved. Particular attention is drawn to the removal of existing walls or portions of existing walls. In those areas, all exposed and concealed piping, ductwork, equipment, etc., running across or through affected areas shall be removed as required. Piping and ductwork shall then be either capped, or, if required for the proper continuing operation of an existing system to remain, piping and ductwork shall be rerouted around the affected areas and reconnected as required.

E. In general, it shall be the responsibility of the Contractor to remove demolished equipment, piping, ductwork, etc., from the site and properly dispose of it. If the Owner shall so request, however, the Contractor shall turn over demolished equipment, etc., to the Owner for the Owner's use. Unless otherwise noted, demolished work shall not be abandoned in place. Contractor shall make safe all utilities pertaining to this section.
1.36 AIR ELIMINATION

A. The Contractor shall be responsible for bleeding all air from closed hydronic piping systems after the system has been filled, and thereafter rebleeding as often as required to completely eliminate all air from the system.

B. Where work on an existing piping system has allowed air to enter that system, the Contractor shall also bleed that system even if no piping work was done in the area where air has developed.

C. Where air cannot be bled from any piping due to the absence of an air vent, the Contractor shall install a manual air vent in locations required to successfully bleed such air.

D. Where the piping layout would require an air vent in an inaccessible location, the Contractor shall install an extended 1/4-inch copper bleed line and petcock to an accessible location such as a closet, mechanical room, above lay-in ceiling, etc.

1.37 LUBRICATION

A. All equipment installed under this Contract having moving parts and requiring lubrication shall be properly lubricated according to manufacturer's recommendations prior to testing and operation. Any such equipment discovered to have been operated before lubrication by the Contractor is subject to rejection and replacement at no additional cost to the Owner. Units furnished with sealed bearings are exempted.

B. The Contractor shall furnish and install, as appropriate on all equipment requiring lubrication, Zerk pressure gun grease fittings or sight gravity-feed oilers equipped with shutoff and needle valve adjustment. Units furnished with sealed bearings and lifetime lubrication are exempted. All fittings and oilers are to be fully accessible for lubrication with equipment which does not require special adapters. Where fittings would be otherwise inaccessible, furnish and install extended grease lines.

1.38 CLEANING

A. The Contractor shall be responsible for keeping the jobsite clean, safe and neat throughout the duration of construction. The Contractor shall clean up his own debris daily and shall coordinate removal of rubbish and debris with the General Contractor/Construction Manager.

B. No debris, construction materials, cigarette butts, coffee cups, etc., shall be left above suspended ceilings.

C. Terminal equipment and plumbing fixtures shall cleaned at substantial completion.

D. If any part of a system should be stopped or damaged by any foreign matter after being placed in operation, the system shall be disconnected, cleaned and reconnected wherever necessary to locate and/or remove obstructions. Any work damaged in the course of removing
obstructions shall be repaired or replaced when the system is reconnected at no additional cost to the Owner.

E. During the course of construction, all ducts and pipes shall be capped in an acceptable manner to insure adequate protection against the entrance of foreign matter.

F. Upon completion of all work under the Contract, the Contractor shall remove from the premises all rubbish, debris and excess materials left over from his work. Any oil or grease stains on floor areas caused by the Contractor shall be removed and floor areas left clean.

1.39 OPERATING INSTRUCTIONS

A. Upon completion of all work and tests, the Contractor shall furnish the necessary skilled labor and helpers for operating his system and equipment for a period of 4 hours unless specified otherwise under each applicable Section of this Division. During this period, he shall fully instruct the Owner or the Owner's representative in the operation, adjustment and maintenance of all equipment furnished. The Contractor shall give at least 72 hours notice to the Owner and the Engineer in advance of this period.

B. The Contractor shall formally submit for delivery to the Engineer three (3) complete bound sets of typewritten or blueprinted instructions for operating and maintaining all systems and equipment included in this Division. All instructions shall be submitted in draft for review prior to final issue. Manufacturer's advertising literature or catalogs will not be acceptable for operating and maintenance instruction.

C. The Contractor, in the above-mentioned instructions, shall include the maintenance schedule for the principal items of equipment furnished under this Division.

D. The appropriate Contractor shall physically demonstrate procedures for all routine maintenance of all equipment furnished under each respective Section to assure accessibility to all devices.

E. An authorized manufacturer's representative shall attest in writing that the equipment has been properly installed prior to startup of any major equipment. The following equipment will require this inspection: pumps; air conditioning equipment, controls, air handling equipment, boilers. These letters will be bound into the operating and maintenance books.

F. Refer to individual trade Sections for any other particular requirements related to operating instructions.

1.40 ADJUSTING AND TESTING

A. After all the equipment and accessories to be furnished are in place, they shall be put in final adjustment and subjected to such operating tests so as to assure the Engineer that they are in proper adjustment, the control operate as described in the sequence of operation and all systems are in satisfactory, permanent operating condition.

B. Where requested by the Engineer, a factory-trained service engineering representative shall inspect the installation and assist in the initial startup and adjustment to the equipment. The
period of these services shall be for such time as necessary to secure proper installation and adjustments. After the equipment is placed in permanent operation, the service engineering representative shall supervise the initial operation of the equipment and instruct the personnel responsible for operation and maintenance of the equipment. The service engineering representative shall notify the Contractor in writing that the equipment was installed according to manufacturer's recommendations and is operating as intended by the manufacturer.

1.41 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service.

B. Complete installation, startup checks and functional tests according to manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

E. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

F. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

G. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

H. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

1.42 GUARANTEES

A. The Contractor shall guarantee all equipment, material and workmanship under these Specifications and the Contract for a period of one (1) year from the date of final acceptance by Owner, unless otherwise noted.

B. All refrigeration compressors shall have five (5) year guarantee from the date of final acceptance by the Owner unless otherwise noted.
C. During this guarantee period, all defects developing through faulty equipment, materials or workmanship shall be corrected or replaced immediately by the Contractor without expense to the Owner. Such repairs or replacements shall be made to the Engineer's satisfaction.

1.43 RESTRICTIONS

A. Mechanical equipment provided under this Division may not be used for temporary heating/cooling requirements due to premature wear and dirt/dust infiltration. Equipment shall be protected from dust and debris during construction. Duct opening shall be protected during construction to prevent dust and debris from being transported through ductwork to equipment or other spaces and to ensure ductwork is clean and ready for use at the time of equipment start-up. Written approval may be obtained from the Owner only after submission of a written cleaning plan and guarantee/warranty extension.

B. Piping shall not be run in any concrete floor slab. Written approval from the Structural Engineer may be obtained only after submission and approval of a layout shop drawing.

PART 2 PRODUCTS - NOT USED.

PART 3 EXECUTION - NOT USED.

END OF SECTION
SECTION 230501 - MECHANICAL DEMOLITION

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Removal and disposal of existing heating system as shown on the Drawings.

B. Demolition shall include the removal of all hangers and supports, anchors and other items not required for the new work.

1.3 SEQUENCING AND SCHEDULING OF WORK

A. All piping to be completely drained prior to commencing demolition.

B. All power to equipment being removed shall be disconnected by electrical contractor prior to commencing demolition.

C. Schedule and coordinate demolition with new construction to minimize frequency and duration of work in occupied areas.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify existing conditions in the field. Note which items are to remain and which items are to be removed as indicated on drawings.

B. Verify that abandoned wiring and equipment serve only abandoned facilities.
C. Demolition drawings are based on casual field observation and existing record documents.

D. Report discrepancies to Engineer before disturbing existing installation.

E. Beginning of demolition means installer accepts existing conditions.

3.2 PREPARATION

A. Disconnect electrical systems in walls, floors, and ceilings to be removed.

B. Drain systems to be removed.

C. Provide temporary piping, ductwork, control wiring, and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or piping, coordinate shut-down time with owner.

3.3 DEMOLITION AND EXTENSION OF EXISTING MECHANICAL WORK

A. All demolition work shall be scheduled and coordinated in order to accommodate construction phasing schedule.

B. Remove, relocate, and extend existing installations to accommodate new construction.

C. Remove abandoned piping to source of supply, provide isolation valve and cap at mains.

D. Contractor shall make safe all work associated with this division.

E. Disconnect and remove mechanical piping and fittings serving equipment that has been removed.

F. Disconnect and remove existing equipment, piping and fittings as indicated on the drawings.

G. Premature or excessive demolition or failure to retain components of the existing heating and plumbing systems shall result in the Contractor providing replacement at no additional cost to Owner.

3.4 CLEANING AND REPAIR

A. Clean and repair existing materials and equipment which remain or are to be reused in accordance with manufacturer's recommended maintenance procedures.

END OF SECTION
SECTION 230516 - EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Flexible pipe connectors.

B. Flexible- hose packless expansion joints.

C. Alignment guides and anchors.

D. Expansion joints and compensators.

E. Pipe loops, offsets, and swing joints.

1.3 RELATED REQUIREMENTS

A. Section 230548 - Vibration and Seismic Controls for HVAC Systems.

B. Section 232113 - Hydronic Piping.

1.4 REFERENCE STANDARDS

B. EJMA (STDS) - EJMA Standards; Tenth Edition.

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: For each type of product indicated.
1. Flexible Pipe Connectors: Indicate maximum temperature and pressure rating, face-to-face length, live length, hose wall thickness, hose convolutions per foot and per assembly, fundamental frequency of assembly, braid structure, and total number of wires in braid.

C. Delegated Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for the preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

D. Project Record Documents: Record installed locations of flexible pipe connectors, expansion joints, anchors, and guides.

E. Maintenance Data: Include adjustment instructions.

1.6 WARRANTY

A. 3 Year full replacement warranty from the date of final acceptance by Owner, unless otherwise noted.

PART 2 PRODUCTS

2.1 FLEXIBLE PIPE CONNECTORS - STEEL PIPING

A. Manufacturers:
 1. Flex-hose, Inc.: www.flexhose.com
 2. The Metraflex Company: www.metraflex.com
 3. Victaulic Company: www.victaulic.com

B. General: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by center section of flexible hose.

C. Flexible Hose: Corrugated stainless steel (or bronze) close-pitch hose with stainless steel (or bronze) overbraid.

D. Pressure Rating: Design for testing to 1.5 times the maximum rated working pressure and a minimum 4:1 (burst to working) safety factor.

E. Rating: Operating temperatures up to 850 Deg. F for stainless steel and 400 Deg. F for bronze.
F. Size: Use pipe sized units.

G. Three Victaulic flexible type couplings may be used in lieu of a flexible connector for vibration attenuation at equipment connections. The couplings shall be placed in close proximity to the source of the vibration.

2.2 ACCESSORIES

A. Pipe alignment guides and anchors as required by manufacturer.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install flexible pipe connectors on pipes connected to vibration isolated equipment. Provide line size flexible connectors.

C. Install flexible connectors at right angles to displacement. Install one end immediately adjacent to isolated equipment and anchor other end. Install in horizontal plane unless indicated otherwise.

D. Anchor pipe to building structure where required. Provide pipe guides so movement is directed along axis of pipe only. Erect piping such that strain and weight is not on cast connections or apparatus.

E. Provide support and equipment required to control expansion and contraction of piping. Provide loops, pipe offsets, and swing joints, or expansion joints where required.

END OF SECTION
SECTION 230519 - METERS AND GAUGES FOR HVAC PIPING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Flow meters.

B. Pressure gauges and pressure gauge taps.

C. Thermometers and thermometer wells.

D. Test plugs.

1.3 RELATED REQUIREMENTS

A. Section 232113 - Hydronic Piping.

1.4 REFERENCE STANDARDS

A. ASME B40.100 - Pressure Gauges and Gauge Attachments; 2013.

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittal Procedures, for submittal procedures.

B. Product Data: Provide list that indicates use, operating range, total range and location for manufactured components.

C. Project Record Documents: Record actual locations of components and instrumentation.
1.6 FIELD CONDITIONS

A. Do not install instrumentation when areas are under construction, except for required rough-in, taps, supports and test plugs.

PART 2 PRODUCTS

2.1 LIQUID FLOW METERS

A. Manufacturers:
1. Dwyer Instruments, Inc; www.dwyer-inst.com/
2. Venture Measurement, a Danaher Company; www.venturemeasurement.com/

B. Calibrated ASME MFC-3M Venturi orifice plate and flanges with valved taps, chart for conversion of differential pressure readings to flow rate, with pressure gauge in case.

C. Annular element flow stations with meter set.
1. Measuring Station: Type 316 stainless steel pitot type flow element inserted through welded threaded couplet, with safety shut-off valves and quick coupling connections, and permanent metal tag indicating design flow rate, reading for design flow rate, metered fluid, line size, station or location number.
 a. Pressure rating: 275 psi.
 b. Maximum temperature: 400 degrees F.
 c. Accuracy: Plus 0.55 percent to minus 2.30 percent.
2. Portable Meter Set: Dry single diaphragm type pressure gauge with 6 inch dial pointer, stainless steel wetted metal parts, variable pulsation damper, equalizing valve, two bleed valves, and master chart for direct conversion of meter readings to flow rate, mounted in rust-proof carrying case with two ten foot long rubber test hoses with brass valves or quick connections for measuring stations.

2.2 PRESSURE GAUGES

A. Manufacturers:
1. Trerice: www.trerice.com
2. Winters Instruments: www.winters.com
3. Ashcroft: www.ashcroft.com

B. Gage: ASME B40.100, cast aluminum steel case, phosphor bronze bourdon tube, rotary brass movement, brass socket, with front recalibration adjustment, black scale on white background.
1. Window: clear glass.
2. Size: 4-1/2 inch diameter.
3. Mid-Scale Accuracy: +/- 1 %.
4. Units of measure: Psi
2.3 PRESSURE GAUGE TAPPINGS

A. Gauge Cock: Tee or lever handle, brass for maximum 150 psi.

B. Needle Valve: Brass, 1/4 inch NPT for minimum 150 psi.

C. Pulsation Damper: Pressure snubber, brass with 1/4 inch connections.

2.4 STEM TYPE THERMOMETERS

A. Manufacturers:
 1. Winters Instruments: www.winters.com
 2. Trerice: www.trerice.com
 3. Weiss Instruments: www.weissinstruments.com

B. Thermometer: ASTM E 1, adjustable angle, red appearing non-toxic liquid fill, lens front tube, cast aluminum case with enamel finish or impact resistance valox polyester case, cast aluminum adjustable joint with positive locking device.
 1. Size: 9 inch scale.
 2. Window: Clear glass.
 4. Accuracy: +/- 1 percent, per ASTM E 77.
 5. Units of measure: Degree F.

2.5 THERMOMETER SUPPORTS

A. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.

2.6 TEST PLUGS

A. Test Plug: 1/4 inch or 1/2 inch brass fitting and cap for receiving 1/8 inch outside diameter pressure or temperature probe with Nordel core for temperatures up to 350 degrees F.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Provide one pressure gage per pump, installing taps before strainers and on suction and discharge of pump.
C. Install pressure gauges with pulsation dampers. Provide gauge cock to isolate each gauge. Provide siphon on gauges in steam systems. Extend nipples and siphons to allow clearance from insulation.

D. Install thermometers in piping systems in sockets in short couplings. Enlarge pipes smaller than 2-1/2 inch for installation of thermometer sockets. Ensure sockets allow clearance from insulation.

E. Install thermometer sockets adjacent to controls system thermostat, transmitter, or sensor sockets. Refer to Section 230943. Where thermometers are provided on local panels, duct or pipe mounted thermometers are not required.

F. Provide instruments with scale ranges selected according to service with largest appropriate scale.

G. Install gauges and thermometers in locations where they are easily read from normal operating level. Install vertical to 45 degrees off vertical.

H. Locate test plugs adjacent thermometers and thermometer sockets.

END OF SECTION
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Vibration isolators.

B. Seismic restraint/expansion.

1.3 RELATED SECTIONS

A. Section 23 05 00 - Mechanical General Conditions.

1.4 RELATED WORK

A. Housekeeping Pads
 1. Housekeeping pad reinforcement and monolithic pad attachment to the structure details and design shall be prepared by the restraint vendor.
 2. Housekeeping pads shall be coordinated with restraint vendor and sized to provide a minimum edge distance of ten (10) bolt diameters all around the outermost anchor bolt to allow development of full drill-in wedge anchor ratings. If cast-in anchors are to be used, the housekeeping pads shall be sized to accommodate the ACI requirements for bolt coverage and embedment.

B. Supplementary Support Steel
 1. Contractor shall supply supplementary support steel for all equipment, piping, ductwork, etc. including roof-mounted equipment, as required or specified.

C. Attachments
 1. Contractor shall supply restraint attachment plates cast into housekeeping pads, concrete inserts, double-sided beam clamps, etc. in accordance with the requirements of the vibration vendor's calculations.
1.5 DESCRIPTION

A. Work of this Section includes furnishing and installing vibration isolation equipment and/or seismic restraint/expansion for mechanical equipment and piping systems and ductwork furnished under this Division.

B. Vibration isolators shall be provided for motor driven equipment over 0.5 HP, including connected piping, ductwork and raceways.

C. Mechanical equipment and raceway systems shall be seismically restrained as required by Section 1621 of the currently applicable IBC building code and the Connecticut Supplement.

1.6 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide schedule of vibration isolator type with location and load on each.
 1. Horsepower of each motor, and lowest operating RPM of both driven and driver, in each supported unit.
 2. Calculated static load of each isolator, in pounds.
 3. Scheduled deflection of each isolator. Identification of each isolator selected by number and spring color.
 4. For spring isolators: Spring diameters, deflections, compressed height, and solid spring height.

C. Shop Drawings: Locate vibration isolators, with static and dynamic load on each. Indicate seismic control measures.
 1. Calculate total lateral and longitudinal forces, in pounds for each pipe or ductwork segment and piece of equipment. The total lateral force is defined in IBC 2003, Section 1621.1.4
 2. For seismic restraints: published data or certified drawings showing construction details, capacities and calculated force acting in all directions at each point of attachment, or California OSHPD pre-approved "R" numbers, certifying G force capabilities.

D. Seismic calculations shall be submitted with the seal of a professional engineer who is legally qualified to practice in the jurisdiction where the Project is located and who is experienced in providing engineering services of the kind indicated.

E. Coordination Drawings:
 1. Drawings showing equipment base construction for each machine, including dimensions, structural member sizes and support point locations.
 2. Drawings showing methods of suspension, support guides for conduit, piping and ductwork.
 3. Drawings showing methods for isolation of conduits, pipes and ductwork penetrating walls and floor slabs.
 4. Concrete and steel details for bases including anchor bolt locations.
 5. Number and location of seismic restraint/expansion and anchors for each piece of equipment and piping system. Coordination drawings shall be reviewed by the seismic
engineer of record, detailing restraint/expansion locations. Each coordination drawing shall bear the seismic engineer's stamp certifying review of the designed systems.

6. Specific details of restraint/expansion including anchor bolts for mounting and maximum loading at each location, for each piece of equipment and/or raceway.

7. Submitted drawings shall detail location and construction details of raceway expansion fittings at building seismic joints to accommodate 4" displacement.

8. Refer to the Architectural and/or Structural drawings for locations of seismic joints.

F. Manufacturer's Instructions: Indicate installation instructions with special procedures and setting dimensions.

1.7 COMMISSIONING

A. Engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 500000 - Commissioning Requirements.

B. Complete installation and startup checks and functional tests according to Section 500000 - Commissioning Requirements.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new one and repeat the start up procedure.

D. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

E. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

F. Inspections by the Commissioning Agent shall be on "spot check basis". Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

G. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

PART 2 PRODUCTS

2.1 MANUFACTURERS

B. Vibra-conn Inc.

2.2 VIBRATION ISOLATORS

A. Spring Hanger:
 1. Springs: Minimum horizontal stiffness equal to 75 percent vertical stiffness, with working deflection between 0.3 and 0.6 of maximum deflection. Color code springs for load carrying capacity.
 2. Housings: Incorporate neoprene isolation element meeting requirements for neoprene mount isolators.
 3. Misalignment: Capable of 30 degree hanger rod misalignment.

B. Neoprene Pad Isolators:
 1. Rubber or neoprene waffle pads.
 a. Hardness: 50 durometer.
 c. Maximum Loading: 50 psi.
 d. Rib Height: Maximum 0.7 times width.

C. Bridge bearing neoprene mountings shall have a minimum static deflection of 0.2" and all directional seismic capability. The mount shall consist of a ductile iron casting containing two separated and opposing molded neoprene elements. The elements shall prevent the central threaded sleeve and attachment bolt from contacting the casting during normal operation. The shock absorbing neoprene materials shall be compounded to bridge bearing specifications. Mountings shall have an Anchorage Pre approval "R" Number from OSHPD in the State of California verifying the maximum certified horizontal and vertical load ratings. Mountings shall be Type BR as manufactured by Mason Industries, Inc.

D. Sheet metal panels shall be bolted to the walls or supporting structure by assemblies consisting of a neoprene bushing cushioned between 2 steel sleeves. The outer sleeve prevents the sheet metal from cutting into the neoprene. Enlarge panel holes as required. Neoprene elements pass over the bushing to cushion the back panel horizontally. A steel disc covers the inside neoprene element and the inner steel sleeve is elongated to act as a stop so tightening the anchor bolts does not interfere with panel isolation in 3 planes. Bushing assemblies can be applied to the ends of steel cross members where applicable. All neoprene shall be bridge-bearing quality. Bushing assemblies shall be type PB as manufactured by Mason Industries, Inc.

E. A one piece molded bridge bearing neoprene washer/bushing. The bushing shall surround the anchor bolt and have a flat washer face to avoid metal-to-metal contact. Neoprene bushings shall be type HG as manufactured by Mason Industries, Inc.

F. Flexible spherical expansion joints shall employ peroxide cured EPDM in the covers, liners and Dacron tire cord frictioning. Solid steel rings shall be used within the raised face rubber ends to prevent pullout. Flexible cable bead wire is not acceptable. Sizes 2" and larger shall have two

D. Metraflex; metraflex.com

E. Substitutions: See Section 016000 - Product Requirements.
spheres reinforced with a ring between spheres to maintain shape and complete with split ductile iron or steel flanges with hooked or similar interlocks. 14" and smaller connectors shall be rated at 250 psi up to 190 F with a uniform drop in allowable pressure to 190 psi at 250 F. Safety factors to burst and flange pullout shall be a minimum of 3/1. All joints must have permanent markings verifying a 5-minute factory test at twice the rated pressure. Concentric reducers to the above specifications may be substituted for equal ended expansion joints. Control rods need only be used in unanchored piping locations where the manufacturer determines the installation exceeds the pressure requirement without control rods, as control rods are not desirable in seismic work. If control rods are used, they must have 1/2" thick Neoprene washer bushings large enough in area to take the thrust at 1000 psi maximum on the washer area. Expansion joints shall be installed on the equipment side of the shut off valves. Expansion joints shall be SAFEFLEX SFDEJ as manufactured by Mason Industries, Inc.

G. Flexible hose shall have stainless steel or bronze braid and copper solder ends. Hoses shall be installed on the equipment side of the shut-off valves horizontally and parallel to the equipment shafts wherever possible. Hoses shall be type CPSB as manufactured by Mason Industries, Inc.

H. Three Victaulic flexible type couplings may be used in lieu of a flexible connector for vibration attenuation at equipment connections in applicable piping systems. The couplings shall be placed in close proximity to the source of the vibration.

I. Seismic V-Loops:
 1. Braided Stainless Steel construction with applicable end fittings for application.
 2. Testing certifying 4" omni-directional movement capability.
 3. Certification of each joint being factory leak tested.
 4. Mason Type VFL, VGN, VMN or VCPS.

2.3 SEISMIC RESTRAINTS

A. Suspended Equipment and Pipe and Ductwork:
 1. Mechanical equipment, pipe and ductwork requiring seismic bracing shall be supported by structure designed to withstand the lateral and longitudinal forces as determined in the current applicable Building Code.
 2. Seismic bracing for mechanical equipment, pipe and ductwork shall be a seismic restraint system type SCB as manufactured by Mason Industries or rigid member system as manufactured by Tolco.
 3. Suspended equipment utilizing vibration isolating elements as part of the suspending structure shall incorporate seismic restraint cables at all mounting points (minimum of four points). Cables shall be installed at 45 degree angle to vertical and 45 degree angles to equipment longitudinal axes. Seismic restraint cables shall be type SCB as manufactured by Mason Industries.

B. Female wedge anchors are preferred in floor locations so isolators or equipment can be slid into place after the anchors are installed. Anchors shall be manufactured from full diameter wire, and shall have a safety shoulder to fully support the wedge ring under load. Female wedge anchors shall have an evaluation report number from the I.C.B.O Evaluation Service, Inc. verifying to its allowable loads. Drill-in female wedge anchors shall be type SAB as manufactured by Mason Industries, Inc.
PART 3 EXECUTION

3.1 GENERAL

A. Furnish all labor, materials, tools, appliances, and equipment and perform all operations necessary for the complete execution of the installation of noise and vibration isolation devices and seismic restraints specified in this section.

B. All piping and ductwork to be isolated according to this section of the specification shall freely pass through walls and floors with out rigid connections. Penetration points shall be sleeved or otherwise formed to allow passage of piping or ductwork, and maintain a minimum of 3/4" and maximum of 1-1/4" clearance around the outside surfaces. This clearance space shall be tightly packed with 1.50 PCF fiberglass, and caulked airtight, after installation of piping and ductwork.

C. The isolation materials manufacturer shall be responsible for the proper selection of springs to accomplish the specified minimum static deflections, for all isolators, based on the weight distribution of equipment to be isolated.

D. Installation of all vibration isolation material specified herein shall be accomplished following the manufacturer's written instructions.

E. Upon completion of installation of all vibration isolation and seismic restraint devices, the seismic Engineer of record shall visit the site and inspect the installation. Upon completion of inspection, the engineer shall provide a stamped letter of compliance certifying that all components have been installed and adjusted properly.

3.2 PIPING

A. All piping in the building which are connected to vibration isolated equipment shall be noise isolated at connections to the building structure per the Schedule at the end of this section.

B. Horizontal Piping: Where required raceway shall incorporate seismic restraint cables at all changes of direction and at interval not to exceed those in the table below.

C. Vertical Piping: Riser clamps shall be anchored at each floor to provide seismic restraint.

D. Maximum Lateral Restraint spacing for Piping:

<table>
<thead>
<tr>
<th>Size</th>
<th>Threaded & Mech Joined</th>
<th>Copper (Nominal)</th>
<th>Flanged Steel</th>
<th>(Grooved) Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" & Under</td>
<td>24'</td>
<td>16'</td>
<td>20'</td>
<td></td>
</tr>
<tr>
<td>2.5" - 6"</td>
<td>36'</td>
<td>24'</td>
<td>20'</td>
<td></td>
</tr>
</tbody>
</table>
E. Provide longitudinal restraints at interval of double the lateral spacing but never to exceed 80 feet.

3.3 INSTALLATION

A. Install neoprene pad isolators in accordance with the manufacturer's instructions.

B. Hangers shall be suspended from and restrained by substantial structural members, not the slab diaphragm, unless specifically approved by the Architect.

C. Isolators shall be installed with the hanger box as close to the structure as possible. Hanger rods shall be aligned so as to clear the hanger box.

D. On closed spring isolators, adjust so side stabilizers are clear under normal operating conditions.
 1. The installation or use of vibration isolators shall not cause any change of position of equipment or piping that will result in stresses in the pipe connections or misalignment of shafts or bearings. In order to meet this objective, equipment and piping shall be maintained in a rigid position during installation. The load shall not be transferred to the isolator until the installation is complete and under full operational load.

E. Prior to making piping connections to equipment with operating weights substantially different from installed weights, block up equipment with temporary shims to final height. When full load is applied, adjust isolators to load to allow shim removal.

F. Seismic restraints shall be installed after equipment is in operating position to assure design clearances are maintained.

G. Support piping connections to equipment mounted on isolators using isolators or resilient hangers for scheduled distance.
 1. Up to 4 Inches Pipe Size: First three points of support.
 2. 5 to 8 Inches Pipe Size: First four points of support.

3.4 FIELD QUALITY CONTROL

A. Inspect isolated equipment after installation and submit report. Include static deflections.

3.5 SCHEDULES

A. Pipe Isolation Schedule.
 1. 1 Inch Pipe Size: Isolate 120 diameters from equipment.
 2. 2 Inch Pipe Size: Isolate 90 diameters from equipment.
 3. 3 Inch Pipe Size: Isolate 80 diameters from equipment.
 4. 4 Inch Pipe Size: Isolate 75 diameters from equipment.
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Nameplates.

B. Tags.

C. Stencils.

D. Pipe markers.

1.3 REFERENCE STANDARDS

1.4 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. List: Submit list of wording, symbols, letter size, and color coding for mechanical identification.

C. Chart and Schedule: Submit valve chart and schedule, including valve tag number, location, function, and valve manufacturer's name and model number.

D. Product Data: Provide manufacturers catalog literature for each product required.

E. Samples: Submit two labels.

F. Project Record Documents: Record actual locations of tagged valves.
PART 2 PRODUCTS

2.1 MANUFACTURERS

D. Substitutions: See Section 016000 - Product Requirements.

2.2 NAMEPLATES

A. Description: Laminated three-layer plastic with engraved letters.
 2. Letter Height: 1/4 inch.

2.3 TAGS

A. Metal Tags: Brass with stamped letters; tag size minimum 1-1/2 inch diameter with smooth edges.

B. Valve Tag Chart: Typewritten letter size list in anodized aluminum frame.

2.4 STENCILS

A. Manufacturers:

B. Stencils: With clean cut symbols and letters of following size:
 1. Ductwork and Equipment: 2-1/2 inch high letters.

C. Stencil Paint: As specified in Section 099123, semi-gloss enamel, colors conforming to ASME A13.1.

2.5 PIPE MARKERS

B. Plastic Pipe Markers: Factory fabricated, flexible, semi-rigid plastic, preformed to fit around pipe or pipe covering; minimum information indicating flow direction arrow and identification of fluid being conveyed.

C. Plastic Tape Pipe Markers: Flexible, vinyl film tape with pressure sensitive adhesive backing and printed markings.

D. Underground Plastic Pipe Markers: Bright colored continuously printed plastic ribbon tape, minimum 6 inches wide by 4 mil thick, manufactured for direct burial service.

PART 3 EXECUTION

3.1 PREPARATION

A. Degrease and clean surfaces to receive adhesive for identification materials.

3.2 INSTALLATION

A. Install nameplates with corrosive-resistant mechanical fasteners, or adhesive. Apply with sufficient adhesive to ensure permanent adhesion and seal with clear lacquer.

B. Install tags with corrosion resistant chain.

C. Install plastic pipe markers in accordance with manufacturer's instructions.

D. Install plastic tape pipe markers complete around pipe in accordance with manufacturer's instructions.

E. Install underground plastic pipe markers 6 to 8 inches below finished grade, directly above buried pipe.

F. Identify air handling units, pumps, heat transfer equipment, tanks, and water treatment devices with plastic nameplates. Small devices, such as in-line pumps, may be identified with tags.

G. Identify control panels and major control components outside panels with plastic nameplates.

H. Identify thermostats relating to terminal boxes or valves with nameplates.

I. Identify valves in main and branch piping with tags.

J. Identify air terminal units and radiator valves with numbered tags.

K. Tag automatic controls, instruments, and relays. Key to control schematic.
L. Identify piping, concealed or exposed, with plastic pipe markers. Use tags on piping 3/4 inch diameter and smaller. Identify service, flow direction, and pressure. Install in clear view and align with axis of piping. Locate identification not to exceed 20 feet on straight runs including risers and drops, adjacent to each valve and Tee, at each side of penetration of structure or enclosure, and at each obstruction.

M. Install ductwork with plastic nameplates. Identify with air handling unit identification number and area served. Locate identification at air handling unit, at each side of penetration of structure or enclosure, and at each obstruction.

N. Locate ceiling tacks to locate valves or dampers above lay-in panel ceilings. Locate in corner of panel closest to equipment.

END OF SECTION
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Testing, adjustment, and balancing of air systems.
B. Testing, adjustment, and balancing of hydronic systems.
C. Measurement of final operating condition of HVAC systems.
D. Commissioning activities.

1.3 RELATED REQUIREMENTS

A. Section 019113 - General Commissioning Requirements: Commissioning requirements that apply to all types of work.
B. Section 230800 - Commissioning of HVAC.

1.4 REFERENCE STANDARDS

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.
B. TAB Plan: Submit a written plan indicating the testing, adjusting, and balancing standard to be followed and the specific approach for each system and component.

1. Submit to QA+M architecture.
2. Submit to the Commissioning Authority.
3. Include at least the following in the plan:
 a. List of all air flow, water flow, sound level, system capacity and efficiency measurements to be performed and a description of specific test procedures, parameters, formulas to be used.
 b. Copy of field checkout sheets and logs to be used, listing each piece of equipment to be tested, adjusted and balanced with the data cells to be gathered for each.
 c. Identification and types of measurement instruments to be used and their most recent calibration date.
 d. Discussion of what notations and markings will be made on the duct and piping drawings during the process.
 e. Final test report forms to be used.
 f. Detailed step-by-step procedures for TAB work for each system and issue, including:
 1) Terminal flow calibration (for each terminal type).
 2) Diffuser proportioning.
 3) Branch/submain proportioning.
 4) Total flow calculations.
 5) Rechecking.
 6) Diversity issues.
 g. Expected problems and solutions, etc.
 h. Criteria for using air flow straighteners or relocating flow stations and sensors; analogous explanations for the water side.
 i. Details of how TOTAL flow will be determined; for example:
 1) Air: Sum of terminal flows via control system calibrated readings or via hood readings of all terminals, supply (SA) and return air (RA) pitot traverse, SA or RA flow stations.
 2) Water: Pump curves, circuit setter, flow station, ultrasonic, etc.
 j. Specific procedures that will ensure that both air and water side are operating at the lowest possible pressures and methods to verify this.
 k. Confirmation of understanding of the outside air ventilation criteria under all conditions.
 l. Method of verifying and setting minimum outside air flow rate will be verified and set and for what level (total building, zone, etc.).
 m. Method of checking building static and exhaust fan and/or relief damper capacity.
 n. Proposed selection points for sound measurements and sound measurement methods.
 o. Methods for making coil or other system plant capacity measurements, if specified.
 p. Time schedule for TAB work to be done in phases (by floor, etc.).
 q. Description of TAB work for areas to be built out later, if any.
 r. Time schedule for deferred or seasonal TAB work, if specified.
 s. False loading of systems to complete TAB work, if specified.
 t. Exhaust fan balancing and capacity verifications, including any required room pressure differentials.
 u. Interstitial cavity differential pressure measurements and calculations, if specified.
 v. Procedures for field technician logs of discrepancies, deficient or uncompleted work by others, contract interpretation requests and lists of completed tests (scope and frequency).
 w. Procedures for formal progress reports, including scope and frequency.
 x. Procedures for formal deficiency reports, including scope, frequency and distribution.
C. Control System Coordination Reports: Communicate in writing to the controls installer all setpoint and parameter changes made or problems and discrepancies identified during TAB that affect, or could affect, the control system setup and operation.

D. Progress Reports.

E. Final Report: Indicate deficiencies in systems that would prevent proper testing, adjusting, and balancing of systems and equipment to achieve specified performance.
 1. Submit to the Commissioning Authority within two weeks after completion of testing, adjusting, and balancing.
 2. Revise TAB plan to reflect actual procedures and submit as part of final report.
 3. Submit draft copies of report for review prior to final acceptance of Project. Provide final copies for QA+M architecture and for inclusion in operating and maintenance manuals.
 4. Provide reports in soft cover, letter size, 3-ring binder manuals, complete with index page and indexing tabs, with cover identification at front and side. Include set of reduced drawings with air outlets and equipment identified to correspond with data sheets, and indicating thermostat locations.
 5. Include actual instrument list, with manufacturer name, serial number, and date of calibration.
 6. Form of Test Reports: Where the TAB standard being followed recommends a report format use that; otherwise, follow ASHRAE Std 111.
 7. Units of Measure: Report data in I-P (inch-pound) units only.
 8. Include the following on the title page of each report:
 a. Name of Testing, Adjusting, and Balancing Agency.
 b. Address of Testing, Adjusting, and Balancing Agency.
 c. Telephone number of Testing, Adjusting, and Balancing Agency.
 d. Project name.
 e. Project location.
 f. Report date.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

A. Perform total system balance in accordance with one of the following:
 1. AABC (NSTSB), AABC National Standards for Total System Balance.
 4. SMACNA (TAB).
 5. Maintain at least one copy of the standard to be used at project site at all times.

B. This will be a phased project. TAB Agency shall begin work after completion of systems to be tested, adjusted, or balanced and shall complete work prior to Substantial Completion of the project or phase of the project.
C. Where HVAC systems and/or components interface with life safety systems, including fire and smoke detection, alarm, and control, coordinate scheduling and testing and inspection procedures with the authorities having jurisdiction.

D. TAB Agency Qualifications:
 1. Company specializing in the testing, adjusting, and balancing of systems specified in this section.
 2. Having minimum of 10 years documented experience.
 3. Certified by one of the following:
 b. NEBB, National Environmental Balancing Bureau: www.nebb.org/#sle.

E. TAB Supervisor Qualifications: Certified by same organization as TAB agency.

3.2 EXAMINATION

A. Verify that systems are complete and operable before commencing work. Ensure the following conditions:
 1. Systems are started and operating in a safe and normal condition.
 2. Temperature control systems are installed complete and operable.
 3. Proper thermal overload protection is in place for electrical equipment.
 4. Final filters are clean and in place. If required, install temporary media in addition to final filters.
 5. Duct systems are clean of debris.
 6. Fans are rotating correctly.
 7. Fire and volume dampers are in place and open.
 8. Air coil fins are cleaned and combed.
 9. Access doors are closed and duct end caps are in place.
 10. Air outlets are installed and connected.
 11. Duct system leakage is minimized.
 12. Hydronic systems are flushed, filled, and vented.
 13. Pumps are rotating correctly.
 14. Proper strainer baskets are clean and in place.
 15. Service and balance valves are open.

B. Beginning of work means acceptance of existing conditions.

3.3 PREPARATION

A. Hold a pre-balancing meeting at least one week prior to starting TAB work.
 1. Require attendance by all installers whose work will be tested, adjusted, or balanced.

B. Provide instruments required for testing, adjusting, and balancing operations. Make instruments available to QA+M architecture to facilitate spot checks during testing.
C. Provide additional balancing devices as required.

3.4 ADJUSTMENT TOLERANCES

A. Air Handling Systems: Adjust to within plus or minus 5 percent of design for supply systems and plus or minus 10 percent of design for return and exhaust systems.

B. Air Outlets and Inlets: Adjust total to within plus 10 percent and minus 5 percent of design to space. Adjust outlets and inlets in space to within plus or minus 10 percent of design.

C. Hydronic Systems: Adjust to within plus or minus 10 percent of design.

3.5 RECORDING AND ADJUSTING

A. Field Logs: Maintain written logs including:
 1. Running log of events and issues.
 2. Discrepancies, deficient or uncompleted work by others.
 4. Lists of completed tests.

B. Ensure recorded data represents actual measured or observed conditions.

C. Permanently mark settings of valves, dampers, and other adjustment devices allowing settings to be restored. Set and lock memory stops.

D. Mark on drawings the locations where traverse and other critical measurements were taken and cross reference the location in the final report.

E. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.

F. Leave systems in proper working order, replacing belt guards, closing access doors, closing doors to electrical switch boxes, and restoring thermostats to specified settings.

3.6 AIR SYSTEM PROCEDURE

A. Adjust air handling and distribution systems to provide required or design supply, return, and exhaust air quantities at site altitude.

B. Make air quantity measurements in ducts by Pitot tube traverse of entire cross sectional area of duct.

C. Measure air quantities at air inlets and outlets.
D. Adjust distribution system to obtain uniform space temperatures free from objectionable drafts and noise.

E. Use volume control devices to regulate air quantities only to extend that adjustments do not create objectionable air motion or sound levels. Effect volume control by duct internal devices such as dampers and splitters.

F. Vary total system air quantities by adjustment of fan speeds. Provide drive changes required. Vary branch air quantities by damper regulation.

G. Provide system schematic with required and actual air quantities recorded at each outlet or inlet.

H. Measure static air pressure conditions on air supply units, including filter and coil pressure drops, and total pressure across the fan. Make allowances for 50 percent loading of filters.

I. Adjust outside air automatic dampers, outside air, return air, and exhaust dampers for design conditions.

J. Measure temperature conditions across outside air, return air, and exhaust dampers to check leakage.

K. Where modulating dampers are provided, take measurements and balance at extreme conditions. Balance variable volume systems at maximum air flow rate, full cooling, and at minimum air flow rate, full heating.

L. Measure building static pressure and adjust supply, return, and exhaust air systems to provide required relationship between each to maintain approximately 0.05 inches positive static pressure near the building entries.

M. For variable air volume system powered units set volume controller to air flow setting indicated. Confirm connections properly made and confirm proper operation for automatic variable air volume temperature control.

3.7 WATER SYSTEM PROCEDURE

A. Adjust water systems to provide required or design quantities.

B. Use calibrated Venturi tubes, orifices, or other metered fittings and pressure gages to determine flow rates for system balance. Where flow metering devices are not installed, base flow balance on temperature difference across various heat transfer elements in the system.

C. Adjust systems to provide specified pressure drops and flows through heat transfer elements prior to thermal testing. Perform balancing by measurement of temperature differential in conjunction with air balancing.
D. Effect system balance with automatic control valves fully open to heat transfer elements.

E. Effect adjustment of water distribution systems by means of balancing cocks, valves, and fittings. Do not use service or shut-off valves for balancing unless indexed for balance point.

F. Where available pump capacity is less than total flow requirements or individual system parts, full flow in one part may be simulated by temporary restriction of flow to other parts.

3.8 COMMISSIONING

A. See Sections 019113 - General Commissioning Requirements and 230800 for additional requirements.

B. Perform prerequisites prior to starting commissioning activities.

C. Fill out Prefunctional Checklists for:
 1. Air side systems.
 2. Water side systems.

D. Furnish to the Commissioning Authority, upon request, any data gathered but not shown in the final TAB report.

E. Re-check a random sample equivalent to 10 percent of the final TAB report data as directed by Commissioning Authority.
 1. Original TAB agency shall execute the re-checks, witnessed by the Commissioning Authority.
 2. Use the same test instruments as used in the original TAB work.
 3. Failure of more than 10 percent of the re-checked items of a given system shall result in the rejection of the system TAB report; rebalance the system, provide a new system TAB report, and repeat random re-checks.
 4. For purposes of re-check, failure is defined as follows:
 a. Air Flow of Supply and Return: Deviation of more than 10 percent of instrument reading.
 b. Minimum Outside Air Flow: Deviation of more than 20 percent of instrument reading; for inlet vane or VFD OSA compensation system using linear proportional control, deviation of more than 30 percent at intermediate supply flow.
 c. Temperatures: Deviation of more than one degree F.
 d. Air and Water Pressures: Deviation of more than 10 percent of full scale of test instrument reading.
 e. Sound Pressures: Deviation of more than 3 decibels, with consideration for variations in background noise.
 5. For purposes of re-check, a whole system is defined as one in which inaccuracies will have little or no impact on connected systems; for example, the air distribution system served by one air handler or the hydronic chilled water supply system served by a chiller or the condenser water system.

F. In the presence of the Commissioning Authority, verify that:
1. Final settings of all valves, splitters, dampers and other adjustment devices have been permanently marked.
2. The air system is being controlled to the lowest possible static pressure while still meeting design loads, less diversity; this shall include a review of TAB methods, established control setpoints, and physical verification of at least one leg from fan to diffuser having all balancing dampers wide open and that during full cooling of all terminal units taking off downstream of the static pressure sensor, the terminal unit on the critical leg has its damper 90 percent or more open.
3. The water system is being controlled to the lowest possible pressure while still meeting design loads, less diversity; this shall include a review of TAB methods, established control setpoints, and physical verification of at least one leg from the pump to the coil having all balancing valves wide open and that during full cooling the cooling coil valve of that leg is 90 percent or more open.

3.9 SCOPE

A. Test, adjust, and balance the following:
 1. HVAC Pumps.
 2. Condensing Stainless Steel Fire Tube Boilers.
 3. Packaged Roof Top Heating/Cooling Units.
 4. Air Handling Units.
 5. Fans.
 6. Air Filters.
 7. Air Terminal Units.
 8. Air Inlets and Outlets.
 9. Controls Compressor.

3.10 MINIMUM DATA TO BE REPORTED

A. Electric Motors:
 1. Manufacturer.
 2. Model/Frame.
 3. HP/BHP.
 4. Phase, voltage, amperage; nameplate, actual, no load.
 5. RPM.
 7. Starter size, rating, heater elements.
 8. Sheave Make/Size/Bore.

B. V-Belt Drives:
 1. Identification/location.
 2. Required driven RPM.
 3. Driven sheave, diameter and RPM.
 4. Belt, size and quantity.
 5. Motor sheave diameter and RPM.
 6. Center to center distance, maximum, minimum, and actual.

C. Pumps:
 1. Identification/number.
 2. Manufacturer.
3. Size/model.
4. Impeller.
5. Service.
6. Design flow rate, pressure drop, BHP.
7. Actual flow rate, pressure drop, BHP.
8. Discharge pressure.
10. Total operating head pressure.
11. Shut off, discharge and suction pressures.
12. Shut off, total head pressure.

D. Combustion Equipment:
1. Boiler manufacturer.
2. Model number.
3. Serial number.
4. Firing rate.
5. Gas pressure at meter outlet.
8. Burner manifold gas pressure.
10. Percent carbon dioxide (CO2).
11. Percent excess air.
12. Flue gas temperature at outlet.
13. Ambient temperature.
15. Percent combustion efficiency.

E. Heating Coils:
1. Identification/number.
2. Location.
4. Manufacturer.
5. Air flow, design and actual.
6. Water flow, design and actual.
7. Water pressure drop, design and actual.
8. Entering water temperature, design and actual.
9. Leaving water temperature, design and actual.
10. Entering air temperature, design and actual.
11. Leaving air temperature, design and actual.
12. Air pressure drop, design and actual.

F. Air Moving Equipment:
1. Location.
2. Manufacturer.
3. Model number.
4. Serial number.
5. Arrangement/Class/Discharge.
6. Air flow, specified and actual.
7. Return air flow, specified and actual.
8. Outside air flow, specified and actual.
9. Total static pressure (total external), specified and actual.
10. Inlet pressure.
11. Discharge pressure.
13. Number of Belts/Make/Size.
14. Fan RPM.

G. Return Air/Outside Air:
1. Identification/location.
2. Design air flow.
3. Actual air flow.
4. Design return air flow.
5. Actual return air flow.
6. Design outside air flow.
7. Actual outside air flow.
8. Return air temperature.
10. Required mixed air temperature.
11. Actual mixed air temperature.
12. Design outside/return air ratio.
13. Actual outside/return air ratio.

H. Exhaust Fans:
1. Location.
2. Manufacturer.
3. Model number.
4. Serial number.
5. Air flow, specified and actual.
6. Total static pressure (total external), specified and actual.
7. Inlet pressure.
8. Discharge pressure.
10. Number of Belts/Make/Size.
11. Fan RPM.

I. Duct Traverses:
1. System zone/branch.
2. Duct size.
3. Area.
4. Design velocity.
5. Design air flow.
6. Test velocity.
7. Test air flow.
8. Duct static pressure.
9. Air temperature.
10. Air correction factor.

J. Duct Leak Tests:
1. Description of ductwork under test.
2. Duct design operating pressure.
3. Duct design test static pressure.
4. Duct capacity, air flow.
5. Maximum allowable leakage duct capacity times leak factor.
6. Test apparatus:
 a. Blower.
 b. Orifice, tube size.
 c. Orifice size.
 d. Calibrated.
7. Test static pressure.
8. Test orifice differential pressure.
9. Leakage.

K. Air Monitoring Stations:
1. Identification/location.
2. System.
3. Size.
4. Area.
5. Design velocity.
6. Design air flow.
7. Test velocity.
8. Test air flow.

L. Flow Measuring Stations:
1. Identification/number.
2. Location.
3. Size.
4. Manufacturer.
5. Model number.
7. Design Flow rate.
8. Design pressure drop.
10. Actual/final flow rate.
11. Station calibrated setting.

M. Terminal Unit Data:
1. Manufacturer.
2. Type, constant, variable, single, dual duct.
3. Identification/number.
4. Location.
5. Model number.
7. Minimum static pressure.
8. Minimum design air flow.
9. Maximum design air flow.
10. Maximum actual air flow.
11. Inlet static pressure.

N. Air Distribution Tests:
1. Air terminal number.
2. Room number/location.
3. Terminal type.
4. Terminal size.
5. Area factor.
6. Design velocity.
7. Design air flow.
8. Test (final) velocity.
9. Test (final) air flow.
10. Percent of design air flow.

O. Sound Level Reports:
 1. Location.
 2. Octave bands - equipment off.
 3. Octave bands - equipment on.

END OF SECTION
SECTION 230713 - DUCT INSULATION

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Duct insulation.

B. Duct liner.

C. Insulation jackets.

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.

B. Section 230553 - Identification for HVAC Piping and Equipment.

C. Section 233100 - HVAC Ducts and Casings: Metal and non-metal ducts.

1.4 REFERENCE STANDARDS

J. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible; 2005.

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.

C. Manufacturer's Instructions: Indicate installation procedures necessary to ensure acceptable workmanship and that installation standards will be achieved.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing products of the type specified in this section with not less than 10 years of documented experience.

B. Applicator Qualifications: Company specializing in performing the type of work specified in this section, with minimum 5 years of experience and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Accept materials on site in original factory packaging, labelled with manufacturer's identification, including product density and thickness.

B. Protect insulation from weather and construction traffic, dirt, water, chemical, and mechanical damage, by storing in original wrapping.
1.8 FIELD CONDITIONS

A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.

B. Maintain temperature during and after installation for minimum period of 24 hours.

PART 2 PRODUCTS

2.1 REGULATORY REQUIREMENTS

A. Surface Burning Characteristics: Flame spread index/Smoke developed index of 25/50, maximum, when tested in accordance with ASTM E84 or UL 723.

2.2 GLASS FIBER, FLEXIBLE

A. Manufacturer:

B. Insulation: ASTM C 553; flexible, formaldehyde-free, noncombustible blanket, Greenguard Certified.
 1. 'K' value: 0.27 at 75 degrees F, when tested in accordance with ASTM C518.
 2. Maximum Water Vapor Absorption: 5.0 percent by weight.
 3. Density: 0.75 lb/cuft.
 4. Equal to Johns Manville Microlite XG.

C. Vapor Barrier Jacket:
 1. Kraft paper with glass fiber yarn and bonded to aluminized film.
 2. Moisture Vapor Permeability: 0.029 ng/Pa s m (0.02 perm inch), when tested in accordance with ASTM E96/E96M.
 3. Secure with pressure sensitive tape.

D. Vapor Barrier Tape:
 1. Kraft paper reinforced with glass fiber yarn and bonded to aluminized film, with pressure sensitive rubber based adhesive.

E. Tie Wire: Annealed steel, 16 gage, 0.0508 inch diameter.

2.3 GLASS FIBER, RIGID

A. Manufacturer:
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

3. Owens Corning Corporation; 700 Series FIBERGLAS Insulation:
 www.ocbuildingspec.com/#sle.

B. Insulation: ASTM C612; rigid, noncombustible blanket.
 1. 'K' Value: 0.24 at 75 degrees F, when tested in accordance with ASTM C518.
 2. Maximum Service Temperature: 450 degrees F.
 3. Maximum Water Vapor Absorption: 5.0 percent.

C. Vapor Barrier Jacket:
 1. Kraft paper with glass fiber yarn and bonded to aluminized film.
 2. Moisture Vapor Permeability: 0.029 ng/Pa s m (0.02 perm inch), when tested in accordance with ASTM E96/E96M.
 3. Secure with pressure sensitive tape.

D. Vapor Barrier Tape:
 1. Kraft paper reinforced with glass fiber yarn and bonded to aluminized film, with pressure sensitive rubber based adhesive.

E. Indoor Vapor Barrier Finish:
 1. Vinyl emulsion type acrylic, compatible with insulation, black color.

2.4 OUTDOOR DUCT INSULATION

A. Closed cell expanded polystyrene foam insulation (minimum R-value of 12 per inch thickness) covered with self-adhering modified bitumen weather barrier.

2.5 OUTDOOR JACKETS

 1. Thickness: 0.016 inch sheet.
 2. Finish: Smooth.
 4. Fittings: 0.016 inch thick die shaped fitting covers with factory attached protective liner.
 5. Metal Jacket Bands: 3/8 inch wide; 0.015 inch thick aluminum.

2.6 DUCT LINER

A. Manufacturers:

B. Insulation: Incombustible glass fiber complying with ASTM C 1071; GREENGUARD certified, flexible blanket; impregnated surface and edges coated with poly vinyl acetate polymer or acrylic polymer shown to be fungus and bacteria resistant by testing to ASTM G 21 and G22. Equal to Johns Manville Linacoustic RC.
1. Apparent Thermal Conductivity: Maximum of 0.31 at 75 degrees F.
2. Service Temperature: Up to 250 degrees F.
3. Rated Velocity on Coated Air Side for Air Erosion: 6,000 fpm, minimum.
4. Thickness: 1.5 inches.

C. Adhesive: Waterproof, fire-retardant type, ASTM C916.

D. Liner Fasteners: Galvanized steel, self-adhesive pad or welded with integral head.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that ducts have been inspected for damages, and tested before applying insulation materials.

B. Verify that surfaces are clean, foreign material removed, and dry.

3.2 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install in accordance with NAIMA National Insulation Standards.

C. Insulated ducts conveying air below ambient temperature:
 1. Provide insulation with vapor barrier jackets.
 2. Finish with tape and vapor barrier jacket.
 3. Continue insulation through walls, sleeves, hangers, and other duct penetrations.
 4. Insulate entire system including fittings, joints, flanges, fire dampers, flexible connections,
 and expansion joints.

D. Insulated ducts conveying air above ambient temperature:
 1. Provide with or without standard vapor barrier jacket.
 2. Insulate fittings and joints. Where service access is required, bevel and seal ends of insulation.

E. External Duct Insulation Application:
 1. Secure insulation with vapor barrier with wires and seal jacket joints with vapor barrier adhesive or tape to match jacket.
 2. Secure insulation without vapor barrier with staples, tape, or wires.
 3. Install without sag on underside of duct. Use adhesive or mechanical fasteners where necessary to prevent sagging. Lift duct off trapeze hangers and insert spacers.
 4. Seal vapor barrier penetrations by mechanical fasteners with vapor barrier adhesive.
 5. Stop and point insulation around access doors and damper operators to allow operation without disturbing wrapping.

F. Duct and Plenum Liner Application:
1. Adhere insulation with adhesive for 100 percent coverage.
2. Secure insulation with mechanical liner fasteners. Refer to SMACNA (DCS) for spacing.
4. Seal liner surface penetrations with adhesive.
5. Duct dimensions indicated are net inside dimensions required for air flow. Increase duct size to allow for insulation thickness.

3.3 DUCT INSULATION SCHEDULE

A. Exhaust Ducts Within 10 ft of Exterior Openings:

B. Supply, Return, Outside Air Ducts, and Plenums: 1 1/2" (fiberglass - minimum installed R-8)

C. Supply, Return, Outside Air, Exhaust Ducts, and Plenums in unconditioned spaces: 2" (fiberglass - minimum installed R-12)

D. Exposed Ducts Within Space Served: 0"

E. Supply and Return Ducts exposed to Outdoors: (polystyrene - minimum installed R-12)

F. Exhaust Ducts: 0"

END OF SECTION
SECTION 230716 - HVAC EQUIPMENT INSULATION

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Equipment insulation.

B. Covering.

1.3 RELATED REQUIREMENTS

A. Section 230553 - Identification for HVAC Piping and Equipment.

B. Section 232113 - Hydronic Piping: Placement of hangers and hanger inserts.

C. Section 232114 - Hydronic Specialties.

1.4 REFERENCE STANDARDS

E. ASTM C592 - Standard Specification for Mineral Fiber Blanket Insulation and Blanket-Type Pipe Insulation (Metal-Mesh Covered) (Industrial Type); 2013.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for equipment scheduled.

C. Manufacturer's Instructions: Indicate installation procedures that ensure acceptable workmanship and installation standards will be achieved.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with not less than 10 years of documented experience.

B. Applicator Qualifications: Company specializing in performing the type of work specified in this section with minimum 5 years of experience.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Accept materials on site in original factory packaging, labeled with manufacturer's identification, including product density and thickness.

B. Protect insulation from weather and construction traffic, dirt, water, chemical, and mechanical damage, by storing in original wrapping.

1.8 FIELD CONDITIONS

A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.
B. Maintain temperature during and after installation for minimum period of 24 hours.

PART 2 PRODUCTS

2.1 REGULATORY REQUIREMENTS

A. Surface Burning Characteristics: Flame spread index/Smoke developed index of 25/50, maximum, when tested in accordance with ASTM E84 or UL 723.

2.2 GLASS FIBER, RIGID

A. Manufacturer:

B. Insulation: ASTM C612 or ASTM C592; rigid, noncombustible.
 1. K Value: 0.25 at 75 degrees F, when tested in accordance with ASTM C177 or ASTM C518.
 2. Maximum Service Temperature: 850 degrees F.
 3. Maximum Water Vapor Absorption: 5.0 percent by weight.

C. Vapor Barrier Jacket:
 1. Kraft paper reinforced with glass fiber yarn and bonded to aluminized film.
 2. Moisture Vapor Permeability: 0.02 perm inch, when tested in accordance with ASTM E96/E96M.

D. Facing: 1 inch galvanized steel hexagonal wire mesh stitched on one face of insulation.

E. Vapor Barrier Lap Adhesive: Compatible with insulation.

F. Insulating Cement/Mastic: ASTM C195; hydraulic setting on mineral wool.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that equipment has been tested before applying insulation materials.

B. Verify that surfaces are clean and dry, with foreign material removed.
3.2 INSTALLATION

A. Install in accordance with manufacturer’s instructions.

B. Factory Insulated Equipment: Do not insulate.

C. Exposed Equipment: Locate insulation and cover seams in least visible locations.

D. Apply insulation close to equipment by grooving, scoring, and beveling insulation. Fasten insulation to equipment with studs, pins, clips, adhesive, wires, or bands.

E. Fill joints, cracks, seams, and depressions with bedding compound to form smooth surface. On cold equipment, use vapor barrier cement.

F. Insulated equipment containing fluids below ambient temperature; insulate entire system.

G. Fiber glass insulated equipment containing fluids below ambient temperature; provide vapor barrier jackets, factory-applied or field-applied. Finish with glass cloth and vapor barrier adhesive.

H. Fiber glass insulated equipment containing fluids above ambient temperature; provide standard jackets, with or without vapor barrier, factory-applied or field-applied. Finish with glass cloth and adhesive.

I. Inserts and Shields:
 1. Application: Equipment 1-1/2 inches diameter or larger.
 2. Shields: Galvanized steel between hangers and inserts.
 3. Insert Location: Between support shield and equipment and under the finish jacket.
 4. Insert Configuration: Minimum 6 inches long, of same thickness and contour as adjoining insulation; may be factory fabricated.
 5. Insert Material: Hydrous calcium silicate insulation or other heavy density insulating material suitable for the planned temperature range.

J. Finish insulation at supports, protrusions, and interruptions.

K. Nameplates and ASME Stamps: Bevel and seal insulation around; do not insulate over.

L. Equipment Requiring Access for Maintenance, Repair, or Cleaning: Install insulation so it can be easily removed and replaced without damage.

3.3 SCHEDULE

A. Heating Systems:
 1. Air Separators: 2” Glass Fiber.
2. Variable Volume Terminal Reheat Coils: 2” Glass Fiber.

END OF SECTION
SECTION 230719 - HVAC PIPING INSULATION

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Piping insulation.

B. Flexible removable and reusable blanket insulation.

C. Jackets and accessories.

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.

B. Section 232113 - Hydronic Piping: Placement of hangers and hanger inserts.

C. Section 232300 - Refrigerant Piping: Placement of inserts.

1.4 REFERENCE STANDARDS

NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.

C. Manufacturer's Instructions: Indicate installation procedures that ensure acceptable workmanship and installation standards will be achieved.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with not less than three years of documented experience.

B. Applicator Qualifications: Company specializing in performing the type of work specified in this section with minimum 5 years of experience.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Accept materials on site, labeled with manufacturer's identification, product density, and thickness.
1.8 FIELD CONDITIONS

A. Maintain ambient conditions required by manufacturers of each product.

B. Maintain temperature before, during, and after installation for minimum of 24 hours.

PART 2 PRODUCTS

2.1 REGULATORY REQUIREMENTS

A. Surface Burning Characteristics: Flame spread index/Smoke developed index of 25/50, maximum, when tested in accordance with ASTM E84 or UL 723.

2.2 GLASS FIBER, RIGID

A. Manufacturers:

B. Insulation: ASTM C 547 and ASTM C 795; rigid molded, noncombustible, GREENGUARD certified.
1. K Value: ASTM C177, 0.24 at 75 degrees F.
2. Maximum Service Temperature: 850 degrees F.
3. Maximum Moisture Absorption: 0.2 percent by volume.
4. Equal to Johns Manville Micro-Lok HP.

C. Vapor Barrier Jacket: White kraft paper with glass fiber yarn, bonded to aluminized film; moisture vapor transmission when tested in accordance with ASTM E96/E96M of 0.02 perm-inches.

D. Vapor Barrier Lap Adhesive/Mastic:
1. Compatible with insulation.

2.3 FLEXIBLE ELASTOMERIC CELLULAR INSULATION

A. Manufacturer:

B. Insulation: Closed cell flexible elastomeric pipe (tube) insulation complying with ASTM C 534 Type I, tubular Grade 1, GREENGUARD certified
1. Minimum Service Temperature: -297 degrees F.
2. Maximum Service Temperature: +220 degrees F.
4. Equal to AP Armaflex.

C. Elastomeric Foam Adhesive: Air dried, Low V.O.C. contact adhesive, compatible with insulation equal to Armaflex 520 BLV.

D. For insulation exposed to weather, apply Armaflex WB finish.

E. For insulation thickness greater than 1", provide two layers of insulation in accordance with manufacturer's recommendations for multi-layering.

2.4 JACKETS

A. PVC Plastic.
 1. Jacket: One piece molded type fitting covers and sheet material, off-white color.
 a. Minimum Service Temperature: 0 degrees F.
 b. Maximum Service Temperature: 150 degrees F.
 c. Moisture Vapor Permeability: 0.002 perm inch, maximum, when tested in accordance with ASTM E96/E96M.
 d. Thickness: 10 mil.
 e. Connections: Brush on welding adhesive.
 2. Covering Adhesive Mastic: Compatible with insulation.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that piping has been tested before applying insulation materials.

B. Verify that surfaces are clean and dry, with foreign material removed.

3.2 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install in accordance with NAIMA National Insulation Standards.

C. Exposed Piping: Locate insulation and cover seams in least visible locations.

D. Pipes conveying fluids below ambient temperature: Insulate entire system including fittings, valves, unions, flanges, strainers, flexible connections, pump bodies, and expansion joints.

E. Glass fiber insulated pipes conveying fluids below ambient temperature:
1. Provide vapor barrier jackets, factory-applied or field-applied; secure with self-sealing longitudinal laps and butt strips with pressure sensitive adhesive. Secure with outward clinch expanding staples and vapor barrier mastic.

2. Insulate fittings, joints, and valves with molded insulation of like material and thickness as adjacent pipe. Finish with glass cloth and vapor barrier adhesive or PVC fitting covers.

F. Glass fiber insulated pipes conveying fluids above ambient temperature.
 1. Provide standard jackets, with or without vapor barrier, factory-applied or field-applied. Secure with self-sealing longitudinal laps and butt strips with pressure sensitive adhesive. Secure with outward clinch expanding staples.
 2. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe. Finish with glass cloth and adhesive or PVC fitting covers.

G. Inserts and Shields:
 1. Application: Piping 1-1/2 inches diameter or larger.
 2. Shields: Galvanized steel between pipe hangers or pipe hanger rolls and inserts.
 3. Insert location: Between support shield and piping and under the finish jacket.
 4. Insert configuration: Minimum 12 inches long, of same thickness and contour as adjoining insulation; may be factory fabricated.
 5. Insert Material: Hydrous calcium silicate insulation or other heavy density insulating material suitable for the planned temperature range.

H. Continue insulation through walls, sleeves, pipe hangers, and other pipe penetrations. Finish at supports, protrusions, and interruptions. At fire separations, refer to Section 078400.

I. Exterior Applications: Provide two coats of UV resistant finish for flexible elastomeric cellular insulation without jacketing.

3.3 SCHEDULE

A. Heating Systems:
 1. Heating Water Supply and Return (Glass Fiber Insulation):
 a. 1-1/2" pipe size or less: 1-1/2" insulation thickness
 b. 2" pipe size or larger: 2" insulation thickness

B. Cooling Systems (Flexible Elastomeric Cellular Insulation):
 1. Condensate Drains from Cooling Coils:
 a. 1/2" insulation thickness
 2. Refrigerant Low Pressure Vapor (+40 degrees F to +90 degrees F)
 a. 1-1/2" pipe size or less: 1" insulation thickness
 3. Refrigerant High Pressure Vapor (+95 degrees F to +220 degrees F)
 a. 1-1/2" pipe size or less: 1-1/2" insulation thickness
 4. Refrigerant Liquid (+75 degrees F ambient to +118 degrees F ambient):
 a. 1-1/2" pipe size or less: 1" insulation thickness

END OF SECTION
SECTION 230923 - DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary General Conditions and Division 01 Specifications, apply to this section.

1.2 STANDARD TERMS

A. Standard
1. ASHRAE: American Society Heating, Refrigeration, Air Conditioning Engineers
2. AHU: Air Handling Unit
3. BACnet: Building Automation Controls Network
4. BMS: Building Management System
5. DDC: Direct Digital Control
6. EIA: Electronic Industries Alliance
7. GUI: Graphical User Interface
8. HVAC: Heating, Ventilation, and Air Conditioning
9. IEEE: Institute Electrical Electronic Engineers
10. MER: Mechanical Equipment Room
11. PID: Proportional, Integral, Derivative
12. VAV: Variable Air Volume Box

B. Communications and protocols
1. ARP: Address Resolution Protocol
2. BACnet: Building Automation and Control Networks
3. CORBA: Common Object Request Broker Architecture
4. CSMA/CD: Carrier Sense Multiple Access/Collision Detect
5. DDE: Dynamic Data Exchange
6. FTP: File Transfer Protocol
7. FTT: Free Topology Transceivers
8. HTTP: Hyper Text Transfer Protocol
9. IIOP: Internet Inter-ORB Protocol
10. IP: Internet Protocol
11. LAN: Local Area Network
12. LON: Echelon Communication - Local Operating Network
13. MS/TP: Master Slave Token Passing
14. OBIX: Open Building Information Exchange
15. ODBC: Open Database Connectivity
16. ORB: Object Request Broker
17. SNVT: Standard Network Variables Types
18. SQL: Structured Query Language
19. UDP: User Datagram Protocol
20. XML: eXtensible Markup Language

C. Controllers
1. ASD: Application Specific Device
2. AAC: Advanced Application Controller
3. ASC: Application Specific Controller.
4. CAC: Custom Application Controller.
5. DCU: Distributed Control Unit
6. LCM: Local Control Module
7. MC: MicroControllers
8. MPC: Multi-purpose Controller
9. NSC: Network Server Controller
10. PEM: Package Equipment Module
11. PPC: Programmable Process Controller
12. RC: Room controller
13. SDCU: Standalone Digital Control Units
14. SLC: Supervisory Logic Controller
15. UEC: Unitary Equipment Controller
16. VAVDDC: Variable Air Volume Direct Digital Controller

D. Tools and Software
1. AFDD: Automated Fault Detection and Diagnostic
2. APEO: Automated Predictive Energy Optimization
3. DR: Demand Response
4. CCDT: Configuration, Commissioning and Diagnostic Tool
5. BPES: BACnet Portable Engineering Station
6. LPES: LON Portable Engineering Station
7. POT: Portable Operator’s Terminal
8. PEMS: Power and Energy Management Software

1.3 SCOPE OF WORK

A. The Contractor shall furnish and install a complete building automation system including all necessary hardware and all operating and applications software necessary to perform the control sequences of operation as called for in this specification. Network level components of the system - workstations, servers, etc. shall communicate using the BACnet protocol, as defined by ASHRAE Standard 135-2004. No gateways shall be used for communication to controllers furnished under this section.
1. At a minimum, provide controls for the following:
 a. Boilers including hot water pumps
 b. Cabinet unit heater controls
 c. Finned tube radiation control
 d. Hot Water Loop Pumps
 e. Air Handling Units
 f. Rooftop Units

B. Except as otherwise noted, the control system shall consist of all necessary Ethernet Network Controllers, Standalone Digital Control Units, Room Controllers, workstations, software, sensors, transducers, relays, valves, dampers, damper operators, control panels, and other accessory equipment, along with a complete system of electrical interlocking wiring to fill the intent of the specification and provide for a complete and operable system. Except as otherwise specified, provide operators for equipment such as dampers if the equipment manufacturer does not provide these. Coordinate requirements with the various Contractors.
C. The BAS contractor shall review and study all HVAC drawings and the entire specification to familiarize themselves with the equipment and system operation and to verify the quantities and types of dampers, operators, alarms, etc. to be provided.

D. All interlocking wiring, wiring and installation of control devices associated with the equipment listed below shall be provided under this Contract. When the BAS system is fully installed and operational, the BAS Contractor and representatives of the Owner will review and check out the system - see System Acceptance and Testing section of this document. At that time, the BAS contractor shall demonstrate the operation of the system and prove that it complies with the intent of the drawings and specifications.

E. Provide services and manpower necessary for commissioning of the system in coordination with the HVAC Contractor, Balancing Contractor and Owner’s representative.

F. All work performed under this section of the specifications will comply with all governing codes, laws and governing bodies. If the drawings and/or specifications are in conflict with governing codes, the Contractor, with guidance from the engineer, shall submit a proposal with appropriate modifications to the project to meet code restrictions. If this specification and associated drawings exceed governing code requirements, the specification will govern. The Contractor shall obtain and pay for all necessary construction permits and licenses.

1.4 SYSTEM DESCRIPTION

A. In accordance to the scope of work, the system shall also provide a graphical, web-based, operator interface that allows for instant access to any system through a standard browser. The contractor must provide PC-based programming workstations, operator workstations and microcomputer controllers of modular design providing distributed processing capability, and allowing future expansion of both input/output points and processing/control functions.

1. For this project, the system shall consist of the following components:

a. Administration and Programming Workstation(s): The BAS Contractor shall include Operation software and architecture as described in Part 2 of the specification. These workstations must be running the standard workstation software developed and tested by the manufacturer of the network server controllers and the standalone controllers. No third party front-end workstation software will be acceptable. Workstations must conform to the B-OWS BACnet device profile.

b. Web-Based Operator Workstations: The BAS Contractor shall furnish licenses for web connection to the BAS system. Web-based users shall have access to all system points and graphics, shall be able to receive and acknowledge alarms, and shall be able to control setpoints and other parameters. All engineering work, such as trends, reports, graphics, etc. that are accomplished from the WorkStation shall be available for viewing through the web browser interface without additional changes. The web-based interface must conform to the B-OWS BACnet device profile. There will be no need for any additional computer based hardware to support the web-based user interface.

c. Ethernet-based Network Router and/or Network Server Controller(s): The BAS Contractor shall furnish needed quantity of Ethernet-based Network Server Controllers as described in Part 2 of the specification. These controllers will connect directly to the Operator Workstation over Ethernet at a minimum of 100mbps, and provide communication to the Standalone Digital Control Units and/or other Input/Output Modules. Network Server Controllers shall conform to BACnet device
profile B-BC. Network controllers that utilize RS232 serial communications or ARCNET to communicate with the workstations will not be accepted. Network Controllers shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Building Controllers (B-BC).

d. **Standalone Digital Control Units (SDCUs):** Provide the necessary quantity and types of SDCUs to meet the requirements of the project for equipment control including air handlers, central plant control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment. Each BACnet protocol SDCU shall conform to the BACnet device profile B-AAC. BACnet SDCUs shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Advanced Application Controllers (B-AAC).

B. **The Local Area Network (LAN) shall be either a 10 or 100 Mbps Ethernet network supporting BACnet, Modbus, XML and HTTP for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Network Server Controllers (NSCs), user workstations and a local host computer system.**

C. **The Enterprise Ethernet (IEEE 802.3) LAN shall utilize Carrier Sense Multiple/Access/Collision Detect (CSMA/CD), Address Resolution Protocol (ARP) and User Datagram Protocol (UDP) operating at 10 or 100 Mbps.**

D. **The system shall enable an open architecture that utilizes EIA standard 709.1, the LonTalk™ protocol and/or ANSI / ASHRAE™ Standard 135-2004, BACnet functionality to assure interoperability between all system components. Native support for the LonTalk™ protocol and the ANSI / ASHRAE™ Standard 135-2004, BACnet protocol are required to assure that the project is fully supported by the HVAC open protocols to reduce future building maintenance, upgrade, and expansion costs.**

E. **The system shall enable an architecture that utilizes a MS/TP selectable 9.6-76.8 KBaud protocol, as a common communication protocol between controllers and integral ANSI / ASHRAE™ Standard 135-2004, BACnet functionality to assure interoperability between all system components. The AAC shall be capable of communicating as a MS/TP device or as a BACnet IP device communicating at 10/100 Mbps on a TCP/IP trunk. The ANSI / ASHRAE™ Standard 135-2004, BACnet protocol is required to assure that the project is fully supported by the leading HVAC open protocol to reduce future building maintenance, upgrade, and expansion costs.**

F. **LonTalk™ packets may be encapsulated into TCP/IP messages to take advantage of existing infrastructure or to increase network bandwidth where necessary or desired.**

 1. Any such encapsulation of the LonTalk™ protocol into IP datagrams shall conform to existing LonMark™ guide functionality lines for such encapsulation and shall be based on industry standard protocols.

 a. The products used in constructing the BMS shall be LonMark™ compliant.

 b. In those instances in which Lon-Mark™ devices are not available, the BMS contractor shall provide device resource files and external interface definitions for LonMark devices.

G. **The software tools required for network management of the LonTalk™ protocol and the ANSI / ASHRAE™ Standard 135-2004, BACnet protocol must be provided with the system. Drawings are diagrammatic only. Equipment and labor not specifically referred to herein or on the plans and are required to meet the functional intent, shall be provided without additional cost to the
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

Owner. BACnet clients shall comply with the BACnet Operator Workstation (B-OWS) device profile; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet IP or MS/TP. Physical connection of LonWorks devices shall be via Ethernet IP or FTT-10A.

H. The system shall provide support for Modbus TCP and RTU protocols natively, and not require the use of gateways.

I. Complete temperature control system to be DDC with electronic sensors and electronic/electric actuation of Mechanical Equipment Room (MER) valves and dampers and electronic actuation of terminal equipment valves and actuators as specified herein. The BMS is intended to seamlessly connect devices throughout the building regardless of subsystem type, i.e. variable frequency drives, low voltage lighting systems, electrical circuit breakers, power metering and card access should easily coexist on the same network channel.
 1. The supplied system must incorporate the ability to access all data using HTML5 enabled browsers without requiring propriety operator interface and configuration programs. The system shall not require JAVA to be enabled in the browser.
 a. Data shall reside on a supplier-installed server for all database access.
 b. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer's internal Intranet network.

J. All work described in this section shall be installed, wired, circuit tested and calibrated by factory certified technicians qualified for this work and in the regular employment of the approved manufacturer's local field office. The approved manufacturer's local field office shall have a minimum of 10 years of installation experience with the manufacturer and shall provide documentation in the bid and submittal package verifying longevity of the installing company's relationship with the manufacturer when requested. Supervision, hardware and software engineering, calibration and checkout of the system shall be by the employees of the approved manufacturer's local field office and shall not be subcontracted. The control contractor shall have an in place support facility within 25 miles of the site with factory certified technicians and engineers, spare parts inventory and all necessary test and diagnostic equipment for the installed system, and the control contractor shall have 24 hours/day, 7 days/week emergency service available.

K. Provide the Commissioning, configuration and diagnostic tool (CCDT), color display personnel computer, software, and interfaces to provide uploading/downloading of High Point Count Controllers (AAC), Unitary Equipment Controllers (UEC) and VAV controllers (VAVDDC), monitoring all BACnet objects, monitoring overrides of all controller physical input/output points, and editing of controller resident time schedules.

L. The system shall provide an integrated video management system. The Video Management System (VMS) shall be an IP Windows based scalable video management and surveillance system that shall maintain a database of cameras and recording devices managed via a web-based admin portal. See specification 28 23 13 for exact requirements.

1.5 WORK BY OTHERS

A. The BAS Contractor shall cooperate with other contractors performing work on this project necessary to achieve a complete and neat installation. To that end, each contractor shall
consult the drawings and specifications for all trades to determine the nature and extent of others’ work.

B. The BAS Contractor shall furnish all Airflow Stations, Control Dampers, Control Valves, Flow Meters, Sensor Wells and other similar equipment for installation by the Mechanical Contractor and/or others.

C. The BAS Contractor shall provide field supervision to the designated contractor for the installation of the following:
 1. Automatic control dampers
 2. Blank-off plates for dampers that are smaller than duct size.
 3. Sheet metal baffles plates to eliminate stratification.
 4. The Electrical Contractor shall provide:
 a. All 120VAC power wiring to motors, heat trace, junction boxes for power to BAS panels.
 b. Furnish smoke detectors and wire to the building fire alarm system. HVAC Contractor to mount devices. BAS Contractor to hardwire to fan shut down.
 c. Auxiliary contact (pulse initiator) on the electric meter for central monitoring of kWh and KW. Electrical Contractor shall provide the pulse rate for remote readout to the BAS. BAS contractor to coordinate this with the electrical contractor.

1.6 RELATED REQUIREMENTS

A. Refer to Division 0 and Division 1 for related contractual requirements.

B. Section 230593 - Testing, Adjusting, and Balancing for HVAC.

C. Section 230913 - Instrumentation and Control Devices for HVAC.

D. Section 230993 - Sequence of Operations for HVAC Controls.

E. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections.

F. Section 284600 - Fire Detection and Alarm.

G. Section 019113 - Commissioning Requirements.

1.7 REFERENCE STANDARDS

A. The latest edition of the following standards and codes in effect and amended as of supplier’s proposal date, and any applicable subsections thereof, shall govern design and selection of equipment and material supplied:
 1. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
 4. UL 916 Underwriters Laboratories Standard for Energy Management Equipment. Canada and the US.
6. Comply with FCC rules, Part 15 regarding Class A radiation for computing devices and low power communication equipment operating in commercial environments.

7. Comply with FCC, Part 68 rules for telephone modems and data sets.

9. UL-864 UUKL listing for Smoke Controls for any equipment used in smoke control sequences.

10. All equipment or piping used in conditioned air streams, spaces or return air plenums shall comply with NFPA 90A Flame/Smoke/Fuel contribution rating of 25/50/0 and all applicable building codes or requirements.

B. City, county, state, and federal regulations and codes in effect as of contract date.

C. Except as otherwise indicated, the system supplier shall secure and pay for all permits, inspections, and certifications required for his work, and arrange for necessary approvals by the governing authorities.

1.8 SUBMITTALS

A. See Section 013000 - Administrative Requirements for submittal procedures.

B. Drawings

1. The system supplier shall submit engineered drawings, control sequence, and bill of materials for approval.

2. Drawings shall be submitted in the following standard sizes: 11” x 17” (ANSI B).

3. All shop drawings shall be prepared in Visio Professional or AutoCAD software. In addition to the drawings, the Contractor shall furnish a Flash Drive containing the identical information.

4. Shop drawings shall include a riser diagram depicting locations of all controllers and workstations, with associated network wiring. Also included shall be individual schematics of each mechanical system showing all connected points with reference to their associated controller. Typicals will be allowed where appropriate.

5. Submittal data shall contain manufacturer's data on all hardware and software products required by the specification. Valve, damper and air flow station schedules shall indicate size, configuration, capacity and location of all equipment.

6. Software submittals shall contain narrative descriptions of sequences of operation, program listings, point lists, and a complete description of the graphics, reports, alarms and configuration to be furnished with the workstation software. Information shall be bound or in a three ring binder with an index and tabs. Diagrams shall be on 11” by 17” foldouts. If color has been used to differentiate information, the printed copies shall be in color.

7. Submit five (5) copies of submittal data and shop drawings to the Engineer for review prior to ordering or fabrication of the equipment. The Contractor, prior to submitting, shall check all documents for accuracy.

8. The Engineer will make corrections, if required, and return to the Contractor. The Contractor will then resubmit with the corrected or additional data. This procedure shall be repeated until all corrections are made to the satisfaction of the Engineer and the submittals are fully approved.
9. The following is a list of post construction submittals that shall be updated to reflect any changes during construction and re-submitted as “As-Built”.
 a. System architecture drawing.
 b. Layout drawing for each control panel
 c. Wiring diagram for individual components
 d. System flow diagram for each controlled system
 e. Instrumentation list for each controlled system
 f. Sequence of control
 g. Binding map
 h. A matrix sheet detailing all system addresses and communication settings for the following:
 1) All IP network addresses & settings
 2) All BMS device addresses & communication settings
 i. Operation and Maintenance Manuals

10. Information common to the entire system shall be provided. This shall include but not be limited to the following.
 a. Product manuals for the key software tasks.
 b. Operating the system.
 c. Administrating the system.
 d. Engineering the operator workstation.
 e. Application programming.
 f. Engineering the network.
 g. Setting up the web server.
 h. Report creation.
 i. Graphics creation.
 j. All other engineering tasks.
 k. System Architecture Diagram.
 l. List of recommended maintenance tasks associated with the system servers, operator workstations, data servers, web servers and web clients.
 m. Define the task.
 n. Recommend a frequency for the task.
 o. Reference the product manual that includes instructions on executing the task.
 p. Names, addresses, and telephone numbers of installing contractors and service representatives for equipment and control systems.
 q. Licenses, guarantees, and warranty documents for equipment and systems.
 r. Submit one copy for each building, plus two extra copies.

11. Information common to the systems in a single building shall be provided.
 a. System architecture diagram for components within the building annotated with specific location information.
 b. As-built drawing for each control panel.
 c. As-built wiring design diagram for all components.
 d. Installation design details for each I/O device.
 e. As-built system flow diagram for each system.
 f. Sequence of control for each system.
 g. Binding map for the building.
 h. Product data sheet for each component.
 i. Installation data sheet for each component.
 j. Submit two copies for each building and two extra copies.

12. Software shall be provided:
 a. Submit a copy of all software installed on the servers and workstations.
 b. Submit all licensing information for all software installed on the servers and workstations.
c. Submit a copy of all software used to execute the project even if the software was not
installed on the servers and workstations.

d. Submit all licensing information for all of the software used to execute the project.

e. All software revisions shall be as installed at the time of the system acceptance.

f. Firmware Files

g. Submit a copy of all firmware files that were downloaded to or pre-installed on any
devices installed as part of this project.

h. This does not apply to firmware that is permanently burned on a chip at the factory
and can only be replaced by replacing the chip.

i. Submit a copy of all application files that were created during the execution of the
project.

j. Submit a copy of all graphic page files created during the execution of the project.

C. System Documentation

1. Include the following in submittal package:

a. System configuration diagrams in simplified block format.

b. All input/output object listings and an alarm point summary listing.

c. Electrical drawings that show all system internal and external connection points,
terminal block layouts, and terminal identification.

d. Complete bill of materials, valve schedule and damper schedule.

e. Manufacturer's instructions and drawings for installation, maintenance, and operation
of all purchased items.

f. Overall system operation and maintenance instructions-including preventive
maintenance and troubleshooting instructions.

g. For all system elements-operator's workstation(s), building controller(s), application
controllers, routers, and repeaters-provide BACnet Protocol Implementation

h. Provide complete description and documentation of any proprietary (non-BACnet)
services and/or objects used in the system.

i. A list of all functions available and a sample of function block programming that shall
be part of delivered system.

j. Preliminary graphic displays will be produced for each air and water system for review
by the customer. The ATC contractor will meet with the customer to review all
revisions.

D. Project Management

1. The vendor shall provide a detailed project design and installation schedule with time
markings and details for hardware items and software development phases. Schedule
shall show all the target dates for transmission of project information and documents, and
shall indicate timing and dates for system installation, debugging, and commissioning.

1.9 WARRANTY

A. Warranty shall cover all costs for parts, labor, associated travel, and expenses for a period of
12 months from the date of final acceptance by Owner and completion of commissioning.

B. Hardware and software personnel supporting this warranty agreement shall provide on-site or
off-site service in a timely manner after failure notification to the vendor. The maximum
acceptable response time to provide this service at the site shall be 24 hours, Monday through
Friday and 48 hours on Saturday and Sunday.
C. This warranty shall apply equally to both hardware and software.

1.10 COORDINATION

A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate equipment from other divisions including "Intrusion Detection," "Lighting Controls," "Motor Control Centers," "Panel boards," and "Fire Alarm" to achieve compatibility with equipment that interfaces with those systems.

C. Coordinate supply of conditioned electrical circuits for control units and operator workstation.

D. Coordinate location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete".

E. Coordinate with the Owner's IT department on locations for NSC's, Ethernet communication cabling and TCP/IP addresses.

1.11 OWNERSHIP

A. The Owner shall retain licenses to software for this project.

B. The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition off this contractor. Such license shall grant use of all programs and application software to the Owner as defined by the manufacturer's license agreement, but shall protect the manufacturer's rights to disclosure of Trade Secrets contained within such software.

C. The licensing agreement shall not preclude the use of the software by individuals under contract to the owner for commissioning, servicing or altering the system in the future. Use of the software by individuals under contract to the owner shall be restricted to use on the owner's computers and only for the purpose of commissioning, servicing, or altering the installed system.

D. All project developed software, files and documentation shall become the property of the Owner. These include but are not limited to:
 1. Server and workstation software
 2. Application programming tools
 3. Configuration tools
 4. Network diagnostic tools
 5. Addressing tools
 6. Application files
 7. Configuration files
 8. Graphic files
 9. Report files
10. Graphic symbol libraries
11. All documentation

1.12 QUALITY ASSURANCE

A. Perform work in accordance with NFPA 70

B. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section with minimum 10 years of documented experience.

C. Installer Qualifications: Company specializing in performing work of the type specified and with minimum 10 years of documented experience.

D. Products Requiring Electrical Connection: Listed and classified by UL (DIR) as suitable for purpose specified and indicated.

E. The Building Automation System (BAS) system shall be designed, installed, commissioned, and serviced by manufacturer authorized and trained personnel. System provider shall have an in-place support facility within 2 hours response time of the site with technical staff, spare parts inventory, and necessary test and diagnostic equipment.
 1. The contractor shall provide full-time, on-site, experienced project manager for this work, responsible for direct supervision of the design, installation, start-up and commissioning of the BAS system.
 2. The Bidder shall be regularly engaged in the design, installation and maintenance of BAS systems and shall have demonstrated technical expertise and experience in the design, installation and maintenance of BAS systems similar in size and complexity to this project. Bidders shall provide a list of at least 10 projects, similar in size and scope to this project completed within the past 3 years.

F. Materials and equipment shall be manufacturer's latest standard design that complies with the specification requirements.

G. All BAS peer-to-peer network controllers, central system controllers and local user displays shall be UL Listed under Standard UL 916, category PAZX.

H. All electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference and be so labeled.

I. Control system shall be engineered, programmed and supported completely by representative’s local office that must be within 50 miles of project site.

J. Each point in the system shall be tested for both hardware and software functionality. In addition, each mechanical and electrical system under control of the BAS will be tested against the appropriate sequence of operation specified herein. Successful completion of the system test shall constitute the beginning of the warranty period. A written report will be submitted to the owner indicating that the installed system functions in accordance with the plans and specifications.
K. The BAS contractor shall commission and set in operating condition all major equipment and systems, such as the chilled water, hot water and all air handling systems, in the presence of the equipment manufacturer’s representatives, as applicable, and the Owner and Architect’s representatives.

L. The BAS Contractor shall provide a technician and engineering services required to assist the HVAC Contractor and Balancing Contractor in testing, adjusting, and balancing all systems in the building. The BAS Contractor shall coordinate all requirements to provide a complete air balance with the Balancing Contractor and shall include all labor and materials in his contract.

M. Startup Testing shall be performed for each task on the startup test checklist, which shall be initialed by the technician and dated upon test was completion along with any recorded data such as voltages, offsets or tuning parameters. Any deviations from the submitted installation plan shall also be recorded.

N. Required elements of the startup testing include:
 1. Measurement of voltage sources, primary and secondary
 a. Verification of proper controller power wiring.
 b. Verification of component inventory when compared to the submittals.
 c. Verification of labeling on components and wiring.
 d. Verification of connection integrity and quality (loose strands and tight connections).
 e. Verification of bus topology, grounding of shields and installation of termination devices.
 f. Verification of point checkout.
 g. Each I/O device is landed per the submittals and functions per the sequence of control.
 h. Analog sensors are properly scaled and a value is reported
 i. Binary sensors have the correct normal position and the state is correctly reported.
 j. Analog outputs have the correct normal position and move full stroke when so commanded.
 k. Binary outputs have the correct normal state and respond appropriately to energize/de-energize commands.
 l. Documentation of analog sensor calibration (measured value, reported value and calculated offset).
 m. Documentation of Loop tuning (sample rate, gain and integral time constant).

O. A performance verification test shall also be completed for the operator interaction with the system. Test elements shall be written to require the verification of all operator interaction tasks including, but not limited to the following.
 a. Trend data collection and presentation.
 b. Alarm handling, acknowledgement and routing.
 c. Time schedule editing.
 d. Application parameter adjustment.
 e. Manual control.
 g. Automatic backups.
 h. Web Client access.

P. A Startup Testing Report and a Performance Verification Testing Report
1. shall be provided upon test completion.

1.13 COMMISSIONING

A. Engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 019113 - Commissioning Requirements.

B. Complete installation and startup checks and functional tests according to Section 019113 - Commissioning Requirements.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new one and repeat the startup procedure.

D. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

E. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

F. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

G. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

H. Read/view only web based access accounts shall be provided to the engineer and commissioning agent. Account shall be setup once on-site server is active and pertinent access username, password information and instructions shall be emailed to the engineer and commissioning agent as early in the project as possible. Minimum read/view only access shall be provided to following: graphic, programing, trend data and alarms.

1.14 QUALIFICATIONS OF BIDDER AND PRE-BID SUBMITTAL

A. All bidders must be building automation contractors in the business of installing direct digital control building automation systems for a minimum of 10 years.

1. The Building Management System contractor shall have a full service facility within 25 miles of the project that is staffed with engineers trained and certified by the manufacturer in the configuration, programming and service of the automation system. The contractor’s technicians shall be fully capable of providing instructions and routine emergency maintenance service on all system components.

2. Any installing contractor, not listed as prequalified in the Approved Manufacturer’s section, shall submit credentials as detailed in the Pre-bid Submittal section for the engineer’s review 2 weeks prior to bid date. Failure to follow the attached formats shall disqualify potential alternate bidders. Credentials must attest that the contractor meets all
requirements of the specification and the Engineers judgment regarding approval to bid as an acceptable installer after reviewing the data will be final.

B. All bidders must be authorized distributors or branch offices of the manufacturers specified.

C. The following bidders have been pre-qualified:
 1. Schneider Electric, Smart Struxure IA by SNE Building Systems

D. Any installing contractors or manufacturers interested in participating as acceptable bidders for this project that are not pre-qualified shall furnish a detailed technical pre-bid submittal to the consulting engineer. All information must be submitted 2 weeks prior to the published bid date to allow the engineer adequate time to review the bidder’s credentials.

E. The Pre-Bid submittal shall contain the following information as a minimum:
 1. A profile of the manufacturer and the local installation and service/organization.
 2. Description of how the system meets and achieves all the specified criteria in terms of configuration, operation, and control.
 3. System Architecture with single line riser diagram showing all major components (digital controllers, routers, hubs, etc.) that will be required for this project.
 4. Procedure for commissioning and time required to startup and commission each of the systems for this project.
 5. Contractors approach for the project planning and management.
 6. Product Data Sheets for all components, DDC panels, and all accessories listed per the appropriate specification sections herein.
 7. Examples of actual graphic screens for other similar projects.
 8. Number and types of DDC panels required for this installation.
 9. Number and types of spare points provided with the proposed system.
 10. Recommended spare parts list for components with list price schedule.
 11. List of 2 similar systems in size, point capacity, total installed value, installed and commissioned by the local office with a list of the installers/manufacturers design team members for each project and the owners contact information.
 12. Samples of service offerings and a list of current similar service contracts with contact information.
 13. Resumes for the management team and all employees who will be involved with the project design, commissioning, project management, and after installation service. Resumes should include copies of manufacturer’s certifications for the proposed product line.
 14. Copy of this Control Specification in its entirety with a check mark beside each paragraph to signify that the manufacturer's equipment and software shall fully conform to the specified requirement. If the requirement cannot be met, indicate the reasons/limitations and the alternative proposed.
1.15 AN INTERVIEW MAY BE CONDUCTED AND THE BIDDER WILL BE REQUESTED TO MAKE A FORMAL PRESENTATION CONCERNING THE PROPOSED SYSTEM AND POSSIBLY PROVIDE AN INSTALLED PROJECT TOUR PRIOR TO A FINAL DECISION.

1.16

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Schneider Electric USA, Inc StruxureWare installed by SNE Building Systems, Inc., East Granby, Connecticut.

B. Alternate Pricing Products: Subject to compliance with requirements, contractor to provide alternate pricing for comparable product by one of the following:
 1. Automated Logic WEBCTRL System, Wallingford, CT

C. Both basis-of-design and alternate manufacturers shall comply with all requirements identified in this specification including, but not limited to, the following:
 1. Town Facility Operator shall be able to upload, download, monitor, trend, control, and program every input and output in DDC system using existing Schneider control system software and operator workstations. A link to the operator workstation will not be accepted.
 2. DDC system shall interface with the existing Schneider control system to adhere to Rocky Hill Public Building graphic and programming standards already in-place.
 3. Provide a building automation system to allow all objects as defined by ASHRAE Standard SPC-135A/95 to be sent to the existing Town Wide Schneider control system.

D. Substitutions: See Section 016000 - Product Requirements.

E. Substitutions: See Section 016000 - Product Requirements.

2.2 SYSTEM ARCHITECTURE

A. General
 1. The Building Automation System (BAS) shall consist of Network Server/Controllers (NSCs), a family of Standalone Digital Control Units (SDCUs), Administration and Programming Workstations (APWs), and Web-based Operator Workstations (WOWs). The BAS shall provide control, alarm detection, scheduling, reporting and information management for the entire facility, and Wide Area Network (WAN) if applicable.
 2. The Enterprise Level BAS shall be able to host up to 250 servers, or NSCs, beneath it.
 3. For Enterprise reporting capability and robust reporting capability outside of the trend chart and listing ability of the Workstation, a Reports Server shall be installed on a Microsoft Windows SQL based computer. The Reports Server can be installed on the same computer as the Enterprise Server.
4. The system shall be designed with a top-level 10/100bT Ethernet network, using the BACnet/IP, LonWorks IP, and/or Modbus TCP protocol.

B. Modbus RTU/ASCII (and J-bus), Modbus TCP, BACnet MS/TP, BACnet IP, LonTalk FTT-10A, and WebServices shall be native to the NSCs. There shall not be a need to provide multiple NSCs to support all the network protocols, nor should there be a need to supply additional software to allow all three protocols to be natively supported.

C. A sub-network of SDCUs using the BACnet MS/TP protocol shall connect the local, stand-alone controllers with Ethernet-level Network Server Controllers/IP Routers.

D. TCP/IP Level
 1. The TCP/IP layer connects all of the buildings on a single Wide Area Network (WAN) isolated behind the campus firewall. Fixed IP addresses for connections to the campus WAN shall be used for each device that connects to the WAN.

E. Fieldbus Level with Standalone Digital Control Units (SDCUs)
 1. The fieldbus layer shall support all of the following types of SDCUs:
 a. BACnet MS/TP SDCU requirements: The system shall consist of one or more BACnet MS/TP field buses managed by the Network Server Controller. Minimum speed shall be 76.8kbps. The field bus layer consists of an RS485, token passing bus that supports up to 127 Standalone Digital Control Units (SDCUs) for operation of HVAC and lighting equipment. These devices shall conform to BACnet standard 135-2004. The NSCs shall be capable of at least two BACnet MS/TP field buses for a total capability of 254 SDCUs per NSC.

F. BAS LAN Segmentation
 1. The BAS shall be capable of being segmented, through software, into multiple local area networks (LANs) distributed over a wide area network (WAN). Workstations can manage a single LAN (or building), and/or the entire system with all portions of that LAN maintaining its own, current database.

G. Standard Network Support
 1. All NSCs, Workstation(s) and Servers shall be capable of residing directly on the owner’s Ethernet TCP/IP LAN/WAN with no required gateways. Furthermore, the NSC’s, Workstation(s), and Server(s) shall be capable of using standard, commercially available, off-the-shelf Ethernet infrastructure components such as routers, switches and hubs. With this design the owner may utilize the investment of an existing or new enterprise network or structured cabling system. This also allows the option of the maintenance of the LAN/WAN to be performed by the owner’s Information Systems Department as all devices utilize standard TCP/IP components.

H. System Expansion
 1. The BAS system shall be scalable and expandable at all levels of the system using the same software interface, and the same TCP/IP level and fieldbus level controllers. Systems that require replacement of either the workstation software or field controllers in order to expand the system shall not be acceptable.
 2. Web-based operation shall be supported directly by the NSCs and require no additional software.
 3. The system shall be capable of using graphical and/or line application programming language for the Network Server Controllers.
I. Support For Open Systems Protocols
 1. All Network Server Controllers must natively support the BACnet IP, BACnet MS/TP, LonWorks FTT-10, Modbus TCP, Modbus RTU (RS-485 and RS-232), and Modbus ASCII protocols.
 a. Operator must type in text in an alarm entry and/or pick from a drop-down list of causes for certain alarms. This ensures accountability (audit trail) for the response to critical alarms.
 1) The active alarm viewer can be configured such that an operator must confirm that all of the steps in a check list have been accomplished prior to acknowledging the alarm.
 2) The active alarm viewer shall, if filtered, show the quantity of visible and total number of alarms that are not equal to ‘normal’ and the quantity of disabled and hidden alarms.
 3) The alarm viewer can be configured to auto hide alarms when triggered.
 4) An operator shall have the capability to assign an alarm to another user of the system.
 5) Time schedules shall be able to be used to set control notifications to users.
 6) An operator shall have the capability to save and apply alarm favorites.
 7) Alarm notifications must support multiple distribution methods within one notification.

J. Scheduling
 1. From the workstation or webstation, it shall be possible to configure and download schedules for any of the controllers on the network.
 2. Time of day schedules shall be in a calendar style and viewable in both a graphical and tabular view.
 3. Schedules shall be programmable for a minimum of one year in advance.
 4. To change the schedule for a particular day, a user shall simply select the day and make the desired modifications.
 5. Additionally, from the operator webstations, each schedule will appear on the screen viewable as the entire year, monthly, week and day. A simple mouse click shall allow switching between views. It shall also be possible to scroll from one month to the next and view or alter any of the schedule times.
 6. Schedules will be assigned to specific controllers and stored in their local RAM memory. Any changes made at the workstation will be automatically updated to the corresponding schedule in the controller.
 7. It shall be possible to assign a lead schedule such that shadow/local schedules are updated based upon changes in the Lead.
 8. It shall be possible to assign a list(s) of exception event days, dates, date ranges to a schedule.
 9. It shall be possible to view combined views showing the calendar and all prioritized exemptions on one screen.
 10. It should accommodate a minimum of 16 priority levels.
 11. Values should be able to be controlled directly from a schedule, without the need for special program logic.

K. Programmer's Environment
 1. Programming in the NSC shall be either in graphical block format or line-programming format or both.
2. Programming of the NSC shall be available offline from system prior to deployment into the field. All engineering tasks shall be possible, except, of course, the viewing of live tasks or values.

3. The programmer's environment will include access to a superset of the same programming language supported in the SDCUs.

4. NSC devices will support both script programming language as well as the graphical function block programming language. For both languages, the programmer will be able to configure application software for custom program development, and write global control programs. Both languages will have debugging capabilities in their editors.

5. It shall be possible to save custom programs as libraries for reuse throughout the system. A wizard tool shall be available for loading programs from a library file in the program editor.

6. It shall be possible to view graphical programming live and real-time from the Workstation.

7. The system shall be capable of creating 'binding templates' allowing the user to bind multiple points to multiple objects all at once.

8. Key terms should appear when typing (IntelliType).

9. Applications should be able to be assigned different priorities and cycle times for a prioritized execution of different function.

10. The system shall be able to create objects that allow common objects such as power meters, VFD drives, etc. to be integrated into the system with simple import actions without the need of complicated programming or configuration setups.

L. Saving/Reloading
1. The workstation software shall have an application to save and restore NSC and field controller memory files.

2. For the NSC, this application shall not be limited to saving and reloading an entire controller - it must also be able to save/reload individual objects in the controller. This allows off-line debugging of control programs, for example, and then reloading of just the modified information.

M. Audit Trail
1. The workstation software shall automatically log and timestamp every operation that a user performs at a workstation, from logging on and off a workstation to changing a point value, modifying a program, enabling/disabling an object, viewing a graphic display, running a report, modifying a schedule, etc.

2. It shall be possible to view a history of alarms, user actions, and commands for any system object individually or at least the last 5000 records of all events for the entire system from Workstation.

3. The Enterprise server shall be able to store up to 5 million events.

4. The event view shall support viewing of up to 100,000 events.

5. It shall be possible to save custom filtered views of event information that are viewable and configurable in Workstation.

6. It shall be capable to search and view all forced values within the system.

N. Fault Tolerant Enterprise Server Operation (Top level NSC)
1. A single component failure in the system shall not cause the entire system to fail. All system users shall be informed of any detectable component failure via an alarm event. System users shall not be logged off as a result of a system failure or switchover.

O. Web-based Operator Software
1. General:
Day-to-day operation of the system shall be accessible through a standard web browser interface, allowing technicians and operators to view any part of the system from anywhere on the network.

1) The system shall be able to be accessed on site via a mobile device environment with, at a minimum, access to overwrite and view system values.

Graphic Displays

a. The browser-based interface must share the same graphical displays as the Administration and Programming Workstations, presenting dynamic data on site layouts, floor plans, and equipment graphics. The browser’s graphics shall support commands to change setpoints, enable/disable equipment and start/stop equipment.

1) Through the browser-based interface, operators must be able to navigate through the entire system, and change the value or status of any point in any controller. Changes are effective immediately to the controller, with a record of the change stored in the system database.

Alarm Management

a. Systems requiring additional client software to be installed on a PC for viewing the webstation from that PC will not be considered.

1) Through the browser interface, a live alarm viewer identical to the alarm viewer on the Administration and Programming workstation shall be presented, if the user’s password allows it. Users must be able to receive alarms, silence alarms, and acknowledge alarms through a browser. If desired, specific operator text must be able to be added to the alarm record before acknowledgement, attachments shall be viewable, and alarm checklists shall be available.

Groups and Schedules

1. Through the browser interface, operators must be able to view pre-defined groups of points, with their values updated automatically.

2. Through the browser interface, operators must be able to change schedules - change start and stop times, add new times to a schedule, and modify calendars.

User Accounts and Audit Trail

1. The same user accounts shall be used for the browser interface and for the operator workstations. Operators must not be forced to memorize multiple passwords.

2. All commands and user activity through the browser interface shall be recorded in the system’s activity log, which can be later searched and retrieved by user, date, or both.

Web Services

1. The installed system shall be able to use web services to “consume” information within the Network Server/Controllers (NSCs) with other products and systems. Inability to perform web services within the NSCs will be unacceptable.

2.3 BACNET FIELDBUS AND BACNET SDCUS

Networking

1. IP Network: All devices that connect to the WAN shall be capable of operating at 10 megabits per second or 100 megabits per second.

2. IP To Field Bus Routing Devices

a. A Network Server Controller shall be used to provide this functionality.

1) These devices shall be configurable locally with IP crossover cable and configurable via the IP network.
(a) The routing configuration shall be such that only data packets from the field bus devices that need to travel over the IP level of the architecture are forwarded.

B. Field Bus Wiring and Termination
1. The wiring of components shall use a bus or daisy chain concept with no tees, stubs, or free topology.
2. Each field bus shall have a termination resistor at both ends of each segment.
3. The field bus shall support the use of wireless communications.

C. Repeaters
1. Repeaters are required to connect two segments.
2. Repeaters shall be installed in an enclosure. The enclosure may be in an interstitial space.

D. Field Bus Devices
1. General Requirements
 a. Devices shall have a light indicating that they are powered.
 1) Devices shall be locally powered. Link powered devices (power is furnished from a central source over the field bus cable) are not acceptable.
 (a) Application programs shall be stored in a manner such that a loss of power does not result in a loss of the application program or configuration parameter settings. (Battery backup, flash memory, etc.)

E. Advance Application Controllers (B-AAC)
1. The key characteristics of a B-AAC are:
 a. They have physical input and output circuits for the connection of analog input devices, binary input devices, pulse input devices, analog output devices, and binary output devices. The number and type of input and output devices supported will vary by model.
 1) They may or may not provide support for additional input and output devices beyond the number of circuits that are provided on the basic circuit board. Support for additional I/O shall be provided by additional circuit boards that physically connect to the basic controller.
 (a) The application to be executed by a B-AAC is created by an application engineer using the vendor’s application programming tool.
 (b) If local time schedules are embedded, the B-AAC shall support the editing of time schedule entries from any BACnet OWS that supports the BACnet service for writing of time schedule parameters.
 (c) If local trend logging is embedded, the B-AAC shall support the exporting of trend log data to any BACnet OWS that supports the read range BACnet service for trending.
 (d) If local alarm message initiation is embedded, the B-AAC shall:
 (e) Deliver alarm messages to any BACnet OWS that supports the BACnet service for receiving alarm messages and is configured to be a recipient of the alarm message.
 (f) Support alarm acknowledgement from any BACnet OWS that supports the BACnet service for executing alarm/event acknowledgement.
 (g) Shall support the reading of analog and binary data from any BACnet OWS or Building Controller that supports the BACnet service for the reading of data.
(h) Shall support the control of the out of service property and assignment of value or state to analog and binary objects from any BACnet OWS that supports writing to the out of service property and the value property of analog and binary objects.

(i) Shall support the receipt and response to Time Synchronization commands from a BACnet Building Controller.

(j) Shall support the “Who is” and “I am.” BACnet services.

(k) Shall support the “Who has” and “I have.” BACnet services.

2. Analog Input Circuits
 a. The resolution of the A/D chip shall not be greater than 0.01 Volts per increment. For an A/D converter that has a measurement range of 0 to 10 VDC and is 10 bit, the resolution is 10/1024 or 0.00976 Volts per increment.
 1) For non-flow sensors, the control logic shall provide support for the use of a calibration offset such that the raw measured value is added to the (+/-) offset to create a calibration value to be used by the control logic and reported to the Operator Workstation (OWS).
 (a) For flow sensors, the control logic shall provide support for the use of an adjustable gain and an adjustable offset such that a two point calibration concept can be executed (both a low range value and a high range value are adjusted to match values determined by a calibration instrument).
 (b) For non-linear sensors such as thermistors and flow sensors the B-AAC shall provide software support for the linearization of the input signal.

3. Binary Input Circuits
 a. Dry contact sensors shall wire to the controller with two wires.
 1) An external power supply in the sensor circuit shall not be required.

4. Pulse Input Circuits
 a. Pulse input sensors shall wire to the controller with two wires.
 1) An external power supply in the sensor circuit shall not be required.
 2) The pulse input circuit shall be able to process up to 20 pulses per second.

5. True Analog Output Circuits
 a. The logical commands shall be processed by a digital to analog (D/A) converter chip. The 0% to 100% control signal shall be scalable to the full output range which shall be either 0 to 10 VDC, 4 to 20 milliamps or 0 to 20 milliamps or to ranges within the full output range (Example: 0 to 100% creates 3 to 6 VDC where the full output range is 0 to 10 VDC).
 1) The resolution of the D/A chip shall not be greater than 0.04 Volts per increment or 0.08 milliamps per increment.

6. Binary Output Circuits
 a. Single pole, single throw or single pole, double throw relays with support for up to 230 VAC and a maximum current of 2 amps.
 1) Voltage sourcing or externally powered triacs with support for up to 30 VAC and 0.5 amps at 24 VAC.

7. Program Execution
 a. Process control loops shall operate in parallel and not in sequence unless specifically required to operate in sequence by the sequence of control.
 1) The sample rate for a process control loop shall be adjustable and shall support a minimum sample rate of 1 second.
 (a) The sample rate for process variables shall be adjustable and shall support a minimum sample rate of 1 second.
 (b) The sample rate for algorithm updates shall be adjustable and shall support a minimum sample rate of 1 second.
 (c) The application shall have the ability to determine if a power cycle to the controller has occurred and the application programmer shall be able to use
the indication of a power cycle to modify the sequence of controller immediately following a power cycle.

8. Local Interface
 a. The controller shall support the connection of a portable interface device such as a laptop computer or vendor unique hand-held device. The ability to execute any tasks other than viewing data shall be password protected. Via this local interface, an operator shall be able to:
 1) Adjust application parameters.
 (a) Execute manual control of input and output points.
 (b) View dynamic data.

F. Application Specific Devices
 1. Application specific devices shall have fixed function configurable applications.
 2. If the application can be altered by the vendor’s application programmable tool, the device is an advanced application controller and not an application specific device.
 3. Application specific devices shall be BTL certified.

2.4 DDC SENSORS AND POINT HARDWARE

A. All wall temperature thermostats and combination temperature/CO2 sensors shall have a LCD display with +/- 2 degree F local adjustment, and full range temperature adjustment at the workstation.

B. Temperature Sensors
 1. Acceptable Manufacturers: Veris Industries
 2. All temperature devices shall use precision thermistors accurate to +/- 1 degree F over a range of -30 to 230 degrees F. Space temperature sensors shall be accurate to +/- .5 degrees F over a range of 40 to 100 degrees F.
 3. Room Sensor: Standard space sensors shall be available in an [off white] [black] enclosure made of high impact ABS plastic for mounting on a standard electrical box. Basis of Design: Veris TW Series
 a. Where manual overrides are required, the sensor housing shall feature both an optional sliding mechanism for adjusting the space temperature setpoint, as well as a push button for selecting after hours operation.
 b. Where a local display is specified, the sensor shall incorporate an LCD display for viewing the space temperature, setpoint and other operator selectable parameters. Using built in buttons, operators shall be able to adjust setpoints directly from the sensor.
 4. Duct Probe Sensor: Sensing element shall be fully encapsulated in potting material within a stainless steel probe. Useable in air handling applications where the coil or duct area is less than 14 square feet. Basis of Design: Veris TD Series
 5. Duct Averaging Sensor: Averaging sensors shall be employed in ducts which are larger than 14 square feet. The averaging sensor tube shall contain at least one thermistor for every 3 feet, with a minimum tube length of 6 feet. The averaging sensor shall be constructed of rigid or flexible copper tubing. Basis of Design: Veris TA Series
 6. Pipe Immersion Sensor: Immersion sensors shall be employed for measurement of temperature in all chilled and hot water applications as well as refrigerant applications. Provide sensor probe length suitable for application. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells shall be stainless steel for non-corrosive fluids below 250 degrees F and 300 series stainless steel for all other applications. Basis of Design: Veris TI Series
7. Outside Air Sensor: Provide the sensing element on the building's north side. Sensing element shall be fully encapsulated in potting material within a stainless steel probe. Probe shall be encased in PVC solar radiation shield and mounted in a weatherproof enclosure. Operating range -40 to 122 F, Basis of Design: Veris TO Series
8. A pneumatic signal shall not be allowed for sensing temperature.

C. Humidity Wall Transmitter
 1. Acceptable Manufacturer: Veris Industries
 2. Transmitters shall be accurate to +/- 2 % at full scale.
 3. Transmitter shall have replaceable sensing element.
 4. Sensor type shall be thin-film capacitive.
 5. Sensor element shall contain multipoint calibration on-board in nonvolatile memory
 6. Operating range shall be 0 - 100% RH noncondensing, 50 to 95 F
 7. Output shall be field selectable 4-20 mA or 0-5/0-10 VDC.
 8. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 9. Transmitter shall be available in an off white enclosure made of high impact ABS plastic for mounting on a standard electrical box.
 10. Transmitter shall have option of having an LCD display
 11. Transmitter shall have option of being NIST certified
 12. Transmitter shall have option of an integrated temperature sensor
 13. Basis of Design: Veris HWL Series

D. Humidity Duct Transmitter
 1. Acceptable Manufacturer: Veris Industries
 2. Transmitters shall be accurate to +/- 2 % at full scale.
 3. Transmitter shall be fully encapsulated in potting material within a stainless steel probe.
 4. Transmitter shall have replaceable sensing element.
 5. Sensor type shall be thin-film capacitive.
 6. Sensor element shall contain multipoint calibration on-board in nonvolatile memory
 7. Operating range shall be 0 - 100% RH noncondensing, -40 to 122 F
 8. Output shall be 4-20 mA or 0-5/0-10 VDC.
 9. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 10. Transmitter shall have option of being NIST certified
 11. Transmitter shall have option of an integrated temperature sensor
 12. Basis of Design: Veris HD Series

E. Humidity Outdoor Transmitter
 1. Acceptable Manufacturer: Veris Industries
 2. Transmitters shall be accurate to +/- 2% at full scale.
 3. Transmitter shall be fully encapsulated in potting material within a stainless steel probe. Probe shall be encased in PVC solar radiation shield and mounted in a weatherproof enclosure.
 4. Transmitter shall have replaceable sensing element.
 5. Sensor type shall be thin-film capacitive.
 6. Sensor element shall contain multipoint calibration on-board in nonvolatile memory
 7. Operating range shall be 0 - 100% RH noncondensing, -40 to 122 F
 8. Output shall be 4-20 mA or 0-5/0-10 VDC.
 9. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
 10. Transmitter shall have option of being NIST certified
 11. Transmitter shall have option of an integrated temperature sensor
 12. Basis of Design: Veris HO Series
F. Carbon Dioxide Wall Transmitter:
1. Acceptable Manufacturer: Veris Industries
2. Sensor type shall be Non-dispersive infrared (NDIR).
3. Accuracy shall be ±30 ppm ±2% of measured value with annual drift of ±10 ppm. Minimum five year recommended calibration interval.
4. Repeatability shall be ±20 ppm ±1% of measured value
5. Response Time shall be <60 seconds for 90% step change
6. Outputs shall be field selectable [Analog: 4-20mA or 0-5/0-10VDC] [Protocol: Modbus or BACnet] with [SPDT Relay 1A@30VDC] [temperature setpoint slider]
7. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
8. Temperature Range: [32° to 122°F (CO2 only)] [50° to 95°F (with humidity option)]
9. Output range shall be programmable 0-2000 or 0-5000 ppm
10. Transmitter shall be available in an off white enclosure for mounting on a standard electrical box.
11. Transmitter shall have an option of an LCD display for commissioning and provide additional faceplate to conceal LCD display where occupants may misinterpret CO2 readings.
12. Transmitter shall have option of an integrated temperature sensor and/or humidity sensor
13. Basis of Design: Veris CWL

G. Carbon Dioxide Duct Transmitter:
1. Acceptable Manufacturer: Veris Industries
2. Sensor type shall be Non-dispersive infrared (NDIR).
3. Accuracy shall be ±30 ppm ±2% of measured value with annual drift of ±10 ppm. Minimum five year recommended calibration interval.
4. Repeatability shall be ±20 ppm ±1% of measured value
5. Response Time shall be <60 seconds for 90% step change
6. Outputs shall be field selectable Analog: 4-20mA or 0-5/0-10VDC with SPDT Relay 1A@30VDC
7. Transmitter shall accept 12-30 VDC or 24 VAC supply power.
8. Temperature Range: 32° to 122°F
9. Output range shall be programmable 0-2000 or 0-5000 ppm
10. Enclosure shall not require remote pickup tubes and make use of integrated H-beam probe to channel air flow to sensor.
11. Enclosure lid shall require no screws and make use of snap on features for attachment
12. Enclosure shall be made of high impact ABS plastic
13. Transmitter shall have option of an LCD display
14. Transmitter shall have option of an integrated temperature sensor and/or humidity sensor
15. Basis of Design: Veris CDL

H. Air Pressure Transmitters.
1. Acceptable Manufacturers: Veris Industries
2. Sensor shall be microprocessor profiled ceramic capacitive sensing element
3. Transmitter shall have 14 selectable ranges from 0.1 - 10” WC
4. Transmitter shall be +/- 1% accurate in each selected range including linearity, repeatability, hysteresis, stability, and temperature compensation.
5. Transmitter shall be field configurable to mount on wall or duct with static probe
6. Transmitter shall be field selectable for Unidirectional or Bidirectional
7. Maximum operating pressure shall be 200% of design pressure.
8. Output shall be field selectable 4-20 mA or 0-5/0-10 VDC linear.
9. Transmitter shall accept 12-30 VDC or 24 VAC supply power
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

10. Response time shall be field selectable T95 in 20 sec or T95 in 2 sec
11. Transmitter shall have an LCD display
12. Units shall be field selectable for WC or PA
13. Transmitter shall have provision for zeroing by pushbutton or digital input.
14. Transmitter shall be available with a certification of NIST calibration
15. Basis of Design: Veris model PXU.

I. Liquid Differential Pressure Transmitters:
 1. Acceptable Manufacturer: Veris Industries
 2. Transmitter shall be microprocessor based
 3. Transmitter shall use two independent gauge pressure sensors to measure and calculate differential pressure
 4. Transmitter shall have 4 switch selectable ranges
 5. Transmitter shall have test mode to produce full-scale output automatically.
 6. Transmitter shall have provision for zeroing by pushbutton or digital input.
 7. Transmitter shall have field selectable outputs of 0-5V, 0-10V, and 4-20mA.
 8. Transmitter shall have field selectable electronic surge damping
 9. Transmitter shall have an electronic port swap feature
 10. Transmitter shall accept 12-30 VDC or 24 VAC supply power
 11. Sensor shall be 17-4 PH stainless steel where it contacts the working fluid.
 12. Performance:
 13. Accuracy shall be ±1% F.S. and ±2% F.S. for lowest selectable range
 14. Long term stability shall be ±0.25%
 15. Sensor temperature operating range shall be -4° to 185°F
 16. Operating environment shall be 14° to 131°F; 10-90% RH noncondensing
 17. Proof pressure shall be 2x max. F.S. range
 18. Burst pressure shall be 5x max. F.S. range
 19. Transmitter shall be encased in a NEMA 4 enclosure
 20. Enclosure shall be white powder-coated aluminum
 21. Transmitter shall be available with a certification of NIST calibration
 22. [Transmitter shall be preinstalled on a bypass valve manifold]
 23. Basis of Design: Veris PW

J. Current Sensors
 1. Current status switches shall be used to monitor fans, pumps, motors and electrical loads. Current switches shall be available in split core models, and offer either a digital or an analog signal to the automation system. Acceptable manufacturer is Veris Industries

K. Current Status Switches for Constant Load Devices
 1. Acceptable Manufacturer: Veris Industries
 2. General: Factory programmed current sensor to detect motor undercurrent situations such as belt or coupling loss on constant loads. Sensor shall store motor current as operating parameter in non-volatile memory. Push-button to clear memory.
 4. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 0.5 A to 175 A.
 5. Normally open current sensor output. 0.1A at 30 VAC/DC.

L. Current Status Switches for Constant Load Devices (Auto Calibration)
 1. Acceptable Manufacturer: Veris Industries.
2. General: Microprocessor based, self-learning, self-calibrating current switch. Calibration-free status for both under and overcurrent, LCD display, and slide-switch selectable trip point limits. At initial power-up automatically learns average current on the line with no action required by the installer.

3. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 2.5 A to 200 A.

4. Display: Backlit LCD; illuminates when monitored current exceeds 4.5A

5. Nominal Trip Point: ±40%, ±60%, or on/off (user selectable)

6. Normally open current sensor output. 0.1A at 30 VAC/DC.

7. Basis of Design: Veris Model H11D.

M. Current Status Switches for Variable Frequency Drive Application

1. Acceptable Manufacturer: Veris Industries.

2. General: Microprocessor controlled, self-learning, self-calibrating current sensor to detect motor undercurrent and overcurrent situations such as belt loss, coupling shear, and mechanical failure on variable loads. Sensor shall store motor current as operating parameter in non-volatile memory. Push-button to clear memory and relearn.

4. Alarm Limits: ±20% of learned current in every 5 Hz freq. band

5. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 1.5 A to 150 A and from 12 to 115 Hz.

6. Normally open current sensor output. 0.1A at 30 VAC/DC.

N. Liquid Flow, Insertion Type Turbine Flowmeter:

1. Acceptable Manufacturer: Veris Industries

2. General: Turbine-type insertion flow meter designed for use in pipe sizes 1 1/2” and greater. Available in hot tap configuration with isolation valves and mounting hardware to install or remove the sensor from pipeline that is difficult to shut down or drain.

3. Performance:
 a. Accuracy ±1% of rate over optimum flow range; ?10 upstream and ?5 downstream straight pipe diameters, uninterrupted flow
 b. Repeatability ±0.5%
 c. Velocity Range: 0.3 to 20 FPS
 d. Pressure Drop 0.5 psi or less @ 10 ft/sec for all pipe sizes 1.5” dia and up
 e. Pressure Rating: 1000 psi @ 70°F

4. Maximum Temperature Rating: 300°F

5. Materials: Stainless Steel or Brass body; Stainless steel impeller

6. Transmitter:
 a. Power Supply: 12 - 30VAC or 8 - 35VDC.
 1) Output: [Frequency] [4-20 mA] [Scaled Pulse]
 b. Temperature Range: 14° to 150°F
 c. Display: 8 character 3/8” LCD (Optional)
 d. Enclosure: NEMA 4, Polypropylene with Viton® sealed acrylic cover

7. Basis of Design: Veris SDI series

O. Liquid Flow/Energy Transmitter, Non-invasive Ultrasonic (Clamp-on):

1. Acceptable Manufacturer: Veris Industries

2. General: Clamp-on digital correlation transit-time ultrasonic flow meter designed for clean liquids or liquids containing small amounts of suspended solids or aeration. Optional temperature sensors for BTU calculations.
3. Liquid: water, brine, raw sewage, ethylene, glycol, glycerin, others. Contact manufacturer for other fluid compatibility

4. Pipe Surface Temperature: Pipe dia 1/2" to 2": -40-185°F; Pipe dia > 2": -40-250°F

5. Performance:
 a. Flow Accuracy:
 1) Pipe dia 1/2" to 3/4" 1% of full scale
 (a) Pipe dia 1" to 2" 1% of reading from 4-40 FPS
 (b) Pipe dia 2" to 100" 1% of reading from 1-40 FPS
 b. Flow Repeatability ±0.01% of reading
 c. Velocity Range: (Bidirectional flow)
 1) Pipe dia 1/2" to 2" 2 to 40 FPS
 (a) Pipe dia 2" to 100" 1 to 40 FPS
 d. Flow Sensitivity 0.001 FPS
 e. Temperature Accuracy (energy): 32-212°F; Absolute 0.45°F; Difference 0.18°F
 f. Temperature Sensitivity: 0.05°F
 g. Temperature Repeatability: ±0.05% of reading

6. Transmitter:
 a. Power Supply: 95 to 264 VAC, 47 to 63 Hz or 10 to 28 VDC.
 b. Output: [RU45] [Modbus TCP/IP] [Ethernet/IP] [BACnet/IP] [Pulse] [4-20 mA] [RS-485 Modbus RTU]
 c. Temperature Range: -40 to +185°F
 d. Display: 2 line backlit LCD with keypad
 e. Enclosure: NEMA 4, (IP65), Powder-coated aluminum, polycarbonate

7. Agency Rating: UL 1604, EN 60079-0/15, CSA C22.2, CSA Class 1 (Pipe > 2”)

8. Basis of Design: Veris FST & FSR series

P. Analog Electric/Pneumatic Transducer:
 1. Acceptable Manufacturer: Veris Industries
 2. General: Micro-controlled poppet valve for high accuracy and with no air loss in the system. Field configurable for pressure sensing in multiple applications.
 4. Control Input: 4-20mA, 0-10V, 0-5V; jumper selectable
 5. Performance:
 a. Accuracy: 1% full scale; combined linearity, hysteresis, repeatability
 b. Compensated Temperature Range: 25° to 140°F
 c. Temp Coefficient: ±0.05%°C
 d. Operating Environment: 10-90% RH, non-condensing; 25° to 140°F
 7. Manual Override: Jumper selectable mode, digital pushbutton adjust
 8. Alarm Contact: 100mA@30VAC/DC (Optional)
 9. Control Range 0-20 psig or 3-15 psig; jumper selectable
 10. Pressure Differential 0.1 psig (supply to branch)
 11. Pressure Indication Electronic, 3-1/2 digit LCD
 12. Housing: Mounted on standard SnapTrack; Optional clear dust cover

Q. Control Valves
 1. Ball Valves
 a. ½” to ¾” Ball Valve
 1) Forged brass body rated at no less than 600 psi, chrome plated brass ball with blowout proof stem or optional stainless steel ball with blowout proof stem,
 2) Valves are to be in two-way and three-way configurations.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

3) Connection: Female NPT end fittings, Teflon® PTFE seat, characterizing disc glass filled PEEK providing equal percentage flow curve on two-way valve.
4) Operating Temperature 20…250°F chilled or hot water with up to 60% glycol solution.
5) Two-way and Bypass port should be ANSI Class IV (0.01% of Cv) seat leakage.
6) Rangeability must be at least 300:1.
7) Tool-less actuator connection.
8) System Static Pressure Limit should be 600 psig (4137 Pa)
9) Basis of Design: Schneider Electric VBB/VBS Ball Valves, or approved equal.

b. ½” to 3” 2-way and ½” to 2” 3-way Ball Valves
1) Valves must be for control of hot or chilled water, or solutions of up to 50% glycol.
2) Ball valves must have close-offs of 40…130 psi depending on size.
3) Valves will provide CVs from 0.33…266 depending on size.
4) Valve characterizing insert, is to made of glass-filled Noryl™ and provide equal percentage flow.
5) Valve body is to made of forged brass ASTM B283-06 and rated for static pressure of 360 psi at fluid temperatures of 20…250°F (-7…121°C).
6) All valves are to have balls made of nickel/chromium plated brass with two-way valves having stainless steel balls as an option. All valve stems are to be stainless steel with reinforce Teflon® EPDM O-ring seals.
7) 2-way valves are to be ANSI Class IV (0.01% of Cv) shutoff. 3-way valves are to be ANSI Class IV (0.01% of Cv piped coil-side outlet to the port A only.
8) Fluid (water) temperature are a minimum 20°F (-7°C) and a maximum of 250°F (121°C).
9) Basis of Design: Schneider Electric VB-2000, or approved equal.

2. Globe Valves (Bronze ½” to 2”)
a. Control Valves: Factory fabricated, with body material, and pressure class based on maximum pressure and temperature rating of piping system with a body rating of not less than 400 psig at 150°F, 321 psig at 281°F per ANSI B16.15.
b. Valves two way NPS 2” and Smaller: Operator, stem and plug assembly, and spring-loaded PTFE/EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Material grade properties must meet the fluid temperature and pressure requirements:
1) Standard duty bronze body, 316 stainless steel vertical stem, brass plug, soft seal, and bronze seat, renewable packing cartridge, and screwed/sweat/flared ends. Valves shall have allowable media temperature of 20°F …281°F to assure reliability with dual temperature applications.
2) Heavy duty bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, soft seal, and 316 stainless steel seat, renewable packing cartridge, and screwed ends. Valves shall have allowable media temperature of 20°F …340°F to assure to assure reliability with dual temperature applications.
3) High temperature bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, and 316 stainless steel seat, renewable packing cartridge, and screwed ends. Valves shall have allowable media temperature of 20°F …400°F.
c. Two-way fluid system globe valves shall have the following characteristics:
1) Rangeability: Greater than 100:1 for all valves with flow coefficients of 0.4 and higher to provide stable control under light load conditions.
2) Maximum Allowable Seat Leakage: Standard and heavy duty valves must be designed to meet ANSI Class V (0.0005 ml per minute per “of orifice diameter per psi differential) up to 35 psi close off differential pressure and ANSI Class IV seat leakage (maximum 0.01% of full open valve capacity) above 35 psi with appropriate actuator. High temperature valves must meet ANSI Class III seat leakage (maximum 0.1% of full open valve capacity).
3) The valve must be able to operate with a full-open operating differential of no less than 87 psi.

4) Flow Characteristics: Modified equal percentage characteristics for standard duty water applications and modified linear for heavy duty and high temperature steam applications with gradual opening for light loads.

5) Sizing:
 (a) Two Position Water: Water: Line size or size using a differential pressure of 1 psi.
 (b) Modulating Water: 5 PSI or twice the load pressure drop.
 (c) Pressure drop across steam valve at a maximum flow of 80 percent of inlet pressure up to 15 psig and 42% of absolute (gage pressure + 14.7) inlet pressure above 15 psig inlet.
 (d) 100 psi saturated steam maximum inlet pressure for heavy duty bronze body globe valves ¼”…2”.
 (e) 150 psi saturated steam maximum inlet pressure for high temperature bronze body globe valves ½”…2”.
 (f) 35 psi saturated steam maximum inlet pressure for standard duty bronze body globe valves ½”…2”.

d. Valves 3-Way mixing (two inlets and one outlet) NPS 2” and Smaller:
 1) Operator, stem and plug assembly, and spring-loaded PTFE/EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Material grade properties must meet the fluid temperature and pressure requirements:
 (a) Standard duty bronze body, 316 stainless steel vertical stem, brass plug, and bronze seat, renewable packing cartridge, and screwed or sweat ends. Valves shall have allowable media temperature of 20°F…281°F to assure reliability with dual temperature applications.
 (b) Heavy duty bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, and 316 stainless steel seat, renewable disc and packing cartridge, and screwed ends. Valves shall have allowable media temperature of 20°F …340°F to assure reliability with dual temperature applications.

e. 3-Way mixing hydronic system globe valves shall have the following characteristics:
 1) Rangeability: Greater than 100:1 for all valves to provide stable
 2) Maximum Allowable Seat Leakage: A port must be designed to meet ANSI Class V (0.0005 ml per minute per “of orifice diameter per psi differential) up to 35 psi close off differential pressure and ANSI IV seat leakage (maximum 0.01% of full open valve capacity) above 35 psi with appropriate actuator. B port must meet ANSI Class III seat leakage (maximum 0.1% of full open valve capacity).
 3) The valve must be able to operate with a full-open operating differential of 87 psi.
 4) Flow Characteristics: Modified linear characteristics with gradual opening for light loads.
 5) Sizing: Modulating Water: Minimum 5 psi or at least equal to the load pressure drop.

f. Valves 3-Way diverting (one inlet and two outlets) NPS 2” and Smaller:
 1) Operator, stem and plug assembly, and spring-loaded PTFE/EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Valves must be designed specifically for diverting service, and mixing valves designed for mixing service must not be used for diverting applications. Material grade properties must meet the fluid temperature and pressure requirements:
 (a) Standard duty bronze body, 316 stainless steel vertical stem, brass plug, and bronze seat, renewable disc and packing cartridge, and screwed ends.
Valves shall have allowable media temperature of 20°F ... 281°F to assure reliability with dual temperature applications.

g. 3-Way diverting hydronic system globe valves shall have the following characteristics:
 1) Rangeability: Greater than 100:1 for all valves to provide stable control under light load conditions.
 2) Maximum Allowable Seat Leakage: ANSI Class III seat leakage (maximum 0.1% of full open valve capacity).
 3) Maximum Allowable Pressure Differential: 35 psi in an open position.
 4) Flow Characteristics: Modified linear characteristics with gradual opening for light loads.
 5) Sizing:
 (a) Modulating Water: Minimum 5 psi or at least equal to the load pressure drop.

h. Required Certifications: Pressure Equipment Directive (PED 97/23/EC), RoHS (Restriction of Hazardous Substances) and REACH (Regulation, Evaluation, Authorization, and Restriction of Chemicals), Canadian Registration Number.

i. Valve and Operator: To assure maximum performance and operation of the valve assembly both the valve and the actuator must be tested and approved by the valve manufacturer to assure compatibility of all components and performance to the specifications.

j. Basis of Design: Schneider Electric Venta VB-7000, or approved equal.

3. Butterfly Valves
 a. Valve body are to be polyester coated iron ASTM A126 lug mating with ANSI class 125/150 flanges.
 b. Disc Type: Ductile iron nylon 11 coated.
 c. Valve Stem:
 1) 2…8” 416 stainless steel double D stem.
 2) 10…12” 316 stainless steel double D stem.
 3) 14” and larger: stainless steel round shaft woodruff key slot.
 d. Valve seat: EPDM tongue and groove seat and molded O-ring flange seat
 e. Flow Characteristics: Modified equal percentage.
 g. Valve fluid temperature rating: -40…250°F (-40…121°C) 9. Valve will have two (2) inch extended neck (because of heat). 10. Valve must except pneumatic or electric/electronic actuators 11. Valves must have a minimum of a two (2) year warranty.

4. Flanged Valves
 a. Bodies: Shall be American Factory fabricated with ASTM A 126 Class B cast iron body material with the pressure class within the maximum pressure and temperature rating of the piping system. (125 body rating with not less than 200 psig at 150°F, decreasing to 169 psig at 281F per ANSA B16.1)
 b. Serviceability: 2-Way valve operators, stem and plug assemblies and spring-loaded PTFE/EPDM valve stem packing cartridges must be removable for future replacement to restore the valves back to their original condition.
 c. Construction: Material grades must meet the fluid temperature and pressure requirement temperatures of 20°F … 281°F to assure reliability throughout all application temperature ranges.
 d. Packings: Shall be cartridges suitable for replacement as units withstanding the full operating temperature ranges, including daily and seasonal fluctuations of water, 60% glycol and steam fluids.
 e. Characteristics
 1) Rangeability: Two way, 100:1 and greater for stable control under light load.
 2) Shutoff, 2-Way: Leakage allowed: ANSI Class IV (0.01% of max flow)
 3) 3-Way: Leakage allowed: ANSI Class III (0.1% of max flow)
4) Flow curves: 2-Way modified equal percentage characteristic.
5) Mixing and Diverting: Linear, modified with gradual opening for light loads.

f. Piping
1) Diverting valves, with the common port at the bottom can be used for mixing.
2) Mixing valves with the common port at the end must not be used for diverting applications.

g. Sizing
1) Two Position Water: Line size or size using a differential pressure of 1 psi.
2) Modulating Water: 5 PSI or twice the load pressure drop
3) Steam, 2-Way: maximum pressure drop across the valve at a maximum flow of 80 percent of inlet pressure up to 15 psig. Above 15 psig inlet, 42% of absolute (gage pressure + 14.7) inlet pressure.

h. Certifications for All Models: Pressure Equipment Directive (PED 97/23/EC), RoHS (Restriction of Hazardous Substances) and REACH (Regulation, Evaluation, Authorization, and Restriction of Chemicals)

i. Basis of Design: Schneider Electric VB-8000 and VB-9000 valves, or approved equal.

R. Pressure Independent Control Valves
1. NPS 2 and Smaller: PN 16, stainless steel components.
2. NPS 2½ through 10: Class 125 cast iron body per ASME B16.1-2010, Material class B per ASTM A 126-04 (2014), stainless steel components.
3. Accuracy NPS ¾” and Smaller: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 2.32…58 psi for low and standard flow units, 5…58 psi for high flow units within 5% of set flow value.
4. Accuracy NPS 1 through 1¼: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 2.9…58 psi for standard flow units, 5…58 psi for high flow units within 5% of set flow value.
5. Accuracy NPS 1½ through 4: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 4.35…58 psi within 5% of set flow value.
6. Accuracy NPS 5 through 10: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 5.8…58 psi for standard flow units, 8.7…58 psi for high flow units within 5% of set flow value.
7. Flow Characteristics: Linear Control, selectable to equal percentage at the proportional valve actuator.
8. Field adjustable flow by means of a percentage of rated valve flow.
9. Position feedback output signal integrated into all proportional actuators.
10. 100% authority with modulating below 1% regardless of flow settings.
11. No cartridges requiring replacement or maintenance.
12. Basis of Design: Schneider Electric VB-8000 and VB-9000 valves, or approved equal.

S. Control Valve Actuators
1. ½” to ¾” Ball Valve Actuators
 a. Size for torque required for valve close-off pressure for system design.
 b. Coupling: Direct coupled to valve body without use of external devices/tools
 c. Auxiliary End Switch (optional) to be SPST 24 Vac/Vdc, 101 mA to 5 mA maximum on selected two-position models.
 d. Controller Signal Two-position, Floating or Proportional (0…5 Vdc, 0…10 Vdc, 5…10 Vdc, or 4…20 mA dc). Design allows for change via DIP switches without removal of cover.
 e. Manual operating lever and position indicator must be standard.
 f. Power Requirements: 24 Vac for floating, proportional, and 110…230 Vac for two position multi-voltage types
g. Actuators must be available with either Spring Return (SR) or Non-Spring Return (NSR) models.

h. Wiring (depending on model) Removable Terminal Block, 10 ft. (3.05 m) Plenum Cable, 18 in. (45 cm) Appliance Wire

i. Locations must be rated NEMA 2, IEC IP31. (Indoor Use Only.) Actuators with terminal block or plenum cable leads are plenum rated per UL file number E9429.

j. Agency Listings: ISO 9001, cULus, and CE.

k. Basis of Design: Schneider Electric VBB/VBS, or approved equal.

2. ½" to 3" 2-way and ½" to 2" 3-way Ball Valves Actuators
a. Size for torque required for valve close-off pressure for system design.

b. Actuators are to be available in spring return (SR) and non-spring return (NSR) models. Spring Return (SR) actuators are to provide a choice to return direction.

b. Actuators are to be available in models for two-position, floating and proportional control.

d. All actuator models are to be equipped with pigtail leads, manual override, and auxiliary switch(es)

e. Operating temperatures’ Floating Non-Spring Return (NSR) with 33 lb.-in. of torque must be -25 to 130 °F (-32 to 55°C). All other actuators are to -22 to 140 °F (-30 to 60 °C)

f. Actuators must be NEMA 2 rated.

g. Agency Listings: ISO 9001, cULus, and CE.

h. Basis of Design: Schneider Electric VB-2000, or approved equal.

3. ½" to 2" Bronze, Linear Globe Valve Actuators/67 or 78 lbs. force
a. Actuator must have bi-color LED status indication for motion indication, auto calibration and alarm notification.

b. When the actuator is properly mounted must have a minimum of a NEMA 2 (IP53) rating.

c. Actuators are to be non-spring return.

d. Actuators are to be floating (used for two-position) or proportional models.

e. Proportional models will have optional models with a position output signal with field selectable 2…10 Vdc and 0…10 Vdc input signals and selectable input signal direct or reverse acting.

f. Actuator must have auto calibration which provides precise control by scaling the input signal to match the exact travel of the valve stem

g. Actuators must come in models with Pulse Width Modulated (PWM) with field selectable 0.59 to 2.93 sec and 0.1 to 25.5 sec input signal ranges with a position output signal

h. Actuators must have manual override with automatic release.

i. Models with position feedback output signal include field selectable 2…10 Vdc or 0…5 Vdc output signal

j. Removable wiring screw terminal with ½” conduit opening.

k. Actuator agency Listings: cUL-us LISTED mark, NEMA 2, NEC class 2 FCC part-15 class B, Canadian ICES-003, ESA registered, Plenum rated per UL 20430

l. Basis of Design: Schneider Electric MG350V, or approved equal.

4. ½" to 2" Bronze, Linear Globe Valve Actuators/105 lbs. force
a. Actuators must have Two- Position, Floating, and Proportional models.

b. Proportional models will a controller input signal of either a 0…10 Vdc, 2…10 Vdc, 4…20 mAdc, 0…3 Vdc, or 6…9 Vdc. Control function direct/reverse action is switch selectable on most models.

c. Actuator force is to be 105 lb. (467 newton) with ½” (13 mm) nominal linear stroke

d. Power requirements 24 Vac, 120 Vac or 230 Vac depending on model.

e. Actuator housings rated for up to NEMA 2/IP54.

f. Actuator is to have overload protection throughout stroke.

g. Actuator must automatically set input span to match valve travel.
h. Actuator must have manual override to allow positioning of valve and preload.

i. Actuator is to be spring return.

j. Actuator is to mount directly to valves without separate linkage.

k. Actuator agency Listings: UL 873, CUL: UL

l. Basis of Design: Schneider Electric SmartX Mx51-7103, or approved equal

5. ½” to 2” Bronze, Linear Globe Valve Actuators/220 lbs. force

a. Actuators must have Two-Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a 0…10 Vdc, 2…10 Vdc, 4…20 mA, or 6…9 Vdc. Control function direct/reverse action is jumper selectable

b. Actuator is to be spring return.

c. Actuator will have 220 lb. force (979 newton) with ½” (13 mm) or 1” (25 mm) nominal linear stroke

d. Feedback on proportional model with 2…10 Vdc (max. 0.5 mA) output signal or to operate up to four like additional slave actuators.

e. Actuator must automatically set input span to match valve travel

f. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.

g. Actuator housings rated for up to NEMA 2/ IP54

h. Actuator must have manual override to allow positioning of valve and preload

i. Actuator is to mount directly to valves without separate linkage.

j. Actuator agency Listings: UL 873, CUL: UL

k. Basis of Design: Schneider Electric SmartX Mx51-720x, or approved equal.

6. ¼” to 2” Bronze, Linear Globe Valve Actuators with linkage SR

a. Actuators with 35, 60, 133, or 150 lb.-in of force depending on model.

b. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb.-in. rated a NEMA 4.

c. Actuators are to be spring return.

b. Actuators are to have Two-position, Floating and Proportional models.

e. Actuators must have overload protection throughout rotation.

f. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.

g. Actuator agency listings: UL-873, C22-2 No.24-83, CUL0

h. Basis of Design: Schneider Electric SmartX, or approved equal.

7. ½” to 2” Bronze Body, Linear Globe Valve Actuators with linkage SR & NSR

a. Actuators are to be either floating SPDT control or proportional control 0…10, 2…10 Vdc or 4…20 mA with a 500-ohm resistor included.

b. Actuators are to be direct/reverse with selectable DIP switches.

c. Actuators are to have 90 lb. (400N), 180 lb. (800N), or 337 lb. (1500N) of force on Non-Spring Return (NSR) 157 lb. of force on the Spring Return model. Note: Not every actuator is for every valve.

d. Actuators are to be powered with 24 Vac or 24 Vdc.

e. All Non-Spring Return (NSR) actuators are to be NEMA 2, vertical mount only. Spring Return (SR) actuators are to have NEMA 4 models.

f. Actuators must have manual override to allow positioning of the valve.

g. Actuators must have selectable valve sequencing and flow curves of either equal percentage or linear.

h. Actuators must have feedback.

i. Actuators must have internal torque protection throughout stroke.

j. 90°F (32°C) ambient at 366°F (186°C) fluid temperature

k. Actuator agency listings (North America) UL873, cULus, RCM, CE

l. Basis of Design: Schneider Electric Forta M400A-VB, M800A-VB, M900A and M1500x-VB screw mounted on Venta VB7000s, or approved equal.

8. 2 ½” to 6” Cast Iron Flanged Globe Valve Linear Actuators with linkage
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

a. Actuators are to be either floating SPDT control or proportional control 0…10, 2…10 Vdc or 4…20 mA with a 500-ohm resistor included.
b. Actuators are to direct/reverse acting with selectable DIP switch.
c. Actuators are to have 180 lb. (800N) or 337 lb. (1500N) of force.
d. Actuators will need a 24 Vac or Vdc power supply.
e. Actuators are to be rated NEMA 2, vertical mount only.
f. Actuators must have manual override to allow positioning of the valve.
g. Actuators must have selectable valve sequencing and flow curves of either equal percentage to linear. A 2…10 Vac feedback.
h. Actuators must have Internal torque protection throughout stroke.
i. 90°F (32°C) ambient at 366°F (186°C) fluid temperature
j. Actuator agency listings (North America) UL873, cULus, RCM, CE
k. Basis of Design: Schneider Electric Forta M800A and M1500A, or approved equal.

9. 2” to 18” 2-Way and 2” to 16” 3-Way Linear Butterfly Valve Actuator with linkage NSR
a. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking 0…10 Vdc or 4…20 mA models. All Actuators are to be NEMA 4, manual override (hand wheel) two auxiliary switches, and built-in heater.
b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
c. Actuators must be available in 24 Vac and 120 Vac models.
d. Actuators must have Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
e. Proportional models must have feedback of 0…10 Vdc or 4…20 mA.
f. Actuator operating temperature shall be -40…150°F (-40…60°C).
g. Actuator agency listings (North America) UL, CSA and CE
h. Basis of Design: Schneider Electric S70, or approved equal.

10. 2” to 4” 2-Way and 3-Way Butterfly Valve Actuators SR
a. The butterfly valve actuators are to be Spring Return (SR) two-position and proportional taking 2…10 Vdc or 4…20 mA models. All Actuators are to be NEMA 2.
b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
c. Actuators must be available in 24 Vac models.
d. Actuators shall have two SPDT auxiliary switch models.
e. Actuators must have Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
f. Proportional models must have feedback of 2…10 Vdc or 4…20 mA.
g. Actuator agency listings (North America) UL, CSA and CE
h. Basis of Design: Schneider Electric SmartX Mx-41-7153, or approved equal.

11. 2” to 6” 2-Way and 3-Way Butterfly Valve Actuators NSR
a. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking 0…10 Vdc or 4…20 mA models. All Actuators are to be NEMA 2.
b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
c. Actuators must be available in 24 Vac models.
d. Actuators shall have two SPDT auxiliary switch models.
e. Actuators must have Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
f. Proportional models must have feedback of 2…10 Vdc or 4…20 mA.
g. Actuator agency listings (North America) UL, CSA and CE
h. Basis of Design: Schneider Electric SmartX NR-22xx-5xx, or approved equal.

T. Dampers
1. Automatic dampers, furnished by the Building Automation Contractor shall be single or multiple blade as required. Dampers are to be installed by the HVAC Contractor under the supervision of the BAS Contractor. All blank-off plates and conversions necessary to install smaller than duct size dampers are the responsibility of the Sheet Metal Contractor.

2. Damper frames are to be constructed of 13 gauge galvanized sheet steel mechanically joined with linkage concealed in the side channel to eliminate noise as friction. Compressible spring stainless steel side seals and acetyl or bronze bearings shall also be provided.

3. Damper blade width shall not exceed eight inches. Seals and 3/8 inch square steel zinc plated pins are required. Blade rotation is to be parallel or opposed as shown on the schedules.

4. For high performance applications, control dampers will meet or exceed the UL Class I leakage rating.

5. Control and smoke dampers shall be Ruskin, or approved equal.

6. Provide opposed blade dampers for modulating applications and parallel blade for two position control.

U. Damper Actuators

1. Direct-coupled type non-hydraulic designed for minimum 100,000 full-stroke cycles at rated torque.

2. Direct-coupled damper actuators must have a five-year warrantee.

3. Size for torque required for damper seal at maximum design conditions and valve close-off pressure for system design.

4. Overload protected electronically throughout rotation except for selected Floating actuators the have a mechanical clutch.

5. Spring Return Actuators: Mechanical fail safe shall incorporate a spring-return mechanism.

6. Non-Spring Return Actuators shall stay in the position last commended by the controller with an external manual gear release to allow positioning when not powered.

7. Power Requirements: 24Vac/dc [120Vac] [230Vac]

8. Proportional Actuators controller input range from 0…10 Vdc, 2…10 Vdc or 4…20 mA models.

9. Housing: Minimum requirement NEMA type 2

10. Actuators with a microprocessor should not be able to be modified by an outside source (cracked or hacked).

11. Actuators of 133 and 270 lb.-in. of torque or more should be able to be tandem mount or “gang” mount.

12. Agency Listings: ISO 9001, cULus, CE and CSA

13. Basis of Design: Schneider Electric SmartX Actuators, or approved equal.

V. Smoke Detectors

1. Air duct smoke detectors shall be by Air Products & Controls or approved equal. The detectors shall operate at air velocities from 300 feet per minute to 4000 feet per minute.

2. The smoke detector shall utilize a photoelectric detector head.

3. The housing shall permit mechanical installation without removal of the detector cover.

4. The detectors shall be listed by Underwriters Laboratories and meet the requirements of UL 268A.

W. Airflow Measuring Stations

1. Provide a thermal anemometer using instrument grade self heated thermistor sensors with thermistor temperature sensors.

2. The flow station shall operate over a range of 0 to 5,000 feet/min with an accuracy of +/- 2% over 500 feet/min and +/- 10 ft/min for reading less than 500 feet/min.
2.5 ELECTRICAL POWER MEASUREMENT

A. Electrical Power Monitors, Single Point (Easy Install):
 1. Acceptable Manufacturer: Veris Industries.
 2. General: Consist of three split-core CTs, factory calibrated as a system, hinged at both axes with the electronics embedded inside the master CT. The transducer shall measure true (rms.RMS) power demand real power (kW) consumption (kWh). Conform to ANSI C12.1 metering accuracy standards.
 3. Voltage Input: Load capacity as shown on drawings. 208-480 VAC, 60 Hz
 4. Maximum Current Input: Up to 2400A
 5. Performance:
 a. Accuracy: +/- 1% system from 10% to 100% of the rated current of the CT’s
 b. Operating Temperature Range: 32-140°F, 122°F for 2400A.
 6. Output: 4 to 20 mA, Pulse. or Modbus RTU
 7. Ratings:
 a. Agency: UL508 or equivalent
 b. Transducer internally isolated to 2000 VAC.
 c. Case isolation shall be 600 VAC.
 8. Basis of Design: Similar to Hawkeye Veris H80xx40 series
 9. Accessories: [BACnet] [LON] communications gateway

B. Electrical Power Monitors, Single Point (High Accuracy):
 1. Acceptable Manufacturer: Veris Industries.
 2. General: Revenue grade meter. Measures voltage, amperage, real power (kW), consumption (kWh), and power factor (PF) per phase and total load for a single load. Factory calibrated as a system using split core CT’s. Neutral voltage connection is required.
 3. Voltage Input: 208-480 VAC, 60 Hz
 4. Current Input: Up to 2400A
 5. Performance:
 a. Accuracy: +/- 1% system from 2% to 100% of the rated current of the CT’s
 b. Operating Temperature Range: 32-122°F
 6. Output: Pulse, BACnet, Modbus RTU
 7. Display: Backlit LCD
 8. Enclosure: NEMA 1
 9. Agency Rating: UL508 or equivalent

C. Electrical Power Monitors, Single Point (High Accuracy/Versatility):
 1. Acceptable Manufacturer: Veris Industries.
 2. General: Revenue grade meter. Measures voltage, amperage, real power (kW), consumption (kWh), reactive power (kVAR), apparent power (kVA) and power factor (PF) per phase and total load for a single load. Available with data logging, Bi-directional (4-quadrant) metering, and pulse contact accumulator inputs.
 3. Voltage Input: 90-600 VAC, 50/60 Hz, 125-300 VDC
 4. Current Input: 5A - 32,000A, selectable 1/3V or 1V CT inputs
 5. Performance:
 a. Accuracy shall be +/- [0.2%] [0.5%] revenue grade
 b. Operating Temperature Range: -22-158°F
 6. Output shall be [Pulse] [BACnet] [Modbus RTU] [LON]
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

7. Display: Backlit LCD
8. Enclosure: NEMA 4x optional

D. Electrical Power Monitors, Multiple Point (92 loads, High Accuracy):
 1. Acceptable Manufacturer: Veris Industries.
 2. General: Revenue grade meter. Measures volts, amps, power and energy for each circuit.
 1/4 amp to 200 amp monitoring. 4 configurable alarm threshold registers
 3. Voltage Input: 90-277 VAC, 60 Hz
 4. Current Input: 5A - 32,000A, 1/3V CT inputs
 5. Performance:
 a. Accuracy: +/- 0.5% meter (split core), +/- 1% system from 1/4-100A (solid core)
 b. Operating Temperature Range: 32-140°F
 6. Output: Modbus RTU
 7. Agency Rating: UL508, ANSI C12.10, IEC Class 1

PART 3 EXECUTION

3.1 EXAMINATION

A. Prior to starting work, carefully inspect installed work of other trades and verify that such work
 is complete to the point where work of this Section may properly commence.

B. Notify the owner’s representative in writing of conditions detrimental to the proper and timely
 completion of the work.

C. Do not begin work until all unsatisfactory conditions are resolved.

3.2 INSTALLATION

A. Submit System Graphics for review/approval prior to the start of programming.

B. Install in accordance with manufacturer's instructions.

C. Locate and install components for easy accessibility; in general, mount 48 inches above floor
 with minimum 3 feet of clear access space in front of units. Obtain approval on locations from
 owner's representative prior to installation.

D. All instruments, switches, transmitters, etc., shall be suitably wired and mounted to protect
 them from vibration, moisture, and high or low temperatures.

E. Identify all equipment and panels. Provide permanently mounted tags for all panels.

F. Provide stainless steel or brass thermowells suitable for respective application and for
 installation under other sections, and sized to suit pipe diameter without restricting flow.
G. Install software in control units and in operator work station. Implement all features of programs to specified requirements and appropriate to sequence of operation. Refer to Section 230993.

H. Provide with 120v AC, 15 amp dedicated power circuit to each programmable control unit from junction box provided by Division 26.

I. Provide conduit and electrical wiring in accordance with Section 260583. Electrical material and installation shall be in accordance with appropriate requirements of .

3.3 CONTRACTOR RESPONSIBILITIES

A. General
1. Installation of the building automation system shall be performed by the Contractor or a subcontractor. However, all installation shall be under the personal supervision of the Contractor. The Contractor shall certify all work as proper and complete. Under no circumstances shall the design, scheduling, coordination, programming, training, and warranty requirements for the project be delegated to a subcontractor.

B. Demolition
1. Remove controls which do not remain as part of the building automation system, all associated abandoned wiring and conduit, and all associated pneumatic tubing. The Owner will inform the Contractor of any equipment which is to be removed that will remain the property of the Owner. All other equipment which is removed will be disposed of by the Contractor.

C. Access to Site
1. Unless notified otherwise, entrance to building is restricted. No one will be permitted to enter the building unless their names have been cleared with the Owner or the Owner’s Representative.

D. Code Compliance
1. All wiring shall be installed in accordance with all applicable electrical codes and will comply with equipment manufacturer’s recommendations. Should any discrepancy be found between wiring specifications in Division 17 and Division 16, wiring requirements of Division 17 will prevail for work specified in Division 17.

E. Cleanup
1. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned, and all other areas shall be cleaned around equipment provided under this contract.

3.4 WIRING, CONDUIT, AND CABLE

A. All wire will be copper and meet the minimum wire size and insulation class listed below:
1. Wire Class Wire Size Isolation Class
2. 12 Gauge 600 Volt
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

3. Class One 14 Gauge Std. 600 Volt
4. Class Two 18 Gauge Std. 300 Volt
5. Class Three 18 Gauge Std. 300 Volt

B. Power and Class One wiring may be run in the same conduit. Class Two and Three wiring and communications wiring may be run in the same conduit.

C. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.

D. Where wiring is required to be installed in conduit, EMT shall be used. Conduit shall be minimum 1/2 inch galvanized EMT. Set screw fittings are acceptable for dry interior locations. Watertight compression fittings shall be used for exterior locations and interior locations subject to moisture. Provide conduit seal-off fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.

E. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.

F. Junction boxes shall be provided at all cable splices, equipment termination, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with blank cover. Exterior and damp location JH-boxes shall be cast alloy FS boxes with threaded hubs and gasketed covers.

G. Where the space above the ceiling is a supply or return air plenum, the wiring shall be plenum rated. Teflon wiring can be run without conduit above suspended ceilings. EXCEPTION: Any wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire management system shall be in conduit.

H. Fiber optic cable shall include the following sizes; 50/125, 62.5/125 or 100/140.

I. Only glass fiber is acceptable, no plastic.

J. Fiber optic cable shall only be installed and terminated by an experienced contractor. The BAS contractor shall submit to the Engineer the name of the intended contractor of the fiber optic cable with his submittal documents.

3.5 HARDWARE INSTALLATION PRACTICES FOR WIRING

A. All controllers are to be mounted vertically and per the manufacturer’s installation documentation.

B. The 120VAC power wiring to each Ethernet or Remote Site controller shall be a dedicated run, with a separate breaker. Each run will include a separate hot, neutral and ground wire. The ground wire will terminate at the breaker panel ground. This circuit will not feed any other circuit or device.
C. A true earth ground must be available in the building. Do not use a corroded or galvanized pipe, or structural steel.

D. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.

E. Conduit in finished areas will be concealed in ceiling cavity spaces, plenums, furred spaces and wall construction. Exception; metallic surface raceway may be used in finished areas on masonry walls. All surface raceway in finished areas must be color matched to the existing finish within the limitations of standard manufactured colors.

F. Conduit, in non-finished areas where possible, will be concealed in ceiling cavity spaces, plenums, furred spaces, and wall construction. Exposed conduit will run parallel to or at right angles to the building structure.

G. Wires are to be kept a minimum of three (3) inches from hot water, steam, or condensate piping.

H. Where sensor wires leave the conduit system, they are to be protected by a plastic insert.

I. Wire will not be allowed to run across telephone equipment areas.

J. Provide fire caulking at all rated penetrations.

3.6 INSTALLATION PRACTICES FOR FIELD DEVICES

A. Well-mounted sensors will include thermal conducting compound within the well to insure good heat transfer to the sensor.

B. Actuators will be firmly mounted to give positive movement and linkage will be adjusted to give smooth continuous movement throughout 100 percent of the stroke.

C. Relay outputs will include transient suppression across all coils. Suppression devices shall limit transients to 150% of the rated coil voltage.

D. Water line mounted sensors shall be removable without shutting down the system in which they are installed.

E. For duct static pressure sensors, the high pressure port shall be connected to a metal static pressure probe inserted into the duct pointing upstream. The low pressure port shall be left open to the plenum area at the point that the high pressure port is tapped into the ductwork.

F. For building static pressure sensors, the high pressure port shall be inserted into the space via a metal tube. Pipe the low pressure port to the outside of the building.
3.7 ENCLOSURES

A. For all I/O requiring field interface devices, these devices where practical will be mounted in a field interface panel (FIP). The Contractor shall provide an enclosure which protects the device(s) from dust, moisture, conceals integral wiring and moving parts.

B. FIPs shall contain power supplies for sensors, interface relays and contactors, and safety circuits.

C. The FIP enclosure shall be of steel construction with baked enamel finish; NEMA 1 rated with a hinged door and keyed lock. The enclosure will be sized for twenty percent spare mounting space. All locks will be keyed identically.

D. All wiring to and from the FIP will be to screw type terminals. Analog or communications wiring may use the FIP as a raceway without terminating. The use of wire nuts within the FIP is prohibited.

E. All outside mounted enclosures shall meet the NEMA-4 rating.

F. The wiring within all enclosures shall be run in plastic track. Wiring within controllers shall be wrapped and secured.

3.8 IDENTIFICATION

A. Identify all control wires with labeling tape or sleeves using words, letters, or numbers that can be exactly cross-referenced with as-built drawings.

B. All field enclosures, other than controllers, shall be identified with a Bakelite nameplate. The lettering shall be in white against a black or blue background.

C. Junction box covers will be marked to indicate that they are a part of the BAS system.

D. All I/O field devices (except space sensors) that are not mounted within FIP’s shall be identified with name plates.

E. All I/O field devices inside FIP’s shall be labeled.

3.9 EXISTING CONTROLS.

A. Existing controls which are to be reused must each be tested and calibrated for proper operation. Existing controls which are to be reused and are found to be defective requiring replacement, will be noted to the Owner. The Owner will be responsible for all material and labor costs associated with their repair.
3.10 CONTROL SYSTEM SWITCH-OVER

A. Demolition of the existing control system will occur after the new temperature control system is in place including new sensors and new field interface devices.

B. Switch-over from the existing control system to the new system will be fully coordinated with the Owner. A representative of the Owner will be on site during switch-over.

C. The Contractor shall minimize control system downtime during switch-over. Sufficient installation mechanics will be on site so that the entire switch-over can be accomplished in a reasonable time frame.

3.11 LOCATION

A. The location of sensors is per mechanical and architectural drawings.

B. Space humidity or temperature sensors will be mounted away from machinery generating heat, direct light and diffuser air streams.

C. Outdoor air sensors will be mounted on the north building face directly in the outside air. Install these sensors such that the effects of heat radiated from the building or sunlight is minimized.

D. Field enclosures shall be located immediately adjacent to the controller panel(s) to which it is being interfaced.

3.12 SOFTWARE INSTALLATION

A. General.
 1. The Contractor shall provide all labor necessary to install, initialize, start-up and debug all system software as described in this section. This includes any operating system software or other third party software necessary for successful operation of the system.

3.13 DATABASE CONFIGURATION

A. The Contractor will provide all labor to configure those portions of the database that are required by the points list and sequence of operation.

3.14 COLOR GRAPHIC DISPLAYS

A. Unless otherwise directed by the owner, the Contractor will provide color graphic displays as depicted in the mechanical drawings for each system and floor plan. For each system or floor plan, the display shall contain the associated points identified in the point list and allow for setpoint changes as required by the owner.
3.15 FIELD SERVICES

A. Prepare and start logic control system under provisions of this section.

B. Start up and commission systems. Allow sufficient time for startup and commissioning prior to placing control systems in permanent operation.

C. Provide the capability for off-site monitoring at control contractor's local or main office. At a minimum, off-site facility shall be capable of system diagnostics and software download. Owner shall provide phone line for this service for one year or as specified.

D. Provide owner's representative with spare parts list. Identify equipment critical to maintaining the integrity of the operating system.

3.16 AS-BUILT DOCUMENTATION REQUIRED

3.17 TRAINING

A. Provide application engineer to instruct owner in operation of systems and equipment.

B. The BAS Contractor shall provide both on-site and classroom training to the Owner's representative and maintenance personnel per the following description:

C. On-site training shall consist of a minimum of (8) hours of hands-on instruction geared at the operation and maintenance of the systems. The curriculum shall include
 1. System Overview
 2. System Software and Operation
 3. System access
 4. Software features overview
 5. Changing setpoints and other attributes
 6. Scheduling
 7. Editing programmed variables
 8. Displaying color graphics
 9. Running reports
 10. Workstation maintenance
 11. Viewing application programming
 12. Operational sequences including start-up, shutdown, adjusting and balancing.
 13. Equipment maintenance

D. Demonstrate complete and operating system to Town of Rocky Hill.

E. Provide system operator's training to include (but not be limited to) such items as the following: modification of data displays, alarm and status descriptors, requesting data, execution of commands and request of logs. Provide this training to a minimum of three persons.

END OF SECTION
SECTION 230993 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Sequence of operation for:
 1. General Requirements
 2. Heating System Central Plant
 3. Domestic Hot Water System
 4. Multi-zone - Variable Volume Air Handing Units
 5. Multi-zone - Variable Volume Energy Recovery Air Handing Units
 6. VAV Box with Reheat Coil & Perimeter Heat
 7. VAV Box and Kitchen Exhaust Hood Fan Space Pressure Control
 8. Split System Air Conditioning Units
 9. Fans
 10. Cabinet Unit Heaters
 11. Lighting Controls
 12. Alarms

B. Related Sections:
 1. Section 23 09 00 - Direct-Digital Control System for HVAC: For equipment, devices, system components, and software to implement sequences of operation.

1.3 SUBMITTALS

A. Section 01 33 00 - Submittal Procedures: Submit procedures.

B. Shop Drawings: Indicate mechanical system controlled and control system components.
 1. Label with settings, adjustable range of control and limits. Submit written description of control sequence.
 2. Submit flow diagrams for each control system, graphically depicting control logic.
 3. Submit draft copies of graphic displays indicating mechanical system components, control system components, and controlled function status and value.
 4. Coordinate submittals with information requested in Section 23 09 00.
1.4 CLOSEOUT SUBMITTALS

A. Section 01 70 00 - Execution and Closeout Requirements: Closeout procedures.

B. Project Record Documents: Record actual locations of components and set points of controls, including changes to sequences made after submission of shop drawings.

1.5 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirements.

1.6 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

E. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

F. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

G. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

H. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.
PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

A. Town Facility Operator shall be able to upload, download, monitor, trend, control, and program every input and output in DDC system using existing Schneider control system software and operator workstations. A link to the operator workstation will not be accepted.

B. DDC system shall interface with the existing Schneider control system to adhere to Rocky Hill Public Building graphic and programming standards already in-place.

C. Provide a building automation system to allow all objects as defined by ASHRAE Standard SPC-135A/95 to be sent to the existing Town Wide Schneider control system.

D. Provide all controls, low voltage control wiring, hardware points (analog in, analog out, binary in, binary out) and accessories as required to perform the control sequences indicated.

E. All setpoints and values listed in the sequence of controls shall be adjustable by the Owner thru the Building Automation System (BAS).

F. The Building Automation System (BAS) or direct digital controls (DDC) or Building Management System (BMS) are used interchangeably and share the same meaning.

G. The boiler plant and heating system shall only be enabled when the system is indexed to heating mode which shall occur when outside air temperature is equal to or below 64deg F.

H. Temperature Sensors
 1. Where temperature ranges, reset temperatures, setback temperatures, setup temperatures, dead-bands, override times, etc. are indicated, those values shall be adjustable both globally and locally.
 2. Provide the following independent interfaces for global settings:
 a. General office space including reception area.
 b. Multipurpose rooms
 c. Exercise/Dance room
 d. Fitness room
 e. Game room
 f. Arts/Crafts rooms
 g. Library
 h. Kitchen
 i. Thrift Store
 j. Corridors, common restrooms, vestibules
 k. Utility Rooms
 l. Janitor closets
I. The operator station software configuration shall allow the Owner to easily select the occupied and unoccupied hours by individual zone or by the global air handler or space category.

J. Unless otherwise noted, provide each zone with a communicating thermostat or communicating temperature sensor. All communicating thermostat shall interface with end-user via touchscreen for temperature adjustment and occupied override.

K. Provide each utility room, bathroom, hallway and janitor closet zone with a temperature sensor mounted behind a stainless-steel cover plate.

L. Space temperature setpoints will initially be set at:
 1. Occupied Heating = 68 deg F
 2. Occupied Cooling = 74 deg F
 3. Un-Occupied Heating = 60 deg F.
 4. Un-Occupied Cooling = 82 deg F.

M. Supply Air Reset Temperature Control:
 1. The HVAC equipment shall be indexed to warm-up modes via the BMS where indicated.
 2. Supply air temperature reset shall be enabled when the supply fan is operating. Unless otherwise noted, discharge air temperature reference point shall be the temperature sensor after the SA fan.
 3. When enabled, initial discharge air temperature set point shall be 60 deg F
 4. Discharge air temperature range shall be between 68 deg F and 54 deg F.
 5. If more than 10% of the space temperature zone are in heating mode and none are in cooling mode, the discharge air temperature set point shall be reset 2 degree higher every 15 minutes until the heating zone temperature set point is achieved or the upper discharge air temperature set point is reached.
 6. If more than 10% of the space temperature zone are in cooling mode and none are in heating mode, the discharge air temperature set point shall be reset 2 degree lower every 15 minutes until the cooling zone temperature set point is achieved or the lower discharge air temperature set point is reached.
 7. If more than 10% of the spaces are below dewpoint setpoint and cooling or heating mode is not activated, dehumidification mode shall be enabled as follows:
 a. Maintain 60 deg F dewpoint temperature after the DX coil
 b. Reset discharge air temperature (after SA fan) to 68 deg F.

N. Morning Warm-up
 1. The HVAC equipment shall be indexed to warm-up modes via the BMS where indicated.
 2. Morning warm-up shall be enabled to operate when any one of the following are true:
 a. Boiler plant is enable.
 b. Any space temperature sensor is below morning warm-up set point.
 3. Optimal start/stop shall be programmed in for all equipment so that equipment start times are determined based on outside air conditions and system learns based on past building history.
 4. The BMS shall trend the outside air temperature with respect to the warm-up start time, and shall optimize the warm-up start time such that the spaces reach occupied temperature by the time selected.
 5. The air handling system shall remain in the warm-up mode until all zones reach the occupied temperature setpoints, at which point the zone shall be indexed to occupied mode.
O. Economizer:
 1. The HVAC equipment shall be indexed to economizer modes via the BMS or the equipment manufacturer where indicated.
 2. Economizer cooling shall be enabled when all of the following are true:
 a. The outside air temperature is less than 65 deg F.
 b. Outside air dewpoint temperature is less than 60 deg F.
 c. The outside air enthalpy is less than the return air enthalpy.
 3. Economizer shall override CO2 mode.

P. CO2:
 1. The HVAC equipment shall be indexed to CO2 modes via the BMS.
 2. Reset the initial damper positions when the following conditions are true:
 a. Unit is in occupied mode
 b. CO2 levels measured in the return air duct or any space associated with the HVAC equipment increases above setpoint.
 c. Differential CO2 levels measured in the return air duct or any space associated with the HVAC equipment increases above setpoint.
 3. The following dampers shall modulate as required to maintain setpoint: outside air damper, exhaust air damper.
 4. For units with air heat exchangers, bypass dampers shall divert airflow to the heat exchangers and energy wheels shall rotate.
 5. Economizer shall override CO2 mode.

Q. Roof Top Air Handling Units: Control dampers and actuators are provided with unit.

R. Indoor Air Handling Units: Control dampers and actuators are provided by division 23 0900.

S. Control dampers and actuators are provided with unit. ATC to wire actuators.

T. Airflow stations provided by ATC. Airflow reading monitored at operation’s workstation.

U. Water pressure transmitter shall be installed 2/3 of the distance in the effectively longest pipe run downstream from the pump.

V. Static pressure transmitters shall be installed 2/3 of the distance in the effectively longest duct run downstream from the supply fan.

3.2 HEATING SYSTEM CENTRAL PLANT

A. Heating central plant shall be enabled by the BMS based on outside air temperature.

B. The boiler factory controls will operate independent of the BMS as required to maintain hot water temperature.

C. The BMS shall monitor the hot water supply temperature. If the hot water supply temperature does not match the setpoint range, an alarm shall be generated at the Operator Workstation.
D. The Building Automation System will communicate with Boiler Manufacturer Supplied Control Panels via BacNet or Modbus.

E. ATC shall wire manufacturer supplied control panels, primary pumps, sensors and isolation valves so as to provide a complete and operational system.

F. The following points will be made available for monitoring of each boiler:
 1. Status
 2. Outlet Temp
 3. Header water temperature
 4. Alarm
 5. Firing Rate
 6. Low water

G. Boiler staging and isolation valve operator shall be configured and controlled by the onboard integral boiler controls.
 1. If outdoor air is 50 deg, hot water supply setpoint is 120 deg
 2. If outdoor air is 25 deg, hot water supply setpoint is 150 deg
 3. If outdoor air is 0 deg, hot water supply setpoint is 180 deg.

H. Boiler hot water supply header temperature and reset schedule shall be configured and controlled by the onboard integral controls.

I. BMS shall enable the HW pumping system into heating mode and command the pump control sequence as follows:
 1. Start the lead hot water pump in sequence.
 2. The BMS shall monitor pump status.
 3. If pump status does not match the commanded value, BMS shall sequence the following:
 a. An alarm shall be generated at the Operator Workstation.
 b. Lead pump shall be commanded off.
 c. Lag pump shall be commanded on.
 4. The lead pump shall be rotated based upon runtime and a pre-determined time range. When pumps swap lead/lag, the pumps staging on and off should slowly ramp up and down in speed to maintain pressure control.
 5. The Hot Water System shall be controlled to maintain the pressure setpoint for the system as determined by the TAB. As the system pressure drop increases, the BMS will command the hot water pump VFD to decrease its output. As the system pressure drop decreases, the BAS will command the hot water pump VFD to increase its output. VFD output will be monitored by the BAS.

J. BAS shall enable the HW bypass valve into heating mode and command the valve control sequence as follows:
 1. The valve shall modulate as required to maintain the minimum flow rate as defined by the Water Flow Meter.

K. Operator Workstation Graphical User Interface - The following System points will be displayed and monitored at the Building Automation System User Interface:
 1. Outdoor air temperature (Global) AI
 2. Outdoor air Relative Humidity AI
3. Outdoor air CO2 Level AI
4. Hot water differential pressure AI
5. System hot water return temperature AI
6. System hot water supply temperature AI
7. Boiler #1 Supply temperature AI
8. Boiler #1 Return temperature AI
9. Boiler #1 actual setpoint
10. Boiler #2 actual setpoint
11. Boiler #1 net remote setpoint
12. Boiler #2 net remote setpoint
13. Boiler #1 run status DI
14. Boiler #2 run status DI
15. Boiler #1 fault DI
16. Boiler #2 fault DI
17. Boiler #1 isolation valve DO
18. Boiler #1 isolation valve status DI
19. Boiler #2 isolation valve DO
20. Boiler #2 isolation valve status DI
21. Boiler #1 Enable DO
22. Boiler #2 Enable DO
23. Hot Water Pump #1 Start / Stop DO
24. Hot Water Pump #1 Run status DI
25. Hot Water Pump #1 VFD speed signal AO
26. Hot Water Pump #1 VFD speed feedback AI
27. Hot Water Pump #1VFD fault DI
28. Hot Water Pump #2 Start / Stop DO
29. Hot Water Pump #2 Run status DI
30. Hot Water Pump #2 VFD speed signal AO
31. Hot Water Pump #2 VFD speed feedback AI
32. Hot Water Pump #2VFD fault DI
33. Lead Pump Enable / Rotation DO
34. System Supply pressure AI
35. System return pressure AI
36. Hot water by-pass valve AO
37. Hot water flow (meter by ATC) AI

3.3 DOMESTIC GAS HOT WATERS (GWH-1)

A. The BAS will monitor domestic water pumps start/stop and alarm and monitor supply and return water temperatures, and trending at the OWS. Domestic water pumps will be scheduled to run based on Occupied hours. The pumps and water heater will be off during weekend hours and between the hours of 10:00 P.M. and 5:00 A.M.

B. Control Points:
1. Hot water supply temperature AI
2. Hot water return temperature AI
3. Hot water pump start /stop DO
4. Hot water pump run status DI
3.4 MULTIZONE VARIABLE VOLUME AIR HANDLING UNITS (RTU-1, 3 & 5))

A. Enabling: Unit will be controlled by the BMS and shall operate in morning warm-up mode, occupied mode or unoccupied mode if any of the following devices are not activated.

1. Internal safety devices.
 a. Fans shall be off.
 b. All valves shall be closed.
 c. OA and EA dampers shall be off
 d. MA damper shall be full open
 e. Issue alarm to operator’s workstation

2. Fire Alarm Control Panel.
 a. Fans shall be off.
 b. All valves shall be closed.
 c. OA and EA dampers shall be off
 d. MA damper shall be full open
 e. Issue alarm to operator’s workstation

3. Low temperature limit.
 a. Fans shall be off.
 b. HW valves shall be fully opened.
 c. OA and EA dampers shall be off
 d. MA damper shall be full open
 e. Issue alarm to operator’s workstation

4. High static.
 a. Fans shall be off.
 b. All valves shall be closed.
 c. OA and EA dampers shall be off
 d. MA damper shall be full open
 e. Issue alarm to operator’s workstation

B. BMS shall enable the supply air reset temperature control.

C. Morning Warm-up

1. Dampers and energy recovery wheel control:
 a. Outside air damper shall be fully closed.
 b. Exhaust air damper shall be fully closed.
 c. Mixed air damper shall be fully open.

2. Fan Control
 a. Supply fan VFD shall modulate the fan speed to maintain duct static pressure.
 b. Exhaust fan VFD shall not operate.
 c. If the any fan speed decrease below a predetermined setpoint as determined by the TAB and engineer of record, the fan shall ramp down to the off position. To avoid fan on-off short cycling, the fan shall remain off for a predetermined time period.

3. Gas Control Valve Control:
 a. BMS shall modulate the Gas valve as required to maintain discharge air temperature setpoint.

D. Unoccupied Mode

1. Dampers and energy recovery wheel control:
 a. Outside air damper shall be fully closed.
 b. Exhaust air damper shall be fully closed.
c. Mixed air damper shall be fully open.
d. Air heat exchanger dampers shall divert airflow away from heat exchangers.

2. Fan Control
 a. Supply fan VFD shall modulate the fan speed to maintain duct static pressure.
 b. Exhaust fan VFD shall not operate.
 c. If the any fan speed decrease below a predetermined setpoint as determined by the TAB and engineer of record, the fan shall ramp down to the off position. To avoid fan on-off short cycling, the fan shall remain off for a predetermined time period.

3. Gas Valve Control:
 a. BMS shall modulate the Gas valve as required to maintain discharge air temperature setpoint.

4. Economizer Control.
 a. BMS shall modulate the outside air damper and mixed air damper in parallel as required to maintain average mixed temperature set point. Exhaust air damper shall be commanded to fully open. Exhaust fan shall operate. Fan speed shall maintain exhaust airflow as measured by the exhaust airflow station. Exhaust fan shall modulate the air flow to maintain positive space pressure of 0.02".

5. DX cooling Control (Shall be controlled by the unit manufacturer controls)
 a. BMS shall enable cooling stages as required to maintain discharge air temperature setpoint.
 b. First cooling stage shall be modulating compressor.
 c. Second cooling stage shall start with on-off compressor and modulating compressor shall be utilize to trim the load.
 d. Modulating compressor refrigerant circuits will be monitored for suction pressure. Suction pressure transmitters will be provided by the unit manufacturer.
 e. Compressors will have a minimum "On" time of 5 minutes to avoid short cycling.

6. Dehumidification Control.
 a. BMS shall enable dehumidification and modulate as required to maintain the reset discharge air dewpoint temperature setpoint after the hot gas reheat coil.

E. Occupied Mode
1. Dampers and energy recovery wheel control:
 a. Outside air damper shall open to a predetermined minimum position as determined by the TAB. Outdoor airflow will be measured by airflow stations provided by the ATC contractor
 b. Exhaust air damper shall open to a predetermined minimum position as determined by the TAB.
 c. Mix air damper shall open to a predetermined minimum position as determined by the TAB.
 d. Energy wheel by-pass dampers shall close.

2. Fan Control
 a. Supply fan VFD shall modulate the fan speed to maintain duct static pressure.
 b. Supply fan airflow will be measured by airflow stations provided by the ATC contractor
 c. Exhaust fan VFD shall modulate the fan speed to maintain exhaust airflow as measured by the exhaust airflow station provided by the ATC contractor. Exhaust fan shall modulate the air flow to maintain positive space pressure of 0.02".

3. Gas Valve Control:
 a. BMS shall modulate the Gas valve as required to maintain discharge air temperature setpoint.

4. Economizer Control.
 a. BMS shall modulate the outside air damper and mixed air damper in parallel as required to maintain average mixed temperature set point. Exhaust air damper shall be commanded to fully open. Exhaust fan speed shall maintain exhaust airflow as
measured by the exhaust airflow station. Exhaust fan shall modulate the air flow to maintain positive space pressure of 0.02".

5. DX cooling Control (Shall be controlled by the unit manufacturer controls)
 a. BMS shall enable cooling stages as required to maintain discharge air temperature setpoint.
 b. Compressor and condenser operator shall be configured and controlled by the onboard integral RTU controls.
 c. First cooling stage shall be modulating compressor.
 d. Second cooling stage shall start with on-off compressor and modulating compressor shall be utilize to trim the load.
 e. Modulating compressor refrigerant circuits will be monitored for suction pressure. Suction pressure transmitters will be provided by the unit manufacturer.
 f. Compressors will have a minimum "On" time of 5 minutes to avoid short cycling.

6. Dehumidification Control.
 a. BMS shall enable dehumidification and modulate as required to maintain the reset discharge air dewpoint temperature setpoint after the hot gas reheat coil.

F. Control Points:

<table>
<thead>
<tr>
<th>Control Point</th>
<th>Control Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor air flow CFM</td>
<td>AI</td>
</tr>
<tr>
<td>Supply air flow CFM</td>
<td>AI</td>
</tr>
<tr>
<td>Exhaust air flow CFM</td>
<td>AI</td>
</tr>
<tr>
<td>Outdoor air damper control</td>
<td>AO</td>
</tr>
<tr>
<td>Outdoor air damper positions feedback</td>
<td>AI</td>
</tr>
<tr>
<td>Exhaust air damper control</td>
<td>AO</td>
</tr>
<tr>
<td>Exhaust air damper positions feedback</td>
<td>AI</td>
</tr>
<tr>
<td>Return air damper control</td>
<td>AO</td>
</tr>
<tr>
<td>Return air damper positions feedback</td>
<td>AI</td>
</tr>
<tr>
<td>Outdoor air filter Diff. Press.</td>
<td>AI</td>
</tr>
<tr>
<td>Outdoor air filter High pressure setpoint</td>
<td>AI</td>
</tr>
<tr>
<td>Mixed air filter Diff. Press.</td>
<td>AI</td>
</tr>
<tr>
<td>Mixed air filter High pressure setpoint</td>
<td>AI</td>
</tr>
<tr>
<td>Mixed air temperature</td>
<td>AI</td>
</tr>
<tr>
<td>Supply air setpoint</td>
<td></td>
</tr>
<tr>
<td>Space pressure setpoint</td>
<td></td>
</tr>
<tr>
<td>Space pressure</td>
<td>AI</td>
</tr>
<tr>
<td>Gas Heat Enable</td>
<td>DO</td>
</tr>
<tr>
<td>Gas Heat Modulation</td>
<td>AO</td>
</tr>
<tr>
<td>Low Limit thermostat status</td>
<td>DI</td>
</tr>
<tr>
<td>DX cooling Stage control</td>
<td>Controlled by unit manufacturer controls</td>
</tr>
<tr>
<td>Compressor Suction pressure</td>
<td>Controlled by unit manufacturer controls</td>
</tr>
<tr>
<td>Compressor modulation</td>
<td>Controlled by unit manufacturer controls</td>
</tr>
<tr>
<td>Coil discharge temperature</td>
<td>AI</td>
</tr>
<tr>
<td>Coil discharge humidity</td>
<td>AI</td>
</tr>
<tr>
<td>Hot Gas Reheat Enable</td>
<td>DO</td>
</tr>
<tr>
<td>Hot Gas Reheat Modulation</td>
<td>Controlled by unit manufacturer controls</td>
</tr>
<tr>
<td>Supply Fan Start/Stop</td>
<td>DO</td>
</tr>
<tr>
<td>Supply fan run status</td>
<td>DI</td>
</tr>
<tr>
<td>Supply fan VFD speed signal</td>
<td>AO</td>
</tr>
<tr>
<td>Supply fan VFD feedback</td>
<td>AI</td>
</tr>
<tr>
<td>Supply fan VFD fault status</td>
<td>DI</td>
</tr>
<tr>
<td>Exh Fan Start/Stop</td>
<td>DO</td>
</tr>
<tr>
<td>Exh fan run status</td>
<td>DI</td>
</tr>
<tr>
<td>Exh fan VFD speed signal</td>
<td>AO</td>
</tr>
</tbody>
</table>
3.5 MultiZone Vairalbe Volume Energy Recovery Air Handling Units (RTU-2 & 4)

A. Enabling: Unit will be controlled by the BMS and shall operate in morning warm-up mode, occupied mode or unoccupied mode if any of the following devices are not activated.

1. Internal safety devices.
 - Fans shall be off.
 - All valves shall be closed.
 - OA and EA dampers shall be off
 - MA damper shall be full open
 - Issue alarm to operator’s workstation

2. Fire Alarm Control Panel.
 - Fans shall be off.
 - All valves shall be closed.
 - OA and EA dampers shall be off
 - MA damper shall be full open
 - Issue alarm to operator’s workstation

3. Low temperature limit.
 - Fans shall be off.
 - HW valves shall be fully opened.
 - OA and EA dampers shall be off
 - MA damper shall be full open
 - Issue alarm to operator’s workstation

4. High static.
 - Fans shall be off.
 - All valves shall be closed.
 - OA and EA dampers shall be off
 - MA damper shall be full open
 - Issue alarm to operator’s workstation

B. BMS shall enable the supply air reset temperature control.

C. Morning Warm-up
 1. Dampers and energy recovery wheel control:
 - Outside air damper shall be fully closed.
 - Exhaust air damper shall be fully closed.
 - Mixed air damper shall be fully open.
 - Air heat exchanger dampers shall divert airflow away from heat exchangers.
 - Energy wheel shall be off.
 2. Fan Control
 - Supply fan VFD shall modulate the fan speed to maintain duct static pressure.
b. Exhaust fan VFD shall not operate.
c. If the any fan speed decrease below a predetermined setpoint as determined by the TAB and engineer of record, the fan shall ramp down to the off position. To avoid fan on-off short cycling, the fan shall remain off for a predetermined time period.

3. Gas Valve Control:
 a. BMS shall modulate the Gas valve as required to maintain discharge air temperature setpoint.

D. Unoccupied Mode
1. Dampers and energy recovery wheel control:
 a. Outside air damper shall be fully closed.
 b. Exhaust air damper shall be fully closed.
 c. Mixed air damper shall be fully open.
 d. Air heat exchanger dampers shall divert airflow away from heat exchangers.
 e. Energy wheel shall be off.
2. Fan Control
 a. Supply fan VFD shall modulate the fan speed to maintain duct static pressure.
 b. Exhaust fan VFD shall not operate.
 c. If the any fan speed decrease below a predetermined setpoint as determined by the TAB and engineer of record, the fan shall ramp down to the off position. To avoid fan on-off short cycling, the fan shall remain off for a predetermined time period.
3. Gas Valve Control:
 a. BMS shall modulate the Gas valve as required to maintain discharge air temperature setpoint.

4. Economizer Control.
 a. BMS shall enable dehumidification and modulate as required to maintain the reset discharge air dewpoint temperature setpoint after the hot gas reheat coil.

E. Occupied Mode
1. Dampers and energy recovery wheel control:
 a. Outside air damper shall open to a predetermined minimum position as determined by the TAB. Outdoor airflow will be measured by airflow stations provided by the ATC contractor.
 b. Exhaust air damper shall open to a predetermined minimum position as determined by the TAB.
c. Mix air damper shall open to a predetermined minimum position as determined by the TAB.
d. Energy wheel by-pass dampers shall close.
e. Energy wheel shall be commanded to operate.
f. Energy wheel will be monitored for run status

2. Fan Control
 a. Supply fan VFD shall modulate the fan speed to maintain duct static pressure.
 b. Supply fan airflow will be measured by airflow stations provided by the ATC contractor.
 c. Exhaust fan VFD shall modulate the fan speed to maintain exhaust airflow as measured by the exhaust airflow station provided by the ATC contractor. Exhaust fan shall modulate the air flow to maintain positive space pressure of 0.02".

3. Gas Control Valve Control:
 a. BMS shall modulate the Gas valve as required to maintain discharge air temperature setpoint.

4. Economizer Control:
 a. BMS shall modulate the outside air damper and mixed air damper in parallel as required to maintain average mixed temperature set point. Exhaust air damper shall be commanded to fully open. Exhaust fan speed shall maintain exhaust airflow as measured by the exhaust airflow station. Exhaust airflow shall track outside airflow with a 10% offset.

5. DX cooling Control (Shall be controlled by the unit manufacturer controls)
 a. BMS shall enable cooling stages as required to maintain discharge air temperature setpoint.
 b. Compressor and condenser operator shall be configured and controlled by the onboard integral RTU controls.
 c. First cooling stage shall be modulating compressor.
 d. Second cooling stage shall start with on-off compressor and modulating compressor shall be utilized to trim the load.
 e. Modulating compressor refrigerant circuits will be monitored for suction pressure. Suction pressure transmitters will be provided by the unit manufacturer.
 f. Compressors will have a minimum “On” time of 5 minutes to avoid short cycling.

6. Dehumidification Control.
 a. BMS shall enable dehumidification and modulate as required to maintain the reset discharge air dewpoint temperature setpoint after the hot gas reheat coil.

F. Control Points:
 1. Outdoor air flow CFM AI
 2. Supply air flow CFM AI
 3. Exhaust air flow CFM AI
 4. Outdoor air damper control AO
 5. Outdoor air damper positions feedback AI
 6. Exhaust air damper control AO
 7. Exhaust air damper positions feedback AI
 8. Return air damper control AO
 9. Return air damper positions feedback AI
 10. Outdoor air filter Diff. Press. AI
 11. Outdoor air filter High pressure setpoint
 12. Mixed air filter Diff. Press. AI
 13. Mixed air filter High pressure setpoint
 14. Energy Wheel Enable DO
 15. Energy Wheel rotation status DI
 16. Energy Wheel by-pass damper DO
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

17. Mixed air temperature \(\text{AI} \)
18. Supply air setpoint
19. Space pressure setpoint
20. Space differential pressure \(\text{AI} \)
21. Hot Gas Reheat Enable \(\text{DO} \)
22. Hot Gas Reheat Modulation \(\text{AO} \)
23. Low Limit thermostat status \(\text{DI} \)
24. DX cooling Stage control Controlled by unit manufacturer controls
25. Compressor Suction pressure Controlled by unit manufacturer controls
26. Compressor modulation Controlled by unit manufacturer controls
27. Coil discharge temperature \(\text{AI} \)
28. Coil discharge humidity \(\text{AI} \)
29. Hot Gas Reheat Enable \(\text{DO} \)
30. Hot Gas Reheat Modulation Controlled by unit manufacturer controls
31. Supply Fan Start/Stop \(\text{DO} \)
32. Supply fan run status \(\text{DI} \)
33. Supply fan VFD speed signal \(\text{AO} \)
34. Supply fan VFD feedback \(\text{AI} \)
35. Supply fan VFD fault status \(\text{DI} \)
36. Exh Fan Start/Stop \(\text{DO} \)
37. Exh fan run status \(\text{DI} \)
38. Exh fan VFD speed signal \(\text{AO} \)
39. Exh fan VFD feedback \(\text{AI} \)
40. Exh fan VFD fault status \(\text{DI} \)
41. Return air temperature \(\text{AI} \)
42. Return air Humidity \(\text{AI} \)
43. Return air CO2 \(\text{AI} \)
44. Space differential pressure \(\text{AI} \)
45. Smoke Detector, Supply status \(\text{DI} \)
46. Smoke Detector, Return status \(\text{DI} \)

3.6 VAV BOX WITH REHEAT COIL AND PERIMETER HEAT.

A. All VAV terminal units shall be controlled by the BAS utilizing fully programmable custom controllers only. Application Specific Controllers or Controllers not capable of performing the following sequence are not acceptable. Occupancy - The occupancy mode can be communicated or hardwired to the VAV via a binary input. Valid Occupancy modes for the VAV shall be:

1. Occupied: Normal operating mode for occupied spaces or daytime operation. When the unit is in the occupied mode the VAV shall maintain the space temperature at the active occupied heating or cooling setpoint. Applicable ventilation and airflow setpoints shall be enforced. The occupied mode shall be the default mode of the VAV.

2. Un-Occupied: Normal operating mode for unoccupied spaces or nighttime operation. When the unit is in unoccupied mode the VAV shall maintain the space temperature at the stored unoccupied heating or cooling setpoint regardless of the presence of a hardwired or communicated setpoint. When the space temperature exceeds the active unoccupied setpoint the VAV shall modulate fully closed.

3. UnOccupied Temporary Override: Mode used to temporarily place the unit into the occupied operation. Tenants shall be able to override the unoccupied mode from the space sensor. The override shall last for a maximum of 2 hours (adjustable). The tenants shall be able to cancel the override from the space sensor at any time. During the override the unit shall run in occupied mode.
4. Occupied Standby: During occupied periods, if the local occupancy sensor indicates that
the zone is unoccupied, the VAV terminal unit shall modulate to maintain the occupied
outdoor air CFM setpoint minus 30%, and the occupied space temperature setpoint +2F
during cooling operation, and -2F for during heating operation.

B. VAV Operating Modes:
 1. Ventilation Mode: The VAVs shall operate in ventilation mode when there is no call for
 cooling or heating in the zone
 2. Cooling Mode: The VAVs shall operate in cooling mode when the air handling unit
 discharge temperature is less than the space temperature and the space temperature is
 greater than the cooling setpoint.
 3. Heating Mode: The VAVs shall operate in heating mode when the space temperature is
 less than the heating setpoint.
 4. Heat Cool Setpoint- The space temperature setpoint shall be determined either by a local
 setpoint adjustment, the VAV default setpoint or a communicated value. The VAV uses the
 locally stored default setpoints when neither a local setpoint nor communicated setpoint is
 present. If both a local setpoint and communicated setpoint exist, the VAV shall use the
 communicated value. The occupied heating and cooling setpoints shall be limited by
 adjustable parameters in the VAV to prevent them from being set too low or too high.
 These limits do not apply in the unoccupied mode. In the Unoccupied mode the VAV shall
 always use the stored default (Unoccupied) setpoints. These setpoints shall be widened to
 accommodate night setback and shall be adjustable.

C. Ventilation Mode: When the VAV is in ventilation mode, the VAV shall to maintain the minimum
ventilation CFM setpoint.

D. Cooling Operation: When the unit is in cooling mode, the VAV shall maintain the space
 temperature at the active cooling setpoint by modulating the airflow between the active cooling
 minimum airflow setpoint to the maximum cooling airflow setpoint.
 1. The VAV controller shall use the measured space temperature and the active cooling
 setpoint to determine the requested cooling capacity of the unit. The outputs shall be
 controlled based on the unit configuration and the requested cooling capacity.

E. Heating Operation: When the unit is in heating mode, The ASC shall maintain the space
 temperature by modulating the reheat coil control valve to maintain the discharge air
 temperature at setpoint. The discharge air temperature setpoint shall be reset by the zone
 temperature.
 1. The VAV controller shall use the measured space temperature and the active heating
 setpoint to determine the requested heating capacity of the unit. The outputs shall be
 controlled based on the unit configuration and the requested heating capacity.
 2. Should the VAV be unable to maintain space temperature with the VAV discharge
 temperature at the Heating Setpoint High Limit or with the valve fully open, the VAV shall
 modulate the air flow with the discharge temperature at the Heating Setpoint High Limit or
 with the control valve fully open to maintain space temperature.

F. Perimeter Radiant Panel Control -Where applicable, the perimeter radiation shall be the first
 stage of heating. Upon a call for heating, the BAS shall cycle perimeter radiation control valve
 to maintain space temperature. If the perimeter radiation control valve is commanded open,
 and the zone temperature remains below heating setpoint, The air handling unit shall energize
 and the VAV will enter "Heating Operation."
G. Building Automation System Commands- The BAS shall send the VAV the occupied space heating and cooling temperature setpoints. The BAS shall also send the following commands:
 1. Occupied
 2. Un-Occupied
 3. Priority Shut down
 4. Pre-determined default setpoints and operate in the occupied mode on communication error

H. VAV safeties and alarms:
 1. Space sensor failure
 2. Reset: All diagnostics shall be capable of being reset through the zone sensor, service tool, BAS, or by cycling power to the unit.

I. Control Points:
 1. Zone temperature AI
 2. Zone temperature setpoint
 3. Supply Air CFM AI
 4. Space Humidity AI
 5. Space CO2 AI
 6. Control Damper AO
 7. Heating Valve, Reheat AO
 8. Discharge air temperature AI
 9. Perimeter radiation valve DO
 10. Room Occupancy status DI

3.7 KITCHEN VAV BOX AND SPACE PRESSURE CONTROL

A. VAV box sequence of operation shall be same as indicated in section 3.06 above.

B. Kitchen exhaust hood energized;
 1. When the exhaust hood energizes, space return air duct mounted motorized dampers shall close, and VAV box shall modulate air flow to maintain negative space pressure of 0.02".

C. Kitchen exhaust hood de-energized:
 1. When the exhaust hood is de-energized, space return air duct mounted dampers shall open, and VAV box shall return to its regular sequence of operation.

D. Control Points:
 1. Space pressure setpoint AI
 2. Space differential pressure AI
 3. Exhaust Hood Fan Status DI
 4. Return air dampers command DO
 5. Return air dampers End Switch Status DI
3.8 SPLIT SYSTEM AIR CONDITIONING UNITS (ACU-1 & CU-1)

A. The Split System Air Conditioning units will be provided with integral controllers and wireless zone sensors by the unit manufacturer. The ATC will provide all network and low voltage condensing unit interlock wiring.

B. The ATC shall be responsible for providing an additional space temperature sensor in the for monitoring purposes.

C. Control Points:
 1. Space Temperature AI
 2. Fan Status DI

3.9 FANS

A. Toilet Room Exhaust Fans ((EF-1 & 2)
 1. BMS shall index fan to either unoccupied or occupied mode:
 2. Unoccupied mode:
 a. Damper shall be fully closed where motorized damper is indicated.
 b. Fan shall be off.
 3. Occupied mode:
 a. Damper shall be fully opened.
 b. If damper position does not match command, fan shall not operate and alarm issued to operator workstation.
 c. If damper position matches command, fan shall start and operate continuously.
 d. If the fan status does not match the command, an alarm will be generated at the workstation.
 4. Control Points:
 a. Fan Start/Stop DO
 b. Fan Status DI
 c. Fan Damper Command DO
 d. Fan Damper End Switch Status DI

B. Electrical Rm. Temperature Control Exhaust Fan (EF-3)
 1. BMS shall index fan to either unoccupied or occupied mode.
 2. When space temperature increase above setpoint:
 a. Damper shall be fully opened where motorized damper is indicated.
 b. If damper position does not match command, fan shall not operate and alarm issued to operator workstation.
 c. If damper position matches command, fan shall start and operate continuously until space temperature decrease below setpoint.
 3. When space temperature decreases below setpoint:
 a. Fan shall stop.
 b. Damper shall close
 4. Control Points:
 a. Fan Start/Stop DO
 b. Fan Status DI
 c. Fan Damper Command DO
 d. Fan Damper End Switch Status DI
3.10 CABINET UNIT HEATER

A. General: Each. Each CUH shall have stainless steel sheath thermistor double tie wrapped to
 return pipe. Temperature reading from thermistor shall be displayed at the operator
 workstation for proving hot water temperature to allow fan operation.

B. Moring Warm-up: On call for heating, the control valves shall open and the fan shall be allowed
 to operate when return water temperature is higher than 110°F.

C. Unoccupied: When space temperature decreases below setpoint, the control valves shall fully
 open and the fan shall be allowed to operate when return water temperature is higher than
 110°F.

D. Occupied: When space temperature decreases below setpoint, the control valves shall fully
 open and the fan shall be allowed to operate when return water temperature is higher than
 110°F.

E. Control Points:
 1. Space temperature
 2. Hot water valve
 3. Pipe temperature
 4. Fan Start/Stop
 5. Fan Status

3.11 LIGHTING CONTROLS

A. The BMS shall interface with lighting control system to allow the owner to adjust lighting zones
 day/week schedules.

3.12 ALARMS:

A. Safety alarms: Alarm shall be issued to BMS Operator workstation if any internal safety alarms
 are activated.

B. Smoke detector and FACP alarm. Alarm shall be issued to the BMS Operator workstation if
 duct mounted smoke detector or FACP is activated. Associated unit and fans shall not
 operate.

C. BMS shall monitor damper position. If damper position does not match the command, an
 alarm shall be generated at the Operator Workstation and the associated fan shall be
 commanded to stop.

D. BMS shall monitor all fan status. If fan status does not match the command, an alarm shall be
 generated at the Operator Workstation.
E. BMS shall monitor pump status. If pump status does not match the command, an alarm shall be generated at the Operator Workstation.

F. Boiler Control Panel Alarm. This alarm input shall be issued to BMS Operator workstation.

G. Hot Water Supply Temperature: Alarm shall be issued to BMS Operator workstation if HWS temperature drops below setpoint.

H. BAS shall monitor space temperature status. If space temperature does not match setpoint for a predetermined time period, an alarm shall be generated at the Operator Workstation.

I. BAS shall monitor duct discharge air temperature status. If duct discharge air temperature does not match setpoint for a predetermined time period, an alarm shall be generated at the Operator Workstation.

J. Low limit thermostats will be installed on the leaving side of coils. If the low limit thermostats sense temperatures below the setpoint of 38 degrees, an alarm shall be generated at the Operator Workstation.

K. BAS shall monitor pressure drop across filters. If pressure exceeds high air pressure setpoint, an alarm shall be generated at the Operator Workstation.

END OF SECTION
SECTION 232113 - HYDRONIC PIPING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Hydronic system requirements.

B. Heating water piping, above grade.

C. Pipe and pipe fittings for:
 1. Heating water piping system.
 2. Equipment drains and overflows.

D. Pipe hangers and supports.

E. Unions, flanges, mechanical couplings, and dielectric connections.

F. Valves:
 1. Globe or angle valves.
 2. Ball valves.
 4. Check valves.
 5. Pressure independent temperature control valves and balancing valves.

G. Flow controls.

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.

B. Section 07 84 13 - Penetration Firestopping

C. Section 08 31 13 - Access Doors and Panels.

D. Section 220516 - Expansion Fittings and Loops for Plumbing Piping.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

E. Section 230516 - Expansion Fittings and Loops for HVAC Piping.

F. Section 230548 - Vibration and Seismic Controls for HVAC.

G. Section 230553 - Identification for HVAC Piping and Equipment.

H. Section 230719 - HVAC Piping Insulation.

I. Section 232114 - Hydronic Specialties.

J. Section 232500 - HVAC Water Treatment: Pipe cleaning.

1.4 REFERENCE STANDARDS

B. ASME B16.15 - Cast Copper Alloy Threaded Fittings Classes 125 and 250; 2013.

C. ASME B16.3 - Malleable Iron Threaded Fittings; The American Society of Mechanical Engineers; 1998 (R2006).

D. ASME B16.18 - Cast Copper Alloy Solder Joint Pressure Fittings; 2012.

E. ASME B16.22 - Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings; 2013.

F. ASME B31.9 - Building Services Piping; 2014.

G. ASME B16.22 - Wrought Copper and Copper Alloy Solder Joint Pressure Fittings; The American Society of Mechanical Engineers; 2001 (R2005).

H. ASME B31.9 - Building Services Piping; The American Society of Mechanical Engineers; 2008 (ANSI/ASME B31.9).

M. ASTM B88M - Standard Specification for Seamless Copper Water Tube (Metric); 2013.

P. AWS A5.8M/A5.8 - Specification for Filler Metals for Brazing and Braze Welding; 2011-AMD 1.

R. AWWA C606 - Grooved and Shouldered Joints; 2011.

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittal Procedures, for submittal procedures.

B. Product Data: Include data on pipe materials, pipe fittings, valves, and accessories. Provide manufacturers catalogue information. Indicate valve data and ratings.

C. Welders Certificate: Include welders certification of compliance with ASME BPVC-IX.

D. Product Data:
 1. Include data on pipe materials, pipe fittings, valves, and accessories.
 2. Provide manufacturers catalogue information.
 3. Indicate valve data and ratings.
 4. Show grooved joint couplings, fittings, valves, and specialties on drawings and product submittals, specifically identified with the manufacturer's style or series designation.

E. Manufacturer's Installation Instructions: Indicate hanging and support methods, joining procedures.

F. Project Record Documents: Record actual locations of valves.

G. Maintenance Data: Include installation instructions, spare parts lists, exploded assembly views.

H. Grooved joint couplings, fittings, valves, and specialties shall be shown on product submittals and shall be specifically identified with the applicable Victaulic style or series designation.
1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing products of the type specified in this section, with minimum 10 years of documented experience.
 1. All grooved couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be of the same manufacturer as the grooved components.
 2. All castings used for couplings housings, fittings, or valve and specialty bodies shall be date stamped for quality assurance and traceability.

B. Installer Qualifications: Company specializing in performing work of the type specified in this section, with minimum five years of experience.

C. Provide all grooved joint couplings, fittings, valves, specialties, and grooving tools from a single manufacturer.

D. Coupling Manufacturer:
 1. Perform on-site training by factory-trained representative to the Contractor's field personnel in the proper use of grooving tools and installation of grooved joint products.

E. Welder Qualifications: Certify in accordance with ASME BPVC-IX.

1.7 REGULATORY REQUIREMENTS

A. Conform to ASME B31.9 code for installation of piping system.

B. Welding Materials and Procedures: Conform to ASME (BPV IX) and applicable state labor regulations.

C. Provide certificate of compliance from authority having jurisdiction, indicating approval of welders.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Accept valves on site in shipping containers with labeling in place. Inspect for damage.

B. Provide temporary protective coating on cast iron and steel valves.

C. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

D. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.
1.9 WARRANTY

A. The warranty period shall be a non-prorated period of 12 months from date of acceptance by the Owner and completion of commissioning.

B. Pre-insulated Pipe Manufacturer's Warranty: Submit, for owner's acceptance, manufacturer's standard warranty document executed by authorized company official. Manufacturer's warranty is in addition to, and not a limitation of, other rights owner may have under contract documents.
 1. Warranty covers the repair or replacement of any piping or fittings proven defective.
 2. Warranty may transfer to subsequent owners.
 3. The manufacturer's warranty shall be a minimum of 10 years, non-prorated, on the carrier tubing and 10 years on the fittings, insulation, and cover beginning with the date of final acceptance by the Owner and completion of commissioning.

PART 2 PRODUCTS

2.1 HYDRONIC SYSTEM REQUIREMENTS

A. Comply with ASME B31.9 and applicable federal, state, and local regulations.

B. Piping: Provide piping, fittings, hangers and supports as required, as indicated, and as follows:
 1. Where more than one piping system material is specified, provide joining fittings that are compatible with piping materials and ensure that the integrity of the system is not jeopardized.
 2. Use non-conducting dielectric connections whenever jointing dissimilar metals.
 3. Grooved mechanical joints may be used in accessible locations only.
 a. Accessible locations include those exposed on interior of building, and in mechanical rooms, aboveground outdoors, and as approved by the Architect.
 b. Do not install grooved piping inside chases.
 d. Use rigid joints unless otherwise indicated.
 4. Provide pipe hangers and supports in accordance with ASME B31.9 or MSS SP-58 unless indicated otherwise.
 5. Provide pipe hangers and supports in accordance with ASME B31.9 unless indicated otherwise.

C. Pipe-to-Valve and Pipe-to-Equipment Connections: Use flanges, unions, or grooved couplings to allow disconnection of components for servicing; do not use direct welded, soldered, or threaded connections.

D. Valves: Provide valves where indicated:
 1. Provide drain valves where indicated, and if not indicated provide at least at main shut-off, low points of piping, bases of vertical risers, and at equipment. Use 3/4 inch gate or ball valves with cap; pipe to nearest floor drain.
2. Isolate equipment using butterfly valves with lug end flanges or grooved mechanical couplings.
3. For throttling, bypass, or manual flow control services, use globe, ball, or butterfly valves.
4. In heating water systems, butterfly valves may be used interchangeably with ball, gate and globe valves.
5. For shut-off and to isolate parts of systems or vertical risers, use gate, ball, or butterfly valves.
6. For throttling service, use plug cocks. Use non-lubricated plug cocks only when shut-off or isolating valves are also provided.

2.2 HEATING WATER PIPING, ABOVE GRADE

A. Steel Pipe (greater than 2 inch pipe size): ASTM A53/A53M, Schedule 40, black, using one of the following joint types:
 5. Joints: Threaded, or AWS D1.1 welded.
 a. 3/4" to 2" - threaded cast iron.
 b. 2-1/2" and larger - welded or grooved mechanical joint.

 a. Rigid Type Couplings: Housing cast with offsetting, angle pattern bolt pads to provide rigidity and system support when hanging in accordance with ANSI B31.1 and B31.9. Installation-Ready for complete installation without field disassembly, complete with grade EHP gasket suitable for water service to 250 deg. F. Basis of Design: Victaulic Style 107N.
 b. Flexible Type Couplings: Used in locations where vibration attenuation and stress relief are required. Installation-Ready Style 177 and Victaulic Style 77
 c. Flanged Adapters: Flat face, for direct connection to ANSI Class 125 or 150 flanged components. Victaulic Style 741.

B. Copper Tube (2" pipe size and smaller): ASTM B 88 (ASTM B 88M), Type L (B), drawn.
 a. Solder: ASTM B32 lead-free solder, HB alloy (95-5 tin-antimony) or tin and silver.
 b. Braze: AWS A5.8M/A5.8 BCuP copper/silver alloy.
 3. Mechanical Joints: Copper press fittings as manufactured by Viega or Rigid Tool Co.
 a. Press fittings: Copper press fittings shall conform to the material and sizing requirements of ASME B16.18 or ASME B16.22. O-rings for copper press fittings shall be EPDM.
 b. Victaulic Installation-Ready™ fittings for 2” through 3” grooved end copper tubing; ductile iron conforming to ASTM A-536, Grade 65-45-12, with Installation-Ready™ ends, complete with PVDF (Poly Vinylidene Fluoride) and Grade "EHP" EPDM-HP
[Grade ‘T’ Nitrile] gasket; and ASTM A449 electroplated steel bolts and nuts, rated to 300 psi (2065 kPa) with Type K or L Copper Tubing.

2.3 EQUIPMENT/CONDENSATE DRAINS AND OVERFLOWS

A. Copper Tube: ASTM B88 (ASTM B88M), Type L (B), drawn; using one of the following joint types:
 1. Solder Joints: ASME B16.18 cast brass/bronze or ASME B16.22 solder wrought copper fittings; ASTM B32 lead-free solder, HB alloy (95-5 tin-antimony) or tin and silver.
 2. Mechanical Joints: Copper press fittings as manufactured by Viega or Rigid Tool Co. a. Press fittings: Copper press fittings shall conform to the material and sizing requirements of ASME B16.18 or ASME B16.22. O-rings for copper press fittings shall be EPDM.

2.4 PIPE HANGERS AND SUPPORTS

A. Provide hangers and supports that comply with MSS SP-58.
 1. If type of hanger or support for a particular situation is not indicated, select appropriate type using MSS SP-58 recommendations.

B. Conform to ASME B31.9.

C. Hangers for Pipe Sizes 1/2 to 1-1/2 Inch: Carbon steel, adjustable swivel, split ring.

D. Hangers for Cold Pipe Sizes 2 Inches and Greater: Carbon steel, adjustable, clevis.

E. Hangers for Hot Pipe Sizes 2 to 4 Inches: Carbon steel, adjustable, clevis.

F. Multiple or Trapeze Hangers: Steel channels with welded spacers and hanger rods.

G. Wall Support for Pipe Sizes to 3 Inches: Cast iron hook.

H. Wall Support for Pipe Sizes 4 Inches and Greater: Welded steel bracket and wrought steel clamp.

I. Vertical Support: Steel riser clamp.

J. Floor Support for Cold Pipe: Cast iron adjustable pipe saddle, lock nut, nipple, floor flange, and concrete pier or steel support.

K. Floor Support for Hot Pipe Sizes to 4 Inches: Cast iron adjustable pipe saddle, lock nut, nipple, floor flange, and concrete pier or steel support.

L. Copper Pipe Support: Carbon steel ring, adjustable, copper plated.

M. Hanger Rods: Mild steel threaded both ends, threaded one end, or continuous threaded.
N. Inserts: Malleable iron case of galvanized steel shell and expander plug for threaded connection with lateral adjustment, top slot for reinforcing rods, lugs for attaching to forms; size inserts to suit threaded hanger rods.

O. In grooved installations, use rigid couplings with offsetting angle-pattern bolt pads or with wedge shaped grooves in header piping to permit support and hanging in accordance with ASME B31.9.

2.5 UNIONS, FLANGES, MECHANICAL COUPLINGS, AND DIELECTRIC CONNECTIONS

A. Unions for Pipe 2 Inches and Less:
 1. Ferrous Piping: 150 psig malleable iron, threaded.
 2. Copper Pipe: Bronze, soldered joints.

B. Flanges for Pipe 2 Inches and Greater:
 1. Ferrous Piping: 150 psig forged steel, slip-on.
 2. Copper Piping: Bronze.
 3. Gaskets: 1/16 inch thick preformed neoprene.
 4. Use grooved joint flange adapters in grooved piping systems. Victaulic Style 741.

C. Mechanical Couplings for Grooved and Shouldered Joints: Two curved housing segments with continuous key to engage pipe groove, circular C-profile gasket, and bolts to secure and ASTM A449 compliant compress gasket.
 1. Dimensions and Testing: In accordance with AWWA C606.
 2. Mechanical Couplings: Comply with ASTM F1476.
 3. Housing Material: Ductile iron, enamel coated or galvanized.
 4. Housing Clamps: Two ductile iron housings, enamel coated or galvanized to engage and lock, designed to permit some angular deflection, contraction, and expansion where required.
 5. Gasket Material:
 a. EPDM-HP suitable for operating temperature range from minus 30 degrees F to 250 degrees F.
 b. EPDM suitable for operating temperature range from minus 30 degrees F to 230 degrees F.
 7. When pipe is field grooved, provide coupling manufacturer's grooving tools.
 a. Fully automated grooving tool with touch screen controls and integral laser sensors. Tools provide traceable measurements that can be recorded locally or exported as required. Measurements include groove traceability documents, corresponding identification marks on the pipe, and confirm all critical dimensions fall into the required tolerance range as listed by the tool manufacturer for each groove. Validation records provided for the gasket sealing surface, groove width, groove diameter, pipe flare, and pipe OD. Basis of Design: Victaulic RG5200i.

D. Dielectric Connections:
 1. Waterways:
 a. Water impervious insulation barrier capable of limiting galvanic current to 1 percent of short circuit current in a corresponding bimetallic joint.
 b. Dry insulation barrier able to withstand 600 volt breakdown test.
c. Construct of galvanized steel with threaded end connections to match connecting piping.

d. Suitable for the required operating pressures and temperatures.

e. Fittings shall be a copper-silicon casting conforming to UNS C87850, and UL classified in accordance with ANSI / NSF-61 for potable water service. Fittings shall have threaded ends, grooved ends, or a combination. Basis of Design: Victaulic Style 647.

2. Flanges:
 a. Dielectric flanges with same pressure ratings as standard flanges.
 b. Water impervious insulation barrier capable of limiting galvanic current to 1 percent of short circuit current in a corresponding bimetallic joint.
 c. Dry insulation barrier able to withstand 600 volt breakdown test.
 d. Construct of galvanized steel with threaded end connections to match connecting piping.
 e. Suitable for the required operating pressures and temperatures.

E. Dielectric Connections: Union or waterway fitting with water impervious isolation barrier and one galvanized or plated steel end and one copper tube end, end types to match pipe joint types used.

2.6 GATE VALVES

A. Manufacturers:

B. Up To and Including 2 Inches:
 1. Bronze body, bronze trim, screwed bonnet, non-rising stem, lockshield stem, inside screw with backseating stem, solid wedge disc, alloy seat rings, solder ends.

C. Over 2 Inches:
 1. Iron body, bronze trim, bolted bonnet, rising stem, handwheel, outside screw and yoke, solid wedge disc with bronze seat rings, flanged ends.
 2. Provide chain-type operator for valves installed in mechanical rooms 10'-0" above finished floor.

2.7 GLOBE OR ANGLE VALVES

A. Manufacturers:

B. Up To and Including 2 Inches:
 1. Bronze body, bronze trim, screwed bonnet, rising stem and handwheel, inside screw with backseating stem, renewable composition disc and bronze seat, solder ends.
2.8 BALL VALVES

A. Manufacturers:
 1. Apollo Valves: www.apollovalves.com/#{sle}.

B. Up To and Including 2 Inches:
 1. Bronze one piece body, chrome plated brass ball, teflon seats and stuffing box ring, lever handle with balancing stops, solder ends with union.

C. Provide stand off brackets for the installation of insulation.

2.9 BUTTERFLY VALVES

A. Manufacturers:
 5. Substitutions: See Section 016000 - Product Requirements.

B. Body: Cast or ductile iron with resilient replaceable EPDM pressure-responsive seat, wafer, lug, or grooved ends, extended neck.

C. Disc: Construct of aluminum bronze, electroless-nickel or chrome plated ductile iron, or stainless steel.

D. Stem: Stainless steel with stem offset from the centerline to provide full 360 degree circumferential setting.

E. Operator: Handwheel and gear drive; may use lever operator where space permits.

F. Basis of Design: Victaulic Bic300 Master Seal and AGS-Vic300

2.10 SWING CHECK VALVES

A. Manufacturers:

B. Body: Ductile iron body with stainless steel spring and shaft for vertical or horizontal installation.
C. Disc: Stainless steel with elastomer seat / seal, or elastomer encapsulated ductile iron disc with welded-in nickel seat.

D. Basis of Design: Victaulic Series 716 (300-psig CWP) and AGS W715 (230-psig CWP).

2.11 PRESSURE INDEPENDENT TEMPERATURE CONTROL VALVES AND BALANCING VALVES

A. Manufacturers:
 1. Belimo; www.belimo.us
 3. Griswold Controls : www.griswoldcontrols.com
 4. RWV Hydronic Controls; www.redwhitevalvecorp.com
 5. Substitutions: See Section 016000 - Product Requirements.

B. If pressure independent valve are used;
 1. Balancing valves shown in HVAC details may be omitted.
 2. Contractor must provide side stream filtration.

C. NPS 2 and Smaller: PN 16, stainless steel components.

D. NPS 2½ through 10: Class 125 cast iron body per ASME B16.1-2010, Material class B per ASTM A 126-04 (2014), stainless steel components.

E. Accuracy NPS ¾" and Smaller: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 2.32…58 psi for low and standard flow units, 5…58 psi for high flow units within 5% of set flow value.

F. Accuracy NPS 1 through 1¼: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 2.9…58 psi for standard flow units, 5…58 psi for high flow units within 5% of set flow value.

G. Accuracy NPS 1½ through 4: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 4.35…58 psi within 5% of set flow value.

H. Accuracy NPS 5 through 10: The control valves shall accurately control the flow from 0…100% rated flow with a differential pressure range of 5.8…58 psi for standard flow units, 8.7…58 psi for high flow units within 5% of set flow value.

I. Flow Characteristics: Linear Control, selectable to equal percentage at the proportional valve actuator.

J. Field adjustable flow by means of a percentage of rated valve flow.

K. Position feedback output signal integrated into all proportional actuators.
L. 100% authority with modulating below 1% regardless of flow settings.

M. No cartridges requiring replacement or maintenance.

N. Basis of Design: Belimo, SmartX PICV, or approved equal.

2.12 FLOW CONTROLS

A. Manufacturers:

B. Construction: Class 125, Brass or bronze body with union on inlet and outlet, temperature and pressure test plug on inlet and outlet, blowdown/backflush drain.

C. Calibration: Control flow within 10 percent of selected rating, over operating pressure range of 10 times minimum pressure required for control, minimum pressure 2 psi.

PART 3 EXECUTION

3.1 PREPARATION

A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.

B. Prepare pipe for grooved mechanical joints as required by coupling manufacturer.

C. Remove scale and dirt on inside and outside before assembly.

D. Prepare piping connections to equipment using jointing system specified.

E. Keep open ends of pipe free from scale and dirt. Protect open ends with temporary plugs or caps.

F. After completion, fill, clean, and treat systems. Refer to Section 232500 for additional requirements.

3.2 ABOVE GROUND PIPING

A. Install in accordance with manufacturer's instructions.

B. Route piping in orderly manner, parallel to building structure, and maintain gradient.
C. Install piping to conserve building space and to avoid interfere with use of space.

D. Group piping whenever practical at common elevations.

E. Sleeve pipe passing through partitions, walls and floors.

F. Slope piping and arrange to drain at low points.

G. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.

H. Inserts:
 1. Provide inserts for placement in concrete formwork.
 2. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
 3. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches.
 4. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.
 5. Where inserts are omitted, drill through concrete slab from below and provide through-bolt with recessed square steel plate and nut above slab.

I. Pipe Hangers and Supports:
 1. Install in accordance with ASME B31.9, ASTM F708, or MSS SP-58.
 2. Support horizontal piping as scheduled.
 3. Install hangers to provide minimum 1/2 inch space between finished covering and adjacent work.
 4. Place hangers within 12 inches of each horizontal elbow.
 5. Use hangers with 1-1/2 inch minimum vertical adjustment. Design hangers for pipe movement without disengagement of supported pipe.
 7. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.
 8. Provide copper plated hangers and supports for copper piping.
 9. Prime coat exposed steel hangers and supports. Refer to Section 099123. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.

J. Provide access where valves and fittings are not exposed. Coordinate size and location of access doors with Section 083100.

K. Use eccentric reducers to maintain top of pipe level.

L. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welds.
M. Prepare unfinished pipe, fittings, supports, and accessories, ready for finish painting. Refer to Section 099123.

N. All piping supports shall be secured to the building structure.

O. Install valves with stems upright or horizontal, not inverted. Ball valve operators shall allow for full range of operation.

P. Grooved joint couplings and fittings shall be installed in accordance with the manufacturer's latest installation recommendations. Grooved joints shall be clean and free from indentations, projections, and roll marks in the area from pipe end to groove. The grooved coupling manufacturer's factory trained representative shall provide on-site training for contractor's personnel in the use of grooving tools, application of groove, and installation of grooved joint products. The manufacturer's representative shall periodically visit the jobsite and review the installation. Contractor shall remove and replace any joints deemed improperly installed.

Q. Press Connections:
 1. Copper press fittings shall be made in accordance with the manufacturer's installation instructions.
 2. The tubing shall be fully inserted into the fitting and the tube marked at the shoulder of the fitting.
 3. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting.
 4. The joints shall be pressed using the tool approved by the manufacturer.

3.3 FIELD QUALITY CONTROL

A. Prepare aboveground hydronic piping according to ASME B31.9.

B. Perform the following tests on aboveground hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 3. Isolate expansion tanks and determine that hydronic system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure, but not less than 100 psi. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test.
 5. After hydrostatic test pressure has been applied for at least 15 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 6. Prepare written report of testing.

C. Perform the following before operating the system:
 1. Open manual valves fully.
 2. Inspect pumps for proper rotation.
 3. Set makeup pressure-reducing valves and adjust expansion tank pre-charge for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Verify lubrication of motors and bearings.

3.4 SCHEDULES

A. Hanger Spacing for Copper Tubing.
 1. 1/2 inch and 3/4 inch: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 2. 1 inch: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 3. 1-1/2 inch and 2 inch: Maximum span, 8 feet; minimum rod size, 3/8 inch.

B. Hanger Spacing for Steel Piping.
 1. 2-1/2 inches: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 2. 3 inches: Maximum span, 12 feet; minimum rod size, 3/8 inch.
 3. 4 inches: Maximum span, 14 feet; minimum rod size, 1/2 inch.

END OF SECTION
SECTION 232114 - HYDRONIC SPECIALTIES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Expansion tanks.

B. Air vents.

C. Air eliminator/dirt separator

D. Strainers.

E. Suction diffusers.

F. Combination pump discharge valves.

G. Pressure-temperature test plugs.

H. Flow meters.

I. Relief valves.

J. Pressure reducing valves.

K. Automatic balancing valves.

1.3 RELATED REQUIREMENTS

A. Section 232113 - Hydronic Piping.

B. Section 232500 - HVAC Water Treatment: Pipe cleaning.

C. Section 500000 - Commissioning Requirements.
1.4 REFERENCE STANDARDS

A. ASME BPVC-VIII-1 - Boiler and Pressure Vessel Code, Section VIII, Division 1 - Rules for Construction of Pressure Vessels; 2015.

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide product data for manufactured products and assemblies required for this project. Include component sizes, rough-in requirements, service sizes, and finishes. Include product description and model.

C. Certificates: Inspection certificates for pressure vessels from authority having jurisdiction.

D. Manufacturer's Installation Instructions: Indicate hanging and support methods, joining procedures.

E. Project Record Documents: Record actual locations of flow controls.

F. Maintenance Data: Include installation instructions, assembly views, lubrication instructions, and replacement parts list.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Accept valves on site in shipping containers with labeling in place. Inspect for damage.

B. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

C. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.

1.8 COMMISSIONING

A. Engage a factory-authorized service representative, to perform startup service as per functional test sheets and Commissioning Requirements.
B. Complete installation and startup checks and functional tests according to Commissioning Requirements.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new one and repeat the start up procedure.

D. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

E. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

F. Inspections by the Commissioning Agent shall be on "spot check basis". Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

G. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

PART 2 PRODUCTS

2.1 EXPANSION TANKS

A. Manufacturers:
 3. Armstrong Pumps: www.armstrongpumps.com

B. Construction: Welded steel, tested and stamped in accordance with ASME BPVC-VIII-1; supplied with National Board Form U-1, rated for working pressure of 125 psi, with flexible EPDM diaphragm or bladder sealed into tank, and steel support stand.

C. Accessories: Pressure gauge and air-charging fitting, tank drain; precharge to 12 psi.

2.2 AIR VENTS

A. Manufacturers:
 3. Armstrong Pumps: www.armstrongpumps.com
B. Manual Type: Short vertical sections of 2 inch diameter pipe to form air chamber, with 1/8 inch brass needle valve at top of chamber.

C. Float Type:
 1. Brass or semi-steel body, copper, polypropylene, or solid non-metallic float, stainless steel valve and valve seat; suitable for system operating temperature and pressure; with isolating valve.

2.3 AIR ELIMINATOR AND DIRT SEPARATOR

A. Manufacturer:
 1. Spirotherm; www.spirotherm.com
 2. ITT Bell & Gossett; www.bellgossett.com.

B. Units shall be fabricated steel, rated for 150 psig working pressure with entering velocities not to exceed 4 feet per second at specified GPM.
 1. An internal tube bundle shall fill the entire vessel to suppress turbulence and provide high efficiency. The bundle shall consist of copper core tube with continuously wound copper medium permanently affixed to the core. A separate copper medium shall be wound completely around and permanently affixed to the internal element.

C. Each eliminator shall have a separate venting chamber to prevent system contaminants from harming the float and venting valve operation. At the top of the venting chamber shall be an integral full port float actuated brass venting mechanism.
 1. Air Eliminators shall have the vessel extend below the pipe connections an equal distance for dirt separation.

D. Units shall include a valve side tap to flush floating dirt or liquids and for quick bleeding of large amounts of air during system fill or refill.

E. Air Eliminators shall be capable of removing 100% of the free and entrained air and up to 99.6% of the dissolved air in the system fluid. Dirt separation shall be at least 80% of all particles 30 micron and larger within 100 passes.

2.4 STRainers

A. Manufacturers:

B. Size 2 inch and Under:
 1. Screwed brass or iron body for 175 psi working pressure, Y pattern with 1/32 inch stainless steel perforated screen.

C. Size 2-1/2 inch to 4 inch:
1. Flanged iron body for 175 psi working pressure, Y pattern with 3/64 inch stainless steel perforated screen.

2.5 SUCTION DIFFUSERS

A. Manufacturers:
 2. Taco, Inc: www.taco-hvac.com
 3. Armstrong Pumps: www.armstrongpumps.com

B. Fitting: Angle pattern, cast-iron body, threaded for 2 inch and smaller, flanged for 2-1/2 inch and larger, rated for 175 psi working pressure, with inlet vanes, cylinder strainer with 3/16 inch diameter openings, disposable 5/32 inch mesh strainer to fit over cylinder strainer, 20 mesh start up screen, and permanent magnet located in flow stream and removable for cleaning.

C. Fitting: Angle pattern, cast-iron body, threaded for 2 inch and smaller, flanged for 2-1/2 inch and larger, rated for 175 psi working pressure, with inlet vanes, cylinder strainer with 3/16 inch diameter openings, disposable fine mesh strainer to fit over cylinder strainer, and permanent magnet located in flow stream and removable for cleaning.

D. Accessories: Adjustable foot support, blowdown tapping in bottom, gauge tapping in side.

2.6 COMBINATION PUMP DISCHARGE VALVES

A. Manufacturers:
 3. Armstrong Pumps: www.armstrongpumps.com

B. Valves: Straight or angle pattern, flanged cast-iron valve body with bolt-on bonnet for 175 psi operating pressure, non-slam check valve with spring-loaded bronze disc and seat, stainless steel stem, and calibrated adjustment permitting flow regulation.

2.7 PRESSURE-TEMPERATURE TEST PLUGS

A. Manufacturers:

B. Construction: Brass body designed to receive temperature or pressure probe with removable protective cap, and Neoprene rated for minimum 200 degrees F.

C. Application: Use extended length plugs to clear insulated piping.
2.8 FLOW METERS

A. Manufacturers:

B. Orifice principle by-pass circuit with direct reading gauge, soldered or flanged piping connections for 125 psi working pressure, with shut off valves, and drain and vent connections.

C. Direct reading with insert pitot tube, threaded coupling, for 150 psi working pressure, maximum 240 degrees F, 5 percent accuracy.

2.9 RELIEF VALVES

A. Manufacturers:

B. Bronze body, teflon seat, stainless steel stem and springs, automatic, direct pressure actuated, capacities ASME certified and labelled.

2.10 PRESSURE REDUCING VALVES

A. Manufacturers:
 2. ITT Bell & Gossett: www.bellgossett.com/#sle.

B. Operation: Automatically feeds make-up water to the hydronic system whenever pressure in the system drops below the pressure setting of the valve. Refer to Section 232113.

C. Materials of Construction:
 1. Valve Body: Constructed of bronze, cast iron, brass, or iron.
 2. Internal Components: Construct of stainless steel or brass and engineered plastics or composition material.

D. Connections:
 1. NPT threaded: 0.50 inch, or 0.75 inch.
 2. Soldered: 0.50 inch.

E. Provide integral check valve and strainer.
F. Maximum Inlet Pressure: 100 psi.

G. Maximum Fluid Temperature: 200 degrees F.

H. Operating Pressure Range: Between 10 psi and 25 psi.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install specialties in accordance with manufacturer's instructions.

B. Where large air quantities can accumulate, provide enlarged air collection standpipes.

C. Provide manual air vents at system high points and as indicated.

D. For automatic air vents in ceiling spaces or other concealed locations, provide vent tubing to nearest drain.

E. Provide air separator on suction side of system circulation pump and connect to expansion tank.

F. Provide valved drain and hose connection on strainer blow down connection.

G. Provide pump suction fitting on suction side of base mounted centrifugal pumps where indicated. Remove temporary strainers after cleaning systems.

H. Provide combination pump discharge valve on discharge side of centrifugal pumps where indicated.

I. Support pump fittings with floor mounted pipe and flange supports.

J. Provide automatic balancing valves on water outlet from air handling equipment, radiation, unit heaters, etc. as indicated on the equipment schedules and piping diagrams.

3.2 MAINTENANCE

A. See Section 017000 - Execution Requirements, for additional requirements relating to maintenance service.

B. Explain corrective actions to Town of Rocky Hill's maintenance personnel in person.

END OF SECTION
SECTION 232123 - HYDRONIC PUMPS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. In-line circulators.

1.3 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirements.

B. Section 230548 - Vibration and Seismic Controls for HVAC.

C. Section 230716 - HVAC Equipment Insulation.

D. Section 230719 - HVAC Piping Insulation.

E. Section 232113 - Hydronic Piping.

F. Section 232114 - Hydronic Specialties.

G. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections.

H. Section 500000 - Commissioning Requirements.

1.4 REFERENCE STANDARDS

A. NEMA MG 1 - Motors and Generators; 2014.

B. NEMA OS 1 - Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports; 2013.

C. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

E. Hydraulic Institute

F. ANSI - American National Standards Institute

G. ASTM - American Society for Testing and Materials

H. IEEE - Institute of Electrical and Electronics Engineers

I. NEC - National Electrical Code

J. ISO - International Standards Organization

1.5 PERFORMANCE REQUIREMENTS

A. Ensure pumps operate at specified system fluid temperatures without vapor binding and cavitation, are non-overloading in parallel or individual operation, and operate within 25 percent of midpoint of published maximum efficiency curve.

1.6 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide certified pump curves showing performance characteristics with pump and system operating point plotted. Include NPSH curve when applicable. Include electrical characteristics and connection requirements.

C. Manufacturer's Installation Instructions: Indicate hanging and support requirements and recommendations.

D. Operation and Maintenance Data: Include installation instructions, assembly views, lubrication instructions, and replacement parts list.

E. Maintenance Materials: Furnish the following for Town of Rocky Hill's use in maintenance of project.
 1. See Section 016000 - Product Requirements, for additional provisions.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacture, assembly, and field performance of pumps, with minimum 10 years of documented experience.
B. The pumps shall be factory performance and hydrostatic tested as a complete unit prior to shipment. The testing shall be done in accordance with ISO 9906 Annex A. No test certificate is required.

1.8 REGULATORY REQUIREMENTS

A. Products Requiring Electrical Connection: Listed and classified by UL 778 as suitable for the purpose specified and indicated.

1.9 WARRANTY

A. The warranty period shall be a non-prorated 12 months from date of acceptance by the Owner and completion of commissioning.

1.10 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

E. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

F. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

G. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

H. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.
PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Grundfos: www.grundfos.us

B. Bell & Gossett, a Xylem Inc. brand: www.bellgossett.com.

C. Taco Inc.: www.taco.com

D. Substitutions: See Section 016000 - Product Requirements.

2.2 HVAC PUMPS - GENERAL

A. Single Proportional Differential Pressure Pump with Integrated Variable Speed Drive

2.3 IN-LINE CIRCULATORS

A. Single Proportional Differential Pressure Pump with Integrated Variable Speed Drive

1. Furnish and test a single variable speed pumping system to vary water delivery pressure based on proportional differential pressure through adaptive on-board control algorithms.

2. The pump system shall be a standard product of a single pump manufacturer. The entire pump system including pump, motor, differential pressure sensor(s), variable frequency drive and pump controller, shall be designed and built by the same manufacturer.

3. As an alternate to the specified pump the contractor may substitute a pumping system consisting of the pump, motor, differential pressure sensors, variable frequency drive, in-line flow measuring device, and pump controller with algorithm for proportional differential pressure adaptation to vary flow conditions based upon system demands.

4. The complete motor and drive shall be certified and listed by UL for conformance to U.S. and Canadian Standards.

B. PUMPS

1. The pumps shall have a factory installed differential pressure sensor.

2. The pumps shall be of the in-line vertical multi-stage design.

3. The head-capacity curve shall have a steady rise in head from maximum to minimum flow within the preferred operating region. The shut-off head shall be a minimum of 20% higher than the head at the best efficiency point.

4. Small Vertical In-Line Multi-Stage Pumps (12mm or 16mm shaft, Nominal flow from 3 to 125 gallons per minute) shall have the following features:

 a. The pump impellers shall be secured directly to the pump shaft by means of a splined shaft arrangement.

 b. The suction/discharge base shall have ANSI Class 250 flange or internal pipe thread (NPT) connections as determined by the pump station manufacturer.

 c. Pump Construction.

 1) Suction/discharge base, pump head, motor stool: Cast iron (Class 30)

 (a) Impellers, diffuser chambers, outer sleeve: 304 Stainless Steel

 (b) Shaft: 316 or 431 Stainless Steel
(c) Impeller wear rings: 304 Stainless Steel
(d) Shaft journals and chamber bearings: Silicon Carbide
(e) O-rings: EPDM

2) Shaft couplings shall be made of cast iron or sintered steel.
3) Optional materials for the suction/discharge base and pump head shall be cast 316 stainless steel (ASTM CF-8M) resulting in all wetted parts of stainless steel.

d. The shaft seal shall be a balanced o-ring cartridge type with the following features:

1) Collar, Drivers, Spring: 316 Stainless Steel
(a) Shaft Sleeve, Gland Plate: 316 Stainless Steel
(b) Stationary Ring: Silicon Carbide (Graphite Imbedded)
(c) Rotating Ring: Silicon Carbide (Graphite Imbedded)
(d) O-rings: EPDM

e. Shaft seal replacement shall be possible without removal of any pump components other than the coupling guard, shaft coupling and motor.

C. INTEGRATED VARIABLE FREQUENCY DRIVE MOTOR
1. Each motor shall be of the Integrated Variable Frequency Drive design consisting of a motor and a Variable Frequency Drive (VFD) with a built-in pump system controller. The complete VFD/motor assembly shall be built and tested as one unit by the same manufacturer.
2. The VFD/motor shall have an IP55 (TEFC) enclosure rating as a complete assembly. The motor shall have a standard NEMA C-Face, Class F insulation with a Class B temperature rise.
3. The VFD shall be of the PWM (Pulse Width Modulation) design using up to date IGBT (Insulated Gate Bipolar Transistor) technology.
4. The VFD shall convert incoming fixed frequency three-phase AC power into a variable frequency and voltage for controlling the speed of the motor. The motor current shall closely approximate a sine wave. Motor voltage shall be varied with frequency to maintain desired motor magnetization current suitable for centrifugal pump control and to eliminate the need for motor de-rating.
5. The VFD shall have, as a standard component, an RFI filter (Radio Frequency Interference) to minimize electrical noise disturbances between the power electronics and the power supply. The VFD/motor shall meet all requirements of the EMC directive concerning residential and light industry equipment (EN 61800-3).
6. The VFD shall have a minimum of two skip frequency bands which can be field adjustable.
7. The VFD shall have internal solid-state overload protection designed to trip within the range of 125-150% of rated current.
8. The VFD/motor shall include protection against input transients, loss of AC line phase, over-voltage, under-voltage, VFD over-temperature, and motor over-temperature. The motor over-temperature protection shall consist of three series connected PTC thermistors, one for each motor phase.
9. The VFD/motor shall provide full nameplate output capacity (horsepower and speed) within a balanced voltage range of 414 to 528 volts.
10. Automatic De-Rate Function: The VFD/motor shall reduce speed during periods of overload allowing for reduced capacity pump operation without complete shut-down of the system. Detection of overload shall be based on continuous monitoring of current, voltage and temperature within the VFD/motor assembly.
11. The VFD/motor shall have, as a minimum, the following input/output capabilities:
 a. Speed Reference Signal: 0-10 VDC, 4-20mA
 b. Digital remote on/off
 c. Fault Signal Relay (NC or NO)
 d. Fieldbus communication port (RS485)
12. Motor drive end bearings shall be adequately sized so that the minimum L10 bearing life is 17,500 hours at the minimum allowable continuous flow rate for the pump at full rated speed.

D. PUMP SYSTEM CONTROLLER AND USER INTERFACE
1. The pump system controller (Proportional Differential-Integral) shall be a standard component of the integrated variable frequency drive motor developed and supported by the pump manufacturer.
2. The pump system controller shall have an easy to use interface mounted on the VFD/motor enclosure. Pump system start/stop and set-point adjustment shall be possible through the use of two push buttons located on the drive enclosure.
3. The VFD/motor shall be capable of receiving a remote analog set-point (4-20mA or 0-10 VDC) as well as a remote on/off (digital) signal.
4. Pump status and alarm state shall be indicated via two LED lights located on the VFD/motor enclosure.
5. Advanced programming and troubleshooting shall be possible via an infra-red hand held programmer or a field connected personal computer. Pump system programming (field adjustable) shall include as a minimum the following:
 a. System Pressure set-point, psig
 b. System Stop pressure, psig
 c. Pressure Transducer supply/range
 d. System Time (Proportional Gain)
6. The infra-red programmer shall be capable of displaying the following status readings:
 a. Pump Status (on, off, min., max.)
 b. Actual system pressure, psig
 c. Pump speed, rpm
 d. VFD/Motor total cumulative kWh
7. The infra-red programmer shall also be capable of displaying the following alarms, with the last five alarms stored in memory:
 a. Loss of sensor signal
 b. Under-voltage & Over-voltage
 c. Motor over-temperature

E. SEQUENCE OF OPERATION
1. The system controller shall receive an analog signal [4-20mA] from the factory installed differential pressure transducer indicating the actual inlet and outlet pressures. When a flow demand is detected (system pressure drops below the start pressure) the VFD/motor shall start and increase speed until the actual system pressure matches the system set-point. As flow demand changes (increases or decreases), the speed of the pump shall be adjusted to maintain the calculated system set-point pressure and flow.
2. If a no flow shut-down is required (periods of zero demand) a bladder type diaphragm tank shall be installed. The tank shall be downstream of the pump. When zero flow is detected by the system controller, the pump shall be switched off. When the system pressure drops to the start pressure, (flow begins after shut-down), the pump shall be switched on, increasing speed to maintain the system set-point pressure. Zero flow conditions shall be detected by the system controller/factory installed pressure transmitter without the use of additional flow switches or motor current sensing devices.

F. SYSTEM CONSTRUCTION
1. The CRE-DP pump shall have a maximum working pressure ranging up to 435 psig at a temperature of 176°F.
2. A diaphragm tank (field installed) is required for the stop function. A minimum diaphragm tank connection size of ¾" (three quarter inch) shall be provided on the discharge piping by others.

3. A pressure transducer shall be factory installed on the pump head. Pressure transducers shall be made of 316 stainless steel. Transducer accuracy shall be +/- 1.0% full scale with hysteresis and repeatability of no greater than 0.1% full scale. The output signal shall be 4-20 mA with a supply voltage range of 9-32 VDC.

4. An optional factory pressure switch shall be available (at an additional charge) for mounting on the suction piping for water shortage protection (Suction piping by others). The pump shut-down pressure shall be 3 psig with a reset pressure of 5 psig. Systems with a flooded suction inlet or suction lift configuration will require a field installed water shortage device. A normally open dry contact shall be available on the VFD/Motor for field installation.

PART 3 EXECUTION

3.1 PREPARATION

A. Verify that electric power is available and of the correct characteristics.

3.2 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Provide access space around pumps for service. Provide no less than minimum space recommended by manufacturer.

C. Decrease from line size with long radius reducing elbows or reducers. Support piping adjacent to pump such that no weight is carried on pump casings.

D. Provide line sized shut-off valve and strainer on pump suction, and line sized soft seat check valve and balancing valve on pump discharge.

3.3 TESTING

A. The entire pump motor and VFD shall be factory performance tested as a complete unit prior to shipment.

B. The pump shall undergo a hydrostatic test.

END OF SECTION
SECTION 232300 - REFRIGERANT PIPING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Piping.

B. Refrigerant.

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.

B. Section 083113 - Access Doors and Panels.

C. Section 230719 - HVAC Piping Insulation.

D. Section 23 81 27 - Small Split-System Heating and Cooling.

1.4 REFERENCE STANDARDS

A. AHRI 495 - Performance Rating of Refrigerant Liquid Receivers; 2005.

D. ASHRAE Std 34 - Designation and Safety Classification of Refrigerants; 2013.

E. ASME B31.5 - Refrigeration Piping and Heat Transfer Components; 2013.

G. AWS A5.8M/A5.8 - Specification for Filler Metals for Brazing and Braze Welding; 2011-AMD 1.

1.5 SYSTEM DESCRIPTION

A. Provide pipe hangers and supports in accordance with ASME B31.5 unless indicated otherwise.

1.6 SUBMITTALS

A. Product Data: Provide general assembly of specialties, including manufacturers catalogue information. Provide manufacturers catalog data including load capacity.

B. Shop Drawings: Indicate schematic layout of system, including equipment, critical dimensions, and sizes.

C. Design Data: Submit design data indicating pipe sizing. Indicate load carrying capacity of trapeze, multiple pipe, and riser support hangers.

D. Manufacturer's Installation Instructions: Indicate support, connection requirements, and isolation for servicing.

E. Project Record Documents: Record exact locations of equipment and refrigeration accessories on record drawings.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Company specializing in performing the type of work specified in this section, with minimum 10 years of documented experience.

1.8 REGULATORY REQUIREMENTS

A. Conform to ASME B31.9 for installation of piping system.

B. Products Requiring Electrical Connection: Listed and classified by UL, as suitable for the purpose indicated.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store piping and specialties in shipping containers with labeling in place.
B. Protect piping and specialties from entry of contaminating material by leaving end caps and plugs in place until installation.

PART 2 PRODUCTS

2.1 PIPING

A. Drawn (rigid) Copper Tube: Type ACR, R410 rated, ASTM B280, H58 temper, clean, dry and capped or O60 soft annealed.

B. Annealed (soft) Copper Tube: Type ACR, R410 rated, ASTM B280, O60 temper, clean, dry and capped or O60 soft annealed.
 1. Joints: Flare or Braze, AWS A5.8 BCuP silver/phosphorus/copper alloy.
 2. Use of soft copper tube shall be limited to runout piping (of nominal pipe sizes of 1/2" or less) from heat recovery units to fan coils.

C. Pipe Supports and Anchors:
 1. Conform to ASME B31.5.
 2. Hangers for Pipe Sizes 1/2 to 1-1/2 Inch: Malleable iron adjustable swivel, split ring.
 3. Hangers for Pipe Sizes 2 Inches and Over: Carbon steel, adjustable, clevis.
 4. Multiple or Trapeze Hangers: Steel channels with welded spacers and hanger rods.
 5. Hanger Rods: Mild steel threaded both ends, threaded one end, or continuous threaded.

2.2 REFRIGERANT

A. Refrigerant: R410a, as defined in ASHRAE Std 34.

PART 3 EXECUTION

3.1 PREPARATION

A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.

B. Remove scale and dirt on inside and outside before assembly.

3.2 INSTALLATION

A. Install refrigeration piping in accordance with manufacturer's instructions.

B. Route piping in orderly manner, with plumbing parallel to building structure, and maintain gradient.
C. Install piping free of traps, sags, tee fittings, sight glasses, filter dryers, solenoid valves and other after-market accessories.

D. Install piping to conserve building space and avoid interference with use of space.

E. Group piping whenever practical at common elevations and locations.

F. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.

G. Pipe Hangers and Supports:
 1. Install in accordance with ASME B31.5.
 2. Support horizontal piping as indicated.
 3. Install hangers to provide minimum 1/2 inch space between finished covering and adjacent work.
 4. Place hangers within 12 inches of each horizontal elbow.
 5. Support vertical piping at every other floor. Support riser piping independently of connected horizontal piping.
 6. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.
 7. Provide copper plated hangers and supports for copper piping.

H. Provide clearance for installation of insulation and access to valves and fittings.

I. Flood piping system with nitrogen when brazing.

J. Follow ASHRAE Std 15 procedures for charging and purging of systems and for disposal of refrigerant.

K. Fully charge completed system with refrigerant after testing.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Test refrigeration system in accordance with ASME B31.5.

C. Pressure test system with dry nitrogen. Test to zero leakage. Evacuate and fully charge system after testing.

3.4 SCHEDULES

A. Hanger Spacing for Copper Tubing.
1. 1/2 inch or less, 5/8 inch, and 7/8 inch: Maximum span, 5 feet; minimum rod size, 1/4 inch.

END OF SECTION
SECTION 232500 - HVAC WATER TREATMENT

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Materials.
 1. System cleaner.

B. By-pass (pot) feeder.

C. Cleaning of piping systems.

1.3 RELATED REQUIREMENTS

A. Section 016000 - Product Requirements: Town of Rocky Hill furnished treatment equipment.

B. Section 230913 - Instrumentation and Control Devices for HVAC.

C. Section 01 91 13 - General Commissioning Requirements.

D. Section 232113 - Hydronic Piping.

E. Section 232114 - Hydronic Specialties.

F. Section 23 52 40 - Condensing Hot Water Boilers.

1.4 SUBMITTALS

A. See Section 01 33 00 - Submittal Procedures, for submittal procedures.

B. Product Data: Provide chemical treatment materials, chemicals, and equipment including electrical characteristics and connection requirements.
C. Certificate: Submit certificate of compliance from Authority Having Jurisdiction indicating approval of chemicals and their proposed disposal.

D. Maintenance Materials: Furnish the following for Town of Rocky Hill's use in maintenance of project.
 1. See Section 016000 - Product Requirements, for additional provisions.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum ten years of documented experience. Company shall have local representatives with water analysis laboratories and full time service personnel.

B. Installer Qualifications: Company specializing in performing the type of work specified in this section, with minimum ten years of experience and approved by manufacturer.

1.6 REGULATORY REQUIREMENTS

A. Conform to applicable code for addition of non-potable chemicals to building mechanical systems and to public sewage systems.

1.7 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

1.8 MAINTENANCE MATERIALS

A. See Section 016000 - Product Requirements, for additional provisions.

B. Supply sufficient chemicals for treatment and testing during warranty period.
PART 2 PRODUCTS

2.1 MANUFACTURERS

A. ClearWater Industries Inc.; www.clearwatershelton.com

D. Substitutions: See Section 016000 - Product Requirements.

2.2 MATERIALS

A. System Cleaner:
 1. Manufacturers:
 a. ClearWater Industries Formula 1960
 b. Substitutions: See Section 016000 - Product Requirements.
 2. Liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products; sodium tripoly phosphate and sodium molybdate and azole.

2.3 BY-PASS (POT) FEEDER

A. Manufacturers:

B. 2 quart quick opening cap for working pressure of 175 psi.

PART 3 EXECUTION

3.1 PREPARATION

A. Contractor shall provide testing of potable water supply to determine water quality (i.e. PH, chloride content, total hardness, etc.) as it relates to the proposed new equipment. Contractor shall submit test report to Engineer and shall identify if there are any water quality issues with the proposed new equipment along with a proposed treatment program.

B. This will be a phased construction project. Contractor shall clean and flush systems, or portions thereof, in accordance with project phasing. Should system not be fully operational, contractor shall provide temporary methods and means to execute the cleaning and flushing process. Use water meter to record capacity in each system.

C. Place terminal control valves in open position during cleaning.
3.2 CLEANING SEQUENCE

A. Concentration:
 1. As recommended by manufacturer.

B. Hot Water Heating Systems:
 1. Confirm system cleaner is compatible with connected equipment.
 2. Apply heat while circulating, slowly raising temperature to 160 degrees F or as recommended by boiler manufacturer, and maintain for 12 hours minimum.
 3. Remove heat and circulate to 100 degrees F or less; drain systems as quickly as possible and refill with clean water.
 4. Circulate for 12 hours at design temperatures, then drain, and clean strainers.
 5. Refill with clean water and repeat until system cleaner is removed, and strainers contain no visible evidence of sediment.

C. Use neutralizer agents on recommendation of system cleaner supplier.

D. Inspect, remove sludge, and flush low points with cleaning process is completed.

3.3 INSTALLATION

A. Install in accordance with manufacturer's instructions.

3.4 CLOSED SYSTEM TREATMENT

A. Provide one bypass feeder on each system. Install isolating and drain valves and necessary piping. Install around balancing valve downstream of circulating pumps unless indicated otherwise.

B. Introduce closed system treatment through bypass feeder when required or indicated by test.

C. Provide 3/4 inch water coupon rack around circulating pumps with space for 4 test specimens.

3.5 CLOSEOUT ACTIVITIES

A. Training: Train Town of Rocky Hill's personnel on operation and maintenance of chemical treatment system.
 1. Have operation and maintenance data prepared and available for review during training.
 2. Conduct training using actual equipment after treated system has been put into full operation.

3.6 MAINTENANCE

A. Perform maintenance work using competent and qualified personnel under the supervision and in the direct employ of the equipment manufacturer or original installer.
B. Provide service and maintenance of treatment systems for one year from Date of Substantial Completion.

C. Provide laboratory and technical assistance services during this maintenance period.

D. Provide on-site inspections of equipment during scheduled or emergency shutdown to properly evaluate success of water treatment program, and make recommendations in writing based upon these inspections.

END OF SECTION
SECTION 233100 - HVAC DUCTS AND CASINGS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Metal ductwork.

B. Casing and plenums.

C. Kitchen hood ductwork.

1.3 RELATED REQUIREMENTS

A. Section 230593 - Testing, Adjusting, and Balancing for HVAC.

B. Section 230713 - Duct Insulation: External insulation and duct liner.

C. Section 233300 - Air Duct Accessories.

D. Section 233700 - Air Outlets and Inlets.

1.4 REFERENCE STANDARDS

C. ASTM A653/A653M - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process; 2015.

D. ASTM A666 - Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar; 2015.

NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

I. ICC-ES AC106 - Acceptance Criteria for Predrilled Fasteners (Screw Anchors) in Masonry Elements; 2012.

N. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible; 2005.

O. UL 181 - Standard for Factory-Made Air Ducts and Air Connectors; current edition, including all revisions.

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide data for duct materials.

C. Shop Drawings: Indicate duct fittings, particulars such as gages, sizes, welds, and configuration prior to start of work for air systems.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience, and approved by manufacturer.

B. Installer Qualifications: Company specializing in performing the type of work specified in this section, with minimum 5 years of documented experience.
PART 2 PRODUCTS

2.1 DUCT ASSEMBLIES

A. Regulatory Requirements: Construct ductwork to comply with NFPA 90A standards.

B. Variable Volume Supply Upstream of VAV box: 2 inch w.g. pressure class, Class C seal, galvanized steel.

C. Low Pressure Supply: 2 inch w.g. pressure class, Class C seal, galvanized steel.

D. Return and Relief: 2 inch w.g. pressure class, Class C seal, galvanized steel.

E. General Exhaust: 1/2 inch w.g. pressure class, Class C seal, galvanized steel.

F. Downstream of VAV boxes: 1/2 inch w.g. pressure class, Class C seal, galvanized steel.

G. Kitchen Cooking Hood Exhaust: 1/2 inch w.g. pressure class, stainless steel.
 1. Construct of 16 gage, 0.0598 inch sheet steel using continuous external welded joints in rectangular sections.

H. Grease Exhaust: 1/2 inch w.g. pressure class, stainless steel.
 1. Construct of 18 gage, 0.0500 inch stainless steel.
 2. Construction:
 a. Liquid tight with continuous external weld for all seams and joints.
 b. Where ducts are not self draining back to equipment, provide low point drain pocket with copper drain pipe to sanitary sewer.
 3. Access Doors:
 a. Provide for duct cleaning inside horizontal duct at drain pockets, every 20 feet and at each change of direction.
 b. Use same material and thickness as duct with gaskets and sealants rated 1500 degrees F for grease tight construction.

I. Outside Air Intake: 1/2 inch w.g. pressure class, galvanized steel.

J. Combustion Air: 1/2 inch w.g. pressure class, galvanized steel.

2.2 MATERIALS

A. Galvanized Steel for Ducts: Hot-dipped galvanized steel sheet, ASTM A653/A653M FS Type B, with G90/Z275 coating.

 Aluminum Connectors and Bar Stock: Alloy 6061-T651 or of equivalent strength.
C. Stainless Steel for Ducts: ASTM A666, Type 304.

D. Joint Sealers and Sealants: Non-hardening, water resistant, mildew and mold resistant.
 1. Type: Heavy mastic or liquid used alone or with tape, suitable for joint configuration and compatible with substrates, and recommended by manufacturer for pressure class of ducts.
 2. VOC Content: Not more than 250 g/L, excluding water.
 3. Surface Burning Characteristics: Flame spread index of zero and smoke developed index of zero, when tested in accordance with ASTM E84.

E. Hanger Rod: ASTM A36/A36M; steel, galvanized; threaded both ends, threaded one end, or continuously threaded.

F. Hanger Fasteners: Attach hangers to structure using appropriate fasteners, as follows:
 3. Concrete Screw Type Anchors: Complying with ICC-ES AC193.
 5. Concrete Adhesive Type Anchors: Complying with ICC-ES AC308.
 6. Other Types: As required.

2.3 DUCTWORK FABRICATION

A. Fabricate and support in accordance with SMACNA (DCS) and as indicated.

B. No variation of duct configuration or size permitted except by written permission. Size round duct installed in place of rectangular ducts in accordance with ASHRAE (FUND) Handbook - Fundamentals.

C. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.

D. Construct T's, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible and where rectangular elbows must be used, provide air foil turning vanes.

E. Provide turning vanes of perforated metal with glass fiber insulation when acoustical lining is indicated.

F. Increase duct sizes gradually, not exceeding 15 degrees divergence wherever possible; maximum 30 degrees divergence upstream of equipment and 45 degrees convergence downstream.

G. Fabricate continuously welded round and oval duct fittings in accordance with SMACNA (DCS).
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

H. Where ducts are connected to exterior wall louvers and duct outlet is smaller than louver frame, provide blank-out panels sealing louver area around duct. Use same material as duct, painted black on exterior side; seal to louver frame and duct.

2.4 MANUFACTURED DUCTWORK AND FITTINGS

A. Round and Flat Oval Ducts: Machine made from round spiral lockseam duct.
 1. Manufacture in accordance with SMACNA (DCS).
 2. Fittings: Manufacture at least two gages heavier metal than duct.
 3. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.
 4. Manufacturers:

B. Double Wall Insulated Flat Oval Ducts: Machine made from round spiral lockseam duct.
 1. Manufacture in accordance with SMACNA (DCS).
 2. Fittings: Manufacture with solid inner wall.
 3. Inner wall: Perforated galvanized steel.
 4. Insulation:
 a. Thickness: 1 inch fiberglass.

C. Double Wall Insulated Round Ducts: Round spiral lockseam duct with galvanized steel outer wall, perforated galvanized steel inner wall; fitting with solid inner wall.
 1. Manufacture in accordance with SMACNA (DCS).
 2. Insulation:
 a. Thickness: 1 inch.

D. Flexible Ducts: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound spring steel wire.
 1. Insulation: Fiberglass insulation with polyethylene vapor barrier film.
 2. Pressure Rating: 10 inches WG positive and 1.0 inches WG negative.
 4. Temperature Range: Minus 20 degrees F to 210 degrees F.

E. Transverse Duct Connection System: SMACNA "E" rated rigidly class connection, interlocking angle and duct edge connection system with sealant, gasket, cleats, and corner clips in accordance with SMACNA (DCS).

2.5 CASINGS

A. Fabricate casings in accordance with SMACNA (DCS) and construct for operating pressures indicated.

B. Mount floor mounted casings on 4 inch high concrete curbs. At floor, rivet panels on 8 inch centers to angles. Where floors are acoustically insulated, provide liner of galvanized 18 gage, 0.0478 inch expanded metal mesh supported at 12 inch centers, turned up 12 inches at sides with sheet metal shields.
C. Reinforce door frames with steel angles tied to horizontal and vertical plenum supporting angles. Install hinged access doors where indicated or required for access to equipment for cleaning and inspection.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install, support, and seal ducts in accordance with SMACNA (DCS).

B. Install in accordance with manufacturer's instructions.

C. During construction provide temporary closures of metal or taped polyethylene on open ductwork to prevent construction dust from entering ductwork system.

D. Kitchen Hood Exhaust: Provide residue traps at base of vertical risers with provisions for clean out.

E. Duct sizes indicated are inside clear dimensions. For lined ducts, maintain sizes inside lining.

F. Provide openings in ductwork where required to accommodate thermometers and controllers. Provide pilot tube openings where required for testing of systems, complete with metal can with spring device or screw to ensure against air leakage. Where openings are provided in insulated ductwork, install insulation material inside a metal ring.

G. Locate ducts with sufficient space around equipment to allow normal operating and maintenance activities.

H. Use double nuts and lock washers on threaded rod supports.

I. Connect terminal units to supply ducts directly with two foot minimum length of rigid round duct. Do not use flexible duct.

J. Connect diffusers or light troffer boots to low pressure ducts directly or with 5 feet maximum length of flexible duct held in place with strap or clamp.

END OF SECTION
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Air turning devices/extractors.

B. Duct access doors.

C. Duct test holes.

D. Fire dampers.

E. Flexible duct connections.

F. Volume control dampers.

1.3 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirements.

B. Section 078400 - Firestopping.

C. Section 233100 - HVAC Ducts and Casings.

D. Section 233600 - Air Terminal Units: Pressure regulating damper assemblies.

E. Section 253516 - Integrated Automation Sensors and Transmitters: Duct-mounted product furnishing.

F. Section 253523 - Integrated Automation Control Dampers: Product furnishing.

G. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections.
1.4 REFERENCE STANDARDS

C. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible; 2005.

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittal Procedures, for submittal procedures.
B. Product Data: Provide for shop fabricated assemblies including volume control dampers, duct access doors, duct test holes, and hardware used.
C. Shop Drawings: Indicate for shop fabricated assemblies including volume control dampers, duct access doors, and duct test holes.
D. Manufacturer's Installation Instructions: Provide instructions for fire dampers.

1.6 PROJECT RECORD DOCUMENTS

A. Record actual locations of access doors and test holes.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience.
B. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect dampers from damage to operating linkages and blades.
1.9 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

PART 2 PRODUCTS

2.1 AIR TURNING DEVICES/EXTRACTORS

A. Manufacturers:

B. Multi-blade device with radius blades attached to pivoting frame and bracket, steel construction, with push-pull operator strap.

2.2 DUCT ACCESS DOORS

A. Manufacturers:

B. Fabricate in accordance with SMACNA (DCS) and as indicated.

C. Fabrication: Rigid and close-fitting of galvanized steel with sealing gaskets and quick fastening locking devices. For insulated ducts, install minimum 1 inch thick insulation with sheet metal cover.
 1. Less Than 12 inches Square: Secure with sash locks.
 2. Up to 18 inches Square: Provide two hinges and two sash locks.
 3. Up to 24 by 48 inches: Three hinges and two compression latches with outside and inside handles.
D. Access doors with sheet metal screw fasteners are not acceptable.

2.3 DUCT TEST HOLES

A. Permanent Test Holes: Factory fabricated, air tight flanged fittings with screw cap. Provide extended neck fittings to clear insulation.

2.4 FIRE DAMPERS

A. Manufacturers:
 1. Greenheck, Inc: www.greenheck.com

B. Fire resistance rated at 1-1/2 hours, static fire damper, fabricated in accordance with NFPA 90A and UL 555, and as indicated.

C. Curtain Type Dampers: Galvanized steel with interlocking blades. Provide stainless steel closure springs and latches for horizontal installations. Configure with blades out of air stream where possible. Provide sleeve for out-of-wall mounting where flush mounting of sidewall grille with in the rated partition is shown on the drawings.

D. Fusible Links: 165 degrees F.

2.5 FLEXIBLE DUCT CONNECTIONS

A. Fabricate in accordance with SMACNA (DCS) and as indicated.

B. Flexible Duct Connections: Fabric crimped into metal edging strip.
 1. Fabric: UL listed fire-retardant neoprene coated woven glass fiber fabric to NFPA 90A, minimum density 30 oz per sq yd.
 2. Metal: 3 inches wide, 24 gage, 0.0239 inch thick galvanized steel.

2.6 SMOKE DAMPERS

A. Manufacturers:

B. Fabricate in accordance with NFPA 90A and UL 555S, and as indicated.
C. Dampers: UL Class 1 airfoil blade type smoke damper, normally open automatically operated by pneumatic actuator.

D. Electro Thermal Link: Fusible link melting at 165 degrees F; 120 volts, single phase, 60 Hz; UL listed and labeled.

2.7 VOLUME CONTROL DAMPERS

A. Manufacturers:
 1. Greenheck, Inc: www.greenheck.com

B. Fabricate in accordance with SMACNA (DCS) and as indicated.

C. Splitter Dampers:
 1. Material: Same gage as duct to 24 inches size in either direction, and two gages heavier for sizes over 24 inches.
 2. Blade: Fabricate of single thickness sheet metal to streamline shape, secured with continuous hinge or rod.

D. End Bearings: Except in round ducts 12 inches and smaller, provide end bearings. On multiple blade dampers, provide oil-impregnated nylon, thermoplastic elastomer, or sintered bronze bearings.

E. Quadrants:
 1. Provide locking, indicating quadrant regulators on single and multi-blade dampers.
 2. On insulated ducts mount quadrant regulators on stand-off mounting brackets, bases, or adapters.

PART 3 EXECUTION

3.1 PREPARATION

A. Verify that electric power is available and of the correct characteristics.

3.2 INSTALLATION

A. Install accessories in accordance with manufacturer's instructions, NFPA 90A, and follow SMACNA (DCS). Refer to Section 233100 for duct construction and pressure class.

B. Provide duct access doors for inspection and cleaning before and after filters, coils, fans, automatic dampers, at fire dampers and elsewhere as indicated. Provide for cleaning kitchen
exhaust ducts in accordance with NFPA 96. Provide minimum 8 x 8 inch size for hand access, 18 x 18 inch size for shoulder access, and as indicated. Provide 4 x 4 inch for balancing dampers only. Review locations prior to fabrication.

C. Provide duct test holes where indicated and required for testing and balancing purposes.

D. Provide fire dampers and combination fire and smoke dampers at locations indicated, where ducts and outlets pass through fire rated components, and where required by authorities having jurisdiction. Install with required perimeter mounting angles, sleeves and breakaway duct connections.

E. Provide volume dampers with stand off brackets for the installation of insulation.

F. Demonstrate re-setting of fire dampers to Town of Rocky Hill's representative.

G. At fans and motorized equipment associated with ducts, provide flexible duct connections immediately adjacent to the equipment.

H. At equipment supported by vibration isolators, provide flexible duct connections immediately adjacent to the equipment.

I. Provide balancing dampers at points on all branch supply, return, and exhaust systems where branches are taken from larger ducts as required for air balancing. Install minimum 2 duct widths from duct take-off.

J. Use splitter dampers only where indicated.

K. Provide balancing dampers on duct take-off to diffusers, grilles, and registers, regardless of whether dampers are specified as part of the diffuser, grille, or register assembly.

END OF SECTION
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Roof exhausters.

1.3 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirements.

B. Section 230513 - Common Motor Requirements for HVAC Equipment.

C. Section 230548 - Vibration and Seismic Controls for HVAC.

D. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections.

1.4 REFERENCE STANDARDS

C. AMCA 204 - Balance Quality and Vibration Levels for Fans; 2005.

F. AMCA 301 - Methods for Calculating Fan Sound Ratings from Laboratory Test Data; 2014.

G. NEMA MG 1 - Motors and Generators; 2014.

I. UL 762 - Outline of Investigation for Power Roof Ventilators for Restaurant Exhaust Appliances; Current Edition, Including All Revisions.

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide data on fans and accessories including fan curves with specified operating point clearly plotted, power, RPM, sound power levels at rated capacity, and electrical characteristics and connection requirements.

C. Manufacturer's Instructions: Indicate installation instructions.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience.

B. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.7 FIELD CONDITIONS

A. Permanent ventilators may be used for ventilation during construction only after ductwork is clean, filters are in place, bearings have been lubricated, and fan has been test run under observation.

1.8 WARRANTY

A. The warranty period shall be a non-prorated period of 12 months from date of acceptance by the Owner and completion of commissioning.

1.9 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.
D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

E. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

F. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

G. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

H. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

PART 2 PRODUCTS

2.1 MANUFACTURERS

C. Twin City Fans & Blowers: www.tcf.com

D. Substitutions: See Section 016000 - Product Requirements.

2.2 POWER VENTILATORS - GENERAL

A. Static and Dynamically Balanced: AMCA 204 - Balance Quality and Vibration Levels for Fans.

B. Performance Ratings: Determined in accordance with AMCA 210 and bearing the AMCA Certified Rating Seal.

C. Sound Ratings: AMCA 301, tested to AMCA 300 and bearing AMCA Certified Sound Rating Seal.

D. Fabrication: Comply with AMCA 99.

E. UL Compliance: UL listed and labeled, designed, manufactured, and tested in accordance with UL 705.
F. Electrical Components: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

2.3 ROOF EXHAUSTERS

A. Product Requirements:
 1. Performance Ratings: Determined in accordance with AMCA 210 and bearing the AMCA Certified Rating Seal.
 2. Sound Ratings: AMCA 301, tested to AMCA 300, and bearing AMCA Certified Sound Rating Seal.
 3. Fabrication: Conform to AMCA 99.
 4. UL Compliance: UL listed and labeled, designed, manufactured, and tested in accordance with UL 705.

B. Performance Ratings:
 1. Refer to the schedule on the plans for fan performance and all required accessories and options.

C. Fan Unit: direct driven as indicated, with spun aluminum housing; resilient mounted motor; 1/2 inch mesh, 0.62 inch thick aluminum wire birdscreen; square base to suit roof curb with continuous curb gaskets.

D. Motor: ECM

E. Damper: Motorized damper same power as the fan, coordinate in field.

F. Roof Curb: 18 inch high (above finish roof) self-flashing of aluminum with continuously welded seams, built-in cant strips.

G. Disconnect Switch: Factory wired, non-fusible, in housing for thermal overload protected motor and wall mounted multiple speed switch.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Secure roof exhausters with cadmium plated steel lag screws to roof curb.

C. Extend ducts to roof exhausters into roof curb. Counterflash duct to roof opening.

END OF SECTION
SECTION 233600 - AIR TERMINAL UNITS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Single-duct variable volume units and constant volume units.

1.3 RELATED REQUIREMENTS

A. Section 230548 - Vibration and Seismic Controls for HVAC.
B. Section 230913 - Instrumentation and Control Devices for HVAC: Thermostats and actuators.
C. Section 230923 - Direct-Digital Control System for HVAC.
D. Section 230993 - Sequence of Operations for HVAC Controls.
E. Section 230548 - Vibration and Seismic Controls for HVAC Systems.
F. Section 232113 - Hydronic Piping: Connections to heating coils.
G. Section 233100 - HVAC Ducts and Casings.
H. Section 233300 - Air Duct Accessories.
I. Section 233700 - Air Outlets and Inlets.

1.4 REFERENCE STANDARDS

D. SMACNA (SRM) - Seismic Restraint Manual Guidelines for Mechanical Systems; Sheet Metal and Air Conditioning Contractors' National Association; 2008.

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements for submittal procedures.

B. Product Data: Provide data indicating configuration, general assembly, and materials used in fabrication. Include catalog performance ratings that indicate air flow, static pressure, and NC designation. Include electrical characteristics and connection requirements.

C. Shop Drawings: Indicate configuration, general assembly, and materials used in fabrication, and electrical characteristics and connection requirements.
 1. Include schedules listing discharge and radiated sound power level for each of second through sixth octave bands at inlet static pressures of 1 to 4 inch wg.

D. Manufacturer's Installation Instructions: Indicate support and hanging details, installation instructions, recommendations, and service clearances required.

E. Operation and Maintenance Data: Include manufacturer's descriptive literature, operating instructions, maintenance and repair data, and parts lists. Include directions for resetting constant-volume regulators.

F. Warranty: (1) Year from the date of final acceptance by Owner, unless otherwise noted. Submit manufacturer warranty and ensure forms have been completed in Town of Rocky Hill's name and registered with manufacturer.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience.

B. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.7 WARRANTY

A. See Section 017700 - Closeout Procedures, for additional warranty requirements.

B. Provide (1) Year from the date of final acceptance by Owner, unless otherwise noted.

1.8 COMMISSIONING

A. Engage a factory-authorized service representative, to perform startup service as per functional test sheets and Commissioning Requirements.
B. Complete installation and startup checks and functional tests according to Commissioning Requirements.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new one and repeat the start up procedure.

D. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

E. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

F. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

G. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. General
1. Manufacturer shall participate in the AHRI Certification program. Unit performance data shall be rated in accordance with AHRI Standard 880. The manufacturer shall display the AHRI Symbol on all units.

B. Acceptable Manufacturers
1. Price Air Distribution Products: www.price-hvac.com
2. Titus: www.titus-hvac.com

C. Substitutions: See Section 016000 - Product Requirements.

2.2 MANUFACTURED UNITS

A. Ceiling mounted variable air volume supply air control terminals for connection to single duct, central air systems, with electronic variable volume controls.
2.3 SINGLE DUCT VARIABLE VOLUME UNITS AND CONSTANT-VOLUME UNITS

A. Basic Assembly:
 2. Lining: Minimum 1/2 inch thick neoprene or vinyl coated fibrous glass insulation, 1.5 lb/cu ft density, meeting NFPA 90A requirements and UL 181 erosion requirements.
 3. Plenum Air Inlets: Round stub connections for duct attachment.

B. Basic Unit:
 2. Volume Damper: Construct of minimum 22 gauge galvanized steel with peripheral gasket and self lubricating bearings; maximum damper leakage: 1 percent of design air flow at 3 inches rated pressure differential.
 3. Mount damper operator to position damper as indicated.

C. Hot Water Heating Coil:
 1. Construction: Coils shall be factory-installed and shall consist of aluminum plated fins and seamless copper tubes. Fins shall have full fin collars to provide accurate fin spacing and maximum fin-to-tube contact. Tubes shall be mechanically expanded into the fin collars. Coils shall be leak tested under water to 450 psig pressure. Supply and return water connections shall be on the same side of the coil.

D. Velocity Reset Controller and Probe:
 1. Multi-point, ring or cross-flow averaging sensor with calibration pressure taps for connection to Building Automation System (BAS) controller. Bar or single point sensing type is not acceptable.

E. Controls:
 1. DDC controls.
 2. Unit shall be furnished with NEMA 1 controls enclosure.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install the inlets of air terminal units and air flow sensors a minimum of four duct diameters from elbows, transitions, and duct takeoffs.

C. Provide ceiling access doors or locate units above easily removable ceiling components.

D. Support units individually from structure with wire rope complying with ASTM A492 and ASTM A603 in accordance with SMACNA (SRM). See Section 230548.
E. Do not support from ductwork.

F. Connect to ductwork in accordance with Section 233100.

G. Verify that electric power is available and of the correct characteristics.

3.2 ADJUSTING

A. Reset volume with damper operator attached to assembly allowing flow range modulation from 100 percent of design flow to 30 percent full flow.

END OF SECTION
SECTION 233700 - AIR OUTLETS AND INLETS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Diffusers.
B. Registers/grilles.

1.3 RELATED REQUIREMENTS

A. Section 09 91 23 - Interior Painting - Painting of ducts visible behind outlets and inlets.
B. Section 23 05 48 - Vibration and Seismic Controls for HVAC Systems.
C. Section 23 31 00 - HVAC Ducts and Casings.
D. Section 23 33 00 - Air Duct Accessories.

1.4 REFERENCE STANDARDS

F. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible; 2005.
1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide data for equipment required for this project. Review outlets and inlets as to size, finish, and type of mounting prior to submission. Submit schedule of outlets and inlets showing type, size, location, application, and noise level.

1.6 QUALITY ASSURANCE

A. Test and rate air outlet and inlet performance in accordance with ASHRAE Std 70.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience.

PART 2 PRODUCTS

2.1 DIFFUSERS, GRILLES AND REGISTERS

A. MANUFACTURERS:

B. Refer to drawings for Models, sizes, and accessories.

C. Construction: Made of aluminum extrusions with factory enamel finish.

D. Color: As selected by Architect

E. Border Type: As selected by Architect

F. Material: Aluminum

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.
B. Check location of outlets and inlets and make necessary adjustments in position to conform with architectural features, symmetry, and lighting arrangement.

C. Install diffusers to ductwork with air tight connection.

D. Provide balancing dampers on duct take-off to diffusers, and grilles and registers, despite whether dampers are specified as part of the diffuser, or grille and register assembly.

END OF SECTION
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT
SECTION 235100 - BREECHINGS, CHIMNEYS, AND STACKS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Manufactured chimneys and breeching for gas fired equipment (For Boilers & Gas Water Heaters).

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.

B. Section 230548 - Vibration and Seismic Controls for HVAC Systems.

C. Section 230716 - HVAC Equipment Insulation.

1.4 REFERENCE STANDARDS

B. ASTM A653/A653M - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process; 2015.

E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

G. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible; 2005.
H. UL 103 - Factory-Built Chimneys for Residential Type and Building Heating Appliances; Current Edition, Including All Revisions.

M. UL 1738 - Standard for Venting Systems for Gas Appliances, Categories II, III and IV.

1.5 DEFINITIONS

A. Breeching: Vent connector.

B. Chimney: Primarily vertical shaft enclosing at least one vent for conducting flue gases outdoors.

C. Smoke Pipe: Round, single wall vent connector.

D. Vent: That portion of a venting system designed to convey flue gases directly outdoors from a vent connector or from an appliance when a vent connector is not used.

E. Vent Connector: That part of a venting system that conducts the flue gases from the flue collar of an appliance to a chimney or vent, and may include a draft control device.

1.6 DESIGN REQUIREMENTS

A. Factory built vents and chimneys used for venting natural draft appliances to comply with NFPA 211 and be UL listed and labeled.

B. Design refractory lined metal stacks for wind loading of 110 mph and seismic loads for Zone 2.

1.7 SUBMITTALS

A. See Section 01330 - Submittals, for submittal procedures.

B. Product Data: Provide data indicating factory built chimneys, including dimensional details of components and flue caps, dimensions and weights, electrical characteristics and connection requirements.
C. Shop Drawings: Indicate general construction, dimensions, weights, support and layout of breechings. Submit layout drawings indicating plan view and elevations where factory built units are used.

D. Manufacturer's Instructions: Include installation instructions, and indicate assembly, support details, and connection requirements.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum three years of documented experience.

B. Installer Qualifications: Company specializing in performing the type of work specified in this section with minimum 10 years documented experience, and approved by manufacturer.

PART 2 PRODUCTS

2.1 MANUFACTURERS

2.2 BREECHINGS, CHIMNEYS, AND STACKS - GENERAL REQUIREMENTS

A. Regulatory Requirements:
 1. Comply with applicable codes for installation of natural gas burning appliances and equipment.
 2. Comply with NFPA 31 for installation of oil burning appliances and equipment.
 3. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

2.3 DOUBLE WALL METAL STACKS- GAS APPLIANCES

A. Provide double wall metal stacks, tested to UL 103, UL 1738 and UL listed, for use with building heating equipment, in compliance with NFPA 54.

B. Fabricate with 1 inch minimum air space between walls. Construct inner jacket of 15 gage ASTM A 666, AL29-4C stainless steel. Construct outer jacket of aluminum coated steel 18 gage for sizes 3 inches to 12 inches and 24 gage for sizes 14 inches to 24 inches. Metal-Fab Corr/Guard II, Type CG-Double Wall.

C. Accessories, UL labeled:
1. Ventilated Roof Thimble: Consists of roof penetration, vent flashing with spacers and storm collar.
2. Exit Cone: Consists of inner cone, and outer jacket, to increase stack exit velocity 1.5 times.
4. Appliance Adapter: Sized to fit specified appliance.
5. Horizontal/Vertical Drain Section: Consists of concentric inner and outer pipe with drain connection fitting.
6. Provide all necessary installation accessories, including but not limited to wall supports, wall hangers, plate supports, couplings, tees, elbows, caps, etc. to provide for a complete and functional system.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. For gas applications Install in accordance with NFPA 54.

C. Install breechings with minimum of joints. Align accurately at connections, with internal surfaces smooth.

D. Support breechings from building structure, rigidly with suitable ties, braces, hangers and anchors to hold to shape and prevent buckling. Support vertical breechings, chimneys, and stacks at 12 foot spacing, to adjacent structural surfaces, or at floor penetrations. Refer to SMACNA (DCS) for equivalent duct support configuration and size.

E. Pitch breechings with positive slope up from fuel-fired equipment to chimney or stack.

F. Assemble and install stack sections in accordance with NFPA 82, industry practices, and in compliance with UL listing. Join sections with acid-resistant joint cement. Connect base section to foundation using anchor lugs.

G. Level and plumb chimney and stacks.

H. Clean breechings, chimneys, and stacks during installation, removing dust and debris.

I. At appliances, provide slip joints permitting removal of appliances without removal or dismantling of breechings, breeching insulation, chimneys, or stacks.

J. For condensing applications, provide drain section in chimney. Run drain pipe from drain connection to acid neutralizer tank. Install in accordance with the manufacturers instructions.

END OF SECTION
SECTION 235240 - CONDENSING HOT WATER BOILERS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Boilers.

B. Controls and boiler trim.

C. Indoor/outdoor reset controller.

D. Hot water connections.

E. Fuel burning system and connection.

F. Boiler flue venting.

G. Condensation neutralizing system.

1.3 RELATED SECTIONS

A. Section 01 91 13 - General Commissioning Requirements.

B. Section 03 3000 - Cast-in-Place Concrete.

C. Section 232113 - Hydronic Piping.

D. Section 23 2114 - Hydronic Specialties.

E. Section 23 0913 - Instrumentation and Control Devices for HVAC.

F. Section 26 2717 - Equipment Wiring: Electrical characteristics and wiring connections.
1.4 REFERENCES

D. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); National Electrical Manufacturers Association; 2003.

E. Connecticut General Statute 29-329-3

1.5 PERFORMANCE REQUIREMENTS

A. Performance rating shall be in accordance with AHRI Testing and Rating Standard for Commercial Boilers.

B. Refer to the schedule on the plans for project specific performance requirements.

1.6 SUBMITTALS

A. See Section 01 3000 - Administrative Requirements, for submittals procedures.

B. Product Data: Provide data indicating general assembly, components, controls, safety controls, and wiring diagrams with electrical characteristics and connection requirements, and service connections.

C. Manufacturer's Instructions: Indicate assembly, support details, connection requirements, and include start up instructions.

D. Manufacturer's Inspection Report: Submit authorized boiler inspection prior to shipment.

E. Manufacturer's Field Reports: Indicate specified performance and efficiency has been met or exceeded. Provide combustion test which shall include boiler firing rate, over fire draft, gas flow rate, heat input, burner manifold gas pressure, percent oxygen (O), percent excess air.

F. Operation and Maintenance Data: Include manufacturer's descriptive literature, operating instructions, cleaning procedures, replacement parts list, and maintenance and repair data.
G. Warranty: Submit manufacturer warranty and ensure forms have been completed in Town of Rocky Hill's name and registered with manufacturer.

1.7 WORK INCLUDED

A. Furnish and install Firetube gas fired hot water boilers of the size, capacity and quantity as shown on the contract drawings. Boiler shall include individual variable speed ECM hot water circulating pump as shown on the Plans and as Scheduled.

B. Each boiler shall have all self-contained controls and safety devices and shall be capable of independent operation.

C. Each boiler shall comply with the energy efficiency requirements of the latest edition of the ASHRAE 90.1 Standard and the minimum efficiency requirements of the latest edition of the AHRI BTS-2000 Standard as defined by the Department of Energy in 10 CFR Part §431.86. The boiler shall be certified for indoor installation. All boilers shall be installed in accordance with all local, State and Federal codes.

D. Contractor shall obtain Certificate of boiler inspection after boiler installation has been completed and shall pay all fees associated with such inspection. After receipt of certificate of Inspection, Installing Contractor shall furnish a suitable glass front frame in which to place said certificate. Frame, with Inspection certificate inserted therein, shall then be placed on or posted in a suitable location within the Boiler room in which the new Boilers have been installed.

E. Contractor shall obtain from Boiler Manufacturer Form H-2 Manufacturers Data Report for Firetube Boilers as required by the Provisions of the ASME Code Rules, Section IV and shall transmit to the Owner after Boiler installation for Record Purposes.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum ten years of documented experience.

1.9 REGULATORY REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Boilers shall be Listed by the Massachusetts Gas Regulatory Board and shall have been Certified in accordance with ANSI Z21.13 test standard; ASHRAE 90.1 Standard and ASHRAE 103 Standard; American National Standard/CSA Standard for Gas-Fired Low Pressure Steam and Hot Water Boilers; ANSI Z223.1 (NFPA 54-2012) for Gas-Fired Boilers; minimum efficiency requirements of the latest edition of the AHRI BTS-2000 Standard; and National Electrical Code (NFPA 70).

D. Commonwealth of Massachusetts State Building Code, 780 CMR 1305.2.5 Heating System Controls; and Table 1305.3.3(f) Boilers, Gas and Oil Fired, Minimum Efficiency Requirements.

E. Where reference is made to one of the above standards, the revision in effect at the time of bid opening shall apply.

F. Residential Boiler Efficiency Certification Program AHRI Directory of Certified AHRI Certified™ Ratings list of Boilers that have earned the AHRI Certified mark. Boiler manufacturer shall be required to provide the Certified Reference Number and Approved Status under the previously specified performance criteria at Submittal stage. This Certification number shall be utilized in the Rebate application to National Grid confirming the installation of an “Approved” appliance.

G. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.

H. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

I. Boiler shall be AHRI Certified to 95% Annual Fuel Utilization Efficiency (AFUE) Efficiency (KHB/WHB055-285) and 94.4% THERMAL Efficiency (WHB399) as registered with AHRI with Oxides of Nitrogen (NOx) less than 20 ppm corrected to 3% O2. Boiler shall produce less than 50 Db sound reading at 100% rate of fire.

J. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.10 DELIVERY, STORAGE, AND PROTECTION

A. Promptly inspect shipments to assure that products comply with requirements, that quantities are correct, and products are undamaged.

B. Store products in accordance with manufacturers’ instruction, with seals and labels intact and legible. Store sensitive products in weather tight enclosures; maintain within temperature and humidity ranges required by manufacturers’ instructions.

C. Protect units before, during and after installation from damage to casing by leaving factory shipping packaging in place until immediately prior to final acceptance.

D. Install factory assembled packaged boiler carefully to prevent damage, breaking, and scoring. Do not install damaged components; replace with new.
E. Coordinate wall construction and location of Boiler assemblies. Ensure the wall for which the boiler is intended to be mounted is comprised of either, cement, brick, block, or wooden studs spaced 16" apart from center and the wall is capable of supporting the weight of the specified Boilers. Manufacturer’s clearances to combustibles shall be adhered to.

F. In areas where flooding is possible, elevate the boiler sufficiently to prevent water from reaching the boiler. Ensure the boiler is installed in a location that minimizes the risk of water damage due to leaks from valves, pumps, and other hydronic fittings.

G.

1.11 WARRANTY

A. See Section 017700 - Closeout Procedures, for additional warranty requirements.

B. Leakage and Materials: Heat Exchangers on stainless fire-tube boilers shall include a fifteen (15) year limited warranty effective 60 days from the date of manufacture as determined by the serial number.

C. Boiler manufacturer shall provide a 5 year Parts Warranty.

D. All equipment shall be guaranteed against defects in materials and workmanship for a period of 12 months from date of acceptance by the Owner and completion of commissioning. The warranty shall include parts only to repair or replace all defective parts and material at no charge to the owner.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Lochinvar: www.lochinvar.com

B. Thermal Solutions: boilers-water-heaters.thermalsolutions.com

C. Viessmann Manufacturing Company: www.viessmann.com

D. Bosch Thermo-Technology Corp.

E. Substitutions: See Section 016000 - Product Requirements.

2.2 GENERAL

A. STAINLESS STEEL BOILER
1. Direct-Vent sealed combustion, Boiler shall be factory assembled and fire-tested fire-tube condensing boiler with counter-flow heat exchanger sealed pressure-tight, built on a steel base, including insulated metal jacket, top vertical flue gas vent outlet, combustion air intake connection, water supply and return connections, condensate drain connections and controls.
 a. Boiler shall require only connection to the water circulating system, fuel/electric utilities, condensate drain and flue gas vent. Heat exchanger shall be constructed of stainless steel. Multiple pressure vessels in a single enclosure are not acceptable. Water-tube, Aluminum or Copper tube boilers, or Boilers with secondary heat exchangers are not equivalent and shall not be considered acceptable.
 b. Furnish and install new Boiler inline variable speed ECM pump for hydronic heating systems as indicated on the drawings. Boiler pump shall be ECM/0 to 10 VDC variable speed. Pumps shall meet types, sizes, capacities, and characteristics as scheduled on the Equipment Schedule and drawings. Pump substitutions shall be provided with connection sizes equal to those scheduled. Pump connections shall not be downsized. Pump substitutions shall not be provided at efficiencies less than those scheduled.
 c. The pumps shall be a wet rotor inline pump, in cast iron or lead free bronze body construction specifically designed for quiet operation. Suitable standard operations at 230°F and 175 PSIg working pressure. The pump internals shall be capable of being serviced without disturbing piping connections.
 d. Circulator motor shall be a synchronous, permanent-magnet (PM) motor and tested with the pump as one unit. Conventional induction motors will not be acceptable. A 0-10 VDC output signal shall control the variable speed boiler pump to keep a fixed delta T across the boiler regardless of the modulation rate.
 e. Boiler shall bear the ASME “H” stamp for 80 PSI Maximum Water Working Pressure and shall be National Board listed. There shall be no banding material, bolts, gaskets or “O” rings in the header configuration. Each stainless steel combustion chamber shall be designed to drain condensation to the bottom of the heat exchanger assembly. The condensate collection basin shall be constructed of welded stainless steel. A built-in trap shall allow condensation to drain from the collection basin.
 f. Boiler shall be equipped with a variable frequency drive blower motor. Burner shall be a premix design, constructed of high temperature stainless steel with a woven metal fiber outer covering to provide fully modulating firing rate with a turndown ratio of 10:1 and discharge into a positive pressure vent. Boiler efficiency shall increase with decreasing load (output), while maintaining setpoint.
 g. Burner shall be metal-fiber mesh covering a stainless steel body with spark ignition and flame rectification. All burner material exposed to the combustion zone shall be of stainless steel construction. There shall be no moving parts within the burner itself. Burner shall produce not more than 50-dBA sound reading at full firing rate.
 h. Boiler shall be supplied with a combination gas control valve that includes dual safety shutoff valves and a pressure regulator in a single body gas valve designed using negative pressure regulation and equipped with a pulse width modulation blower system, to precisely control the fuel/air mixture to provide modulating boiler firing rates for maximum efficiency. The Boiler shall operate in a safe condition at derated output with gas supply pressures as low as 4.00” Ins. and shall automatically compensate for fluctuations of gas supply pressure between 4.00” Ins. w.c. and 14” Ins. w.c. inlet gas pressure. If inlet gas pressure exceeds 13” W.C., a 100% lock-up type gas pressure regulator of adequate size shall be installed in gas supply piping and adjusted to prevent pressure in excess of 13” W.C. in accordance with Massachusetts Fuel Gas Code.
 i. Boiler shall be constructed with a heavy gauge steel jacket assembly, primed and pre-painted on both sides. The combustion chamber shall be sealed and completely enclosed, independent of the outer jacket assembly, so that integrity of the outer jacket does not affect a proper seal. A flame observation port shall be provided.
Boiler control shall increase fan speed to boost flame signal when a weak flame signal is detected during normal operation.

j. Each Boiler shall be equipped with: temperature/pressure gauge; a system supply temperature sensor; tank sensor; high limit temperature control with manual reset; outlet water temperature sensor with a dual thermistor to verify accuracy; return water temperature sensor; outdoor air temperature sensor, flue temperature sensor; probe type low water cut off with manual reset and a condensate trap for the heat exchanger condensate drain; ASME certified pressure relief valve set for 30 PSI.

k. Probe LWCO shall incorporate a Burner circuit test switch that, when depressed, will test out the control circuit by dropping out the Burner if the circuit is properly wired. Boiler shall be fitted with a probe type LWCO located above the lowest safe permissible water level established by the Boiler manufacturer. LWCO shall be UL listed and FM approved, suitable for commercial hydronic heating service at 80 PSI.

l. Contractor shall furnish and install a condensate neutralizing kit complete with Calcite and magnesium oxide media shipped loose for field installation. Furnish and install a condensate trap assembly if a condensate collection tray is not provided by the Boiler manufacturer. The trap allows condensate to drain from sump while retaining flue gases in the boiler. The trap has factory installed overflow switch, which shuts down the boiler in the event the drain line becomes obstructed, preventing proper condensate removal. Extend drain piping from boiler to acid neutralization kit and to suitable floor drain in mechanical rooms.

m. If the point of condensate disposal is above the trap, a condensate pump shall be required to move the condensate to the drain. If overflow from the pump would result in property damage, select a pump with an overflow switch. Wire this switch in series with installer provided external high limit, to shut off the boiler, and, if desired, in series with installer supplied alarm, to trigger an alarm in the event of overflow.

n. Low energy usage condensation removal pump shall be as manufactured by B&G, Model LS or approved equal, with pressure hose and connection kit. Each condensate removal pump shall be designed for use with a condensing gas or oil boiler with maximum heating capacity of 682 MBH, and condensate with a pH value of 2.7 and higher, and where non-sulphur reduced heating oil is used. Condensate tank shall be made of rustproof high impact ABS, and with a 0.5 Litre tank capacity, equipped with internal baffles to prevent waves and cycling caused by the inflow of liquid. To prevent blockage of the pump, a tank sump shall be integrated into the tank within which to allow particles to accumulate and shall be easily cleaned and flushed.

B. Retain first "Equipment Mounting" Paragraph for equipment supported on cast-in-place concrete equipment bases without vibration isolation devices.

C. BOILER CONTROL SYSTEM
 1. The factory mounted and wired control system shall incorporate a high resolution LED display for boiler set-up, boiler status, and boiler diagnostics. All components shall be easily accessed and serviceable from the front and top of the jacket.
 a. Factory installed Smart control system shall be provided with password security, outdoor air reset, pump delay with freeze protection, pump exercise, sic step ramp delay, domestic hot water prioritization with limiting capabilities, USB drive for simple uploading of parameters and a PC port connection for connection to a local computer for programming and trending. A secondary operating control that is field mounted outside or inside the appliance is not acceptable.
 b. The boiler shall have alarm contacts for any failure, runtime contacts and data logging of runtime at given modulation rates, ignition attempts and ignition failures. The boiler shall have a built-in “Cascade” with leader redundancy to sequence and rotate while maintaining modulation of up to eight boilers of different Btu inputs without utilization
of an external controller. The internal “Cascade” function shall be capable of lead-lag, efficiency optimization, and rotation of lead boiler every 24 hours.

c. Each Boiler shall be capable of remote communication via optional CON-X-US™ Remote Connectivity with the capability of historical trending and sending text message or email alerts to notify the caretaker of a boiler alarm and remote programming of onboard boiler control. The control must have optional capability to communicate via Modbus protocol with a minimum of 46 readable points. Each boiler shall have an optional gateway device which will allow integration with LON or BacNet protocols. All components shall be easily accessed and serviceable from the front of the boiler jacket.

d. The control system shall monitor both boiler lockout and limit circuits. The control system shall be fully integrated into the Boiler Cabinet and incorporate single and multiple boiler control logic, inputs, outputs and communication interfaces. Using parameter menu selections, the control system shall allow the boiler to respond to remote system water temperature and outside air temperatures and warm weather shut down or building automation system remote start/stop commands.

e. Anti-cycling control: Boiler shall have the ability to set a time delay after a heating demand is satisfied allowing the boiler to block a new call for heat. The boiler will display an anti-cycling blocking on the screen until the time has elapsed or the water temperature drops below the anti-cycling differential parameter. The anti-cycling control parameter is adjustable by the installer.

f. ModBus Communication Board shall be arranged for connection to a BAS system or computer with a serial or USB port with a converter to RS-485 half duplex. ModBus shall be configured as a monitoring device by polling the ModBus board for the read only variables. ModBus communication may be connected to only the leader boiler, allowing total Cascade information to be seen through the communications link. Each Boiler shall be equipped with a ModBus communication board, allowing all the individual temperatures of each unit in the Cascade to be seen.

g. The control system shall be fully integrated into the Boiler Cabinet and incorporate single and multiple boiler control logic, inputs, outputs and communication interfaces. Using parameter menu selections, the control system shall allow the boiler to respond to remote system water temperature and outside air temperatures and warm weather shut down or building automation system remote start/stop commands.

D. ELECTRICAL REQUIREMENTS

1. All Boiler room wiring from the main disconnect switch panel to all Boiler controls, Boiler Circulators, system circulators, Limit circuit, Operating controls, gas valves and actuators, switches and additional control devices shall be furnished and installed under this section of the work by the HVAC Subcontractor and shall conform to the job standards as established by Division 26 Sections.

a. Single-Point Field Power Connection: Factory installed and wired switches, motor controller, transformers and other electrical devices necessary shall provide a single-point field power connection to the boiler.

b. Boiler Control circuit shall be taken from a two-wire branch circuit, one side grounded, not exceeding 150 Volts, line to line. All safety control switching shall be accomplished in the hot ungrounded conductor and through the 24V low voltage wiring provided by the Boiler manufacturer and in accordance with the manufacturer’s instructions and recommendations.

c. Boiler manufacturer shall provide a 110V convenience outlet. The line voltage terminals shall supply power to an equipment outlet located on the side of the Boiler. To be used to supply power to a condensate pump or other low power (7 amps Max) equipment.

d. Control system wiring shall comply with ASME CSD-1 CE-110(a) requirements. Fuse protection for the control circuit shall be provided. A manually operated remote
heating plant shutdown switch shall be furnished and installed just outside the Boiler room door and shall be marked for easy identification. If there is more than one (1) Boiler room door, there shall be a switch located at each door. Shutdown switches must be wired to disconnect all power to the Boiler controls.

2. Retain "Testing Agency," "Manufacturer's Field Service," and "Perform the following tests and inspections" paragraphs below to identify who shall perform tests and inspections. If retaining second option in "Testing Agency" Paragraph or if retaining "Manufacturer's Field Service" or "Perform the following tests and inspections" Paragraph, retain "Field quality-control reports" Paragraph in "Informational Submittals" Article.

3. Each Boiler shall be equipped with two terminal strips for electrical connections as follows:
 1) A high voltage terminal strip shall be provided for Supply voltage. Supply voltage shall be 120 volt / 60 hertz / single phase on all models. The high voltage terminal strip plus integral relays are provided for independent pump control of the System pump, the Boiler pump and the Domestic Hot Water pump.
 2) Retain "Manufacturer's Field Service" Paragraph below to require a factory-authorized service representative to perform tests and inspections.
 3) Retain "Manufacturer's Field Service" Paragraph below to require a factory-authorized service representative to perform tests and inspections.

E. FLUE GAS VENT AND COMBUSTION AIR
1. Per 248 CMR 5.00 and 7.00, provide the services of a licensed plumber or gasfitter to be responsible for, supervise, and/or install flue venting system(s) for all gas fired equipment based on the equipment capacity. The licensed plumber or gasfitter shall obtain a gas fitting permit in compliance with 248 CMR 3.00 as required by the Massachusetts Fuel Gas and Plumbing Code.
 a. Listed Special Gas Vents: All products furnished under this Section shall conform to the requirements of The National Fuel Gas Code, ANSI Z223.1/NFPA-54 where applicable and shall comply with and be listed to UL 1738, the U.S. Standard for Venting Systems for Gas-Burning Appliances, Category II, III and IV vent systems.
 b. The Boiler manufacturer has certified Polypropylene and AL29-4C Stainless Steel single wall vent material as acceptable venting materials that may be utilized. Boiler manufacturer shall provide a universal vent connector with combustion analyzer port.
 c. For the purposes of this Contract, only Stainless Steel vent materials listed to UL-1738 Standard for Venting Systems for Gas-Burning Appliances Boiler Exhaust flue materials shall be considered acceptable, and shall be as specified elsewhere in these Contract Documents.
 d. Combustion-Air Intake: The air inlet pipe may be Polypropylene, CPVC, Galvanized, or Stainless Steel sealed pipe.
 e. See Division 23 Section “Breechings” for complete information on requirements, materials and installation.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine mechanical spaces for suitable conditions where boilers will be installed.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

A. Boiler Pumps shall be installed with manufacturer's recommendations, Contract Drawings, and reviewed submittals.

B. Pumps shall be installed so as to ensure easy accessibility for service or removal and replacement of all components such as, but not limited to, impellers, motors, drive couplings, bearings, strainers, other pump appurtenances, isolators, and flex connections.

C. Connect hot-water piping to supply and return boiler tappings with shutoff valve and union or flange at each connection. Provide near Boiler piping, Boiler manifold piping, isolation valves, in-line Y-strainers, check valves, flow switches and low water cutoff controls as shown on the Contract Drawings, and as required by the Boiler manufacturer's Installation and Operation Manuals and to comply with previously specified State and Local Codes.

D. During installation, and until start-up, the Contractor shall properly protect all equipment to prevent damage from water, dirt, etc. Protection shall include temporary plastic wrap to keep equipment in original factory condition.

E. Provide connections to the natural gas service connection in accordance with NFPA 54, AGA Z223.1 and NFPA 58. Pipe all gas train vents to the outdoors in accordance with all local and State codes. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.

F. Provide piping connections and accessories as specified and as indicated on the Contract Drawings.

G. CAT IV boilers require special gas venting. Use only the vent materials as specified within the Boiler manufacturer's Installation and Operation Manual.

H. Connect each Cat-IV direct-vent appliance's flue outlet with a continuous Boiler manufacturer's approved vent system to the vent termination outside the building. The vertical vent shall be routed through the designated vertical chase. All system components shall be listed to UL or ULC standard and supplied from the same manufacturer.

I. Pipe the discharge of the safety relief valve to prevent injury in the event of pressure relief. Pipe the discharge to a drain. Provide piping that is the same size as the safety relief valve outlet.
J. Provide complete electrical connections to all boilers.

K. Install electrical devices furnished with boiler but not specified to be factory mounted.

L. Install control wiring to field-mounted electrical devices.

M. Pipe condensing boiler condensate connections to condensate neutralization tank. Neutralization tank shall be piped to the nearest floor drain.

3.3 START-UP

A. Installing Contractor shall supervise all phases of Boiler installation, pressure testing, startup, and training of operating personnel. Installing Contractor shall also provide all installation verification inspections, system functional and safety operational tests, and heating system capacity verification tests. Hydrostatic test. Repair leaks and retest until no leaks exist.

B. Installing Contractor shall include, as part of his Contract, all charges and costs for Boiler testing, start-up, checkout, adjusting, field and State inspections, including service contracts for systems and equipment as here-in-after specified. Provide signed documentation to the Awarding Authority for completion of specified procedures.

C. The Boiler manufacturer’s Representative shall provide the initial Boiler system start-up, final adjusting and testing of the Boilers and controls. Boiler manufacturer’s representative shall also provide training on the Boilers and Controls and in Boiler care and maintenance to Owners Operating Personnel.

D. The start-up requirement for this single source responsibility shall not be waived by the Heating and Ventilating Subcontractor, nor shall the responsibility for the start-up be assumed by any other party unless such a deviation from the specified Contract Start-Up Specifications has received prior written approval from the Awarding Authority through the Submittal Phase of the project specifically allowing other group(s) to provide the Boiler Start-Up.

E. Initial start-up, testing and adjustment shall comply with all applicable Local and State Regulations and requirements. Start up and final adjustment shall be in accordance with the Boiler manufacturer’s start-up instructions. Test and adjust Boiler for maximum efficiency. Test and adjust combustion controls, and boiler controls for proper operation and maximum system efficiency. Check and adjust initial operating set points and high and low limit safety set points of fuel supply, water level and water temperature. Set field-adjustable switches and circuit-breaker trip ranges as indicated. Replace damaged or malfunctioning controls and equipment in accordance with the manufacturer’s warranty requirements.

F. Purging of the Boilers, and all required tests for proper venting.

G. At time and date of original start up, provide instruction to the Owners operating personnel in the procedures to resolve a “Lockout” condition. At this time, operating personnel shall also be instructed in the operation and routine management of the Burner and safety controls. The Owner shall arrange to have personnel who require training to be present during the original
lightoff. In addition, manufacturer’s representative shall provide a training session for the Owners operating personnel at a later date prior to Owners Final Acceptance. Installing Contractor to coordinate time and date of additional training.

H. Boiler combustion shall be tested and adjusted utilizing electronic combustion instruments to verify that the boiler is operating within acceptable tolerances of the factory fire test report, with a print-out copy submitted to the Engineer. A written report of the start-up, including the factors of the factory fire test, and the factors of the start-up, shall also be furnished to the Engineer.

I. Final acceptance of the Heating system installed within this scope of work shall be contingent on passing a satisfactory system pressure test, mechanical performance test and heating function test to determine that the system will perform according to the contract requirements. The above tests shall be witnessed by the Engineer and the Owner at his option and acceptance will only be granted in writing by the Owner after receipt of certification from the Engineer that the design criteria have been met.

J. Installing Contractor shall guarantee the entire installation for a period of One (1) Year from the date of Owner Acceptance and beneficial usage by the Owner and Date of Final Payment. Installing contractor shall, upon completion of the installation, make available to the Owner an annual service agreement covering all labor and material required to efficiently maintain the boilers for first year of operation.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies and equipment installations, including connections, and to assist in testing.
 2. Tests and Inspections
 a. Perform installation and startup checks according to manufacturer's written instructions.
 1) Perform hydrostatic test. Repair leaks and retest until no leaks exist.
 (a) Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 (b) Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 (c) Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and water temperature.
 (d) Set field-adjustable switches and circuit-breaker trip ranges as indicated.
 3. Remove and replace malfunctioning units and retest as specified above.

B. Occupancy Adjustments: When requested within 2 months of date of Substantial Completion, provide on-site assistance adjusting system to suit actual occupied conditions. Provide up to two visits to Project by Contractor during other than normal occupancy hours for this purpose.

C. Performance Tests:
 1. The boiler manufacturer is expected to provide partial load thermal efficiency curves. These thermal efficiency curves must include at least three separate curves at various BTU input levels. If these curves are not available, it is the responsibility of the boiler manufacturer to complete the following performance tests:
a. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.

1) Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment to comply.
 (a) Perform field performance tests to determine capacity and efficiency of boilers.
 (b) Test for full capacity.
 (c) Test for boiler efficiency at manufacturer recommended firing rates. Determine efficiency at each test point.
 (d) Repeat tests until results comply with requirements indicated.
 (e) Provide analysis equipment required to determine performance.
 (f) Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.
 (g) Notify Architect in advance of test dates.
 (h) Document test results in a report and submit to Architect.

3.5 OPERATING MANUAL

A. Instructions for installation, operation, and maintenance of the boiler shall be contained in a manual provided in a three-ring binder with each boiler unit.

B. A wiring diagram corresponding to the boiler shall be affixed to the boiler near the electrical panel.

4.1 TRAINING

A. Provide one half day training for the operating personnel to be performed at the jobsite. Contractor shall coordinate with the manufacturer's representative for start-up and training services.

END OF SECTION
SECTION 237215 - PACKAGED ROOFTOP UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

B. Drawings and general provisions of the contract, including General and Supplementary Conditions and other Division 1 specification sections, apply to this section.

1.2 SECTION INCLUDES

A. Packaged Rooftop air conditioners

1.3 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirements.

1.4 QUALITY ASSURANCE

A. Packaged air-cooled condenser units shall be certified in accordance with ANSI/AHRI Standard 340/360 performance rating of commercial and industrial unitary air-conditioning and heat pump equipment.

B. Unit shall be certified in accordance with UL Standard 1995/CSA C22.2 No. 236, Safety Standard for Heating and Cooling Equipment.

C. Unit and refrigeration system shall comply with ASHRAE 15, Safety Standard for Mechanical Refrigeration.

E. Unit shall be certified in accordance with ANSI Z21.47b/CSA 2.3b and ANSI Z83.8/CSA 2.6, Safety Standard Gas-Fired Furnaces.

F. Unit Energy Efficiency Ratio (EER) shall be equal to or greater than prescribed by ASHRAE 90.1, Energy Efficient Design of New Buildings except Low-Rise Residential Buildings.

G. AHRI 210/240 - Unitary Air-Conditioning Equipment and Air- Source Heat Pump Equipment. (all under 135,000 btuh)

H. AHRI 270 - Sound Rating of Outdoor Unitary Equipment. (all below 135,000)
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

I. AHRI 370 - Sound Rating of Large Outdoor Refrigerating and Air Conditioning Equipment. (all above 135,000 Btuh)

1.5 REFERENCES

A. AFBMA 9 - Load Ratings and Fatigue Life for Ball Bearings.

B. AMCA 99- Standards Handbook

C. AMCA 500- Test Methods for Louver, Dampers, and Shutters.

D. AHRI 340/360 - Unitary Large Equipment

E. NEMA MG1- Motors and Generators

F. National Electrical Code.

G. NFPA 70 - National Fire Protection Agency.

H. SMACNA-HVAC Duct Construction Standards-Metal and Flexible.

I. UL 900- Test Performance of Air Filter Units.

1.6 SUBMITTALS

A. Product Data: Literature shall be provided that indicates dimensions, operating and shipping weights, capacities, ratings, fan performance, filter information, factory supplied accessories, electrical characteristics and connection requirements. Installation, Operation and Maintenance manual with startup requirements shall be provided.

B. Shop Drawings: Unit drawings shall be provided that indicate assembly, unit dimensions, construction details, clearances, and connection details. Computer generated fan curves for each fan shall be submitted with specific design operation point noted. Wiring diagram shall be provided with details for both power and control systems and differentiate between factory installed and field installed wiring.

1.7 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum five years documented experience, who issues complete catalog data on total product.

B. Startup must be done by manufacturer's representative.
C. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters and remote controls are in place, bearings lubricated, and manufacturers' installation instructions have been followed.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Unit shall be shipped with doors bolted shut and outside air hood closed to prevent damage during transport and thereafter while in storage awaiting installation.

B. Follow Installation, Operation and Maintenance manual instructions for rigging, moving, and unloading the unit at its final location.

C. Unit shall be stored in a clean, dry place protected from construction traffic in accordance with the Installation, Operation and Maintenance manual.

1.9 WARRANTY

A. Provide parts warranty for one year date of acceptance by the Owner and completion of commissioning.

B. Provide five-year extended warranty for compressors.

1.10 EXTRA MATERIALS

A. Provide one set of filters.

B. Furnish a complete set of fan motor drive belts.

1.11 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.
E. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

F. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

G. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.

H. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

PART 2 - PRODUCTS

2.1 MANUFACTURER

A. Products shall be provided by the following manufacturers:
 1. Daikin: www.northamerica-daikin.com (Basis of Design)
 2. AAON: www.aaon.com
 3. Trane: www.trane.com
 4. Valent: www.valentair.com

2.2 ROOFTOP UNITS

A. GENERAL DESCRIPTION
 1. Furnish as shown on plans, Daikin Applied Rebel Single zone Heating and Cooling Unit(s) model DPS. Unit performance and electrical characteristics shall be per the job schedule.
 2. Configuration: Fabricate as detailed on prints and drawings:
 a. Return plenum / economizer section
 b. Filter section
 c. Cooling coil section
 d. Supply fan section
 e. Gas heating section.
 f. Condensing unit section
 3. The complete unit shall be cETLus listed.
 4. The unit shall be ASHRAE 90.1-2016 compliant and labeled.
 5. Each unit shall be specifically designed for outdoor rooftop application and include a weatherproof cabinet. Each unit shall be completely factory assembled and shipped in one piece. Packaged units shall be shipped fully charged with R-410 Refrigerant and oil.
 6. The unit shall undergo a complete factory run test prior to shipment. The factory test shall include a refrigeration circuit run test, a unit control system operations checkout, a unit refrigerant leak test and a final unit inspection.
 7. All units shall have decals and tags to indicate caution areas and aid unit service. Unit nameplates shall be fixed to the main control panel door. Electrical wiring diagrams shall
be attached to the control panels. Installation, operating and maintenance bulletins and
start-up forms shall be supplied with each unit.
8. Performance: All scheduled EER, IEER, capacities and face areas are minimum accepted
values. All scheduled amps, kW, and HP are maximum accepted values that allow
scheduled capacity to be met.
9. Warranty: The manufacturer shall provide 12-month parts only warranty. Defective parts
shall be repaired or replaced during the warranty period at no charge. The warranty period
shall commence at startup or six months after shipment, whichever occurs first.

B. CABINET, CASING, AND FRAME
1. Panel construction shall be double-wall construction for all panels. All floor panels shall
have a solid galvanized steel inner liner on the air stream side of the unit to protect
insulation during service and maintenance. Insulation shall be a minimum of 1" thick with
an R-value of 7.0, and shall be 2 part injected foam. Panel design shall include no
exposed insulation edges. Unit cabinet shall be designed to operate at total static
pressures up to 5.0 inches w.g.
2. Exterior surfaces shall be constructed of pre-painted galvanized steel for aesthetics and
long term durability. Paint finish to include a base primer with a high quality, polyester resin
topcoat of a neutral beige color. Finished panel surfaces to withstand a minimum
1000-hour salt spray test in accordance with ASTM B117 standard for salt spray
resistance.
3. Service doors shall be provided on the fan section, filter section, control panel section, and
heating vestibule in order to provide user access to unit components. All service access
doors shall be mounted on multiple, stainless steel hinges and shall be secured by a latch
system. Removable service panels secured by multiple mechanical fasteners are not
acceptable.
4. The unit base shall overhang the roof curb for positive water runoff and shall seat on the
roof curb gasket to provide a positive, weathertight seal. Lifting brackets shall be provided
on the unit base to accept cable or chain hooks for rigging the equipment.

C. OUTDOOR/RETURN AIR SECTION
1. Unit shall be provided with an outdoor air economizer section. The economizer section
shall include outdoor, return, and exhaust air dampers. The economizer operation shall be
fully integral to the mechanical cooling and allow up to 100% of mechanical cooling if
needed to maintain the cooling discharge air temperature. The outdoor air hood shall be
factory installed and constructed from galvanized steel finished with the same durable
paint finish as the main unit. The hood shall include moisture eliminator filters to drain
water away from the entering air stream. The outside and return air dampers shall be
sized to handle 100% of the supply air volume. The dampers shall be parallel blade
design. Damper blades shall be gasketed with side seals to provide an air leakage rate of
1.5 cfm / square foot of damper area at 1” differential pressure in accordance with testing
defined in AMCA 500. A barometric exhaust damper shall be provided to exhaust air out
of the back of the unit. A bird screen shall be provided to prevent infiltration of rain and
foreign materials. Exhaust damper blades shall be lined with vinyl gasketing on contact
edges. Control of the dampers shall be by a factory installed direct coupled actuator.
Damper actuator shall be of the modulating, spring return type.

D. ENERGY RECOVERY (RTU-2 and RTU-4)
1. The rooftop unit shall be provided with an AHRI certified rotary wheel air-to-air heat
exchanger in a cassette frame complete with seals, drive motor and drive belt. The energy
recovery wheel shall be an integral part of the rooftop unit with unitary construction and
does not require field assembly. Bolt-on energy recovery units that require field assembly
and section to section gasketing and sealing are not acceptable.

3. The rooftop unit shall be designed with a track so the entire energy recovery wheel cassette can slide out from the rooftop unit to facilitate cleaning.

4. The unit shall have 2” Merv 7 filters for the outdoor air before the wheel to help keep the wheel clean and reduce maintenance. Filter access shall be by a hinged access door with ¼ turn latches.

5. The matrix design shall have channels to reduce cross contamination between the outdoor air and the exhaust air. The layers shall be effectively captured in aluminum and stainless steel segment frames that provide a rigid and self-supporting matrix. All diameter and perimeter seals shall be provided as part of the cassette assembly and shall be factory set. Drive belt(s) of stretch urethane shall be provided for wheel rim drive without the need for external tensioners or adjustment.

6. The total energy recovery wheel shall be coated with silica gel desiccant permanently bonded without the use of binders or adhesives, which may degrade desiccant performance. The substrate shall be lightweight polymer and shall not degrade nor require additional coatings for application in marine or coastal environments. Coated segments shall be washable with detergent or alkaline coil cleaner and water. Desiccant shall not dissolve nor deliquesce in the presence of water or high humidity.

7. Wheels shall be provided with removable energy transfer matrix. Wheel frame construction shall be a welded hub, spoke and rim assembly of stainless, plated and/or coated steel and shall be self-supporting without matrix segments in place. Segments shall be removable without the use of tools to facilitate maintenance and cleaning.

8. Wheel bearings shall be selected to provide an L-10 life in excess of 400,000 hours. Rim shall be continuous rolled stainless steel. Wheels shall be connected to the shaft by means of taper lock hubs.

9. The exhaust air fan shall be a direct drive SWSI plenum fan. The exhaust fan shall be sized for the airflow requirements per the construction schedule. The unit controller shall control the exhaust fan to maintain building pressure. A VFD shall be provided for the exhaust fan motor or the exhaust fan motor shall be an ECM motor. The rooftop unit shall have single point electrical power connection and shall be ETL listed.

10. The rooftop unit with the energy recovery wheel shall incorporate the economizer operation. The energy recovery wheel shall have a bypass damper. When the unit is in the economizer mode of operation the energy recovery wheel shall stop and the bypass dampers shall be opened. The outdoor air shall be drawn through the bypass dampers to reduce the pressure drop of the outdoor airstream.

E. EXHAUST FAN

1. Exhaust fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with aluminum fan blades that are continuously welded to the hub plate and end rim. The exhaust fan shall be a direct drive fan mounted to the motor shaft. Belts and sheaves are not acceptable due to the additional maintenance.

2. The fan motor shall be a totally enclosed EC motor that is speed controlled by a third party unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.

3. The unit DDC controller shall provide building static pressure control. The unit controller shall provide proportional control of the exhaust fans from 25% to 100% of the supply air fan designed airflow to maintain the adjustable building pressure setpoint. The field shall
mount the required sensing tubing from the building to the factory mounted building static pressure sensor.

F. FILTERS
 1. Unit shall be provided with a draw-through filter section. The filter rack shall be designed to accept a 2” prefilter and a 4” final filter. The unit design shall have a hinged access door for the filter section. The manufacturer shall ship the rooftop unit with 2” MERV 8 and 4” MERV 14 filters.

G. COOLING COIL
 1. The indoor coil section shall be installed in a draw through configuration, upstream of the supply air fan. The coil section shall be complete with a factory piped cooling coil and an ASHRAE 62.1 compliant double sloped drain pan.
 2. The direct expansion (DX) cooling coils shall be fabricated of seamless high efficiency copper tubing that is mechanically expanded into high efficiency aluminum plate fins. Coils shall be a multi-row, staggered tube design with a minimum of 3 rows. All cooling coils shall have an interlaced coil circuiting that keeps the full coil face active at all load conditions. All coils shall be factory leak tested with high pressure air under water.
 3. The cooling coil shall have an electronic controlled expansion valve. The unit controller shall control the expansion valve to maintain liquid subcooling and the superheat of the refrigerant system.
 4. The refrigerant suction lines shall be fully insulated from the expansion valve to the compressors.
 5. The drain pan shall be stainless steel and positively sloped. The slope of the drain pan shall be in two directions and comply with ASHRAE Standard 62.1. The drain pan shall have a minimum slope of 1/8” per foot to provide positive draining. The drain pan shall extend beyond the leaving side of the coil. The drain pan shall have a threaded drain connection extending through the unit base.

H. HOT GAS REHEAT
 1. Unit shall be equipped with a fully modulating hot gas reheat coil with hot gas coming from the unit condenser
 2. Hot gas reheat coil shall be a Micro Channel design. The aluminum tube shall be a micro channel design with high efficiency aluminum fins. Fins shall be brazed to the tubing for a direct bond. The capacity of the reheat coil shall allow for a 20°F temperature rise at all operating conditions.
 3. The modulating hot gas reheat systems shall allow for independent control of the cooling coil leaving air temperature and the reheat coil leaving air temperature. The cooling coil and reheat coil leaving air temperature setpoints shall be adjustable through the unit controller. During the dehumidification cycle the unit shall be capable of 100% of the cooling capacity. The hot gas reheat coil shall provide discharge temperature control within +/- 2°F.
 4. Each coil shall be factory leak tested with high-pressure air under water.

I. SUPPLY FAN
 1. Supply fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with fan blades that are continuously welded to the hub plate and end rim. The supply fan shall be a direct drive fan mounted to the motor shaft. Belts and sheaves are not acceptable due to the additional maintenance.
 2. All fan assemblies shall be statically and dynamically balanced at the factory, including a final trim balance, prior to shipment.
3. Supply fan and motor assembly combinations larger than 8 hp or 22” diameter shall be internally isolated on 1” deflection, spring isolators and include removable shipping tie downs.

4. The fan motor shall be a totally enclosed EC motor that is speed controlled by the rooftop unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.

5. The supply fan shall be capable of airflow modulation from 30% to 100% of the scheduled designed airflow. The fan shall not operate in a state of surge at any point within the modulation range.

J. HEATING SECTION

1. The rooftop unit shall include a natural gas heating section. The gas furnace design shall be one natural gas fired heating module factory installed downstream of the supply air fan in the heat section. The heating module shall be a tubular design with in-shot gas burners.

2. The module shall be complete with furnace controller and control valve capable of 10:1 modulating operation.

3. The heat exchanger tubes shall be constructed of stainless steel.

4. The module shall have an induced draft fan that will maintain a negative pressure in the heat exchanger tubes for the removal of the flue gases.

5. Each burner module shall have two flame roll-out safety protection switches and a high temperature limit switch that will shut the gas valve off upon detection of improper burner manifold operation. The induced draft fan shall have an airflow safety switch that will prevent the heating module from turning on in the event of no airflow in the flue chamber.

6. The factory-installed DDC unit control system shall control the gas heat module. Field installed heating modules shall require a field ETL certification. The manufacturer’s rooftop unit ETL certification shall cover the complete unit including the gas heating modules.

K. CONDENSING SECTION

1. Outdoor coils shall be cast aluminum, micro-channel coils. Plate fins shall be protected and brazed between adjoining flat tubes such that they shall not extend outside the tubes. A sub-cooling coil shall be an integral part of the main outdoor air coil. Each outdoor air coil shall be factory leak tested with high-pressure air under water.

2. Fan motors shall be an ECM type motor for proportional control. The unit controller shall proportionally control the speed of the condenser fan motors to maintain the head pressure of the refrigerant circuit from ambient condition of 25–120°F. Mechanical cooling shall be provided to 25º F. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase.

3. The condenser fan shall be low noise blade design. Fan blade design shall be a dynamic profile for low tip speed. Fan blade shall be of a composite material.

4. The unit shall have scroll compressors. One of the compressors shall be an inverter compressor providing proportional control. The unit controller shall control the speed of the compressor to maintain the discharge air temperature. The inverter compressor shall have a separate oil pump and an oil separator for each compressor that routes oil back to the compressor instead of through the discharge line.

5. Pressure transducers shall be provided for the suction pressure and head pressure. Temperature sensor shall be provided for the suction temperature and the refrigerant discharge temperature of the compressors. All of the above devices shall be an input to the unit controller and the values be displayed at the unit controller.

6. Refrigerant circuit shall have a bypass valve between the suction and discharge refrigerant lines for low head pressure compressor starting and increased compressor reliability.
When there is a call for mechanical cooling the bypass valve shall open to equalizing the suction and discharge pressures. When pressures are equalized the bypass valve shall close and the compressor shall be allowed to start.

7. Each circuit shall be dehydrated and factory charged with R-410A Refrigerant and oil.

L. ELECTRICAL

1. Unit wiring shall comply with NEC requirements and with all applicable UL standards. All electrical components shall be UL recognized where applicable. All wiring and electrical components provided with the unit shall be number and color-coded and labeled according to the electrical diagram provided for easy identification. The unit shall be provided with a factory wired weatherproof control panel. Unit shall have a single point power terminal block for main power connection. A terminal board shall be provided for low voltage control wiring. Branch short circuit protection, 115-volt control circuit transformer and fuse, system switches, and a high temperature sensor shall also be provided with the unit. Each compressor and condenser fan motor shall be furnished with contactors and inherent thermal overload protection. Supply fan motors shall have contactors and external overload protection. Knockouts shall be provided in the bottom of the main control panels for field wiring entrance.

2. A single non-fused disconnect switch shall be provided for disconnecting electrical power at the unit. Disconnect switches shall be mounted internally to the control panel and operated by an externally mounted handle.

M. CONTROLS

1. Provide a microprocessor based system to control all refrigeration functions including compressor speed, condenser fan function, unit safety protection, including compressor minimum run and minimum off times, and diagnostics. This system shall operate the unit at peak efficiency utilizing variable head pressure control and electronic expansion valve while maintaining the cooling, or heating in heat pump operation, call per third party control. The microprocessor control shall consist of only direct expansion required temperature sensors, pressure sensors, controller and keypad/display operator interface. Refrigeration sensors and controller shall be factory mounted, wired and tested.

2. The microprocessor controls shall be solely dependent on communications with any on-site or remote PC or master control panel for proper unit operation. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. No commissioning settings shall be lost, even during extended power shutdowns.

3. The microprocessor controls shall be dependent on starting and stopping of the unit via terminal strip control and logic. The control system shall be capable of providing a remote alarm indication. The microprocessor show provide compressor capacity & status, defrost status (heat pump only), condensate overflow alarm, and dirty filter alarm.

4. All digital and analog inputs and outputs shall be protected against damage from transients or incorrect voltages. All field wiring shall be terminated at a separate, clearly marked terminal strip.

5. The keypad interface shall allow convenient navigation and access to the commissioning functions. The unit keypad/display character format shall be 4 lines x 20 characters. All control settings shall be password protected against unauthorized changes. For ease of service, the display format shall be English language readout. Coded formats with look-up tables will not be accepted. The user interaction with the display shall provide the following information as a minimum:
 a. Supply and exhaust fan speed control.
 b. Refrigeration alarm details.

N. ROOF CURB
1. A prefabricated heavy gauge galvanized steel, mounting curb shall be provided for field assembly on the roof decking prior to unit shipment. The roof curb shall be a full perimeter type with complete perimeter support of the air handling section and condensing section. The curb shall be a minimum of 18" high and include a nominal 2" x 4" wood nailing strip. Gasket shall be provided for field mounting between the unit base and roof curb.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Contractor shall verify that roof is ready to receive work and opening dimensions are as detailed on drawings.

B. Contractor shall verify that proper power supply is available.

3.2 TRAINING

A. Provide one 4 hours of training for the operating personnel to be performed at the jobsite, unless specified otherwise by manufacturer and owner. Contractor shall coordinate with the manufacturer's representative for start-up and training services.

3.3 INSTALLATION, OPERATION, AND MAINTENANCE

A. Contractor shall install in accordance with manufacturer's instructions and recommendations.

B. Mount units on factory built roof mounting frame providing watertight enclosure to protect ductwork and utility services. Install roof mounting curb level.

C. Provide the services of a factory trained technician for start-up of unit. Provide assistance to the Balancing Contractor and Commissioning Agent as required in order to insure proper start-up, balancing and commissioning of equipment.

END OF SECTION
SECTION 238126.13 - SMALL-CAPACITY SPLIT-SYSTEM AIR CONDITIONERS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirement

1.3 SECTION INCLUDES

A. The Air Conditioner system shall be a split system with Variable Speed Inverter Compressor technology. The system shall consist of a horizontal discharge, single phase outdoor unit, a matched capacity indoor section that shall be equipped with a wired wall mounted remote controller.

1.4 RELATED REQUIREMENTS

A. Section 230913 - Instrumentation and Control Devices for HVAC: Thermostats, humidistats, time clocks.

B. Section 232300 - Refrigerant Piping

C. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections and installation and wiring of thermostats and other controls components.

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide rated capacities, weights, accessories, electrical nameplate data, and wiring diagrams.

C. Shop Drawings: Indicate assembly, required clearances, and location and size of field connections.

D. Operation and Maintenance Data: Include manufacturer's descriptive literature, operating instructions, installation instructions, maintenance and repair data, and parts listing.
1.6 QUALITY ASSURANCE

A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL) and shall bear the ETL label.

B. All wiring shall be in accordance with the National Electrical Code (N.E.C.) and local codes as required.

C. The units shall be rated in accordance with Air-conditioning, Heating, and Refrigeration Institute's (AHRI) Standard 210 and bear the ARI Certification label.

D. The units shall be manufactured in a facility registered to ISO 9001 and ISO 14001, which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).

E. A dry air holding charge shall be provided in the indoor section.

F. The outdoor unit shall be pre-charged with R-410a refrigerant for 70 feet of refrigerant tubing.

1.7 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. The units shall have a manufacturer’s parts and defects warranty for a period five (5) year from date of acceptance by the Owner and completion of commissioning. The compressor shall have a warranty of seven (7) years from date of acceptance by the Owner and completion of commissioning. If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty does not include labor.

C. Manufacturer shall have over (10) years of continuous experience in the U.S. market.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. LG (Basis of Design)

B. Samsung

C. Mitsubishi
2.2 OUTSIDE UNIT

A. General
1. The outdoor unit shall be equipped with an electronic control board that interfaces with the indoor unit to perform all necessary operation functions.
2. The outdoor unit shall be capable of cooling operation down to 0°F ambient temperature without additional low ambient controls (optional wind baffle shall be required).
3. Piping Capabilities
 a. The outdoor unit shall be capable of operating at an elevation of 22.9 feet <LAU---HVP, LSU090~120HEV1, LSU---HXV>, 32.8 feet <LAU090~120HYV1, LSU090~120HSV4, LSU180~240HEV1>, 49.2 feet <LSU180HSV4, LAU240HSV3>, 65.6 feet <LAU150~180HYV2, LAU180~240HYV1> or 98.4 feet <LSU---HLV> above or below the indoor units.
 b. The outdoor unit shall be capable of operating with up to 49.2 feet <LAU---HVP, LSU090~120HEV1, LSU---HXV>, 65.6 feet <LAU090~120HYV1, LSU090~120HSV4, LSU180~240HEV1>, 98.4 feet <LAU150~180HYV2, LAU180~240HYV1, LSU180HSV4, LAU240HSV3> or 164 feet <LSU---HLV> of total equivalent refrigerant piping length.
4. The outdoor unit shall be able to operate with a maximum height difference of 100 feet between indoor and outdoor units.
5. System shall operate at up to a maximum refrigerant tubing length of 100 feet between indoor and outdoor units without the need for line size changes, traps or additional oil and shall be pre-charged for a maximum of 70 feet of refrigerant tubing.
6. The outdoor unit shall be completely factory assembled, piped, and wired. Each unit must be test run at the factory.

B. Cabinet
1. The casing shall be constructed from galvanized steel plate, finished with an electrostatically applied, thermally fused acrylic or polyester powder coating for corrosion protection and have a Munsell 3Y 7.8/1.1 finish.
2. Mounting feet shall be provided and shall be welded to the base of the cabinet and be of sufficient size to afford reliable equipment mount and stability.
3. Easy access shall be afforded to all serviceable parts by means of removable panel sections.
4. The fan grill shall be of ABS plastic.
5. Cabinet mounting and construction shall be sufficient to withstand 155 MPH wind speed conditions for use in Hurricane condition areas. Mounting, base support, and other installation to meet Hurricane Code Conditions shall be by others.

C. Fan
1. Unit shall be furnished with a single DC fan motor.
2. The fan blade(s) shall be of aerodynamic design for quiet operation, and the fan motor bearings shall be permanently lubricated.
3. The outdoor unit shall have horizontal discharge airflow. The fan shall be mounted in front of the coil, pulling air across it from the rear and dispelling it through the front. The fan shall be provided with a raised guard to prevent external contact with moving parts.

D. Coil
1. The L shaped condenser coil shall be of copper tubing with flat aluminum fins to reduce debris build up and allow maximum airflow. The coil shall be protected with an integral metal guard.

2. Refrigerant flow from the condenser shall be controlled by means of an electronic linear expansion valve (LEV) metering device. The LEV shall be controlled by a microprocessor controlled step motor.

3. All refrigerant lines between outdoor and indoor units shall be of annealed, refrigeration grade copper tubing, ARC Type, meeting ASTM B280 requirements, individually insulated in twin-tube, flexible, closed-cell, CFC-free (ozone depletion potential of zero), elastomeric material for the insulation of refrigerant pipes and tubes with thermal conductivity equal to or better than 0.27 BTU-inch/hour per Sq Ft / °F, a water vapor transmission equal to or better than 0.08 Perm-inch and superior fire ratings such that insulation will not contribute significantly to fire and up to 1" thick insulation shall have a - Flame-Spread Index of less than 25 and a Smoke-development Index of less than 50 as tested by ASTM E 84 and CAN / ULC S-102.

E. Compressor
1. Each 3/4 to 1 ton outdoor unit shall be equipped with one hermetically sealed, digitally controlled, inverter driven single-rotary <LAU---HVP, LSU090~120HSV4, LSU090~120HEV1, LSU---HXV> or twin-rotary <LAU090~120HYV1> compressor with vibration isolation.

2. Each 1.5 to 3 ton outdoor unit < LAU150~180HYV2, LAU180~240HYV1, LSU180HSV4, LAU240HSV3, LSU180~240HEV1, LSU---HLV> shall be equipped with one hermetically sealed, digitally controlled, inverter driven twin-rotary compressor.

3. The compressor shall be mounted on vibration attenuating rubber grommets.

4. The compressor shall use a factory charge of Polyvinyl Ether (PVE) oil.

5. The compressor bearing(s) shall have Teflon™ coating.

6. The compressor shall be equipped with over-current protection.

F. Electrical
1. The electrical power of the unit shall be 208volts or 230 volts, single phase, 60 hertz. The unit shall be capable of satisfactory operation within voltage limits of 187 volts to 253 volts.

2. Power for the indoor unit shall be supplied from the outdoor unit using three (3) fourteen (14) gauge AWG conductors plus ground wire connecting the units.

3. The outdoor unit shall be controlled by the microprocessor located in the indoor unit.

4. The control signal between the indoor unit and the outdoor unit shall be pulse signal 24 volts DC.

5. The unit shall have Pulse Amplitude Modulation circuit to utilize 98% of input power supply.

2.3 INDOOR UNIT

A. General
1. The indoor unit shall be factory assembled, wired and tested. Contained within the unit shall be all factory wiring and internal piping, control circuit board and fan motor. The unit, in conjunction with the wired wall-mounted controller, wireless wall-mounted controller or wireless handheld controller, shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch. Indoor unit and refrigerant pipes shall be purged with dry nitrogen before shipment from the factory.

B. Cabinet
1. The cabinet shall be formed from high strength molded plastic with smooth finish, flat front panel design with access for filter. Cabinet color shall be white – Munsell 1.0Y 9.2/0.2. The unit shall be wall mounted by means of a factory supplied, pre-drilled, mounting plate.

C. Fan
1. The indoor unit fan shall be high performance, double inlet, forward curve, direct drive sirocco fan with a single motor. The fans shall be statically and dynamically balanced and run on a motor with permanently lubricated bearings. The indoor fan shall consist of three (3) speeds: Low, Mid, and Hi and Auto. The fan shall have a selectable Auto fan setting that will adjust the fan speed based on the difference between controller set-point and space temperature.

D. Vane
1. There shall be a motorized horizontal vane to automatically direct air flow in a horizontal and downward direction for uniform air distribution. The horizontal vane shall significantly decrease downward air resistance for lower sound levels, and shall close the outlet port when operation is stopped. There shall also be a set of vertical vanes to provide horizontal swing airflow movement.

E. Filter
1. Return air shall be filtered by means of an easily removable washable filter.

F. Coil
1. The evaporator coil shall be of nonferrous construction with pre-coated aluminum strake fins on copper tubing. The multi-angled heat exchanger shall have a modified fin shape that reduces air resistance for a smoother, quieter airflow. All tube joints shall be brazed with PhosCopper or silver alloy. The coils shall be pressure tested at the factory. A condensate pan and drain shall be provided under the coil. An optional drain pan level switch, designed to connect to the control board, shall be provided if required, and installed on the condensate pan to prevent condensate from overflowing.

G. System Control
1. Microprocessor Control
 a. The unit shall have a factory installed microprocessor controller capable of performing functions necessary to operate the system.
 b. The unit shall be able to communicate with the outdoor unit using a field supplied minimum of 18 AWG, 4 conductor, stranded, shielded or unshielded power/communication cable. If shielded, it must be grounded to chassis at ODU only.
 c. The unit shall be capable of setting Cooling Only operation.
 d. The unit controls shall operate the indoor unit using one of the five operating modes: 1) Auto changeover 2) Heating 3) Cooling 4) Dry 5) Fan only
2.

H. Wired Remote Controller
1. The Wired Remote Controller shall be approximately 5" x 5" in size and white in color with a light-green LCD display. The controller shall support a selection from multiple languages (Spanish, German, Japanese, Chinese, English, Russian, Italian, or French) for display
information. There shall be a built-in weekly timer with up to 8 pattern settings per day. The controller shall consist of an On/Off button, Increase/Decrease Set Temperature buttons, a Cool/Auto/Fan/Dry mode selector, a Timer Menu button, a Timer On/Off button, Set Time buttons, a Fan Speed selector, a Ventilation button, a Test Run button, and a Check Mode button. The controller shall have a built-in temperature sensor. Temperature shall be displayed in either Fahrenheit (°F) or Celsius (°C), and Temperature changes shall be by increments of 1°F (0.5°C). The PAR-21MAA shall have the capability of controlling up to a maximum of 16 systems, as a group with the same mode and set-point for all, at a maximum developed control cable distance of 1,500 feet (500 meters).

2. The control voltage from the wired controller to the indoor unit shall be 12/24 volts, DC. Field wiring shall run directly from the indoor unit to the wall mounted controller with no splices. Up to two wired controllers shall be able to be used to control one unit.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions and requirements of local authorities having jurisdiction.

B. Install in accordance with NFPA 90A and NFPA 90B.

C. Install refrigeration systems in accordance with ASHRAE Std 15.

D. Provide the services of a factory trained technician for start-up of unit.

E. Pipe drain from evaporator to nearest floor drain.

END OF SECTION
SECTION 238200 - CONVECTION HEATING AND COOLING UNITS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 RELATED REQUIREMENTS

A. Section 01 91 13 - General Commissioning Requirement

1.3 SECTION INCLUDES

A. Cabinet unit heaters.

1.4 RELATED REQUIREMENTS

A. Section 230513 - Common Motor Requirements for HVAC Equipment.

B. Section 230716 - HVAC Equipment Insulation.

C. Section 230719 - HVAC Piping Insulation.

D. Section 230913 - Instrumentation and Control Devices for HVAC.

E. Section 230993 - Sequence of Operations for HVAC Controls.

F. Section 232113 - Hydronic Piping.

G. Section 232114 - Hydronic Specialties.

H. Section 260583 - Wiring Connections: Electrical characteristics and wiring connections. Installation of room thermostats. Electrical supply to units.

1.5 REFERENCE STANDARDS

B. AHRI 440 - Performance Rating of Room Fan-Coil Units; 2008.

C. AHRI 840 - Unit Ventilators; 1998.
1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide typical catalog of information including arrangements.

C. Shop Drawings:
 1. Indicate cross sections of cabinets, grilles, bracing and reinforcing, and typical elevations.
 2. Indicate air coil and frame configurations, dimensions, materials, rows, connections, and rough-in dimensions.
 3. Submit schedules of equipment and enclosures typically indicating length and number of pieces of element and enclosure, corner pieces, end caps, cap strips, access doors, pilaster covers, and comparison of specified heat required to actual heat output provided.

D. Selection Samples: For each finish product specified, color chart representing manufacturer's full range of available colors.

E. Certificates: Certify that coils are tested and rated in accordance with AHRI 410.

F. Manufacturer's Instructions: Indicate installation instructions and recommendations.

G. Operation and Maintenance Data: Include manufacturer's descriptive literature, operating instructions, installation instructions, maintenance and repair data, and parts listings.

H. Warranty: (1) Year from the date of final acceptance by Owner unless otherwise noted. Submit manufacturer's warranty and ensure forms have been completed in Town of Rocky Hill's name and registered with manufacturer.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with minimum three years documented experience.

B. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.8 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. (1) Year from date of acceptance by the Owner and completion of commissioning.
PART 2 PRODUCTS

2.1 HYDRONIC CABINET UNIT HEATERS

A. Manufacturers:
 2. Vulcan Radiator

B. Provide products listed, classified, and labeled by Underwriters Laboratories Inc. (UL), Intertek (ETL), or testing firm acceptable to Authority Having Jurisdiction as suitable for the purpose indicated.

C. Coils:
 1. Evenly spaced aluminum fins mechanically bonded to copper tubes.
 2. Heating Hot Water: Suitable for working temperatures up to a maximum not less than 200 degrees F.

D. Vertical Cabinet: Minimum 0.0598 inch thick steel front panel with exposed corners and edges rounded, easily removed panels, glass fiber insulation, integral air outlet, and inlet grilles.

E. Horizontal Recessed: Provide with a galvanized steel cabinet, easily removed panels, glass fiber insulation, integral air outlet, and inlet grilles with minimum 0.0478 inch thick bottom panel.

F. Finish: Factory applied baked primer coat on visible surfaces of enclosure or cabinet.

G. Fans: Centrifugal forward-curved double-width wheels, statically and dynamically balanced, direct driven.

H. Motor: Electronically commutated motors (ECM) factory-programmed and run tested in assembled units.

I. Filter: Easily removed, 1 inch thick glass fiber throw-away type, located to filter air before coil.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that surfaces are suitable for installation.

3.2 INSTALLATION

A. Install in accordance with manufacturer's recommendations.
B. Install equipment exposed to finished areas after walls and ceilings are finished and painted.

C. Do not damage equipment or finishes.

D. Cabinet Unit Heaters:
 1. Coordinate to ensure correct recess size for recessed units.

E. Units with Hydronic Coils:
 1. Provide with shut-off valve on supply piping and tamper-proof, balancing valve with memory stop on return piping.

3.3 FIELD QUALITY CONTROL

A. Provide manufacturer's field representative to test, inspect, instruct, and observe.

3.4 CLEANING

A. After construction and painting is completed, clean exposed surfaces of units.

B. Vacuum clean coils and inside of units.

C. Touch-up marred or scratched surfaces of factory-finished cabinets using finish materials furnished by the manufacturer.

D. Install new filters.

3.5 CLOSEOUT ACTIVITIES

A. See Section 017800 - Closeout Submittals, for closeout submittals.

B. See Section 017900 - Demonstration and Training, for additional requirements.

3.6 PROTECTION

A. Provide finished cabinet units with protective covers during the balance of construction.

B. Protect installed equipment from subsequent construction operations.

END OF SECTION
SECTION 238300 - RADIANT HEATING AND COOLING UNITS

PART 1 GENERAL

1.1 RELATED REQUIREMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Hydronic radiant panel heaters.
B. Radiant heating hydronic piping.

1.3 REFERENCE STANDARDS

D. DIN EN 14037-2 - Free hanging heating and cooling surfaces for water with a temperature below 120 Degrees C - Part 2: Pre-fabricated ceiling mounted radiant panels for space heating - Test method for thermal output; 2016.
E. DIN EN 14037-3 - Free hanging heating and cooling surfaces for water with a temperature below 120 Degrees C - Part 3: Prefabricated ceiling mounted radiant panels for space heating- Rating method and evaluation of radiant thermal output; 2016.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Preinstallation Meeting: Conduct a preinstallation meeting one week prior to the start of the work of this section; require attendance by all affected installers.

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.
1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section, with not less than three years of documented experience.

1.7 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. (1) Year from date of acceptance by the Owner and completion of commissioning.

PART 2 PRODUCTS

2.1 HYDRONIC RADIANT PANEL HEATERS

A. Manufacturers:
 1. Airtite
 2. Airtex

B. Modular Radiant Ceiling Panels: Heat sinks located behind panel, transfer heat between copper tubes and panel face, and radiate heat to zone.
 1. Water Tubes:
 2. Heat Sink Construction:
 a. Mechanically fasten extruded aluminum and copper pipe to heat sink.
 b. Provide non-hardening heat transfer paste between tubing, heat sink, and panel.
 3. Panel Face: Construct of minimum 18 gage (0.0403 inches) thick aluminum.
 4. Finish:
 a. Apply polyester paint or manufacturer's standard finish.
 b. Maintain optimal radiative properties, durability, and cleanability.
 5. Water Pressure Drop and Heating Output Data: Derive from factory testing in accordance with ASHRAE Std 138 or DIN EN 14037, Parts 2 and 3.
 6. Provide insulation on top of radiant ceiling panels, thickness as recommended by the manufacturer.

PART 3 EXECUTION

3.1 EXAMINATION

A. Hydronic Radiant Ceiling Panel Heaters:
 1. Examine areas to receive radiant heating units for compliance with requirements for installation tolerances and other conditions affecting performance.
 2. Examine roughing-in for hydronic piping connections to verify actual locations prior to installation.
 3. Ensure surfaces in contact with radiant heating panels are free of burrs and sharp protrusions.
4. Ensure surfaces are level and plumb.
5. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean all surfaces prior to installation.

3.3 INSTALLATION

A. Install in accordance with manufacturer's recommendations.

B. Hydronic Radiant Ceiling Panel Heaters:
 1. Install level and plumb.
 2. Suspend from structure.
 3. Support in grid-type suspended ceiling using grid as support element as follows:
 a. Install a minimum of four ceiling support system rods or wires for each panel, located not more than 6 inches from panel corners.
 b. Fasten support clips to panel and to ceiling grid members at or near each panel corner with clips designed for the application.
 c. Install at least one independent support rod or wire from structure to tab on panel with breaking strength of the weight of panel at a safety factor of 3.
 4. Unless otherwise indicated, install shutoff valve and union or flange at each connection.
 5. Provide tamper-proof, balancing valve with memory stop on return piping.
 6. Provide float operated automatic air vents with stop valve.
 7. Refer to Section 232113 and Section 232114 for additional requirements.

C. Hydronic Radiant Panel Heaters: Consult manufacturer's installation manual for panels not installed in ceiling systems.

D. Hydronic Radiant Heating Piping:
 1. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 2. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 3. Install piping as indicated unless deviations to layout are approved on shop drawings or coordination drawings.
 4. Install radiant heating piping continuous from the manifold through the heated panel and back to the manifold without piping joints in heated panels.
 5. Connect radiant piping to manifold in a reverse-return arrangement.
 6. Do not bend pipes in radius smaller than manufacturer's minimum bend radius dimension.
 7. Revise locations and elevations from those indicated as required to suit field conditions and ensure integrity of piping and as approved by QA+M architecture.
 8. After system balancing has been completed, mark balancing valves to permanently indicate final position.
 9. Perform the following adjustments before operating the system:
 a. Open valves to fully open position.
 b. Check operation of automatic valves.
 c. Set temperature controls so all zones call for full flow.
 d. Purge air from piping.
3.4 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Hydronic Radiant Ceiling Panel Heaters:
 1. Inspect for damage to finish.
 2. Repair damaged finish to match original finish.
 3. Perform the following field tests, inspections, and prepare test reports:
 a. Leak Test:
 1) After installation, fill water tubes and test for leaks.
 2) Repair leaks and retest until no leaks exist.
 b. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 c. Test and adjust controls and safeties.
 4. Remove and replace damaged and malfunctioning controls and equipment and retest as specified above.

C. Hydronic Radiant Heating Piping
 1. Prepare radiant heating piping for testing as follows:
 a. Open all isolation valves and close bypass valves.
 b. Open and verify operation of zone control valves.
 c. Flush with clean water and clean strainers.
 2. Perform the following tests and inspections with the assistance of a factory authorized service representative:
 a. Leak Test:
 1) After installation, charge system and test for leaks.
 2) Subject piping to hydrostatic test pressure that is not less than 1.5 times the design pressure but not more than 100 psig.
 3) Repair leaks and retest until no leaks exist.
 3. Radiant heating piping will be considered defective if it does not pass tests and inspections.
 4. Prepare test and inspection reports.
 5. Protect hydronic piping system from damage during construction.

3.5 CLEANING

A. Radiant Ceiling Panel Heaters: Remove paint splatters, other spots, dirt, and debris.

3.6 CLOSEOUT ACTIVITIES

A. See Section 017800 - Closeout Submittals.

B. See Section 017900 - Demonstration and Training, for additional requirements.

C. Demonstrate Operation of Controls for the following Equipment:
 1. Hydronic Radiant Ceiling Panel Heaters.
3.7 PROTECTION

A. Protect installed products from damage until Date of Substantial Completion.

END OF SECTION
SECTION 260502 - ELECTRICAL GENERAL CONDITIONS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

 A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 DESCRIPTION

 A. Related Work Specified Elsewhere:

 1. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

 2. This section applies to certain sections of Division 1, Division 23, "Mechanical". This section applies to all sections of Division 26, "Electrical," of this project specification unless specified otherwise in the individual sections.

 3. Temporary Facilities and controls are specified in Section 01 50 00. Cooperate in ensuring adequate protection.

 4. General material, equipment and workmanship standards are specified in Section 01 60 00.

 5. Finished painting is specified in section 09 91 00.

 6. Access doors and panels to be installed in finished surfaces are specified in Section 08 31 13.

 7. Cutting and patching, chases, furred spaces, trenches, covers, pits, foundations and other construction required in conjunction with the work under this Division is specified in Section 01 73 29.

1.3 DRAWINGS AND COORDINATION

 A. It is not the intention of the drawings to show every item, piece of equipment and detail. Provide complete, operating systems.

 B. Install work as closely as possible to layouts shown on drawings. Modify work as necessary to meet job conditions and to clear other equipment. Consult Architect before making changes which affect the function or appearance of systems.

 C. Dimensions, elevations and locations are shown approximately. Verify actual conditions in the field.

 D. Owner, Architect, and Engineer reserve the right to order changes in layout of such items as switches, receptacles, and fixtures if such changes do not substantially affect costs and if affected items have not been fabricated or installed.

 E. In some cases, drawings are based upon products of one or several manufactures as listed on the Contract Documents. This contractor shall be responsible for modifications made necessary by substitution of products of different manufacturers.
F. Do not install part of a system until all critical components of the system and related systems have been approved. Coordinate parts of systems to ensure proper operation of the entire system.

G. Install products in accordance with manufacturer's written instructions. Notify Engineer if Contract Documents conflict with manufacturer’s instructions. Comply with Engineers interpretations.

H. Provide brackets, supports, anchors and frames required for installation of work specified herein.

1.4 CODES AND STANDARDS

A. The Codes and Standards listed below apply to all Work. Where Codes or Standards are mentioned in these Specifications, follow the latest edition or revision.

B. The current adopted editions of the following State or local Codes apply:
1. 2015 International Building Code
2. 2018 Connecticut State Building Code Errata
3. 2015 International Mechanical Code
4. 2015 International Plumbing Code
5. 2017 National Electrical Code (NFPA 70)

C. All materials furnished and all work installed shall comply with the rules and recommendations of the NFPA, the requirements of the local utility companies, the recommendations of the fire insurance rating organization having jurisdiction and the requirements of all Governmental departments having jurisdiction.

D. Include in the Work, without extra cost to the Owner, any labor, materials, testing, services, apparatus and Drawings in order to comply with all applicable laws, ordinances, rules and regulations, whether or not shown on Drawings and/or specified.

1.5 PERMITS AND FEES

A. Give all necessary notices, obtain all permits; pay all Government and State sales taxes and fees where applicable, and other costs, including utility connections or extensions in connection with the Work. File all necessary Drawings, prepare all Documents and obtain all necessary approvals of all Governmental and State departments having jurisdiction, obtain all required certificates of inspections for Work and deliver a copy to the Engineer before request for acceptance and final payment for the Work.

1.6 REFERENCES

B. NEMA MG 1 - Motors and Generators; National Electrical Manufacturers Association; 1993 (and Revision 1,2,3).

C. NEMA ICS 6 - National Electrical Manufacturers Association; 1993 Enclosures for Industrial Control and Systems

I. IBC 2012, Structural Loads, Seismic bracing and restraints.

1.7 DEFINITIONS

A. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, shall be as defined in IEEE 100.

B. The technical sections referred to herein are those specification sections that describe products, installation procedures, and equipment operations and that refer to this section for detailed description of submittal types.

C. The technical paragraphs referred to herein are those paragraphs in PART 2 - PRODUCTS and PART 3 - EXECUTION of the technical sections that describe products, systems, installation procedures, equipment, and test methods.

1.8 EQUIPMENT DEVIATIONS

A. Where the Contractor proposes to deviate (substitute or provide an equivalent) from the equipment or materials as hereinafter specified, he shall do so by making a request in writing within 60 days from the Award of Contract. The Contractor shall state in his request whether it is a substitution or an equivalent to that specified, and the amount of credit involved. A copy of said request shall be included in the Base Bid with manufacturer's equipment cuts.

1. The Base Product Specification shall be based on using the materials and equipment as specified and scheduled with no exceptions. Equipment Manufacturers Scheduled on Drawings are considered Base Product Specification and any other acceptable manufacturers listed in the specifications is considered an equivalent manufacturer to the Base Product Specification. Unlisted manufacturers are considered a substitution and
equipment deviation and subject to the requirements for equipment substitution and deviation. When any alternate manufacturer does not qualify acceptable, as determined by the Engineer, provide the Base Bid manufacturer at no additional cost to Owner.

2. Where an equivalent manufacturer is listed in the specifications, it may or may not indicate that there is an equal product available. Any products must meet all criteria of the Base Product Specification as determined by the Engineer.

B. Substitutions and Equipment Deviations will not be considered if they have a direct bearing on the changing or revising of Contract Documents or if it involves other Contractor's scope of work or their equipment. Coordination with all trades is required and must be acceptable to all other involved Contractors.

C. Substitutions may be considered for one of the following:
1. Substitution for Cause: Changes proposed by the Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of warranty terms.
2. Substitutions for Convenience: Changes proposed by the Contractor or Owner that are not required in order to meet other Project requirements, but may offer advantage to either the Owner or Contractor.

D. In these Specifications and on the accompanying Drawings, one or more makes of materials, apparatus or appliances may have been specified for use in this installation. This has been done for convenience in fixing the standard of workmanship, finish and design required for installation. In the event that only one (1) manufacturer of a product is specified and it is found that the manufacturer has discontinued the product, the Contractor shall use an acceptable equivalent product that meets the requirements of an equivalent product, as noted below, and has all the features of the originally specified product. The details of workmanship, finish and design, and the guaranteed performance of any material, apparatus or appliance which the Contractor desires to deviate for those mentioned herein shall also conform to these standards.

E. Where no specific make of material, apparatus or appliance is mentioned, any first-class product made by a reputable manufacturer may be submitted for the Engineer's review.

F. Where two or more names are given as equivalents, the Contractor must use the specified item or one of the named equivalents. Where one name only is used and is followed by the words "or acceptable equivalent", the Contractor must use the item named or he may apply for an equipment deviation through the prescribed manner in accordance with this Specification.

G. Equipment, material or devices submitted for review as an "accepted equivalent" shall meet the following requirements:
1. The equivalent shall have the same construction features such as, but not limited to:
2. Material thickness, gauge, weight, density, etc.
3. Welded, riveted, bolted, etc., construction
4. Finish, undercoatings, corrosion protection
5. The equivalent shall perform with the same or better operating efficiency.
6. The equivalent shall have equal or greater reserve capacity.
7. The equivalent shall be locally represented by the manufacturer for service, parts and technical information.
8. The equivalent shall bear the same labels of performance certification as is applicable to the specified item, such as AMCA or ARI labels.
H. Where the Contractor proposes to use an item of equipment other than specified or detailed on the Drawings which requires any redesign of the structure, partitions, foundations, piping, wiring or any other part of the mechanical, electrical or architectural layout, all such redesign and all new drawings and detailing required therefore shall be prepared by the Designers of Record at the expense of the Contractor and at no additional cost to the Owner.

I. Where such accepted deviation or substitution requires a different quantity and arrangement of piping, ductwork, valves, pumps, insulation, wiring, conduit and equipment from that specified or indicated on the Drawings, the Contractor shall, with the acceptance by the Engineer, furnish and install any such additional equipment required by the system at no additional cost to the Owner, including any costs added to other trades due to the substitution.

J. The Engineer shall determine if an "accepted equivalent" to a manufacturer listed in the Specifications is considered acceptable.

1.9 SUBMITTALS

A. See Section 01 33 00 - Administrative Requirements, for submittal procedures.

B. Provide manufacturer's ORIGINAL printed product data, catalog cuts and description of any special installation procedures. Photocopied and/or illegible product data sheets shall not be acceptable. All product datasheets shall be highlighted or stamped with arrows to indicate the specific components being submitted for approval.

C. Submittals shall include the manufacturer's name, trade name, place of manufacture, catalog model or number, nameplate data, size, layout dimensions, capacity, project specification and technical paragraph reference. Submittals shall also include applicable federal, military, industry, and technical society publication references, and years of satisfactory service, and other information necessary to establish contract compliance of each item to be provided. Photographs of existing installations are unacceptable and will be returned without approval.

D. Submittals for each manufactured item shall be current manufacturer's descriptive literature of cataloged products, equipment drawings, diagrams, performance and characteristic curves, and catalog cuts. Handwritten and typed modifications and other notations not part of the manufacturer's preprinted data will result in the rejection of the submittal. Should manufacturer's data require supplemental information for clarification, the supplemental information shall be submitted as specified for certificates of compliance.

E. Submit drawings a minimum of 14 inches by 20 inches in size using a minimum scale of 1/8 inch per foot except as specified otherwise. Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices.
F. Where installation procedures or part of the installation procedures are required to be in accordance with manufacturer's instructions, submit printed copies of those instructions prior to installation. Installation of the item shall not proceed until manufacturer's instructions are received. Failure to submit manufacturer's instructions shall be cause for rejection of the equipment or material.

G. Submit manufacturer's certifications as required for products, materials, finishes, and equipment as specified in the technical sections. Certificates from material suppliers are not acceptable. Preprinted certifications and copies of previously submitted documents will not be acceptable. The manufacturer's certifications shall name the appropriate products, equipment, or materials and the publication specified as controlling the quality of that item. Certification shall not contain statements to imply that the item does not meet requirements specified, such as "as good as"; "achieve the same end use and results as materials formulated in accordance with the referenced publications"; or "equal or exceed the service and performance of the specified material." Certifications shall simply state that the item conforms to the requirements specified. Certificates shall be printed on the manufacturer's letterhead and shall be signed by the manufacturer's official authorized to sign certificates of compliance.

H. Where equipment or materials are specified to conform to industry and technical society reference standards of the organizations such as American National Standards Institute (ANSI), American Society for Testing and Materials (ASTM), National Electrical Manufacturers Association (NEMA), Underwriters Laboratories Inc. (UL), and Association of Edison Illuminating Companies (AEIC), submit proof of such compliance. The label or listing by the specified organization will be acceptable evidence of compliance.

I. In lieu of the label or listing, submit a certificate from an independent testing organization, competent to perform testing, and approved by the Contracting Officer. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item complies with the specified organization's reference standard.

1.10 QUALITY ASSURANCE

A. Material and Equipment Qualifications
 1. Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in the technical section.

B. Regulatory Requirements
 1. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70.

C. Alternative Qualifications
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

1. Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

D. Service Support
1. The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

E. Manufacturer's Nameplate
1. Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

F. Modification of References
1. In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Building Official or Inspector and/or Fire Marshal.

G. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section, with not less than three years of documented experience.

H. Installer Qualifications: Company specializing in performing the work of this section with minimum 5 years of experience.

I. Design Seismic bracing and restraints under direct supervision of a Professional Structural Engineer experienced in design of this Work and licensed in Connecticut.

J. Products Requiring Electrical Connection: Listed and classified by UL as suitable for the purpose specified and indicated.

1.11 SEISMIC RESTRAINT

A. General: This project is in a seismic zone per State and/or Local Codes and Ordinances and all materials and equipment shall be installed, supported, and seismically restrained accordingly. Verify current seismic requirements based on project location and with Code requirements.

B. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in the jurisdiction where the Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of vibration isolation bases and seismic restraints that are similar to those required for this Project in material, design, and extent.

C. Shop Drawings: Show designs and calculations, certified by a professional engineer, for the following:
1. Design Calculations: Calculations for selection of vibration isolators, design of vibration isolation bases, design of seismic supports and selection of seismic restraints for all equipment and materials.

2. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to the structure and to the supported equipment. Include auxiliary motor slides and rails, and base weights.

3. Seismic Restraint Details: Detail fabrication and attachment of restraints, supports and snubbers.

4. Seismic Separation Assemblies: Refer to the Architectural and/or Structural drawings for locations of seismic joints.

D. Installation: Installation shall be carried out in strict accordance with the Seismic Engineer's submittal, current Code, accepted standards and the equipment and material manufacturers' recommendations.

1.12 COORDINATION WITH OTHER DIVISIONS

A. Carry out all work in conjunction with other trades and give full cooperation in order that all work may proceed with a minimum of delay and interference. Particular emphasis is placed on timely installation of major apparatus and furnishing other Contractors, especially the General Contractor or Construction Manager, with information as to openings, chases, sleeves, bases, inserts, equipment locations, panels, access doors, etc. required by other trades, and to allow for serviceable access to equipment.

B. Mechanical contractors' shall initiate coordination drawings and sections clearly showing how the work is to be installed in relation to the work of other trades, at no extra charge to the Owner. The Contractors' shall prepare coordination drawings at a scale no less than 1/4"=1'-0", showing the work of all trades, including but not limited to, the following: proposed ductwork installation in detail, including ceiling heights, approved structural steel shop drawings, duct heights, access doors, light fixtures, registers and diffusers, sprinkler piping and heads, electrical distribution conduits, wires, panels and any other electrical work which may conflict with the sheet metal ducts or piping, waste and vent piping, water piping, storm piping, and rain leaders. Provide elevation details showing connections and equipment layout and configuration based on approved submittals. Each shall use a different color code. A coordination meeting of all Contractors involved is then to be held and all possible conflicts are to be resolved. All trades shall sign acceptance of the drawings and then shall submit two (2) prints of each drawing to the Engineer for record.

C. Contractors are required to examine all of the Project Drawings and mutually arrange work so as to avoid interference. In general, ductwork, heating piping, sprinkler piping and drainage lines take precedence over water, gas and electrical conduits. The Engineer regarding the arrangement of work, which cannot be agreed upon by the Contractors, will make final decisions. Service of equipment will take precedence.

D. Where the work of the Contractor will be installed in close proximity to or will interfere with work of other trades, assist in working out space conditions to make a satisfactory adjustment.

E. If work is installed before coordinating with other Divisions or so as to cause interference with work of other Sections, the Contractor causing the interference will make necessary changes to correct the condition without extra charge to the Owner.
F. Initial contact and coordination has been conducted with utility entities for the purpose of the preparation of Bid Documents. The Contractor shall coordinate all final specific utility requirements.

1.13 PRE-INSTALLATION MEETING

A. Convene one week before starting work of this section.

1.14 PROJECT CONDITIONS

A. Sequence installation to ensure utility connections are achieved in an orderly and expeditious manner.

B. Sequence installation to conform with the project phasing indicated on the Architectural drawings.

1.15 WARRANTY

A. See Section 017700 - Closeout Submittals, for additional warranty requirements.

B. Correct defective Work within a one year period after Date of Substantial Completion.

1.16 OPERATING INSTRUCTIONS

A. Submit text of posted operating instructions for each system and principal item of equipment as specified in the technical sections. The operating instructions shall include the following:

1. Wiring diagrams, control diagrams, and control sequence for each principal system and item of equipment.
2. Start up, proper adjustment, operating, lubrication, and shutdown procedures.
3. Safety precautions.
4. The procedure in the event of equipment failure.
5. Other items of instruction as recommended by the manufacturer of each system or item of equipment.

B. Print or engrave operating instructions and frame under glass or in approved laminated plastic. Post instructions where directed. For operating instructions exposed to the weather, provide weather-resistant materials or weatherproof enclosures. Operating instructions shall not fade when exposed to sunlight and shall be secured to prevent easy removal or peeling.

1.17 ELECTRICAL REQUIREMENTS

A. Electrical installations shall conform to ANSI C2, NFPA 70, and requirements specified herein.

B. Wiring and Conduit
1. Provide internal wiring for components of packaged equipment as an integral part of the equipment. Whether shown or not, provide power wiring and conduit for field-installed equipment, and motor control equipment, the conduit and wiring connecting such assemblies, or other power sources to equipment. Power and Control wiring and conduit shall be provided under Division 26 and shall conform to the requirements of the section specifying the associated equipment.

C. New Work
 1. Provide electrical components of mechanical equipment, such as motors, motor starters, control or push-button stations, float or pressure switches, solenoid valves, integral disconnects, and other devices functioning to control mechanical equipment, as well as control wiring and conduit to conform with the requirements of the section covering the mechanical equipment. Extended voltage range motors shall not be permitted. The interconnecting power wiring and conduit, control wiring and conduit, the motor control equipment and the electrical power circuits shall be provided under Division 26, except internal wiring for components of packaged equipment shall be provided as an integral part of the equipment.
 a. When motors and equipment furnished are larger than sizes indicated, provide any required changes to the electrical service as may be necessary and related work as a part of the work for the section specifying that motor or equipment.

D. Instruction To Owners Personnel
 1. Where specified in the technical sections, furnish the services of competent instructors to give full instruction to designated Owner personnel in the adjustment, operation, and maintenance of the specified systems and equipment, including pertinent safety requirements as required. Instructors shall be thoroughly familiar with all parts of the installation and shall be trained in operating theory as well as practical operation and maintenance work. Instruction shall be given during the first regular work week after the equipment or system has been accepted and turned over to the Owner for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be as specified in the individual section. When more than 4 man-days of instruction are specified, use approximately half of the time for classroom instruction. Use other time for instruction with equipment or system. When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instructions to acquaint the operating personnel with the changes or modifications. Instructions and/or training shall be video taped. Provide the owner with two copies of the video tape prior to project close out.

E. Lockout Requirements
 1. Provide disconnecting means capable of being locked out for machines and other equipment to prevent unexpected startup or release of stored energy in accordance with 29 CFR 1910.147. Mechanical isolation of machines and other equipment shall be in accordance with requirements of Division 23, "Mechanical."

1.18 THROUGH-PENETRATION FIRESTOP SYSTEMS
 A. Refer to Division 7 Specification for additional and more specific information.
 B. Fire-stopping systems shall be submitted as shop drawing.
C. Penetrations through fire-rated walls, ceiling or floors and penetrations through smoke barriers, smoke resistive construction, and construction enclosing compartmentalized areas involving both empty openings, openings containing penetration items, and openings due to flue decks shall be sealed with a U.L. approved fire-stop fitting classified for an hourly rating equivalent to the fire rating of the wall, ceiling or floor.

D. Thruwall and floor seals shall be used to provide a positive means of sealing pipes or ducts which pass through the concrete foundation of a structure below grade or below ground water level. Seals shall also be used at entry points through concrete walls or floors which must be sealed.

1.19 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

PART 2 PRODUCTS

2.1 NOT USED

PART 3 EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

3.2 FIELD QUALITY CONTROL

A. Perform field inspection and testing in accordance with Section 01 40 00.

3.3 STARTING EQUIPMENT AND SYSTEMS

A. Provide manufacturer's field representative to prepare and start equipment.
B. Adjust for proper operation within manufacturer’s published tolerances.

C. Demonstrate proper operation of equipment to Owner’s designated representative.

3.4 CLEANING

A. Clean the entire installation at substantial completion.

B. Protect installed equipment from subsequent construction operations.

END OF SECTION
SECTION 260505 - SELECTIVE DEMOLITION FOR ELECTRICAL

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Electrical demolition.

1.2 RELATED REQUIREMENTS

A. Section 017000 - Execution and Closeout Requirements: Additional requirements for alterations work.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that abandoned wiring and equipment serve only abandoned facilities.

B. Demolition drawings are based on casual field observation and existing record documents.

C. Report discrepancies to QA+M architecture before disturbing existing installation.

D. Beginning of demolition means installer accepts existing conditions.

3.2 PREPARATION

A. Disconnect electrical systems in walls, floors, and ceilings to be removed.

B. Coordinate utility service outages with utility company.

C. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations.

D. Existing Electrical Service: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Minimize outage duration.
1. Obtain permission from Town of Rocky Hill at least 24 hours before partially or completely disabling system.
2. Make temporary connections to maintain service in areas adjacent to work area.

E. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Minimize outage duration.
 1. Notify Town of Rocky Hill before partially or completely disabling system.
 2. Notify local fire service.
 3. Make notifications at least 24 hours in advance.
 4. Make temporary connections to maintain service in areas adjacent to work area.

F. Existing Telephone System: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Minimize outage duration.
 1. Notify Town of Rocky Hill at least 24 hours before partially or completely disabling system.
 2. Notify telephone utility company at least 24 hours before partially or completely disabling system.
 3. Make temporary connections to maintain service in areas adjacent to work area.

G. Existing Technology infrastructure System: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Minimize outage duration.
 1. Make temporary connections to maintain service in areas adjacent to work area.

3.3 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

A. Remove, relocate, and extend existing installations to accommodate new construction.

B. Remove abandoned wiring to source of supply.

C. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.

D. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets that are not removed.

E. Disconnect and remove abandoned panelboards and distribution equipment.

F. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.

G. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.

H. Repair adjacent construction and finishes damaged during demolition and extension work.
I. Maintain access to existing electrical installations that remain active. Modify installation or provide access panel as appropriate.

J. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified.

3.4 CLEANING AND REPAIR

A. See Section 017419 - Construction Waste Management and Disposal for additional requirements.

B. Clean and repair existing materials and equipment that remain or that are to be reused.

C. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.

D. Luminaires: Remove existing luminaires for cleaning. Use mild detergent to clean all exterior and interior surfaces; rinse with clean water and wipe dry. Replace lamps, ballasts and broken electrical parts.

END OF SECTION
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Single conductor building wire.
B. Service entrance cable.
C. Metal-clad cable.
D. Wiring connectors.
E. Electrical tape.
F. Heat shrink tubing.
G. Wire pulling lubricant.
H. Cable ties.

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.
B. Section 260526 - Grounding and Bonding for Electrical Systems: Additional requirements for grounding conductors and grounding connectors.
C. Section 260553 - Identification for Electrical Systems: Identification products and requirements.
D. Section 262100 - Low-Voltage Electrical Service Entrance: Additional requirements for electrical service conductors.
E. Section 284600 - Fire Detection and Alarm: Fire alarm system conductors and cables.
1.4 REFERENCE STANDARDS

H. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

I. NECA 120 - Standard for Installing Armored Cable (AC) and Metal-Clad Cable (MC); 2012.

J. NEMA WC 70 - Nonshielded Power Cable 2000 V or Less for the Distribution of Electrical Energy; 2009.

L. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

M. UL 44 - Thermoset-Insulated Wires and Cables; Current Edition, Including All Revisions.

N. UL 83 - Thermoplastic-Insulated Wires and Cables; Current Edition, Including All Revisions.

P. UL 486C - Splicing Wire Connectors; Current Edition, Including All Revisions.

R. UL 510 - Polyvinyl Chloride, Polyethylene, and Rubber Insulating Tape; Current Edition, Including All Revisions.

S. UL 854 - Service-Entrance Cables; Current Edition, Including All Revisions.

T. UL 1569 - Metal-Clad Cables; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate sizes of raceways, boxes, and equipment enclosures installed under other sections with the actual conductors to be installed, including adjustments for conductor sizes increased for voltage drop.
 2. Coordinate with electrical equipment installed under other sections to provide terminations suitable for use with the conductors to be installed.
 3. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for conductors and cables, including detailed information on materials, construction, ratings, listings, and available sizes, configurations, and stranding.

C. Field Quality Control Test Reports.

D. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

E. Project Record Documents: Record actual installed circuiting arrangements. Record actual routing for underground circuits.

F. Maintenance Materials: Furnish the following for Town of Rocky Hill's use in maintenance of project.
 1. See Section 016000 - Product Requirements, for additional provisions.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.
C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store conductors and cables in accordance with manufacturer's instructions.

1.9 FIELD CONDITIONS

A. Do not install or otherwise handle thermoplastic-insulated conductors at temperatures lower than 14 degrees F, unless otherwise permitted by manufacturer's instructions. When installation below this temperature is unavoidable, notify QA+M architecture and obtain direction before proceeding with work.

PART 2 PRODUCTS

2.1 CONDUCTOR AND CABLE APPLICATIONS

A. Do not use conductors and cables for applications other than as permitted by NFPA 70 and product listing.

B. Provide single conductor building wire installed in suitable raceway unless otherwise indicated, permitted, or required.

C. Nonmetallic-sheathed cable is not permitted.

D. Underground feeder and branch-circuit cable is not permitted.

E. Service entrance cable is permitted only as follows:
 1. Where not otherwise restricted, may be used:
 a. For underground service entrance, installed in raceway.
 2. In addition to other applicable restrictions, may not be used:
 a. Where exposed to damage.

F. Metal-clad cable is permitted only as follows:
 1. Where not otherwise restricted, may be used:
 a. Where concealed in hollow stud walls and above accessible ceilings for branch circuits up to 20 A.
 1) Exception: Provide single conductor building wire in raceway for circuit homerun from first outlet or fixture to panelboard.
 2. In addition to other applicable restrictions, may not be used:
 a. Unless approved by Town of Rocky Hill.
 b. Where not approved for use by the authority having jurisdiction.
 c. Where exposed to view, except in dedicated electrical, communications, and mechanical rooms where not subject to damage.
2.2 CONDUCTOR AND CABLE GENERAL REQUIREMENTS

A. Provide products that comply with requirements of NFPA 70.

B. Provide products listed, classified, and labeled as suitable for the purpose intended.

C. Provide new conductors and cables manufactured not more than one year prior to installation.

D. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, etc. as required for a complete operating system.

E. Comply with NEMA WC 70.

F. Comply with FS A-A-59544 where applicable.

G. Thermoplastic-Insulated Conductors and Cables: Listed and labeled as complying with UL 83.

H. Thermoset-Insulated Conductors and Cables: Listed and labeled as complying with UL 44.

I. Conductors for Grounding and Bonding: Also comply with Section 260526.

J. Conductor Material:
 1. Provide copper conductors only. Aluminum conductors are not acceptable for this project. Conductor sizes indicated are based on copper.
 2. Copper Conductors: Soft drawn annealed, 98 percent conductivity, uncoated copper conductors complying with ASTM B3, ASTM B8, or ASTM B787/B787M unless otherwise indicated.
 3. Tinned Copper Conductors: Comply with ASTM B33.

K. Minimum Conductor Size:
 1. Branch Circuits: 12 AWG.
 a. Exceptions:
 1) 20 A, 120 V circuits longer than 75 feet: 10 AWG, for voltage drop.
 2) 20 A, 120 V circuits longer than 150 feet: 8 AWG, for voltage drop.
 3) 20 A, 277 V circuits longer than 150 feet: 10 AWG, for voltage drop.
 2. Control Circuits: 14 AWG.

L. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

M. Conductor Color Coding:
 1. Color code conductors as indicated unless otherwise required by the authority having jurisdiction. Maintain consistent color coding throughout project.
 a. Conductors size 4 AWG and larger may have black insulation color coded using vinyl color coding electrical tape.

3. Color Code:
 a. 480Y/277 V, 3 Phase, 4 Wire System:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 4) Neutral/Grounded: Gray.
 b. 208Y/120 V, 3 Phase, 4 Wire System:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 4) Neutral/Grounded: White.
 c. Equipment Ground, All Systems: Green.
 d. Travelers for 3-Way and 4-Way Switching: Pink.
 e. For control circuits, comply with manufacturer's recommended color code.

2.3 SINGLE CONDUCTOR BUILDING WIRE

A. Manufacturers:
 1. Copper Building Wire:
 d. Substitutions: See Section 016000 - Product Requirements.

B. Description: Single conductor insulated wire.

C. Conductor Stranding:
 1. Feeders and Branch Circuits:
 b. Size 8 AWG and Larger: Stranded.
 2. Control Circuits: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation:
 1. Copper Building Wire: Type THHN/THWN or THHN/THWN-2, except as indicated below.
 a. Size 4 AWG and Larger: Type XHHW-2.
 c. Fixture Wiring Within Luminaires: Type TFFN/TFN for luminaires with labeled maximum temperature of 90 degrees C; Approved suitable type for luminaires with labeled maximum temperature greater than 90 degrees C.

2.4 SERVICE ENTRANCE CABLE

A. Manufacturers:
 1. Copper Service Entrance Cable:
d. Substitutions: See Section 016000 - Product Requirements.

B. Service Entrance Cable for Underground Use: NFPA 70, Type USE single-conductor cable listed and labeled as complying with UL 854, Type USE-2, and with UL 44, Type RHH/RHW-2.

C. Conductor Stranding: Stranded.

D. Insulation Voltage Rating: 600 V.

2.5 METAL-CLAD CABLE

A. Manufacturers:
 1. AFC Cable Systems Inc: www.afcweb.com/#sle.

B. Description: NFPA 70, Type MC cable listed and labeled as complying with UL 1569, and listed for use in classified firestop systems to be used.

C. Conductor Stranding:
 2. Size 8 AWG and Larger: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation: Type THHN/THWN or THHN/THWN-2.

F. Grounding: Full-size integral equipment grounding conductor.
 1. Provide additional isolated/insulated grounding conductor where indicated or required.

G. Armor: Steel, interlocked tape.

2.6 WIRING CONNECTORS

A. Description: Wiring connectors appropriate for the application, suitable for use with the conductors to be connected, and listed as complying with UL 486A-486B or UL 486C as applicable.

B. Connectors for Grounding and Bonding: Comply with Section 260526.

C. Wiring Connectors for Splices and Taps:
 1. Copper Conductors Size 8 AWG and Smaller: Use twist-on insulated spring connectors.
2. Copper Conductors Size 6 AWG and Larger: Use mechanical connectors or compression connectors.

D. Wiring Connectors for Terminations:
1. Provide terminal lugs for connecting conductors to equipment furnished with terminations designed for terminal lugs.
2. Provide compression adapters for connecting conductors to equipment furnished with mechanical lugs when only compression connectors are specified.
3. Where over-sized conductors are larger than the equipment terminations can accommodate, provide connectors suitable for reducing to appropriate size, but not less than required for the rating of the overcurrent protective device.
4. Copper Conductors Size 8 AWG and Larger: Use mechanical connectors or compression connectors where connectors are required.
5. Stranded Conductors Size 10 AWG and Smaller: Use crimped terminals for connections to terminal screws.
6. Conductors for Control Circuits: Use crimped terminals for all connections.

E. Do not use insulation-piercing or insulation-displacement connectors designed for use with conductors without stripping insulation.

F. Do not use push-in wire connectors as a substitute for twist-on insulated spring connectors.

G. Twist-on Insulated Spring Connectors: Rated 600 V, 221 degrees F for standard applications and 302 degrees F for high temperature applications; pre-filled with sealant and listed as complying with UL 486D for damp and wet locations.
1. Manufacturers:
 a. 3M: www.3m.com/#sle.
 c. NSI Industries LLC: www.nsiindustries.com/#sle.
 d. Substitutions: See Section 016000 - Product Requirements.

H. Mechanical Connectors: Provide bolted type or set-screw type.
1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.

I. Compression Connectors: Provide circumferential type or hex type crimp configuration.
1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.

J. Crimped Terminals: Nylon-insulated, with insulation grip and terminal configuration suitable for connection to be made.
1. Manufacturers:
d. Substitutions: See Section 016000 - Product Requirements.

2.7 WIRING ACCESSORIES

A. Electrical Tape:
 1. Manufacturers:
 a. 3M: www.3m.com/#sle.
 c. Substitutions: See Section 016000 - Product Requirements.
 2. Vinyl Color Coding Electrical Tape: Integrally colored to match color code indicated; listed as complying with UL 510; minimum thickness of 7 mil; resistant to abrasion, corrosion, and sunlight; suitable for continuous temperature environment up to 221 degrees F.
 3. Vinyl Insulating Electrical Tape: Complying with ASTM D3005 and listed as complying with UL 510; minimum thickness of 7 mil; resistant to abrasion, corrosion, and sunlight; conformable for application down to 0 degrees F and suitable for continuous temperature environment up to 221 degrees F.
 4. Rubber Splicing Electrical Tape: Ethylene Propylene Rubber (EPR) tape, complying with ASTM D4388; minimum thickness of 30 mil; suitable for continuous temperature environment up to 194 degrees F and short-term 266 degrees F overload service.
 5. Electrical Filler Tape: Rubber-based insulating moldable putty, minimum thickness of 125 mil; suitable for continuous temperature environment up to 176 degrees F.
 6. Varnished Cambric Electrical Tape: Cotton cambric fabric tape, with or without adhesive, oil-primed and coated with high-grade insulating varnish; minimum thickness of 7 mil; suitable for continuous temperature environment up to 221 degrees F.
 7. Moisture Sealing Electrical Tape: Insulating mastic compound laminated to flexible, all-weather vinyl backing; minimum thickness of 90 mil.

B. Heat Shrink Tubing: Heavy-wall, split-resistant, with factory-applied adhesive; rated 600 V; suitable for direct burial applications; listed as complying with UL 486D.

C. Wire Pulling Lubricant: Listed; suitable for use with the conductors or cables to be installed and suitable for use at the installation temperature.
 1. Manufacturers:
 a. 3M: www.3m.com/#sle.
 d. Substitutions: See Section 016000 - Product Requirements.

D. Cable Ties: Material and tensile strength rating suitable for application.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that interior of building has been protected from weather.

B. Verify that work likely to damage wire and cable has been completed.
C. Verify that raceways, boxes, and equipment enclosures are installed and are properly sized to accommodate conductors and cables in accordance with NFPA 70.

D. Verify that field measurements are as indicated.

E. Verify that conditions are satisfactory for installation prior to starting work.

3.2 PREPARATION

A. Clean raceways thoroughly to remove foreign materials before installing conductors and cables.

3.3 INSTALLATION

A. Circuiting Requirements:
 1. Unless dimensioned, circuit routing indicated is diagrammatic.
 2. When circuit destination is indicated without specific routing, determine exact routing required.
 3. Arrange circuiting to minimize splices.
 4. Include circuit lengths required to install connected devices within 10 ft of location indicated.
 5. Maintain separation of Class 1, Class 2, and Class 3 remote-control, signaling, and power-limited circuits in accordance with NFPA 70.
 6. Maintain separation of wiring for emergency systems in accordance with NFPA 70.
 7. Circuiting Adjustments: Unless otherwise indicated, when branch circuits are indicated as separate, combining them together in a single raceway is permitted, under the following conditions:
 a. Provide no more than six current-carrying conductors in a single raceway. Dedicated neutral conductors are considered current-carrying conductors.
 b. Increase size of conductors as required to account for ampacity derating.
 c. Size raceways, boxes, etc. to accommodate conductors.
 8. Common Neutrals: Unless otherwise indicated, sharing of neutral/grounded conductors among single phase branch circuits of different phases installed in the same raceway is not permitted. Provide dedicated neutral/grounded conductor for each individual branch circuit.

B. Install products in accordance with manufacturer's instructions.

C. Perform work in accordance with NECA 1 (general workmanship).

D. Install metal-clad cable (Type MC) in accordance with NECA 120.

E. Installation in Raceway:
 1. Tape ends of conductors and cables to prevent infiltration of moisture and other contaminants.
 2. Pull all conductors and cables together into raceway at same time.
3. Do not damage conductors and cables or exceed manufacturer's recommended maximum pulling tension and sidewall pressure.
4. Use suitable wire pulling lubricant where necessary, except when lubricant is not recommended by the manufacturer.

F. Exposed Cable Installation (only where specifically permitted):
 1. Route cables parallel or perpendicular to building structural members and surfaces.
 2. Protect cables from physical damage.

G. Paralleled Conductors: Install conductors of the same length and terminate in the same manner.

H. Secure and support conductors and cables in accordance with NFPA 70 using suitable supports and methods approved by the authority having jurisdiction. Provide independent support from building structure. Do not provide support from raceways, piping, ductwork, or other systems.
 1. Installation Above Suspended Ceilings: Do not provide support from ceiling support system. Do not provide support from ceiling grid or allow conductors and cables to lay on ceiling tiles.

I. Terminate cables using suitable fittings.
 1. Metal-Clad Cable (Type MC):
 a. Use listed fittings.
 b. Cut cable armor only using specialized tools to prevent damaging conductors or insulation. Do not use hacksaw or wire cutters to cut armor.

J. Install conductors with a minimum of 12 inches of slack at each outlet.

K. Where conductors are installed in enclosures for future termination by others, provide a minimum of 5 feet of slack.

L. Neatly train and bundle conductors inside boxes, wireways, panelboards and other equipment enclosures.

M. Group or otherwise identify neutral/grounded conductors with associated ungrounded conductors inside enclosures in accordance with NFPA 70.

N. Make wiring connections using specified wiring connectors.
 1. Make splices and taps only in accessible boxes. Do not pull splices into raceways or make splices in conduit bodies or wiring gutters.
 2. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors.
 3. Do not remove conductor strands to facilitate insertion into connector.
 4. Clean contact surfaces on conductors and connectors to suitable remove corrosion, oxides, and other contaminates. Do not use wire brush on plated connector surfaces.
 5. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
6. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.

O. Insulate splices and taps that are made with uninsulated connectors using methods suitable for the application, with insulation and mechanical strength at least equivalent to unspliced conductors.
1. Dry Locations: Use insulating covers specifically designed for the connectors, electrical tape, or heat shrink tubing.
 a. For taped connections, first apply adequate amount of rubber splicing electrical tape or electrical filler tape, followed by outer covering of vinyl insulating electrical tape.
 b. For taped connections likely to require re-entering, including motor leads, first apply varnished cambric electrical tape, followed by adequate amount of rubber splicing electrical tape, followed by outer covering of vinyl insulating electrical tape.
2. Damp Locations: Use insulating covers specifically designed for the connectors, electrical tape, or heat shrink tubing.
 a. For connections with insulating covers, apply outer covering of moisture sealing electrical tape.
 b. For taped connections, follow same procedure as for dry locations but apply outer covering of moisture sealing electrical tape.

P. Insulate ends of spare conductors using vinyl insulating electrical tape.

Q. Field-Applied Color Coding: Where vinyl color coding electrical tape is used in lieu of integrally colored insulation as permitted in Part 2 under "Color Coding", apply half overlapping turns of tape at each termination and at each location conductors are accessible.

R. Identify conductors and cables in accordance with Section 260553.

S. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Section 078400.

T. Unless specifically indicated to be excluded, provide final connections to all equipment and devices, including those furnished by others, as required for a complete operating system.

3.4 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform inspection, testing, and adjusting in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Perform inspections and tests listed in NETA ATS, Section 7.3.2. The insulation resistance test is required for all conductors. The resistance test for parallel conductors listed as optional is not required.
 1. Disconnect surge protective devices (SPDs) prior to performing any high potential testing. Replace SPDs damaged by performing high potential testing with SPDs connected.
E. Correct deficiencies and replace damaged or defective conductors and cables.

END OF SECTION
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Grounding and bonding requirements.
B. Conductors for grounding and bonding.
C. Connectors for grounding and bonding.
D. Ground bars.
E. Ground rod electrodes.

1.3 RELATED REQUIREMENTS

A. Section 260519 - Low-Voltage Electrical Power Conductors and Cables: Additional requirements for conductors for grounding and bonding, including conductor color coding.
B. Section 260553 - Identification for Electrical Systems: Identification products and requirements.
C. Section 265600 - Exterior Lighting: Additional grounding and bonding requirements for pole-mounted luminaires.

1.4 REFERENCE STANDARDS

B. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

F. UL 467 - Grounding and Bonding Equipment; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
1. Verify exact locations of underground metal water service pipe entrances to building.
2. Coordinate the work with other trades to provide steel reinforcement complying with specified requirements for concrete-encased electrode.
3. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

B. Sequencing:
1. Do not install ground rod electrodes until final backfill and compaction is complete.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements for submittals procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for grounding and bonding system components.

C. Project Record Documents: Record actual locations of grounding electrode system components and connections.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store products in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.1 GROUNDING AND BONDING REQUIREMENTS

A. Do not use products for applications other than as permitted by NFPA 70 and product listing.
B. Unless specifically indicated to be excluded, provide all required components, conductors, connectors, conduit, boxes, fittings, supports, accessories, etc. as necessary for a complete grounding and bonding system.

C. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

D. Grounding System Resistance:
 1. Achieve specified grounding system resistance under normally dry conditions unless otherwise approved by QA+M architecture. Precipitation within the previous 48 hours does not constitute normally dry conditions.
 2. Grounding Electrode System: Not greater than 5 ohms to ground, when tested according to IEEE 81 using "fall-of-potential" method.
 3. Between Grounding Electrode System and Major Electrical Equipment Frames, System Neutral, and Derived Neutral Points: Not greater than 0.5 ohms, when tested using "point-to-point" methods.

E. Grounding Electrode System:
 1. Provide connection to required and supplemental grounding electrodes to form grounding electrode system.
 a. Provide continuous grounding electrode conductors without splice or joint.
 b. Install grounding electrode conductors in raceway where exposed to physical damage. Bond grounding electrode conductor to metallic raceways at each end with bonding jumper.
 2. Metal Underground Water Pipe(s):
 a. Provide connection to underground metal domestic and fire protection (where present) water service pipe(s) that are in direct contact with earth for at least 10 feet at an accessible location not more than 5 feet from the point of entrance to the building.
 b. Provide bonding jumper(s) around insulating joints/pipes as required to make pipe electrically continuous.
 c. Provide bonding jumper around water meter of sufficient length to permit removal of meter without disconnecting jumper.
 3. Metal In-Ground Support Structure:
 a. Provide connection to metal in-ground support structure that is in direct contact with earth in accordance with NFPA 70.
 4. Concrete-Encased Electrode:
 a. Provide connection to concrete-encased electrode consisting of not less than 20 feet of either steel reinforcing bars or bare copper conductor not smaller than 4 AWG embedded within concrete foundation or footing that is in direct contact with earth in accordance with NFPA 70.
 5. Ground Ring:
 a. Provide a ground ring encircling the building or structure consisting of bare copper conductor not less than 2 AWG in direct contact with earth, installed at a depth of not less than 30 inches.
 b. Where location is not indicated, locate ground ring conductor at least 24 inches outside building perimeter foundation.
 6. Ground Rod Electrode(s):
 a. Provide three electrodes in an equilateral triangle configuration unless otherwise indicated or required.
b. Space electrodes not less than 10 feet from each other and any other ground electrode.
c. Where location is not indicated, locate electrode(s) at least 5 feet outside building perimeter foundation as near as possible to electrical service entrance; where possible, locate in softscape (uncovered) area.

7. Provide additional ground electrode(s) as required to achieve specified grounding electrode system resistance.
8. Ground Riser: Provide common grounding electrode conductor not less than 3/0 AWG for tap connections to multiple separately derived systems as permitted in NFPA 70.

F. Service-Supplied System Grounding:
1. For each service disconnect, provide grounding electrode conductor to connect neutral (grounded) service conductor to grounding electrode system. Unless otherwise indicated, make connection at neutral (grounded) bus in service disconnect enclosure.
2. For each service disconnect, provide main bonding jumper to connect neutral (grounded) bus to equipment ground bus where not factory-installed. Do not make any other connections between neutral (grounded) conductors and ground on load side of service disconnect.

G. Separately Derived System Grounding:
1. Separately derived systems include, but are not limited to:
 a. Transformers (except autotransformers such as buck-boost transformers).
 b. Generators, when neutral is switched in the transfer switch.
2. Provide grounding electrode conductor to connect derived system grounded conductor to common grounding electrode conductor ground riser. Unless otherwise indicated, make connection at neutral (grounded) bus in source enclosure.
3. Provide bonding jumper to connect derived system grounded conductor to nearest metal building frame and nearest metal water piping in the area served by the derived system, where not already used as a grounding electrode for the derived system. Make connection at same location as grounding electrode conductor connection.
4. Where common grounding electrode conductor ground riser is used for tap connections to multiple separately derived systems, provide bonding jumper to connect the metal building frame and metal water piping in the area served by the derived system to the common grounding electrode conductor.
5. Outdoor Source: Where the source of the separately derived system is located outside the building or structure supplied, provide connection to grounding electrode at source in accordance with NFPA 70.
6. Provide system bonding jumper to connect system grounded conductor to equipment ground bus. Make connection at same location as grounding electrode conductor connection. Do not make any other connections between neutral (grounded) conductors and ground on load side of separately derived system disconnect.
7. Where the source and first disconnecting means are in separate enclosures, provide supply-side bonding jumper between source and first disconnecting means.

H. Bonding and Equipment Grounding:
1. Provide bonding for equipment grounding conductors, equipment ground busses, metallic equipment enclosures, metallic raceways and boxes, device grounding terminals, and other normally non-current-carrying conductive materials enclosing electrical conductors/equipment or likely to become energized as indicated and in accordance with NFPA 70.
2. Provide insulated equipment grounding conductor in each feeder and branch circuit raceway. Do not use raceways as sole equipment grounding conductor.
3. Where circuit conductor sizes are increased for voltage drop, increase size of equipment grounding conductor proportionally in accordance with NFPA 70.
4. Unless otherwise indicated, connect wiring device grounding terminal to branch circuit equipment grounding conductor and to outlet box with bonding jumper.
5. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on neutral (grounded) or isolated/insulated ground bus.
6. Provide bonding jumper across expansion or expansion/deflection fittings provided to accommodate conduit movement.
7. Provide bonding for interior metal piping systems in accordance with NFPA 70. This includes, but is not limited to:
 a. Metal water piping where not already effectively bonded to metal underground water pipe used as grounding electrode.
 b. Metal gas piping.
8. Provide bonding for interior metal air ducts.

I. Communications Systems Grounding and Bonding:
1. Provide bonding jumper in raceway from intersystem bonding termination to each communications room or backboard and provide ground bar for termination.
 a. Bonding Jumper Size: 6 AWG, unless otherwise indicated or required.
 b. Raceway Size: 3/4 inch trade size unless otherwise indicated or required.
 c. Ground Bar Size: 1/4 by 2 by 12 inches unless otherwise indicated or required.
 d. Ground Bar Mounting Height: 18 inches above finished floor unless otherwise indicated.

J. Pole-Mounted Luminaires: Also comply with Section 265600.

2.2 GROUNDING AND BONDING COMPONENTS

A. General Requirements:
1. Provide products listed, classified, and labeled as suitable for the purpose intended.
2. Provide products listed and labeled as complying with UL 467 where applicable.

B. Conductors for Grounding and Bonding, in Addition to Requirements of Section 260526:
1. Use insulated copper conductors unless otherwise indicated.
 a. Exceptions:
 1) Use bare copper conductors where installed underground in direct contact with earth.

C. Connectors for Grounding and Bonding:
1. Description: Connectors appropriate for the application and suitable for the conductors and items to be connected; listed and labeled as complying with UL 467.
2. Unless otherwise indicated, use exothermic welded connections for underground, concealed and other inaccessible connections.
3. Unless otherwise indicated, use mechanical connectors, compression connectors, or exothermic welded connections for accessible connections.
 a. Exceptions:
 1) Use exothermic welded connections for connections to metal building frame.
4. Manufacturers - Mechanical and Compression Connectors:
d. Substitutions: See Section 016000 - Product Requirements.

5. Manufacturers - Exothermic Welded Connections:
 c. thermOweld, subsidiary of Continental Industries; division of Burndy LLC;__________ : www.thermoweld.com/#sle.
 d. Substitutions: See Section 016000 - Product Requirements.

D. Ground Bars:
 1. Description: Copper rectangular ground bars with mounting brackets and insulators.
 2. Size: As indicated.
 3. Holes for Connections: As indicated or as required for connections to be made.
 4. Manufacturers:
 c. thermOweld, subsidiary of Continental Industries; division of Burndy LLC;__________ : www.thermoweld.com/#sle.
 d. Substitutions: See Section 016000 - Product Requirements.

E. Ground Rod Electrodes:
 1. Comply with NEMA GR 1.
 3. Size: 3/4 inch diameter by 10 feet length, unless otherwise indicated.
 4. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that work likely to damage grounding and bonding system components has been completed.

B. Verify that field measurements are as indicated.

C. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Perform work in accordance with NECA 1 (general workmanship).
C. Ground Rod Electrodes: Unless otherwise indicated, install ground rod electrodes vertically. Where encountered rock prohibits vertical installation, install at 45 degree angle or bury horizontally in trench at least 30 inches (750 mm) deep in accordance with NFPA 70 or provide ground plates.
 1. Outdoor Installations: Unless otherwise indicated, install with top of rod 6 inches below finished grade.

D. Make grounding and bonding connections using specified connectors.
 1. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors. Do not remove conductor strands to facilitate insertion into connector.
 2. Remove nonconductive paint, enamel, or similar coating at threads, contact points, and contact surfaces.
 3. Exothermic Welds: Make connections using molds and weld material suitable for the items to be connected in accordance with manufacturer's recommendations.
 4. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
 5. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.

E. Identify grounding and bonding system components in accordance with Section 260553.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform inspection, testing, and adjusting in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS except Section 4.

D. Perform inspections and tests listed in NETA ATS, Section 7.13.

E. Perform ground electrode resistance tests under normally dry conditions. Precipitation within the previous 48 hours does not constitute normally dry conditions.

F. Investigate and correct deficiencies where measured ground resistances do not comply with specified requirements.

END OF SECTION
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Support and attachment requirements and components for equipment, conduit, cable, boxes, and other electrical work.

1.3 RELATED REQUIREMENTS

A. Section 033000 - Cast-in-Place Concrete: Concrete equipment pads.

B. Section 055000 - Metal Fabrications: Materials and requirements for fabricated metal supports.

C. Section 260533.13 - Conduit for Electrical Systems: Additional support and attachment requirements for conduits.

D. Section 260533.16 - Boxes for Electrical Systems: Additional support and attachment requirements for boxes.

E. Section 265100 - Interior Lighting: Additional support and attachment requirements for interior luminaires.

F. Section 265600 - Exterior Lighting: Additional support and attachment requirements for exterior luminaires.

1.4 REFERENCE STANDARDS

D. MFMA-4 - Metal Framing Standards Publication; 2004.
E. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

F. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

G. UL 5B - Strut-Type Channel Raceways and Fittings; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate sizes and arrangement of supports and bases with the actual equipment and components to be installed.
 2. Coordinate the work with other trades to provide additional framing and materials required for installation.
 3. Coordinate compatibility of support and attachment components with mounting surfaces at the installed locations.
 4. Coordinate the arrangement of supports with ductwork, piping, equipment and other potential conflicts installed under other sections or by others.
 5. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

B. Sequencing:
 1. Do not install products on or provide attachment to concrete surfaces until concrete has fully cured in accordance with Section 033000.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer’s standard catalog pages and data sheets for metal channel (strut) framing systems and post-installed concrete and masonry anchors.

C. Shop Drawings: Include details for fabricated hangers and supports where materials or methods other than those indicated are proposed for substitution.

1.7 QUALITY ASSURANCE

A. Comply with NFPA 70.

B. Comply with applicable building code.

C. Installer Qualifications for Field-Welding: As specified in Section 055000.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store products in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.1 SUPPORT AND ATTACHMENT COMPONENTS

A. General Requirements:
1. Provide all required hangers, supports, anchors, fasteners, fittings, accessories, and hardware as necessary for the complete installation of electrical work.
2. Provide products listed, classified, and labeled as suitable for the purpose intended, where applicable.
3. Where support and attachment component types and sizes are not indicated, select in accordance with manufacturer's application criteria as required for the load to be supported. Include consideration for vibration, equipment operation, and shock loads where applicable.
4. Do not use products for applications other than as permitted by NFPA 70 and product listing.
5. Do not use wire, chain, perforated pipe strap, or wood for permanent supports unless specifically indicated or permitted.
 a. Indoor Dry Locations: Use zinc-plated steel or approved equivalent unless otherwise indicated.
 b. Outdoor and Damp or Wet Indoor Locations: Use galvanized steel, stainless steel, or approved equivalent unless otherwise indicated.
 c. Zinc-Plated Steel: Electroplated in accordance with ASTM B633.
 d. Galvanized Steel: Hot-dip galvanized after fabrication in accordance with ASTM A123/A123M or ASTM A153/A153M.

B. Materials for Metal Fabricated Supports: Comply with Section 055000.

C. Conduit and Cable Supports: Straps, clamps, etc. suitable for the conduit or cable to be supported.
 1. Conduit Straps: One-hole or two-hole type; steel or malleable iron.
 2. Conduit Clamps: Bolted type unless otherwise indicated.
 3. Manufacturers:
 e. Substitutions: See Section 016000 - Product Requirements.

D. Outlet Box Supports: Hangers, brackets, etc. suitable for the boxes to be supported.
 1. Manufacturers:
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

e. Substitutions: See Section 016000 - Product Requirements.

E. Metal Channel (Strut) Framing Systems: Factory-fabricated continuous-slot metal channel (strut) and associated fittings, accessories, and hardware required for field-assembly of supports.
 2. Channel (Strut) Used as Raceway (only where specifically indicated): Listed and labeled as complying with UL 5B.
 3. Channel Material:
 a. Indoor Dry Locations: Use painted steel, zinc-plated steel, or galvanized steel.
 b. Outdoor and Damp or Wet Indoor Locations: Use galvanized steel.
 4. Minimum Channel Thickness: Steel sheet, 12 gage, 0.1046 inch.
 6. Manufacturer:
 c. Unistrut, a brand of Atkore International Inc: www.unistrut.com/#sle.
 d. Substitutions: See Section 016000 - Product Requirements.
 e. Source Limitations: Furnish channels (struts) and associated fittings, accessories, and hardware produced by a single manufacturer.

F. Hanger Rods: Threaded zinc-plated steel unless otherwise indicated.
 1. Minimum Size, Unless Otherwise Indicated or Required:
 a. Equipment Supports: 1/2 inch diameter.
 b. Single Conduit up to 1 inch (27 mm) trade size: 1/4 inch diameter.
 c. Single Conduit larger than 1 inch (27 mm) trade size: 3/8 inch diameter.
 d. Trapeze Support for Multiple Conduits: 3/8 inch diameter.
 e. Outlet Boxes: 1/4 inch diameter.
 f. Luminaires: 1/4 inch diameter.

G. Anchors and Fasteners:
 1. Unless otherwise indicated and where not otherwise restricted, use the anchor and fastener types indicated for the specified applications.
 2. Concrete: Use preset concrete inserts, expansion anchors, or screw anchors.
 3. Solid or Grout-Filled Masonry: Use expansion anchors or screw anchors.
 6. Steel: Use beam clamps, machine bolts, or welded threaded studs.
 7. Sheet Metal: Use sheet metal screws.
 8. Powder-actuated fasteners are not permitted.
 9. Hammer-driven anchors and fasteners are not permitted.
 10. Preset Concrete Inserts: Continuous metal channel (strut) and spot inserts specifically designed to be cast in concrete ceilings, walls, and floors.
 b. Channel Material: Use galvanized steel.
 c. Minimum Channel Thickness: Steel sheet, 12 gage, 0.1046 inch minimum base metal thickness.
 d. Manufacturer: Same as manufacturer of metal channel (strut) framing system.
11. Post-Installed Concrete and Masonry Anchors: Evaluated and recognized by ICC Evaluation Service, LLC (ICC-ES) for compliance with applicable building code.

12. Manufacturers - Mechanical Anchors:
 b. ITW Red Head, a division of Illinois Tool Works, Inc: www.itwredhead.com/#sle.
 e. Substitutions: See Section 016000 - Product Requirements.

PART 3 EXECUTION

3.1 EXAMINATION

 A. Verify that field measurements are as indicated.

 B. Verify that mounting surfaces are ready to receive support and attachment components.

 C. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

 A. Install products in accordance with manufacturer's instructions.

 B. Perform work in accordance with NECA 1 (general workmanship).

 C. Install anchors and fasteners in accordance with ICC Evaluation Services, LLC (ICC-ES) evaluation report conditions of use where applicable.

 D. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.

 E. Unless specifically indicated or approved by QA+M architecture, do not provide support from suspended ceiling support system or ceiling grid.

 F. Unless specifically indicated or approved by QA+M architecture, do not provide support from roof deck.

 G. Do not penetrate or otherwise notch or cut structural members without approval of Structural Engineer.

 H. Field-Welding (where approved by QA+M architecture): Comply with Section 055000.

 I. Equipment Support and Attachment:
 1. Use metal fabricated supports or supports assembled from metal channel (strut) to support equipment as required.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

2. Use metal channel (strut) secured to studs to support equipment surface-mounted on hollow stud walls when wall strength is not sufficient to resist pull-out.
3. Use metal channel (strut) to support surface-mounted equipment in wet or damp locations to provide space between equipment and mounting surface.
4. Unless otherwise indicated, mount floor-mounted equipment on properly sized 3 inch high concrete pad constructed in accordance with Section 033000.
5. Securely fasten floor-mounted equipment. Do not install equipment such that it relies on its own weight for support.

J. Conduit Support and Attachment: Also comply with Section 260533.13.

K. Box Support and Attachment: Also comply with Section 260533.16.

L. Interior Luminaire Support and Attachment: Also comply with Section 265100.

M. Exterior Luminaire Support and Attachment: Also comply with Section 265600.

N. Preset Concrete Inserts: Use manufacturer provided closure strips to inhibit concrete seepage during concrete pour.

O. Secure fasteners according to manufacturer's recommended torque settings.

P. Remove temporary supports.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Inspect support and attachment components for damage and defects.

C. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.

D. Correct deficiencies and replace damaged or defective support and attachment components.

END OF SECTION
SECTION 260533.13 - CONDUIT FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Galvanized steel rigid metal conduit (RMC).
B. PVC-coated galvanized steel rigid metal conduit (RMC).
C. Flexible metal conduit (FMC).
D. Liquidtight flexible metal conduit (LFMC).
E. Electrical metallic tubing (EMT).
F. Rigid polyvinyl chloride (PVC) conduit.
G. Conduit fittings.
H. Accessories.

1.2 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.
B. Section 260519 - Low-Voltage Electrical Power Conductors and Cables.
C. Section 260526 - Grounding and Bonding for Electrical Systems.
 1. Includes additional requirements for fittings for grounding and bonding.
D. Section 260529 - Hangers and Supports for Electrical Systems.
E. Section 260533.16 - Boxes for Electrical Systems.
F. Section 260553 - Identification for Electrical Systems: Identification products and requirements.
G. Section 262100 - Low-Voltage Electrical Service Entrance: Additional requirements for electrical service conduits.

1.4 REFERENCE STANDARDS

A. ANSI C80.1 - American National Standard for Electrical Rigid Steel Conduit (ERSC); 2005.

B. ANSI C80.3 - American National Standard for Steel Electrical Metallic Tubing (EMT); 2005.

C. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

D. NECA 101 - Standard for Installing Steel Conduits (Rigid, IMC, EMT); 2013.

E. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable; 2012.

F. NEMA RN 1 - Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit; 2005.

G. NEMA TC 2 - Electrical Polyvinyl Chloride (PVC) Conduit; 2013.

H. NEMA TC 3 - Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing; 2015.

I. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

J. UL 1 - Flexible Metal Conduit; Current Edition, Including All Revisions.

K. UL 6 - Electrical Rigid Metal Conduit-Steel; Current Edition, Including All Revisions.

L. UL 360 - Liquid-Tight Flexible Steel Conduit; Current Edition, Including All Revisions.

M. UL 514B - Conduit, Tubing, and Cable Fittings; Current Edition, Including All Revisions.

N. UL 651 - Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings; Current Edition, Including All Revisions.

O. UL 797 - Electrical Metallic Tubing-Steel; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
1. Coordinate minimum sizes of conduits with the actual conductors to be installed, including adjustments for conductor sizes increased for voltage drop.
2. Coordinate the arrangement of conduits with structural members, ductwork, piping, equipment and other potential conflicts installed under other sections or by others.
3. Verify exact conduit termination locations required for boxes, enclosures, and equipment installed under other sections or by others.
4. Coordinate the work with other trades to provide roof penetrations that preserve the integrity of the roofing system and do not void the roof warranty.
5. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

B. Sequencing:
 1. Do not begin installation of conductors and cables until installation of conduit is complete between outlet, junction and splicing points.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements for submittals procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for conduits and fittings.

C. Shop Drawings:
 1. Indicate proposed arrangement for conduits to be installed within structural concrete slabs, where permitted.
 2. Include proposed locations of roof penetrations and proposed methods for sealing.

D. Project Record Documents: Record actual routing for conduits installed underground, conduits embedded within concrete slabs, and conduits 2 inch (53 mm) trade size and larger.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store conduit and fittings in accordance with manufacturer’s instructions.

PART 2 PRODUCTS

2.1 CONDUIT APPLICATIONS

A. Do not use conduit and associated fittings for applications other than as permitted by NFPA 70 and product listing.
B. Unless otherwise indicated and where not otherwise restricted, use the conduit types indicated for the specified applications. Where more than one listed application applies, comply with the most restrictive requirements. Where conduit type for a particular application is not specified, use galvanized steel rigid metal conduit.

C. Underground:
 1. Under Slab on Grade: Use PVC-coated galvanized steel rigid metal conduit or rigid PVC conduit.
 2. Exterior, Direct-Buried: Use PVC-coated galvanized steel rigid metal conduit or rigid PVC conduit.
 3. Where rigid polyvinyl (PVC) conduit is provided, transition to galvanized steel rigid metal conduit prior to emerging from underground.
 4. Where rigid polyvinyl (PVC) conduit larger than 2 inch (53 mm) trade size is provided, use PVC-coated galvanized steel rigid metal conduit elbows for bends.
 5. Where steel conduit is installed in direct contact with earth, use corrosion protection tape to provide supplementary corrosion protection or use PVC-coated galvanized steel rigid metal conduit.

D. Embedded Within Concrete:
 1. Within Slab on Grade (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit.
 2. Within Slab Above Ground (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit.
 3. Within Concrete Walls Above Ground: Use galvanized steel rigid metal conduit.
 4. Where rigid polyvinyl (PVC) conduit is provided, transition to galvanized steel rigid metal conduit where emerging from concrete.

E. Concealed Within Masonry Walls: Use galvanized steel rigid metal conduit.

F. Concealed Within Hollow Stud Walls: Use electrical metallic tubing (EMT).

G. Concealed Above Accessible Ceilings: Use electrical metallic tubing (EMT).

H. Interior, Damp or Wet Locations: Use PVC-coated galvanized steel rigid metal conduit.

I. Exposed, Interior, Not Subject to Physical Damage: Use electrical metallic tubing (EMT).

J. Exposed, Interior, Subject to Physical Damage: Use galvanized steel rigid metal conduit.
 1. Locations subject to physical damage include, but are not limited to:
 a. Where exposed below 8 feet, except within electrical and communication rooms or closets.

L. Concealed, Exterior, Not Embedded in Concrete or in Contact With Earth: Use galvanized steel rigid metal conduit.
M. Connections to Vibrating Equipment:
 1. Dry Locations: Use flexible metal conduit.
 2. Damp, Wet, or Corrosive Locations: Use liquidtight flexible metal conduit.
 3. Maximum Length: 6 feet unless otherwise indicated.
 4. Vibrating equipment includes, but is not limited to:
 a. Transformers.
 b. Motors.

2.2 CONDUIT REQUIREMENTS

A. Electrical Service Conduits: Also comply with Section 262100.

B. Communications Systems Conduits: Also comply with Section 271000.

C. Fittings for Grounding and Bonding: Also comply with Section 260526.

D. Provide all conduit, fittings, supports, and accessories required for a complete raceway system.

E. Provide products listed, classified, and labeled as suitable for the purpose intended.

F. Minimum Conduit Size, Unless Otherwise Indicated:
 1. Branch Circuit Homeruns: 3/4 inch (21 mm) trade size.
 2. Underground, Interior: 3/4 inch (21 mm) trade size.
 3. Underground, Exterior: 1 inch (27 mm) trade size.

G. Where conduit size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

2.3 GALVANIZED STEEL RIGID METAL CONDUIT (RMC)

A. Manufacturers:
 3. Wheatland Tube, a Division of Zekelman Industries: www.wheatland.com/#sle.

B. Description: NFPA 70, Type RMC galvanized steel rigid metal conduit complying with ANSI C80.1 and listed and labeled as complying with UL 6.

C. Fittings:
 1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.
2. Non-Hazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
3. Material: Use steel or malleable iron.
4. Connectors and Couplings: Use threaded type fittings only. Threadless set screw and compression (gland) type fittings are not permitted.

2.4 PVC-COATED GALVANIZED STEEL RIGID METAL CONDUIT (RMC)

A. Manufacturers:

B. Description: NFPA 70, Type RMC galvanized steel rigid metal conduit with external polyvinyl chloride (PVC) coating complying with NEMA RN 1 and listed and labeled as complying with UL 6.

C. Exterior Coating: Polyvinyl chloride (PVC), nominal thickness of 40 mil.

D. PVC-Coated Fittings:
1. Manufacturer: Same as manufacturer of PVC-coated conduit to be installed.
2. Non-Hazardous Locations: Use fittings listed and labeled as complying with UL 514B.
3. Material: Use steel or malleable iron.
4. Exterior Coating: Polyvinyl chloride (PVC), minimum thickness of 40 mil.

E. PVC-Coated Supports: Furnish with exterior coating of polyvinyl chloride (PVC), minimum thickness of 15 mil.

2.5 FLEXIBLE METAL CONDUIT (FMC)

A. Manufacturers:

B. Description: NFPA 70, Type FMC standard wall steel flexible metal conduit listed and labeled as complying with UL 1, and listed for use in classified firestop systems to be used.

C. Fittings:
1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.
2. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
3. Material: Use steel or malleable iron.
2.6 LIQUIDTIGHT FLEXIBLE METAL CONDUIT (LFMC)

A. Manufacturers:

B. Description: NFPA 70, Type LFMC polyvinyl chloride (PVC) jacketed steel flexible metal conduit listed and labeled as complying with UL 360.

C. Fittings:
 1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.
 2. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 3. Material: Use steel or malleable iron.

2.7 ELECTRICAL METALLIC TUBING (EMT)

A. Manufacturers:

B. Description: NFPA 70, Type EMT steel electrical metallic tubing complying with ANSI C80.3 and listed and labeled as complying with UL 797.

C. Fittings:
 1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.
 2. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 3. Material: Use steel or malleable iron.
 a. Do not use die cast zinc fittings.
 a. Do not use indenter type connectors and couplings.
 b. Do not use set-screw type connectors and couplings.
 5. Damp or Wet Locations (where permitted): Use fittings listed for use in wet locations.
 6. Embedded Within Concrete (where permitted): Use fittings listed as concrete-tight. Fittings that require taping to be concrete-tight are acceptable.
2.8 RIGID POLYVINYL CHLORIDE (PVC) CONDUIT

A. Manufacturers:

B. Description: NFPA 70, Type PVC rigid polyvinyl chloride conduit complying with NEMA TC 2 and listed and labeled as complying with UL 651; Schedule 80 unless otherwise indicated; rated for use with conductors rated 90 degrees C.

C. Fittings:
1. Manufacturer: Same as manufacturer of conduit to be connected.
2. Description: Fittings complying with NEMA TC 3 and listed and labeled as complying with UL 651; material to match conduit.

2.9 ACCESSORIES

A. Corrosion Protection Tape: PVC-based, minimum thickness of 20 mil.

B. Conduit Joint Compound: Corrosion-resistant, electrically conductive; suitable for use with the conduit to be installed.

C. Solvent Cement for PVC Conduit and Fittings: As recommended by manufacturer of conduit and fittings to be installed.

D. Pull Strings: Use nylon cord with average breaking strength of not less than 200 pound-force.

E. Sealing Compound for Sealing Fittings: Listed for use with the particular fittings to be installed.

F. Modular Seals for Conduit Penetrations: Rated for minimum of 40 psig; Suitable for the conduits to be installed.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that mounting surfaces are ready to receive conduits.

C. Verify that conditions are satisfactory for installation prior to starting work.
3.2 INSTALLATION

A. Install products in accordance with manufacturer’s instructions.

B. Perform work in accordance with NECA 1 (general workmanship).

C. Install galvanized steel rigid metal conduit (RMC) in accordance with NECA 101.

D. Install PVC-coated galvanized steel rigid metal conduit (RMC) using only tools approved by the manufacturer.

E. Install rigid polyvinyl chloride (PVC) conduit in accordance with NECA 111.

F. Conduit Routing:
 1. Unless dimensioned, conduit routing indicated is diagrammatic.
 2. When conduit destination is indicated without specific routing, determine exact routing required.
 3. Conceal all conduits unless specifically indicated to be exposed.
 4. Conduits in the following areas may be exposed, unless otherwise indicated:
 a. Electrical rooms.
 b. Mechanical equipment rooms.
 c. Within joists in areas with no ceiling.
 5. Unless otherwise approved, do not route conduits exposed:
 a. Across floors.
 b. Across roofs.
 c. Across top of parapet walls.
 d. Across building exterior surfaces.
 6. Conduits installed underground or embedded in concrete may be routed in the shortest possible manner unless otherwise indicated. Route all other conduits parallel or perpendicular to building structure and surfaces, following surface contours where practical.
 7. Arrange conduit to maintain adequate headroom, clearances, and access.
 8. Arrange conduit to provide no more than the equivalent of four 90 degree bends between pull points.
 9. Arrange conduit to provide no more than 150 feet between pull points.
 10. Route conduits above water and drain piping where possible.
 11. Arrange conduit to prevent moisture traps. Provide drain fittings at low points and at sealing fittings where moisture may collect.
 12. Maintain minimum clearance of 6 inches between conduits and piping for other systems.
 13. Maintain minimum clearance of 12 inches between conduits and hot surfaces. This includes, but is not limited to:
 a. Heaters.
 b. Hot water piping.
 c. Flues.
 14. Group parallel conduits in the same area together on a common rack.

G. Conduit Support:
1. Secure and support conduits in accordance with NFPA 70 and Section 260529 using suitable supports and methods approved by the authority having jurisdiction.
2. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.
3. Installation Above Suspended Ceilings: Do not provide support from ceiling support system. Do not provide support from ceiling grid or allow conduits to lay on ceiling tiles.
4. Use conduit strap to support single surface-mounted conduit.
 a. Use clamp back spacer with conduit strap for damp and wet locations to provide space between conduit and mounting surface.
5. Use metal channel (strut) with accessory conduit clamps to support multiple parallel surface-mounted conduits.
6. Use conduit clamp to support single conduit from beam clamp or threaded rod.
7. Use trapeze hangers assembled from threaded rods and metal channel (strut) with accessory conduit clamps to support multiple parallel suspended conduits.

H. Connections and Terminations:
1. Use approved zinc-rich paint or conduit joint compound on field-cut threads of galvanized steel conduits prior to making connections.
2. Where two threaded conduits must be joined and neither can be rotated, use three-piece couplings or split couplings. Do not use running threads.
3. Use suitable adapters where required to transition from one type of conduit to another.
4. Provide drip loops for liquidtight flexible conduit connections to prevent drainage of liquid into connectors.
5. Terminate threaded conduits in boxes and enclosures using threaded hubs or double lock nuts for dry locations and raintight hubs for wet locations.
6. Provide insulating bushings or insulated throats at all conduit terminations to protect conductors.
7. Secure joints and connections to provide maximum mechanical strength and electrical continuity.

I. Penetrations:
1. Do not penetrate or otherwise notch or cut structural members, including footings and grade beams, without approval of Structural Engineer.
2. Make penetrations perpendicular to surfaces unless otherwise indicated.
3. Provide sleeves for penetrations as indicated or as required to facilitate installation. Set sleeves flush with exposed surfaces unless otherwise indicated or required.
4. Conceal bends for conduit risers emerging above ground.
5. Seal interior of conduits entering the building from underground at first accessible point to prevent entry of moisture and gases.
6. Provide suitable modular seal where conduits penetrate exterior wall below grade.
7. Where conduits penetrate waterproof membrane, seal as required to maintain integrity of membrane.
8. Make penetrations for roof-mounted equipment within associated equipment openings and curbs where possible to minimize roofing system penetrations. Where penetrations are necessary, seal as indicated or as required to preserve integrity of roofing system and maintain roof warranty. Include proposed locations of penetrations and methods for sealing with submittals.
9. Provide metal escutcheon plates for conduit penetrations exposed to public view.
10. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Section 078400.

J. Underground Installation:
1. Minimum Cover, Unless Otherwise Indicated or Required:
 b. Under Slab on Grade: 12 inches to bottom of slab.
2. Provide underground warning tape in accordance with Section 260553 along entire conduit length for service entrance where not concrete-encased.

K. Embedment Within Structural Concrete Slabs (only where approved by Structural Engineer):
 1. Install conduits within middle one third of slab thickness.
 2. Secure conduits to prevent floating or movement during pouring of concrete.

L. Conduit Movement Provisions: Where conduits are subject to movement, provide expansion and expansion/deflection fittings to prevent damage to enclosed conductors or connected equipment. This includes, but is not limited to:
 1. Where conduits cross structural joints intended for expansion, contraction, or deflection.
 2. Where calculated in accordance with NFPA 70 for rigid polyvinyl chloride (PVC) conduit installed above ground to compensate for thermal expansion and contraction.
 3. Where conduits are subject to earth movement by settlement or frost.

M. Condensation Prevention: Where conduits cross barriers between areas of potential substantial temperature differential, provide sealing fitting or approved sealing compound at an accessible point near the penetration to prevent condensation. This includes, but is not limited to:
 1. Where conduits pass from outdoors into conditioned interior spaces.
 2. Where conduits pass from unconditioned interior spaces into conditioned interior spaces.
 3. Where conduits penetrate coolers or freezers.

N. Provide pull string in all empty conduits and in conduits where conductors and cables are to be installed by others. Leave minimum slack of 12 inches at each end.

O. Provide grounding and bonding in accordance with Section 260526.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.

C. Where coating of PVC-coated galvanized steel rigid metal conduit (RMC) contains cuts or abrasions, repair in accordance with manufacturer's instructions.

D. Correct deficiencies and replace damaged or defective conduits.

3.4 CLEANING

A. Clean interior of conduits to remove moisture and foreign matter.
3.5 PROTECTION

A. Immediately after installation of conduit, use suitable manufactured plugs to provide protection from entry of moisture and foreign material and do not remove until ready for installation of conductors.

END OF SECTION
SECTION 260533.16 - BOXES FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Outlet and device boxes up to 100 cubic inches, including those used as junction and pull boxes.

B. Cabinets and enclosures, including junction and pull boxes larger than 100 cubic inches.

C. Floor boxes.

D. Underground boxes/enclosures.

1.3 RELATED REQUIREMENTS

A. Section 078400 - Firestopping.

B. Section 083100 - Access Doors and Panels: Panels for maintaining access to concealed boxes.

C. Section 260526 - Grounding and Bonding for Electrical Systems.

D. Section 260529 - Hangers and Supports for Electrical Systems.

E. Section 260533.13 - Conduit for Electrical Systems:
 1. Conduit bodies and other fittings.
 2. Additional requirements for locating boxes to limit conduit length and/or number of bends between pulling points.

F. Section 260553 - Identification for Electrical Systems: Identification products and requirements.

G. Section 262726 - Wiring Devices:
 1. Wall plates.
 2. Floor box service fittings.
 3. Poke-through assemblies.
 4. Additional requirements for locating boxes for wiring devices.
1.4 REFERENCE STANDARDS

A. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

B. NECA 130 - Standard for Installing and Maintaining Wiring Devices; 2010.

C. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable; 2012.

D. NEMA OS 1 - Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports; 2013.

E. NEMA OS 2 - Nonmetallic Outlet Boxes, Device Boxes, Covers and Box Supports; 2013.

F. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

G. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

I. UL 50 - Enclosures for Electrical Equipment, Non-Environmental Considerations; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances for electrical equipment required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Coordinate minimum sizes of boxes with the actual installed arrangement of conductors, clamps, support fittings, and devices, calculated according to NFPA 70.
 4. Coordinate minimum sizes of pull boxes with the actual installed arrangement of connected conduits, calculated according to NFPA 70.
 5. Coordinate the placement of boxes with millwork, furniture, devices, equipment, etc. installed under other sections or by others.
6. Coordinate the work with other trades to preserve insulation integrity.
7. Coordinate the work with other trades to provide walls suitable for installation of
flush-mounted boxes where indicated.
8. Notify QA+M architecture of any conflicts with or deviations from Contract Documents.
 Obtain direction before proceeding with work.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for outlet and
device boxes, junction and pull boxes, cabinets and enclosures, floor boxes, and underground
boxes/enclosures.

C. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use
stipulated by product testing agency. Include instructions for storage, handling, protection,
examination, preparation, and installation of product.

D. Project Record Documents: Record actual locations for floor boxes and underground
boxes/enclosures.

E. Maintenance Materials: Furnish the following for Town of Rocky Hill's use in maintenance of
 project.
 1. See Section 016000 - Product Requirements, for additional provisions.
 2. Keys for Lockable Enclosures: Two of each different key.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution
 requirements.

C. Product Listing Organization Qualifications: An organization recognized by OSHA as a
 Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having
 jurisdiction.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store products in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.1 BOXES

A. General Requirements:
1. Do not use boxes and associated accessories for applications other than as permitted by NFPA 70 and product listing.
2. Provide all boxes, fittings, supports, and accessories required for a complete raceway system and to accommodate devices and equipment to be installed.
3. Provide products listed, classified, and labeled as suitable for the purpose intended.
4. Where box size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.
5. Provide grounding terminals within boxes where equipment grounding conductors terminate.

B. Outlet and Device Boxes Up to 100 cubic inches, Including Those Used as Junction and Pull Boxes:
 1. Use sheet-steel boxes for dry locations unless otherwise indicated or required.
 2. Use cast iron boxes or cast aluminum boxes for damp or wet locations unless otherwise indicated or required; furnish with compatible weatherproof gasketed covers.
 3. Use cast iron boxes or cast aluminum boxes where exposed galvanized steel rigid metal conduit is used.
 4. Use nonmetallic boxes where exposed rigid PVC conduit is used.
 5. Use suitable concrete type boxes where flush-mounted in concrete.
 6. Use suitable masonry type boxes where flush-mounted in masonry walls.
 7. Use raised covers suitable for the type of wall construction and device configuration where required.
 8. Use shallow boxes only where required by the type of wall construction.
 9. Do not use "through-wall" boxes designed for access from both sides of wall.
10. Sheet-Steel Boxes: Comply with NEMA OS 1, and list and label as complying with UL 514A.
11. Cast Metal Boxes: Comply with NEMA FB 1, and list and label as complying with UL 514A.
12. Nonmetallic Boxes: Comply with NEMA OS 2, and list and label as complying with UL 514C.
13. Boxes for Supporting Luminaires and Ceiling Fans: Listed as suitable for the type and weight of load to be supported; furnished with fixture stud to accommodate mounting of luminaire where required.
15. Minimum Box Size, Unless Otherwise Indicated:
 a. Wiring Devices: 4 inch square by 1-1/2 inch deep (100 by 38 mm) trade size.
 b. Communications Systems Outlets: Comply with Division 27.
 c. Ceiling Outlets: 4 inch octagonal or square by 1-1/2 inch deep (100 by 38 mm) trade size.
16. Wall Plates: Comply with Section 262726.
17. Manufacturers:
 e. Thomas & Betts Corporation: www.tnb.com/#sle.
 f. Substitutions: See Section 016000 - Product Requirements.

C. Cabinets and Enclosures, Including Junction and Pull Boxes Larger Than 100 cubic inches:
 1. Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E, or UL 508A.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

2. NEMA 250 Environment Type, Unless Otherwise Indicated:
 a. Indoor Clean, Dry Locations: Type 1, painted steel.
 b. Outdoor Locations: Type 3R, painted steel.
3. Junction and Pull Boxes Larger Than 100 cubic inches:
 a. Provide screw-cover or hinged-cover enclosures unless otherwise indicated.
4. Finish for Painted Steel Enclosures: Manufacturer's standard grey unless otherwise indicated.
5. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.

D. Floor Boxes:
 1. Description: Floor boxes compatible with floor box service fittings provided in accordance with Section 262726; with partitions to separate multiple services; furnished with all components, adapters, and trims required for complete installation.
 2. Use nonmetallic floor boxes within slab on grade.
 3. Use nonmetallic floor boxes within slab above grade.
 4. Manufacturer: Same as manufacturer of floor box service fittings.

E. Underground Boxes/Enclosures:
 1. Description: In-ground, open bottom boxes furnished with flush, non-skid covers with legend indicating type of service and stainless steel tamper resistant cover bolts.
 2. Size: As required for services therein.
 3. Depth: As required to extend below frost line to prevent frost upheaval, but not less than 12 inches.
 4. Provide logo on cover to indicate type of service.
 5. Applications:
 a. Sidewalks and Landscaped Areas Subject Only to Occasional Nondeliberate Vehicular Traffic: Use polymer concrete enclosures, with minimum SCTE 77, Tier 8 load rating.
 b. Parking Lots, in Areas Subject Only To Occasional Nondeliberate Vehicular Traffic: Use polymer concrete enclosures, with minimum SCTE 77, Tier 15 load rating.
 c. Do not use polymer concrete enclosures in areas subject to deliberate vehicular traffic.
 6. Polymer Concrete Underground Boxes/Enclosures: Comply with SCTE 77.
 a. Manufacturers:
 1) Hubbell Incorporated; Quazite Products: www.hubbellpowersystems.com/#sle.
 b. Combination fiberglass/polymer concrete boxes/enclosures are acceptable.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that mounting surfaces are ready to receive boxes.
C. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install boxes in accordance with NECA 1 (general workmanship) and, where applicable, NECA 130, unless as otherwise indicated.

C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

D. Provide separate boxes for emergency power/standby power and normal power systems.

E. Unless otherwise indicated, provide separate boxes for line voltage and low voltage systems.

F. Flush-mount boxes in finished areas unless specifically indicated to be surface-mounted.

G. Unless otherwise indicated, boxes may be surface-mounted where exposed conduits are indicated or permitted.

H. Box Locations:
 1. Locate boxes to be accessible. Provide access panels in accordance with Section 083100 as required and where approved by the Architect.
 2. Unless dimensioned, box locations indicated are approximate.
 3. Locate boxes as required for devices installed under other sections or by others.
 a. Switches, Receptacles, and Other Wiring Devices: Comply with Section 262726.
 b. Communications Systems Outlets: Comply with Division 27.
 4. Locate boxes so that wall plates do not span different building finishes.
 5. Locate boxes so that wall plates do not cross masonry joints.
 6. Unless otherwise indicated, where multiple outlet boxes are installed at the same location at different mounting heights, install along a common vertical center line.
 7. Do not install flush-mounted boxes on opposite sides of walls back-to-back. Provide minimum 6 inches horizontal separation unless otherwise indicated.
 8. Acoustic-Rated Walls: Do not install flush-mounted boxes on opposite sides of walls back-to-back; provide minimum 24 inches horizontal separation.
 9. Fire Resistance Rated Walls: Install flush-mounted boxes such that the required fire resistance will not be reduced.
 a. Do not install flush-mounted boxes on opposite sides of walls back-to-back; provide minimum 24 inches separation where wall is constructed with individual noncommunicating stud cavities or protect both boxes with listed putty pads.
 10. Locate junction and pull boxes as indicated or as required to facilitate installation of conductors, and to limit conduit length and/or number of bends between pulling points in accordance with Section 260533.13.
 11. Locate junction and pull boxes in the following areas, unless otherwise indicated or approved by the Architect:
 a. Concealed above accessible suspended ceilings.
 b. Within joists in areas with no ceiling.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

- c. Electrical rooms.
- d. Mechanical equipment rooms.

I. Box Supports:
 1. Secure and support boxes in accordance with NFPA 70 and Section 260529 using suitable supports and methods approved by the authority having jurisdiction.
 2. Provide independent support from building structure except for cast metal boxes (other than boxes used for fixture support) supported by threaded conduit connections in accordance with NFPA 70. Do not provide support from piping, ductwork, or other systems.
 3. Installation Above Suspended Ceilings: Do not provide support from ceiling grid or ceiling support system.

J. Install boxes plumb and level.

K. Flush-Mounted Boxes:
 1. Install boxes in noncombustible materials such as concrete, tile, gypsum, plaster, etc. so that front edge of box or associated raised cover is not set back from finished surface more than 1/4 inch or does not project beyond finished surface.
 2. Install boxes in combustible materials such as wood so that front edge of box or associated raised cover is flush with finished surface.
 3. Repair rough openings around boxes in noncombustible materials such as concrete, tile, gypsum, plaster, etc. so that there are no gaps or open spaces greater than 1/8 inch at the edge of the box.

L. Install boxes as required to preserve insulation integrity.

M. Metallic Floor Boxes: Install box level at the proper elevation to be flush with finished floor.

N. Nonmetallic Floor Boxes: Cut box flush with finished floor after concrete pour.

O. Underground Boxes/Enclosures:
 1. Install enclosure on gravel base, minimum 6 inches deep.
 2. Flush-mount enclosures located in concrete or paved areas.
 3. Mount enclosures located in landscaped areas with top at 1 inch above finished grade.
 4. Install additional bracing inside enclosures in accordance with manufacturer's instructions to minimize box sidewall deflections during backfilling. Backfill with cover bolted in place.

P. Install permanent barrier between ganged wiring devices when voltage between adjacent devices exceeds 300 V.

Q. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Section 078400.

R. Close unused box openings.

S. Install blank wall plates on junction boxes and on outlet boxes with no devices or equipment installed or designated for future use.
T. Provide grounding and bonding in accordance with Section 260526.

U. Identify boxes in accordance with Section 260553.

3.3 CLEANING

A. Clean interior of boxes to remove dirt, debris, plaster and other foreign material.

3.4 PROTECTION

A. Immediately after installation, protect boxes from entry of moisture and foreign material until ready for installation of conductors.

END OF SECTION
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Electrical identification requirements.
B. Identification nameplates and labels.
C. Wire and cable markers.
D. Voltage markers.
E. Underground warning tape.
F. Warning signs and labels.

1.3 RELATED REQUIREMENTS

A. Section 260519 - Low-Voltage Electrical Power Conductors and Cables: Color coding for power conductors and cables 600 V and less; vinyl color coding electrical tape.
B. Section 262726 - Wiring Devices - Lutron: Device and wallplate finishes; factory pre-marked wallplates.
C. Section 271000 - Structured Cabling: Identification for communications cabling and devices.

1.4 REFERENCE STANDARDS

C. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
D. NFPA 70E - Standard for Electrical Safety in the Workplace; 2015.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Verify final designations for equipment, systems, and components to be identified prior to fabrication of identification products.

B. Sequencing:
 1. Do not conceal items to be identified, in locations such as above suspended ceilings, until identification products have been installed.
 2. Do not install identification products until final surface finishes and painting are complete.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements for submittals procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for each product.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

1.8 FIELD CONDITIONS

A. Do not install adhesive products when ambient temperature is lower than recommended by manufacturer.

PART 2 PRODUCTS

2.1 IDENTIFICATION REQUIREMENTS

A. Identification for Equipment:
 1. Use identification nameplate to identify each piece of electrical distribution and control equipment and associated sections, compartments, and components.
 a. Switchboards:
 1) Identify ampere rating.
 2) Identify voltage and phase.
 3) Identify power source and circuit number. Include location when not within sight of equipment.
 4) Use identification nameplate to identify main overcurrent protective device.
 5) Use identification nameplate to identify load(s) served for each branch device. Identify spares and spaces.
 b. Panelboards:
1) Identify ampere rating.
2) Identify voltage and phase.
3) Identify power source and circuit number. Include location when not within sight of equipment.
4) Identify main overcurrent protective device. Use identification label for panelboards with a door. For power distribution panelboards without a door, use identification nameplate.
5) Use typewritten circuit directory to identify load(s) served for panelboards with a door. Identify spares and spaces using pencil.
6) For power panelboards without a door, use identification nameplate to identify load(s) served for each branch device. Identify spares and spaces.

c. Transformers:
1) Identify kVA rating.
2) Identify voltage and phase for primary and secondary.
3) Identify power source and circuit number. Include location when not within sight of equipment.
4) Identify load(s) served. Include location when not within sight of equipment.

d. Enclosed switches, circuit breakers, and motor controllers:
1) Identify voltage and phase.
2) Identify power source and circuit number. Include location when not within sight of equipment.
3) Identify load(s) served. Include location when not within sight of equipment.

e. Time Switches:
1) Identify load(s) served and associated circuits controlled. Include location.

f. Enclosed Contactors:
1) Identify ampere rating.
2) Identify voltage and phase.
3) Identify configuration, e.g., E.O.E.H. (electrically operated, electrically held) or E.O.M.H. (electrically operated, mechanically held).
4) Identify coil voltage.
5) Identify load(s) and associated circuits controlled. Include location.

g. Transfer Switches:
1) Identify voltage and phase.
2) Identify power source and circuit number for both normal power source and standby power source. Include location when not within sight of equipment.
3) Identify load(s) served. Include location when not within sight of equipment.
4) Identify short circuit current rating based on the specific overcurrent protective device type and settings protecting the transfer switch.

2. Service Equipment:

a. Use identification nameplate to identify each service disconnecting means.

3. Emergency System Equipment:

a. Use identification nameplate or voltage marker to identify emergency system equipment in accordance with NFPA 70.

b. Use identification nameplate at each piece of service equipment to identify type and location of on-site emergency power sources.

c. Use identification nameplate to identify emergency operating instructions for emergency system equipment.

4. Use voltage marker to identify highest voltage present for each piece of electrical equipment.

5. Use identification nameplate to identify disconnect location for equipment with remote disconnecting means.
6. Use identification label on inside of door at each motor controller to identify nameplate horsepower, full load amperes, code letter, service factor, voltage, and phase of motor(s) controlled.

7. Use identification label to identify overcurrent protective devices for branch circuits serving fire alarm circuits. Identify with text "FIRE ALARM CIRCUIT".

8. Available Fault Current Documentation: Use identification label to identify the available fault current and date calculations were performed at locations requiring documentation by NFPA 70, including but not limited to the following.
 a. Service equipment.
 b. Motor control devices.
 c. Elevator control panels.

9. Arc Flash Hazard Warning Labels: Use warning labels to identify arc flash hazards for all electrical equipment including switchboards, panelboards, motor control devices, disconnect switches, meter sockets that are likely to require service, examination, adjustment or maintenance while energized.
 a. Minimum Size: 3.5 by 5 inches.
 b. Legend: Include orange header that reads "WARNING", followed by the word message "Arc Flash and Shock Hazard; Appropriate PPE Required; Do not operate controls or open covers without appropriate personal protection equipment; Failure to comply may result in injury or death; Refer to NFPA 70E for minimum PPE requirements" or approved equivalent.
 c. Service Equipment: Include the following information in accordance with NFPA 70.
 1) Nominal system voltage.
 2) Available fault current.
 3) Clearing time of service overcurrent protective device(s).
 4) Date label applied.

10. Use warning labels to identify electrical hazards for equipment, compartments, and enclosures containing exposed live parts or exposed conductors operating at over 600 V nominal with the word message "DANGER; HIGH VOLTAGE; KEEP OUT".

11. Use warning labels, identification nameplates, or identification labels to identify electrical hazards for equipment where multiple power sources are present with the word message "DANGER; Hazardous voltage; Multiple power sources may be present; Disconnect all electric power including remote disconnects before servicing" or approved equivalent.

B. Identification for Conductors and Cables:
 1. Color Coding for Power Conductors 600 V and Less: Comply with Section 260519.
 2. Identification for Communications Conductors and Cables: Comply with Section 271000.
 3. Use identification nameplate or identification label to identify color code for ungrounded and grounded power conductors inside door or enclosure at each piece of feeder or branch-circuit distribution equipment.
 4. Use wire and cable markers to identify circuit number or other designation indicated for power, control, and instrumentation conductors and cables at the following locations:
 a. Within boxes when more than one circuit is present.
 b. Within equipment enclosures when conductors and cables enter or leave the enclosure.
 5. Use wire and cable markers to identify connected grounding electrode system components for grounding electrode conductors.
 6. Use underground warning tape to identify direct buried cables.

C. Identification for Raceways:
 1. Use voltage markers or identification labels to identify highest voltage present for accessible conduits at maximum intervals of 20 feet.
2. Use color coded system designation text labels to identify systems other than normal power system for accessible conduits at maximum intervals of 20 feet.
 a. Color Code:
 1) Emergency Power System:
 (a) Life Safety Branch: Orange.
 (b) Standby Equipment Branch: Yellow.
 2) Fire Alarm System: Red.

3. Use plastic marker tags to identify unique conduit designation for accessible conduits at wall penetrations, at floor penetrations, at roof penetrations, and at equipment terminations when source is not within sight.

4. Use underground warning tape to identify underground raceways.

5. Use voltage markers to identify highest voltage present for wireways at maximum intervals of 20 feet.

D. Identification for Devices:
 1. Identification for Communications Devices: Comply with Division 27.
 2. Wiring Device and Wallplate Finishes: Comply with Section 262726.
 3. Use identification label to identify fire alarm system devices.
 4. Use identification label or engraved wallplate to identify serving branch circuit for all receptacles.
 a. For receptacles everywhere, provide identification on inside surface of wallplate and inside of device box.

E. Identification for Luminaires:
 1. Use permanent red dot on luminaire frame to identify luminaires connected to emergency power system.

2.2 IDENTIFICATION NAMEPLATES AND LABELS

A. Identification Nameplates:
 1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.
 2. Materials:
 a. Indoor Clean, Dry Locations: Use plastic nameplates.
 b. Outdoor Locations: Use plastic, stainless steel, or aluminum nameplates suitable for exterior use.
 3. Plastic Nameplates: Two-layer or three-layer laminated acrylic or electrically non-conductive phenolic with beveled edges; minimum thickness of 1/16 inch; engraved text.
 a. Exception: Provide minimum thickness of 1/8 inch when any dimension is greater than 4 inches.
 4. Stainless Steel Nameplates: Minimum thickness of 1/32 inch; engraved or laser-etched text.
 5. Aluminum Nameplates: Anodized; minimum thickness of 1/32 inch; engraved or laser-etched text.
 6. Mounting Holes for Mechanical Fasteners: Two, centered on sides for sizes up to 1 inch high; Four, located at corners for larger sizes.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

B. Identification Labels:
 1. Manufacturers:
 d. Substitutions: See Section 016000 - Product Requirements.
 a. Use only for indoor locations.
 3. Text: Use factory pre-printed or machine-printed text. Do not use handwritten text unless otherwise indicated.

C. Format for Equipment Identification:
 1. Minimum Size: 1 inch by 2.5 inches.
 2. Legend:
 a. System designation where applicable:
 1) Emergency Power System: Identify with text "EMERGENCY".
 2) Fire Alarm System: Identify with text "FIRE ALARM".
 b. Equipment designation or other approved description.
 3. Text: All capitalized unless otherwise indicated.
 4. Minimum Text Height:
 a. System Designation: 1 inch.
 b. Equipment Designation: 1/2 inch.
 5. Color:
 c. Fire Alarm System: White text on red background.

D. Format for Receptacle Identification:
 1. Minimum Size: 3/8 inch by 1.5 inches.
 2. Legend: Power source and circuit number or other designation indicated.
 a. Include voltage and phase for other than 120 V, single phase circuits.
 3. Text: All capitalized unless otherwise indicated.
 5. Color: Black text on clear background.

2.3 WIRE AND CABLE MARKERS

A. Manufacturers:

B. Markers for Conductors and Cables: Use wrap-around self-adhesive vinyl self-laminating type markers suitable for the conductor or cable to be identified.

C. Markers for Conductor and Cable Bundles: Use plastic marker tags secured by nylon cable ties.
D. Legend: Power source and circuit number or other designation indicated.

E. Text: Use factory pre-printed or machine-printed text, all capitalized unless otherwise indicated.
 1. Do not use handwritten text.

F. Minimum Text Height: 1/8 inch.

G. Color: Black text on white background unless otherwise indicated.

2.4 VOLTAGE MARKERS

A. Manufacturers:

B. Markers for Conduits: Use factory pre-printed self-adhesive vinyl, self-adhesive vinyl cloth, or vinyl snap-around type markers.

C. Markers for Boxes and Equipment Enclosures: Use factory pre-printed self-adhesive vinyl or self-adhesive vinyl cloth type markers.

D. Minimum Size:
 1. Markers for Equipment: 1 1/8 by 4 1/2 inches.
 2. Markers for Conduits: As recommended by manufacturer for conduit size to be identified.

E. Legend:
 1. Markers for Voltage Identification: Highest voltage present.
 2. Markers for System Identification:
 a. Life Safety System: Text "EMERGENCY"
 b. Standby Power System: Text "STANDBY".

F. Color: Black text on orange background unless otherwise indicated.

2.5 UNDERGROUND WARNING TAPE

A. Manufacturers:
B. Materials: Use foil-backed detectable type polyethylene tape suitable for direct burial, unless otherwise indicated.

C. Foil-backed Detectable Type Tape: 3 inches wide, with minimum thickness of 5 mil, unless otherwise required for proper detection.

D. Legend: Type of service, continuously repeated over full length of tape.

E. Color:
 1. Tape for Buried Power Lines: Black text on red background.

2.6 WARNING SIGNS AND LABELS

A. Manufacturers:

B. Comply with ANSI Z535.2 or ANSI Z535.4 as applicable.

C. Warning Signs:
 1. Materials:
 a. Indoor Dry, Clean Locations: Use factory pre-printed rigid plastic or self-adhesive vinyl signs.
 b. Outdoor Locations: Use factory pre-printed rigid aluminum signs.
 2. Rigid Signs: Provide four mounting holes at corners for mechanical fasteners.
 3. Minimum Size: 7 by 10 inches unless otherwise indicated.

D. Warning Labels:
 1. Materials: Use factory pre-printed or machine-printed self-adhesive polyester or self-adhesive vinyl labels; UV, chemical, water, heat, and abrasion resistant; produced using materials recognized to UL 969.
 a. Do not use labels designed to be completed using handwritten text.
 3. Minimum Size: 2 by 4 inches unless otherwise indicated.

PART 3 EXECUTION

3.1 PREPARATION

A. Clean surfaces to receive adhesive products according to manufacturer’s instructions.
3.2 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install identification products to be plainly visible for examination, adjustment, servicing, and maintenance. Unless otherwise indicated, locate products as follows:
 3. Free-Standing Equipment: Enclosure front; also enclosure rear for equipment with rear access.
 4. Elevated Equipment: Legible from the floor or working platform.
 5. Branch Devices: Adjacent to device.
 6. Interior Components: Legible from the point of access.
 7. Conduits: Legible from the floor.
 8. Boxes: Outside face of cover.
 9. Conductors and Cables: Legible from the point of access.
 10. Devices: Outside face of cover (unless otherwise noted) and inside box.

C. Install identification products centered, level, and parallel with lines of item being identified.

D. Secure nameplates to exterior surfaces of enclosures using stainless steel screws and to interior surfaces using self-adhesive backing or epoxy cement.

E. Install self-adhesive labels and markers to achieve maximum adhesion, with no bubbles or wrinkles and edges properly sealed.

F. Install underground warning tape above buried lines with one tape per trench at 3 inches below finished grade.

G. Secure rigid signs using stainless steel screws.

H. Mark all handwritten text, where permitted, to be neat and legible.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Replace self-adhesive labels and markers that exhibit bubbles, wrinkles, curling or other signs of improper adhesion.

END OF SECTION
SECTION 260573 - POWER SYSTEM STUDIES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Short-circuit study.

B. Protective device coordination study.

C. Arc flash and shock risk assessment.
 1. Includes arc flash hazard warning labels.

D. Criteria for the selection and adjustment of equipment and associated protective devices not specified in this section, as determined by studies to be performed.

E. Performance requirements for overcurrent protective devices.

F. Short circuit study.

G. Coordination study and analysis.

1.3 RELATED REQUIREMENTS

A. Section 260553 - Identification for Electrical Systems: Additional requirements for arc flash hazard warning labels.

B. Section 262100 - Low-Voltage Electrical Service Entrance.

C. Section 262413 - Switchboards.

D. Section 262416 - Panelboards.

E. Section 262813 - Fuses.

F. Section 262816.16 - Enclosed Switches.

G. Section 262913 - Enclosed Controllers.
1.4 REFERENCE STANDARDS

D. NEMA MG 1 - Motors and Generators; 2014.

F. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

G. NFPA 70E - Standard for Electrical Safety in the Workplace; 2015.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work to provide equipment and associated protective devices complying with criteria for selection and adjustment, as determined by studies to be performed.
 2. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

B. Sequencing:
 1. Submit study reports prior to or concurrent with product submittals.
 2. Do not order equipment until matching study reports and product submittals have both been evaluated by QA+M architecture.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Study reports, stamped or sealed and signed by study preparer.

C. Product Data: In addition to submittal requirements specified in other sections, include manufacturer's standard catalog pages and data sheets for equipment and protective devices indicating information relevant to studies.
 1. Include characteristic time-current trip curves for protective devices.
 2. Include impedance data for engine generators.
3. Clearly indicate whether proposed short circuit current ratings are fully rated or, where acceptable, series rated systems.
4. Include documentation of listed series ratings upon request.
5. Identify modifications made in accordance with studies that:
 a. Can be made at no additional cost to Town of Rocky Hill.
 b. As submitted will involve a change to the contract sum.

D. Arc Flash Hazard Warning Label Samples: One of each type and legend specified.

E. Study Report: Submit protective device studies as specified, prior to submission of product data submittals or ordering or fabrication of protective devices.
 1. Include stamp or seal and signature of preparing engineer.

F. Product Data: In addition to submittals specified elsewhere, submit manufacturer’s time-current curves for all protective devices.

G. Field quality control reports.

H. Certification that field adjustable protective devices have been set in accordance with requirements of studies.

I. Project Record Documents: Revise studies as required to reflect as-built conditions.
 1. Include hard copies with operation and maintenance data submittals.
 2. Include computer software files used to prepare studies with file name(s) cross-referenced to specific pieces of equipment and systems.

1.7 POWER SYSTEM STUDIES

A. Scope of Studies:
 1. Except where study descriptions below indicate exclusions, analyze system at each bus from primary protective devices of utility source down to each piece of equipment involved, including parts of system affecting calculations being performed (e.g. fault current contribution from motors).
 2. Include in analysis alternate sources and operating modes (including known future configurations) to determine worst case conditions.
 a. Known Operating Modes:
 1) Utility as source.
 2) Generator as source.

B. General Study Requirements:
 1. Comply with NFPA 70.
 2. Perform studies utilizing computer software complying with specified requirements; manual calculations are not permitted.

C. Data Collection:
 1. Compile information on project-specific characteristics of actual installed equipment, protective devices, feeders, etc. as necessary to develop single-line diagram of electrical distribution system and associated input data for use in system modeling.
a. Utility Source Data: Include primary voltage, maximum and minimum three-phase and line-to-ground fault currents, impedance, X/R ratio, and primary protective device information.
 1) Obtain up-to-date information from Utility Company.
b. Generators: Include manufacturer/model, kW and voltage ratings, and impedance.
c. Motors: Include manufacturer/model, type (e.g. induction, synchronous), horsepower rating, voltage rating, full load amps, and locked rotor current or NEMA MG 1 code letter designation.
d. Transformers: Include primary and secondary voltage ratings, kVA rating, winding configuration, percent impedance, and X/R ratio.
e. Protective Devices:
 1) Circuit Breakers: Include manufacturer/model, type (e.g. thermal magnetic, electronic trip), frame size, trip rating, voltage rating, interrupting rating, available field-adjustable trip response settings, and features (e.g. zone selective interlocking).
 2) Fuses: Include manufacturer/model, type/class (e.g. Class J), size/rating, and speed (e.g. time delay, fast acting).
f. Protective Relays: Include manufacturer/model, type, settings, current/potential transformer ratio, and associated protective device.
g. Conductors: Include feeder size, material (e.g. copper, aluminum), insulation type, voltage rating, number per phase, raceway type, and actual length.

D. Study Reports:
 1. General Requirements:
 a. Identify date of study and study preparer.
 b. Identify study methodology and software product(s) used.
 c. Identify scope of studies, assumptions made, implications of possible alternate scenarios, and any exclusions from studies.
 d. Identify base used for per unit values.
 e. Include single-line diagram and associated input data used for studies; identify buses on single-line diagram as referenced in reports, and indicate bus voltage.
 f. Include conclusions and recommendations.

1.8 PROTECTIVE DEVICE STUDY

A. Analyze the specific electrical and utilization equipment (according to NEC definition), the actual protective devices to be used, and the actual feeder lengths to be installed.
 1. Scope of Studies: All new and existing distribution wiring and equipment, from primary source to buses and branch circuit panelboards.
 2. Primary Source, for Purposes of Studies: Utility company primary protective devices.
 4. Report: State the methodology and rationale employed in making each type of calculation; identify computer software package(s) used.

B. One-Line Diagrams: Prepare schematic drawing of electrical distribution system, with all electrical equipment and wiring to be protected by the protective devices; identify nodes on the diagrams for reference on report that includes:
 1. Calculated fault impedance, X/R ratios, utility contribution, and short circuit values (asymmetric and symmetric) at the main switchboard bus and all downstream devices containing protective devices.
 2. Breaker and fuse ratings.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

3. Generator kW and voltage ratings, percent impedance, X/R ratios, and wiring connections.
4. Transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
5. Identification of each bus, with voltage.

C. Short Circuit Study: Calculate the fault impedance to determine available 3-phase short circuit and ground fault currents at each bus and piece of equipment during normal conditions, alternate operations, emergency power conditions, and other operations that could result in maximum fault conditions.
1. Show fault currents available at key points in the system down to a fault current of 7,000 A at 480 V and 208 V.
2. Include motor contributions in determining the momentary and interrupting ratings of the protective devices.
3. Primary Fault Level Assumptions: Obtain data from utility company.
4. Report: Include all pertinent data used in calculations and for each device include:
 a. Device identification.
 b. Operating voltage.
 c. Protective device.
 d. Device rating.
 e. Calculated short circuit current, asymmetrical and symmetrical, and ground fault current.

D. Coordination Study: Perform an organized time-current analysis of each protective device in series from the individual device back to the primary source, under normal conditions, alternate operations, and emergency power conditions.
1. Graphically illustrate that adequate time separation exists between series devices, including upstream primary device.
2. Plot the specific time-current characteristics of each protective device on log-log paper.
3. Organize plots so that all upstream devices are clearly depicted on one sheet.
4. Also show the following on curve plot sheets:
 a. Device identification.
 b. Voltage and current transformer ratios for curves.
 c. 3-phase and 1-phase ANSI damage curves for each transformer.
 d. No-damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum short circuit cutoff point.
 h. Simple one-line diagram for the portion of the system that each curve plot illustrates.
 i. Software report for each curve plot, labeled for identification.

E. Analysis: Determine ratings and settings of protective devices to minimize damage caused by a fault and so that the protective device closest to the fault will open first.
1. Required Ratings and Settings: Derive required ratings and settings of protective devices in consideration of upstream protective device settings and optimize system to ensure selective coordination.
2. Identify any equipment that is underrated as specified.
3. Identify existing protective devices that will not achieve required coordination and cannot be field adjusted to do so.
4. Identify specified protective devices that will not achieve required protection or coordination and cannot be field adjusted to do so, and for which adequate devices would involve a change to the contract sum.
5. In all cases where adequate protection or coordination cannot be achieved at no extra cost to Town of Rocky Hill, provide a discussion of alternatives and logical compromises for best achievable coordination.

F. Protective Device Rating and Setting Chart: Summarize in tabular format the required characteristics for each protective device based on the analysis; include:
 1. Device identification.
 2. Relay CT ratios, tap, time dial, and instantaneous pickup.
 3. Circuit breaker sensor rating, long-time, short-time, and instantaneous settings, and time bands.
 4. Fuse rating and type.
 5. Ground fault pickup and time delay.
 6. Input level and expected response time at two test points that are compatible with commonly available test equipment and the ratings of the protective device.
 7. Highlight all devices that as furnished by Contractor will not achieve required protection.

1.9 QUALITY ASSURANCE

A. Study Preparer Qualifications: Professional electrical engineer licensed in Connecticut and with minimum five years experience in the preparation of studies of similar type and complexity using specified computer software.
 1. Study preparer may not be employed by the manufacturer of the electrical distribution equipment.

B. Field Testing Agency Qualifications: Independent testing organization specializing in testing, analysis, and maintenance of electrical systems with minimum five years experience; NETA Accredited Company.

 1. Acceptable Software Products:

D. Contractor Responsibility: Provide all project-related data needed by study preparer, including equipment, wire sizes, insulation types, conduit types, and actual circuit lengths.

PART 2 PRODUCTS

2.1 ARC FLASH HAZARD WARNING LABELS

A. Provide warning labels complying with ANSI Z535.4 to identify arc flash hazards for each work location analyzed by the arc flash and shock risk assessment.
 1. Materials: Comply with Section 260553.
 2. Legend: Provide custom legend in accordance with NFPA 70E based on equipment-specific data as determined by arc flash and shock risk assessment.
a. Include the following information:
 1) Arc flash boundary.
 2) Available incident energy and corresponding working distance.
 3) Nominal system voltage.
 4) Limited approach boundary.
 5) Restricted approach boundary.
 6) Equipment identification.
 7) Date calculations were performed.

2.2 PROTECTIVE DEVICES

A. Provide protective devices of ratings and settings as required so that the protective device closest to the fault will open first.

B. In addition to requirements specified elsewhere, provide overcurrent protective devices having ratings and settings in accordance with results of this analysis.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install arc flash warning labels in accordance with Section 260553.

3.2 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Provide the services of field testing agency or equipment manufacturer’s representative to perform inspection, testing, and adjusting.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Adjust equipment and protective devices for compliance with studies and recommended settings.

E. Notify QA+M architecture of any conflicts with or deviations from studies. Obtain direction before proceeding.

F. Submit detailed reports indicating inspection and testing results, and final adjusted settings.

G. Provide the services of a qualified field engineer and necessary tools and equipment to test, calibrate, and adjust the installed protective devices to conform to requirements determined by the coordination analysis.

H. Adjust installed protective devices having adjustable settings to conform to requirements determined by the coordination analysis.
I. Submit report showing final adjusted settings of all protective devices.

3.3 CLOSEOUT ACTIVITIES

A. See Section 017900 - Demonstration and Training, for additional requirements.

B. Training: Include as part of the base bid training for Town of Rocky Hill's personnel on electrical safety pertaining to arc flash and shock hazards.
 1. Use site-specific arc flash and shock risk assessment report as training reference, supplemented with additional training materials as required.

END OF SECTION
SECTION 260919 - ENCLOSED CONTACTORS

PART 1 GENERAL

1.1 SECTION INCLUDES

A. General purpose contactors.

B. Lighting contactors.

1.2 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.3 RELATED REQUIREMENTS

A. Section 260529 - Hangers and Supports for Electrical Systems.

B. Section 260553 - Identification for Electrical Systems: Identification products and requirements.

C. Section 262813 - Fuses.

1.4 REFERENCE STANDARDS

C. NEMA KS 1 - Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum); 2013.

E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.5 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide dimensions, size, voltage ratings and current ratings.

C. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

D. Maintenance Data: Include instructions for replacing and maintaining coil and contacts.

1.6 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

PART 2 PRODUCTS

2.1 MANUFACTURERS

C. Schneider Electric; Square D Products: www.schneider-electric.us.

D. Substitutions: See Section 016000 - Product Requirements.

2.2 GENERAL PURPOSE CONTACTORS

A. Description: NEMA ICS 2, AC general purpose magnetic contactor.

B. Coil operating voltage: 120 volts, 60 Hertz.

C. Poles: As required to match circuit configuration and control function.

D. Enclosure: NEMA ICS 6, Type 1.

E. Accessories:
 1. Selector Switch: ON/OFF.
 2. Indicating Light: RED.
 3. Auxiliary Contacts: One, normally open.

2.3 LIGHTING CONTACTORS

A. Description: NEMA ICS 2, magnetic lighting contactor.
B. Configuration: Electrically held.

C. Coil operating voltage: 120 volts, 60 Hertz.

D. Poles: As required to match circuit configuration and control function.

E. Contact Rating: Match branch circuit overcurrent protection, considering derating for continuous loads.

F. Enclosure: NEMA ICS 6, Type 1.

G. Accessories:
 1. Selector Switch: ON/OFF.
 2. Indicating Light: RED.
 3. Auxiliary Contacts: One, normally open.

2.4 ACCESSORIES

A. Auxiliary Contacts: NEMA ICS 2, 2 normally open contacts in addition to seal-in contact.

B. Indicating Lights: Transformer, LED type.

C. Selector Switches: Rotary type.

D. Control Power Transformers: 120 volt secondary, 100 VA minimum, in each enclosed contactor. Provide fused primary and secondary, and bond unfused leg of secondary to enclosure.

2.5 DISCONNECTS

A. Combination Contactors: Combine contactor with disconnect in common enclosure.

B. Disconnects: Thermal magnetic circuit breaker with integral thermal and instantaneous magnetic trip in each pole; UL listed.

C. Disconnects: Fusible switch assembly; NEMA KS 1, enclosed knife switch with externally operable handle. Fuse clips: Designed to accommodate Class R fuses.

PART 3 EXECUTION

3.1 INSTALLATION

A. Install enclosed contactors where indicated, in accordance with manufacturer's instructions.
B. Install enclosed contactors plumb. Provide supports in accordance with Section 260529.

C. Provide fuses for fusible switches; refer to Section 262813 for product requirements.

D. Identify enclosed contactors in accordance with Section 260553.

3.2 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform field inspection and testing in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Perform applicable inspections and tests listed in NETA ATS, Section 7.16.1.

END OF SECTION
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Occupancy sensors.
B. Time switches.
C. Outdoor photo controls.
D. Daylighting controls.

1.2 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.3 RELATED REQUIREMENTS

A. Section 260526 - Grounding and Bonding for Electrical Systems.
B. Section 260529 - Hangers and Supports for Electrical Systems.
C. Section 260533.16 - Boxes for Electrical Systems.
D. Section 260553 - Identification for Electrical Systems: Identification products and requirements.
E. Section 260918 - Remote Control Switching Devices: Remotely controlled devices for lighting control, including networked lighting controls, programmable relay panels, and remote control switching relays.
F. Section 260919 - Enclosed Contactors: Lighting contactors.
G. Section 262726 - Wiring Devices: Devices for manual control of lighting, including wall switches and wall dimmers.
 1. Includes finish requirements for wall controls specified in this section.
 2. Includes accessory receptacles, switches, dimmers and wall plates, to match lighting controls specified in this section.
H. Section 265100 - Interior Lighting.
I. Section 265133 - Luminaires, Ballasts, and Drivers - Lutron.

J. Section 265600 - Exterior Lighting.

1.4 REFERENCE STANDARDS

A. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

B. NECA 130 - Standard for Installing and Maintaining Wiring Devices; 2010.

C. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

D. NEMA 410 - Performance Testing for Lighting Controls and Switching Devices with Electronic Drivers and Discharge Ballasts; 2011.

E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

G. UL 917 - Clock-Operated Switches; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the placement of lighting control devices with millwork, furniture, equipment, etc. installed under other sections or by others.
 2. Coordinate the placement of wall switch occupancy sensors with actual installed door swings.
 3. Coordinate the placement of occupancy sensors with millwork, furniture, equipment or other potential obstructions to motion detection coverage installed under other sections or by others.
 4. Coordinate the placement of photo sensors for daylighting controls with windows, skylights, and luminaires to achieve optimum operation. Coordinate placement with ductwork, piping, equipment, or other potential obstructions to light level measurement installed under other sections or by others.
 5. Notify QA+M architecture of any conflicts or deviations from Contract Documents to obtain direction prior to proceeding with work.

B. Sequencing:
 1. Do not install lighting control devices until final surface finishes and painting are complete.
1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Include ratings, configurations, standard wiring diagrams, dimensions, colors, service condition requirements, and installed features.
 1. Occupancy Sensors: Include detailed motion detection coverage range diagrams.

C. Shop Drawings:
 1. Occupancy Sensors: Provide lighting plan indicating location, model number, and orientation of each occupancy sensor and associated system component.
 2. Daylighting Controls: Provide lighting plan indicating location, model number, and orientation of each photo sensor and associated system component.

D. Field Quality Control Reports.

E. Manufacturer's Installation Instructions: Include application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

F. Operation and Maintenance Data: Include detailed information on device programming and setup.

G. Project Record Documents: Record actual installed locations and settings for lighting control devices.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND PROTECTION

A. Store products in a clean, dry space in original manufacturer's packaging in accordance with manufacturer's written instructions until ready for installation.

1.9 FIELD CONDITIONS

A. Maintain field conditions within manufacturer's required service conditions during and after installation.
1.10 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. Provide five year manufacturer warranty for all occupancy sensors.

C. Provide two year manufacturer warranty for all daylighting controls.

PART 2 PRODUCTS

2.1 LIGHTING CONTROL DEVICES - GENERAL REQUIREMENTS

A. Provide products listed, classified, and labeled as suitable for the purpose intended.

B. Unless specifically indicated to be excluded, provide all required conduit, wiring, connectors, hardware, components, accessories, etc. as required for a complete operating system.

2.2 OCCUPANCY SENSORS

A. Manufacturers:
 1. Hubbell Building Automation, Inc: www.hubbellautomation.com
 5. Substitutions: See Section 016000 - Product Requirements.
 6. Source Limitations: Furnish products produced by a single manufacturer and obtained from a single supplier.

B. All Occupancy Sensors:
 1. Description: Factory-assembled commercial specification grade devices for indoor use capable of sensing both major motion, such as walking, and minor motion, such as small desktop level movements, according to published coverage areas, for automatic control of load indicated.
 2. Sensor Technology:
 a. Passive Infrared (PIR) Occupancy Sensors: Designed to detect occupancy by sensing movement of thermal energy between zones.
 b. Ultrasonic Occupancy Sensors: Designed to detect occupancy by sensing frequency shifts in emitted and reflected inaudible sound waves.
 c. Passive Infrared/Ultrasonic Dual Technology Occupancy Sensors: Designed to detect occupancy using a combination of both passive infrared and ultrasonic technologies.
 d. Passive Infrared/Acoustic Dual Technology Occupancy Sensors: Designed to detect occupancy using a combination of both passive infrared and audible sound sensing technologies.
 3. Provide LED to visually indicate motion detection with separate color LEDs for each sensor type in dual technology units.
4. **Operation:** Unless otherwise indicated, occupancy sensor to turn load on when occupant presence is detected and to turn load off when no occupant presence is detected during an adjustable turn-off delay time interval.

5. **Dual Technology Occupancy Sensors:** Field configurable turn-on and hold-on activation with settings for activation by either or both sensing technologies.

6. **Passive Infrared Lens Field of View:** Field customizable by addition of factory masking material, adjustment of integral blinders, or similar means to block motion detection in selected areas.

7. **Turn-Off Delay:** Field adjustable, with time delay settings up to 30 minutes.

8. **Sensitivity:** Field adjustable.

9. **Adaptive Technology:** Field selectable; capable of self-adjusting sensitivity and time delay according to conditions.

10. **Integral Photocell:** For field selectable and adjustable inhibition of automatic turn-on of load when ambient lighting is above the selected level.

11. **Compatibility (Non-Dimming Sensors):** Suitable for controlling incandescent lighting, low-voltage lighting with electronic and magnetic transformers, fluorescent lighting with electronic and magnetic ballasts, and fractional motor loads, with no minimum load requirements.

C. Wall Switch Occupancy Sensors:

1. **All Wall Switch Occupancy Sensors:**
 a. **Description:** Occupancy sensors designed for installation in standard wall box at standard wall switch mounting height with a field of view of 180 degrees, integrated manual control capability, and no leakage current to load in off mode.
 b. Unless otherwise indicated or required to control the load indicated on drawings, provide line voltage units with self-contained relay.
 c. Where indicated, provide two-circuit units for control of two separate lighting loads, with separate manual controls and separately programmable operation for each load.
 d. **Operation:** Field selectable to operate either as occupancy sensor (automatic on/off) or as vacancy sensor (manual-on/automatic off).
 e. **Manual-Off Override Control:** When used to turn off load while in automatic-on mode, unit to revert back to automatic mode after no occupant presence is detected during the delayed-off time interval.
 f. **Finish:** Match finishes specified for wiring devices in Section 262726, unless otherwise indicated.

2. **Passive Infrared/Ultrasonic Dual Technology Wall Switch Occupancy Sensors:** Capable of detecting motion within an area of 900 square feet.

D. Wall Dimmer Occupancy Sensors:

1. **General Requirements:**
 a. **Description:** Occupancy sensors designed for installation in standard wall box at standard wall switch mounting height with a field of view of 180 degrees, integrated dimming control capability, and no leakage current to load in off mode.
 b. **Operation:** Field selectable to operate either as occupancy sensor (automatic on/off) or as vacancy sensor (manual-on/automatic off).
 c. **Manual-Off Override Control Capability:** When used to turn off load while in automatic-on mode, unit to revert back to automatic mode after no occupant presence is detected during the delayed-off time interval.
 d. **Dimmer:** Solid-state with continuous full-range even control following square law dimming curve, integral radio frequency interference filtering, power failure preset memory, air gap switch accessible without removing wall plate, and listed as complying with UL 1472; type and rating suitable for load controlled.
 e. **Provide field adjustable dimming preset for occupied state.**
f. Finish: Match finishes specified for wiring devices in Section 26276, unless otherwise indicated.

E. Ceiling Mounted Occupancy Sensors:
 1. All Ceiling Mounted Occupancy Sensors:
 a. Description: Low profile occupancy sensors designed for ceiling installation.
 b. Unless otherwise indicated or required to control the load indicated on drawings, provide low voltage units, for use with separate compatible accessory power packs.
 c. Provide field selectable setting for disabling LED motion detector visual indicator.
 d. Occupancy sensor to be field selectable as either manual-on/automatic-off or automatic on/off.
 e. Finish: White unless otherwise indicated.
 2. Passive Infrared/Ultrasonic Dual Technology Ceiling Mounted Occupancy Sensors:
 a. Standard Range Sensors: Capable of detecting motion within an area of 450 square feet at a mounting height of 9 feet, with a field of view of 360 degrees.

F. Power Packs for Low Voltage Occupancy Sensors:
 1. Description: Plenum rated, self-contained low voltage class 2 transformer and relay compatible with specified low voltage occupancy sensors for switching of line voltage loads.
 2. Provide quantity and configuration of power and slave packs with all associated wiring and accessories as required to control the load indicated on drawings.
 3. Input Supply Voltage: Dual rated for 120/277 V ac.
 4. Load Rating: As required to control the load indicated on drawings.

G. Accessories:
 1. Provide heavy duty coated steel wire protective guards compatible with specified occupancy sensors for occupancy sensors located in Gymnasium.

2.3 TIME SWITCHES

A. Manufacturers:
 1. Intermatic, Inc: www.intermatic.com/#sle.
 5. Source Limitations: Furnish products produced by a single manufacturer and obtained from a single supplier.

B. Digital Electronic Time Switches:
 1. Description: Factory-assembled solid state programmable controller with LCD display, listed and labeled as complying with UL 916 or UL 917.
 2. Program Capability:
 a. 7-Day Time Switches: Four channel, capable of different schedule for each day of the week.
 3. Schedule Capacity: Not less than 16 programmable on/off operations.
 4. Provide automatic daylight savings time and leap year compensation.
 5. Provide power outage backup to retain programming and maintain clock.
 6. Manual override: Capable of overriding current schedule both permanently and temporarily until next scheduled event.
7. Provide remote photocell input with light level adjustment.
8. Input Supply Voltage: Multiple voltage input for 120, 208, 240 or 277 V ac.
9. Output Switch Configuration: As required to control the load indicated on drawings.
10. Provide lockable enclosure; environmental type per NEMA 250 as specified for the following installation locations:
 a. Indoor clean, dry locations: Type 1.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.
B. Verify that outlet boxes are installed in proper locations and at proper mounting heights and are properly sized to accommodate devices and conductors in accordance with NFPA 70.
C. Verify that openings for outlet boxes are neatly cut and will be completely covered by devices or wall plates.
D. Verify that final surface finishes are complete, including painting.
E. Verify that branch circuit wiring installation is completed, tested, and ready for connection to lighting control devices.
F. Verify that the service voltage and ratings of lighting control devices are appropriate for the service voltage and load requirements at the location to be installed.
G. Verify that conditions are satisfactory for installation prior to starting work.

3.2 PREPARATION

A. Provide extension rings to bring outlet boxes flush with finished surface.
B. Clean dirt, debris, plaster, and other foreign materials from outlet boxes.

3.3 INSTALLATION

A. Install lighting control devices in accordance with NECA 1 (general workmanship) and, where applicable, NECA 130, including mounting heights specified in those standards unless otherwise indicated.
B. Coordinate locations of outlet boxes provided under Section 260533.16 as required for installation of lighting control devices provided under this section.
C. Install lighting control devices in accordance with manufacturer's instructions.
D. Unless otherwise indicated, connect lighting control device grounding terminal or conductor to branch circuit equipment grounding conductor and to outlet box with bonding jumper.

E. Install lighting control devices plumb and level, and held securely in place.

F. Where required and not furnished with lighting control device, provide wall plate in accordance with Section 262726.

G. Provide required supports in accordance with Section 260529.

H. Where applicable, install lighting control devices and associated wall plates to fit completely flush to mounting surface with no gaps and rough opening completely covered without strain on wall plate. Repair or reinstall improperly installed outlet boxes or improperly sized rough openings. Do not use oversized wall plates in lieu of meeting this requirement.

I. Occupancy Sensor Locations:
 1. Location Adjustments: Locations indicated are diagrammatic and only intended to indicate which rooms or areas require devices. Provide quantity and locations as required for complete coverage of respective room or area based on manufacturer's recommendations for installed devices.
 2. Locate ultrasonic and dual technology passive infrared/ultrasonic occupancy sensors a minimum of 4 feet from air supply ducts or other sources of heavy air flow and as per manufacturer's recommendations, in order to minimize false triggers.

J. Unless otherwise indicated, install power packs for lighting control devices above accessible ceiling or above access panel in inaccessible ceiling near the sensor location.

K. Where indicated, install separate compatible wall switches for manual control interface with lighting control devices or associated power packs.

L. Unless otherwise indicated, install switches on load side of power packs so that switch does not turn off power pack.

3.4 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Inspect each lighting control device for damage and defects.

C. Test occupancy sensors to verify proper operation, including time delays and ambient light thresholds where applicable. Verify optimal coverage for entire room or area. Record test results in written report to be included with submittals.

D. Test time switches to verify proper operation.
E. Test outdoor photo controls to verify proper operation, including time delays where applicable.

F. Correct wiring deficiencies and replace damaged or defective lighting control devices.

3.5 ADJUSTING

A. Adjust devices and wall plates to be flush and level.

B. Adjust occupancy sensor settings to minimize undesired activations while optimizing energy savings, and to achieve desired function as indicated or as directed by QA+M architecture.

C. Adjust position of outdoor motion sensors to achieve optimal coverage as required.

D. Where indicated or as directed by Architect, install factory masking material or adjust integral blinders on passive infrared (PIR) and dual technology occupancy sensor lenses to block undesired motion detection.

E. Adjust time switch settings to achieve desired operation schedule as indicated or as directed by QA+M architecture. Record settings in written report to be included with submittals.

3.6 CLEANING

A. Clean exposed surfaces to remove dirt, paint, or other foreign material and restore to match original factory finish.

3.7 COMMISSIONING

A. See Section 019113 - General Commissioning Requirements for commissioning requirements.

3.8 CLOSEOUT ACTIVITIES

A. Demonstration: Demonstrate proper operation of lighting control devices to QA+M architecture, and correct deficiencies or make adjustments as directed.

B. Training: Train Town of Rocky Hill's personnel on operation, adjustment, programming, and maintenance of lighting control devices.
 1. Use operation and maintenance manual as training reference, supplemented with additional training materials as required.
 2. Provide minimum of two hours of training.
 3. Instructor: Qualified contractor familiar with the project and with sufficient knowledge of the installed lighting control devices.
 4. Location: At project site.

END OF SECTION
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. General purpose transformers.

B. K-factor transformers rated for nonlinear loads.

1.3 RELATED REQUIREMENTS

A. Section 033000 - Cast-in-Place Concrete: Concrete equipment pads.

B. Section 260526 - Grounding and Bonding for Electrical Systems.

C. Section 260529 - Hangers and Supports for Electrical Systems.

D. Section 260533.13 - Conduit for Electrical Systems: Flexible conduit connections.

E. Section 260553 - Identification for Electrical Systems: Identification products and requirements.

G. Section 262416 - Panelboards.

1.4 REFERENCE STANDARDS

B. IEEE C57.94 - IEEE Recommended Practice for Installation, Application, Operation, and Maintenance of Dry-Type General Purpose Distribution and Power Transformers; 1982 (R2006).

C. IEEE C57.96 - Guide for Loading Dry-Type Distribution and Power Transformers; 2013.

D. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
E. NECA 409 - Standard for Installing and Maintaining Dry-Type Transformers; 2009.

F. NEMA ST 20 - Dry-Type Transformers for General Applications; 2014.

G. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

J. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

L. UL 1561 - Standard for Dry-Type General Purpose and Power Transformers; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Coordinate the work with placement of supports, anchors, etc. required for mounting.
 4. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.
 5. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

B. Coordination: Coordinate the work with placement of support framing and anchors required for mounting of transformers.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Include voltage, kVA, impedance, tap configurations, insulation system class and rated temperature rise, efficiency, sound level, enclosure ratings, outline and support point dimensions, weight, required clearances, service condition requirements, and installed features.
C. Shop Drawings: Provide dimensioned plan and elevation views of transformers and adjacent equipment with all required clearances indicated.

D. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

E. Project Record Documents: Record actual locations of transformers.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.

B. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to transformer internal components, enclosure, and finish.

1.9 FIELD CONDITIONS

A. Ambient Temperature: Do not exceed the following maximum temperatures during and after installation of transformers.
 1. Greater than 10 kVA: 104 degrees F maximum.
 2. Less than 10 kVA: 77 degrees F maximum.

B. Ambient Temperature: Do not exceed 86 degrees F average or 104 degrees F maximum measured during any 24 hour period during and after installation of transformers.

1.10 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

PART 2 PRODUCTS

2.1 MANUFACTURERS

NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

B. Schneider Electric; Square D Products: www.schneider-electric.us.

D. Substitutions: See Section 016000 - Product Requirements.

E. Source Limitations: Furnish transformers produced by the same manufacturer as the other electrical distribution equipment used for this project and obtained from a single supplier.

2.2 TRANSFORMERS - GENERAL REQUIREMENTS

A. Description: Factory-assembled, dry type transformers for 60 Hz operation designed and manufactured in accordance with NEMA ST 20 and listed, classified, and labeled as suitable for the purpose intended.

B. Unless noted otherwise, transformer ratings indicated are for continuous loading according to IEEE C57.96 under the following service conditions:
 1. Altitude: Less than 3,300 feet.
 2. Ambient Temperature:
 a. Greater than 10 kVA: Not exceeding 104 degrees F.
 b. Less than 10 kVA: Not exceeding 77 degrees F.
 3. Ambient Temperature: Not exceeding 86 degrees F average or 104 degrees F maximum measured during any 24 hour period.

C. Core: High grade, non-aging silicon steel with high magnetic permeability and low hysteresis and eddy current losses. Keep magnetic flux densities substantially below saturation point, even at 10 percent primary overvoltage. Tightly clamp core laminations to prevent plate movement and maintain consistent pressure throughout core length.

D. Impregnate core and coil assembly with non-hydroscopic thermo-setting varnish to effectively seal out moisture and other contaminants.

E. Basic Impulse Level: 10 kV.

F. Ground core and coil assembly to enclosure by means of a visible flexible copper grounding strap.

G. Isolate core and coil from enclosure using vibration-absorbing mounts.

H. Nameplate: Include transformer connection data, ratings, wiring diagrams, and overload capacity based on rated winding temperature rise.
2.3 GENERAL PURPOSE TRANSFORMERS

A. Description: Self-cooled, two winding transformers listed and labeled as complying with UL 506 or UL 1561; ratings as indicated on the drawings.

B. Primary Voltage: 480 volts delta, 3 phase.

C. Secondary Voltage: 208Y/120 volts, 3 phase.

D. Insulation System and Allowable Average Winding Temperature Rise:
 1. Less than 15 kVA: Class 180 degrees C insulation system with 115 degrees C average winding temperature rise.
 2. 15 kVA and Larger: Class 220 degrees C insulation system with 150 degrees C average winding temperature rise.

E. Coil Conductors: Continuous aluminum windings with terminations brazed or welded.

F. Winding Taps:
 1. Less than 3 kVA: None.
 2. 3 kVA through 15 kVA: Two 5 percent full capacity primary taps below rated voltage.
 3. 15 kVA through 300 kVA: Two 2.5 percent full capacity primary taps above and four 2.5 percent full capacity primary taps below rated voltage.
 4. 500 kVA and Larger: Two 2.5 percent full capacity primary taps above and two 2.5 percent full capacity primary taps below rated voltage.

G. Energy Efficiency: Comply with 10 CFR 431, Subpart K.
 1. Test efficiency according to NEMA TP 2.
 2. Label transformer according to NEMA TP 3.

H. Sound Levels: Standard sound levels complying with NEMA ST 20.

I. Mounting Provisions:
 1. Less than 15 kVA: Suitable for wall mounting.
 2. 15 kVA through 75 kVA: Suitable for wall, floor, or trapeze mounting.
 3. Larger than 75 kVA: Suitable for floor mounting.

J. Transformer Enclosure: Comply with NEMA ST 20.
 1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor clean, dry locations: Type 2.
 b. Outdoor locations: Type 3R.
 2. Construction: Steel.
 a. Less than 15 kVA: Totally enclosed, non-ventilated.
 b. 15 kVA and Larger: Ventilated.
 3. Finish: Manufacturer's standard grey, suitable for outdoor installations.
 4. Provide lifting eyes or brackets.
K. Accessories:
 1. Mounting Brackets: Provide manufacturer’s standard brackets.
 2. Transformers Less than 15 kVA: Two 5 percent above and below rated voltage, full capacity taps on primary winding.
 3. Transformers 15 kVA and Larger: Two 5 percent above and below rated voltage, full capacity taps on primary winding.

2.4 K-FACTOR TRANSFORMERS RATED FOR NONLINEAR LOADS

A. Description: Self-cooled, two winding transformers listed and labeled as complying with UL 1561, and designed to supply nonlinear loads to the degree designated by the UL defined K-factor; ratings as indicated on the drawings.

B. Primary Voltage: 480 volts delta, 3 phase.

C. Secondary Voltage: 208Y/120 volts, 3 phase.

D. K-factor Rating: K-9, or higher.

E. Insulation System and Allowable Average Winding Temperature Rise: Class 220 degrees C insulation system with 150 degrees C average winding temperature rise.

F. Coil Conductors: Continuous aluminum windings with terminations brazed or welded. Individually insulate secondary conductors and arrange to minimize hysteresis and eddy current losses at harmonic frequencies. Size secondary neutral conductor at twice the secondary phase conductor ampacity.

G. Winding Taps: Two 2.5 percent full capacity primary taps above and four 2.5 percent full capacity primary taps below rated voltage.

H. Neutral Bus: Sized to accommodate twice the rated secondary current.

I. Energy Efficiency: Comply with 10 CFR 431, Subpart K.
 1. Test efficiency according to NEMA TP 2.
 2. Label transformer according to NEMA TP 3.

J. Sound Levels: Standard sound levels complying with NEMA ST 20.

K. Mounting Provisions:
 1. Up to 75 kVA: Suitable for wall, floor, or trapeze mounting.
 2. Larger than 75 kVA: Suitable for floor mounting.

L. Transformer Enclosure: Comply with NEMA ST 20.
 1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor clean, dry locations: Type 2.
b. Outdoor locations: Type 3R.
2. Construction: Steel, ventilated.
3. Finish: Manufacturer's standard grey, suitable for outdoor installations.
4. Provide lifting eyes or brackets.

M. Accessories:
 1. Mounting Brackets: Provide manufacturer's standard brackets.

2.5 SOURCE QUALITY CONTROL

A. Factory test transformers according to NEMA ST 20.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that suitable support frames and anchors are installed where required and that mounting surfaces are ready to receive transformers.

C. Perform pre-installation tests and inspections on transformers per manufacturer's instructions and as specified in NECA 409. Correct deficiencies prior to installation.

D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Perform work in accordance with NECA 1 (general workmanship).

B. Install products in accordance with manufacturer's instructions.

C. Install transformers in accordance with NECA 409 and IEEE C57.94.

D. Use flexible conduit, under the provisions of Section 260533.13, 2 feet minimum length, for connections to transformer case. Make conduit connections to side panel of enclosure.

E. Arrange equipment to provide minimum clearances as specified on transformer nameplate and in accordance with manufacturer's instructions and NFPA 70.

F. Install transformers plumb and level.

G. Transformer Support:
 1. Provide required support and attachment in accordance with Section 260529, where not furnished by transformer manufacturer.
2. Use integral transformer flanges, accessory brackets furnished by manufacturer, or field-fabricated supports to support wall-mounted transformers.
3. Unless otherwise indicated, mount floor-mounted transformers on properly sized 3 inch high concrete pad constructed in accordance with Section 033000.
4. Use trapeze hangers assembled from threaded rods and metal channel (strut) to support suspended transformers. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.

H. Mount floor-mounted transformers using vibration isolators suitable for isolating the transformer noise from the building structure.

I. Provide grounding and bonding in accordance with Section 260526.

J. Remove shipping braces and adjust bolts that attach the core and coil mounting bracket to the enclosure according to manufacturer's recommendations in order to reduce audible noise transmission.

K. Where not factory-installed, install lugs sized as required for termination of conductors as indicated.

L. Identify transformers in accordance with Section 260553.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform field inspection, testing, and adjusting in accordance with Section 014000.

3.4 ADJUSTING

A. Measure primary and secondary voltages and make appropriate tap adjustments.

B. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

3.5 CLEANING

A. Clean dirt and debris from transformer components according to manufacturer's instructions.

B. Repair scratched or marred exterior surfaces to match original factory finish.

END OF SECTION
SECTION 262416 - PANELBOARDS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Power distribution panelboards.

B. Lighting and appliance panelboards.

C. Overcurrent protective devices for panelboards.

1.3 RELATED REQUIREMENTS

A. Section 260526 - Grounding and Bonding for Electrical Systems.

B. Section 260526 - Grounding and Bonding for Electrical Systems.

C. Section 260529 - Hangers and Supports for Electrical Systems.

D. Section 260553 - Identification for Electrical Systems: Identification products and requirements.

E. Section 260573 - Power System Studies: Additional criteria for the selection and adjustment of equipment and associated protective devices specified in this section.

F. Section 262200 - Low-Voltage Transformers: Small power centers with integral primary breaker, transformer, and panelboard.

G. Section 264300 - Surge Protective Devices.

1.4 REFERENCE STANDARDS

A. FS W-C-375 - Circuit Breakers, Molded Case; Branch Circuit and Service; Federal Specification; Revision E, 2013.

B. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
C. NECA 407 - Standard for Installing and Maintaining Panelboards; 2009.

D. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

E. NEMA PB 1 - Panelboards; 2011.

F. NEMA PB 1.1 - General Instructions for Proper Installation, Operation and Maintenance of Panelboards Rated 600 Volts or Less; 2013.

H. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

I. UL 50 - Enclosures for Electrical Equipment, Non-Environmental Considerations; Current Edition, Including All Revisions.

K. UL 67 - Panelboards; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances for electrical equipment required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Coordinate the work with other trades to provide walls suitable for installation of flush-mounted panelboards where indicated.
 4. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.
 5. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.
1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for panelboards, enclosures, overcurrent protective devices, and other installed components and accessories.

C. Source Quality Control Test Reports: Include reports for tests designated in NEMA PB 1 as routine tests.

D. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

E. Project Record Documents: Record actual installed locations of panelboards and actual installed circuiting arrangements.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store panelboards in accordance with manufacturer's instructions and NECA 407.

B. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.

C. Handle carefully in accordance with manufacturer's written instructions to avoid damage to panelboard internal components, enclosure, and finish.

1.9 FIELD CONDITIONS

A. Maintain ambient temperature within the following limits during and after installation of panelboards:
 1. Panelboards Containing Circuit Breakers: Between 23 degrees F and 104 degrees F.
PART 2 PRODUCTS

2.1 MANUFACTURERS

C. Schneider Electric; Square D Products: www.schneider-electric.us.

D. Substitutions: See Section 016000 - Product Requirements.

E. Source Limitations: Furnish panelboards and associated components produced by the same manufacturer as the other electrical distribution equipment used for this project and obtained from a single supplier.

2.2 PANELBOARDS - GENERAL REQUIREMENTS

A. Provide products listed, classified, and labeled as suitable for the purpose intended.

B. Unless otherwise indicated, provide products suitable for continuous operation under the following service conditions:
 1. Altitude: Less than 6,600 feet.
 2. Ambient Temperature:
 a. Panelboards Containing Circuit Breakers: Between 23 degrees F and 104 degrees F.

C. Short Circuit Current Rating:
 1. Provide panelboards with listed short circuit current rating not less than the available fault current at the installed location as determined by short circuit study performed in accordance with Section 260573.

D. Mains: Configure for top or bottom incoming feed as indicated or as required for the installation.

E. Branch Overcurrent Protective Devices: Replaceable without disturbing adjacent devices.

F. Bussing: Sized in accordance with UL 67 temperature rise requirements.
 1. Provide fully rated neutral bus unless otherwise indicated, with a suitable lug for each feeder or branch circuit requiring a neutral connection.
 2. Provide solidly bonded equipment ground bus in each panelboard, with a suitable lug for each feeder and branch circuit equipment grounding conductor.

G. Conductor Terminations: Suitable for use with the conductors to be installed.

H. Enclosures: Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E.
1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1.
2. Boxes: Galvanized steel unless otherwise indicated.
 a. Provide wiring gutters sized to accommodate the conductors to be installed.
 b. Increase gutter space as required where sub-feed lugs, feed-through lugs, gutter taps, or oversized lugs are provided.
3. Fronts:
 a. Fronts for Surface-Mounted Enclosures: Same dimensions as boxes.
 b. Fronts for Flush-Mounted Enclosures: Overlap boxes on all sides to conceal rough opening.
 c. Finish for Painted Steel Fronts: Manufacturer's standard grey unless otherwise indicated.
4. Lockable Doors: All locks keyed alike unless otherwise indicated.

I. Future Provisions: Prepare all unused spaces for future installation of devices including bussing, connectors, mounting hardware and all other required provisions.

J. Surge Protective Devices: Where factory-installed, internally mounted surge protective devices are provided in accordance with Section 264300, list and label panelboards as a complete assembly including surge protective device.

K. Multi-Section Panelboards: Provide enclosures of the same height, with feed-through lugs or sub-feed lugs and feeders as indicated or as required to interconnect sections.

L. Load centers are not acceptable.

M. Provide the following features and accessories where indicated or where required to complete installation:
 1. Feed-through lugs.
 2. Sub-feed lugs.

2.3 POWER DISTRIBUTION PANELBOARDS

A. Description: Panelboards complying with NEMA PB 1, power and feeder distribution type, circuit breaker type, and listed and labeled as complying with UL 67; ratings, configurations and features as indicated on the drawings.

B. Conductor Terminations:
 1. Main and Neutral Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
 2. Main and Neutral Lug Type: Mechanical.

C. Bussing:
 1. Phase and Neutral Bus Material: Aluminum.

D. Circuit Breakers:
 1. Provide bolt-on type.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

2. Provide thermal magnetic circuit breakers unless otherwise indicated.

E. Enclosures:
1. Provide surface-mounted or flush-mounted enclosures as indicated.
2. Fronts: Provide door-in-door trim with hinged cover for access to load terminals and wiring gutters, and separate lockable hinged door with concealed hinges for access to overcurrent protective device handles without exposing live parts.
3. Provide clear plastic circuit directory holder mounted on inside of door.

2.4 LIGHTING AND APPLIANCE PANELBOARDS

A. Description: Panelboards complying with NEMA PB 1, lighting and appliance branch circuit type, circuit breaker type, and listed and labeled as complying with UL 67; ratings, configurations and features as indicated on the drawings.

B. Conductor Terminations:
1. Main and Neutral Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
2. Main and Neutral Lug Type: Mechanical.

C. Bussing:

D. Circuit Breakers: Thermal magnetic bolt-on type unless otherwise indicated.

E. Enclosures:
1. Provide surface-mounted or flush-mounted enclosures.
2. Fronts: Provide door-in-door trim with hinged cover for access to load terminals and wiring gutters, and separate lockable hinged door with concealed hinges for access to overcurrent protective device handles without exposing live parts.
3. Provide clear plastic circuit directory holder mounted on inside of door.

2.5 OVERCURRENT PROTECTIVE DEVICES

A. Molded Case Circuit Breakers:
1. Description: Quick-make, quick-break, over center toggle, trip-free, trip-indicating circuit breakers listed and labeled as complying with UL 489, and complying with FS W-C-375 where applicable; ratings, configurations, and features as indicated on the drawings.
2. Interrupting Capacity:
 a. Provide circuit breakers with interrupting capacity as required to provide the short circuit current rating indicated, but not less than:
 1) 10,000 rms symmetrical amperes at 240 VAC or 208 VAC.
 2) 14,000 rms symmetrical amperes at 480 VAC.
 b. Fully Rated Systems: Provide circuit breakers with interrupting capacity not less than the short circuit current rating indicated.
3. Conductor Terminations:
a. Provide mechanical lugs unless otherwise indicated.
b. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.

4. Thermal Magnetic Circuit Breakers: For each pole, furnish thermal inverse time tripping element for overload protection and magnetic instantaneous tripping element for short circuit protection.

5. Electronic Trip Circuit Breakers: Furnish solid state, microprocessor-based, true rms sensing trip units.
 a. Provide the following field-adjustable trip response settings:
 1) Long time pickup, adjustable by replacing interchangeable trip unit or by setting dial.
 2) Long time delay.
 3) Short time pickup and delay.
 4) Instantaneous pickup.
 b. Provide zone selective interlocking capability where indicated, capable of communicating with other electronic trip circuit breakers and external ground fault sensing systems to control short time delay and ground fault delay functions for system coordination purposes.

7. Provide the following circuit breaker types where indicated:
 a. Ground Fault Circuit Interrupter (GFCI) Circuit Breakers: Listed as complying with UL 943, class A for protection of personnel.
 b. Ground Fault Equipment Protection Circuit Breakers: Designed to trip at 30 mA for protection of equipment.
 c. 100 Percent Rated Circuit Breakers: Listed for application within the panelboard where installed at 100 percent of the continuous current rating.

8. Do not use tandem circuit breakers.

9. Do not use handle ties in lieu of multi-pole circuit breakers.

10. Provide multi-pole circuit breakers for multi-wire branch circuits as required by NFPA 70.

11. Provide the following features and accessories where indicated or where required to complete installation:
 a. Shunt Trip: Provide coil voltage as required for connection to indicated trip actuator.
 b. Handle Pad-Lock Provision: For locking circuit breaker handle in OFF position.

2.6 SOURCE QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Factory test panelboards according to NEMA PB 1.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that the ratings and configurations of the panelboards and associated components are consistent with the indicated requirements.

C. Verify that mounting surfaces are ready to receive panelboards.
D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Perform work in accordance with NECA 1 (general workmanship).

B. Install products in accordance with manufacturer's instructions.

C. Install panelboards in accordance with NECA 407 and NEMA PB 1.1.

D. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

E. Provide required support and attachment in accordance with Section 260529.

F. Install panelboards plumb.

G. Install flush-mounted panelboards so that trims fit completely flush to wall with no gaps and rough opening completely covered.

H. Mount panelboards such that the highest position of any operating handle for circuit breakers or switches does not exceed 79 inches above the floor or working platform.

I. Provide minimum of six spare 1 inch trade size conduits out of each flush-mounted panelboard stubbed into accessible space above ceiling and below floor.

J. Provide grounding and bonding in accordance with Section 260526.
 1. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on isolated/insulated ground bus.
 2. Terminate branch circuit isolated grounding conductors on isolated/insulated ground bus only. Do not terminate on solidly bonded equipment ground bus.

K. Install all field-installed branch devices, components, and accessories.

L. Multi-Wire Branch Circuits: Group grounded and ungrounded conductors together in the panelboard as required by NFPA 70.

M. Set field-adjustable circuit breaker tripping function settings as determined by overcurrent protective device coordination study performed according to Section 260573.

N. Provide filler plates to cover unused spaces in panelboards.

O. Provide circuit breaker lock-on devices to prevent unauthorized personnel from de-energizing essential loads. Also provide for the following:
1. Emergency and night lighting circuits.
2. Fire detection and alarm circuits.
3. Communications equipment circuits.
4. Intrusion detection and access control system circuits.
5. Video surveillance system circuits.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform inspection, testing, and adjusting in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Molded Case Circuit Breakers: Perform inspections and tests listed in NETA ATS, Section 7.6.1.1 for all main circuit breakers and circuit breakers larger than 100 amperes. Tests listed as optional are required.

E. Test GFCI circuit breakers to verify proper operation.

F. Test shunt trips to verify proper operation.

G. Correct deficiencies and replace damaged or defective panelboards or associated components.

3.4 ADJUSTING

A. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

B. Adjust alignment of panelboard fronts.

C. Load Balancing: For each panelboard, rearrange circuits such that the difference between each measured steady state phase load does not exceed 20 percent and adjust circuit directories accordingly. Maintain proper phasing for multi-wire branch circuits.

3.5 CLEANING

A. Clean dirt and debris from panelboard enclosures and components according to manufacturer's instructions.

B. Repair scratched or marred exterior surfaces to match original factory finish.

END OF SECTION
SECTION 262726 - WIRING DEVICES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Wall switches.
B. Wall dimmers.
C. Receptacles.
D. Wall plates.
E. Floor box service fittings.
F. Poke-through assemblies.

1.3 RELATED REQUIREMENTS

A. Section 260519 - Low-Voltage Electrical Power Conductors and Cables: Manufactured wiring systems for use with access floor boxes with compatible pre-wired connectors.
B. Section 260526 - Grounding and Bonding for Electrical Systems.
C. Section 260533.16 - Boxes for Electrical Systems.
D. Section 260553 - Identification for Electrical Systems: Identification products and requirements.
E. Section 260923 - Lighting Control Devices: Devices for automatic control of lighting, including occupancy sensors.
F. Section 260583 - Wiring Connections: Cords and plugs for equipment.
G. Section 262913 - Enclosed Controllers: Manual motor starters and horsepower rated motor-starting switches without overload protection.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

H. Division 27 - COMMUNICATIONS

1.4 REFERENCE STANDARDS

B. FS W-S-896 - Switches, Toggle (Toggle and Lock), Flush-mounted (General Specification); Federal Specification; Revision F, 1999.

C. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

D. NECA 130 - Standard for Installing and Maintaining Wiring Devices; 2010.

E. NEMA WD 1 - General Color Requirements for Wiring Devices; 1999 (R 2010).

F. NEMA WD 6 - Wiring Devices - Dimensional Specifications; 2012.

G. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

I. UL 498 - Attachment Plugs and Receptacles; Current Edition, Including All Revisions.

L. UL 1472 - Solid-State Dimming Controls; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the placement of outlet boxes with millwork, furniture, equipment, etc. installed under other sections or by others.
 2. Coordinate wiring device ratings and configurations with the electrical requirements of actual equipment to be installed.
 3. Coordinate the placement of outlet boxes for wall switches with actual installed door swings.
 4. Coordinate the installation and preparation of uneven surfaces, such as split face block, to provide suitable surface for installation of wiring devices.
 5. Coordinate the core drilling of holes for poke-through assemblies with the work covered under other sections.
6. Notify QA+M architecture of any conflicts or deviations from Contract Documents to obtain direction prior to proceeding with work.

B. Sequencing:
 1. Do not install wiring devices until final surface finishes and painting are complete.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer's catalog information showing dimensions, colors, and configurations.
 1. Wall Dimmers: Include derating information for ganged multiple devices.

C. Operation and Maintenance Data:
 1. Wall Dimmers: Include information on operation and setting of presets.
 2. GFCI Receptacles: Include information on status indicators.

D. Maintenance Materials: Furnish the following for Town of Rocky Hill's use in maintenance of project.
 1. See Section 016000 - Product Requirements, for additional provisions.
 2. Extra Keys for Locking Switches: Two of each type.
 3. Extra Wall Plates: One of each style, size, and finish.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

C. Products: Listed, classified, and labeled as suitable for the purpose intended.

1.8 DELIVERY, STORAGE, AND PROTECTION

A. Store in a clean, dry space in original manufacturer's packaging until ready for installation.

PART 2 PRODUCTS

2.1 MANUFACTURERS

C. Pass & Seymour, a brand of Legrand North America, Inc: www.legrand.us

D. Substitutions: See Section 016000 - Product Requirements.

E. Source Limitations: Where possible, for each type of wiring device furnish products produced by a single manufacturer and obtained from a single supplier.

2.2 WIRING DEVICE APPLICATIONS

A. Provide wiring devices suitable for intended use and with ratings adequate for load served.

B. For single receptacles installed on an individual branch circuit, provide receptacle with ampere rating not less than that of the branch circuit.

C. Provide weather resistant GFCI receptacles with specified weatherproof covers for receptacles installed outdoors or in damp or wet locations.

D. Provide GFCI protection for receptacles installed within 6 feet of sinks.

E. Provide GFCI protection for receptacles installed in kitchens.

F. Provide GFCI protection for receptacles serving electric drinking fountains.

G. Unless noted otherwise, do not use combination switch/receptacle devices.

H. For flush floor service fittings, use tile rings for installations in tile floors.

I. For flush floor service fittings, use carpet flanges for installations in carpeted floors.

2.3 WIRING DEVICE FINISHES

A. Provide wiring device finishes as described below unless otherwise indicated.

B. Wiring device color shall be as directed by the Architect.

2.4 WALL DIMMERS

A. Manufacturers:
B. Wall Dimmers - General Requirements: Solid-state with continuous full-range even control following square law dimming curve, integral radio frequency interference filtering, power failure preset memory, air gap switch accessible without removing wall plate, complying with NEMA WD 1 and NEMA WD 6, and listed as complying with UL 1472; types and ratings suitable for load controlled as indicated on the drawings.

C. Control: Slide control type with separate on/off switch.

D. Power Rating, Unless Otherwise Indicated or Required to Control the Load Indicated on the Drawings:

2.5 RECEPTACLES

A. Manufacturers:

B. Receptacles - General Requirements: Self-grounding, complying with NEMA WD 1 and NEMA WD 6, and listed as complying with UL 498, and where applicable, FS W-C-596; types as indicated on the drawings.
 1. Wiring Provisions: Terminal screws for side wiring or screw actuated binding clamp for back wiring with separate ground terminal screw.
 2. NEMA configurations specified are according to NEMA WD 6.

C. Convenience Receptacles:
 1. Standard Convenience Receptacles: Commercial specification grade, 20A, 125V, NEMA 5-20R; single or duplex as indicated on the drawings.

D. GFCI Receptacles:
 1. GFCI Receptacles - General Requirements: Self-testing, with feed-through protection and light to indicate ground fault tripped condition and loss of protection; listed as complying with UL 943, class A.
 a. Provide test and reset buttons of same color as device.

2.6 WALL PLATES

A. Manufacturers:

B. Wall Plates: Comply with UL 514D.
1. Configuration: One piece cover as required for quantity and types of corresponding wiring devices.
3. Screws: Metal with slotted heads finished to match wall plate finish.

C. Nylon Wall Plates: Smooth finish, high-impact thermoplastic.
D. Stainless Steel Wall Plates: Brushed satin finish, Type 302 stainless steel.
E. Weatherproof Covers for Wet Locations: Gasketed, cast aluminum, with hinged lockable cover and corrosion-resistant screws; listed as suitable for use in wet locations while in use with attachment plugs connected and identified as extra-duty type.

2.7 FLOOR BOX SERVICE FITTINGS
A. Manufacturers:
B. Description: Service fittings compatible with floor boxes provided under Section 260533.16 with components, adapters, and trims required for complete installation.
C. Flush Floor Service Fittings:
 1. Dual Service Flush Combination Outlets:
 a. Cover: Rectangular.
 b. Configuration:
 1) Power: Two standard convenience duplex receptacle(s) with duplex flap opening(s).
 2) Voice and Data Jacks: As specified in Division 27 specifications.
 2. Accessories:
 a. Tile Rings: Finish to match covers; configuration as required to accommodate specified covers.
 b. Carpet Flanges: Finish to match covers; configuration as required to accommodate specified covers.

2.8 POKE-THROUGH ASSEMBLIES
A. Manufacturers:
B. Description: Assembly comprising floor service fitting, poke-through component, fire stops and smoke barriers, and junction box for conduit termination; fire rating listed to match fire rating of floor and suitable for floor thickness where installed.
C. Flush Floor Service Fittings:
 1. Dual Service Flush Combination Outlets:
 a. Cover: Hinged door(s).
 b. Configuration:
 1) Power: Two standard convenience duplex receptacle(s).
 2) Voice and Data Jacks: As specified in Division 27.
 2. Accessories:
 a. Closure Plugs: Size and fire rating as required to seal unused core hole and maintain fire rating of floor.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that outlet boxes are installed in proper locations and at proper mounting heights and are properly sized to accommodate devices and conductors in accordance with NFPA 70.

C. Verify that wall openings are neatly cut and will be completely covered by wall plates.

D. Verify that final surface finishes are complete, including painting.

E. Verify that floor boxes are adjusted properly.

F. Verify that branch circuit wiring installation is completed, tested, and ready for connection to wiring devices.

G. Verify that core drilled holes for poke-through assemblies are in proper locations.

H. Verify that conditions are satisfactory for installation prior to starting work.

3.2 PREPARATION

A. Provide extension rings to bring outlet boxes flush with finished surface.

B. Clean dirt, debris, plaster, and other foreign materials from outlet boxes.

3.3 INSTALLATION

A. Perform work in accordance with NECA 1 (general workmanship) and, where applicable, NECA 130, including mounting heights specified in those standards unless otherwise indicated.
B. Coordinate locations of outlet boxes provided under Section 260533.16 as required for installation of wiring devices provided under this section.

1. Mounting Heights: Unless otherwise indicated, as follows:
 a. Wall Switches: 48 inches above finished floor.
 b. Wall Dimmers: 48 inches above finished floor.
 c. Receptacles: 18 inches above finished floor or 6 inches above counter.

2. Orient outlet boxes for vertical installation of wiring devices unless otherwise indicated.

3. Where multiple receptacles, wall switches, or wall dimmers are installed at the same location and at the same mounting height, gang devices together under a common wall plate.

4. Locate wall switches on strike side of door with edge of wall plate 3 inches from edge of door frame. Where locations are indicated otherwise, notify QA+M architecture to obtain direction prior to proceeding with work.

5. Locate receptacles for electric drinking fountains concealed behind drinking fountain according to manufacturer's instructions.

C. Install wiring devices in accordance with manufacturer's instructions.

D. Install permanent barrier between ganged wiring devices when voltage between adjacent devices exceeds 300 V.

E. Where required, connect wiring devices using pigtailed not less than 6 inches long. Do not connect more than one conductor to wiring device terminals.

F. Connect wiring devices by wrapping conductor clockwise 3/4 turn around screw terminal and tightening to proper torque specified by the manufacturer. Where present, do not use push-in pressure terminals that do not rely on screw-actuated binding.

G. Unless otherwise indicated, connect wiring device grounding terminal to branch circuit equipment grounding conductor and to outlet box with bonding jumper.

H. Provide GFCI receptacles with integral GFCI protection at each location indicated. Do not use feed-through wiring to protect downstream devices.

I. Install wiring devices plumb and level with mounting yoke held rigidly in place.

J. Install wall switches with OFF position down.

K. Install wall dimmers to achieve full rating specified and indicated after derating for ganging as instructed by manufacturer.

L. Do not share neutral conductor on branch circuits utilizing wall dimmers.

M. Install vertically mounted receptacles with grounding pole on top and horizontally mounted receptacles with grounding pole on left.
N. Install wall plates to fit completely flush to wall with no gaps and rough opening completely covered without strain on wall plate. Repair or reinstall improperly installed outlet boxes or improperly sized rough openings. Do not use oversized wall plates in lieu of meeting this requirement.

O. Install blank wall plates on junction boxes and on outlet boxes with no wiring devices installed or designated for future use.

P. Identify wiring devices in accordance with Section 260553.

Q. Install poke-through closure plugs in each unused core holes to maintain fire rating of floor.

3.4 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform field inspection, testing, and adjusting in accordance with Section 014000.

C. Inspect each wiring device for damage and defects.

D. Operate each wall switch, wall dimmer, and fan speed controller with circuit energized to verify proper operation.

E. Test each receptacle to verify operation and proper polarity.

F. Test each GFCI receptacle for proper tripping operation according to manufacturer's instructions.

G. Correct wiring deficiencies and replace damaged or defective wiring devices.

3.5 ADJUSTING

A. Adjust devices and wall plates to be flush and level.

B. Adjust presets for wall dimmers according to manufacturer's instructions as directed by QA+M architecture.

3.6 CLEANING

A. Clean exposed surfaces to remove dirt, paint, or other foreign material and restore to match original factory finish.

END OF SECTION
SECTION 262816.16 - ENCLOSED SWITCHES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Enclosed safety switches.

1.3 RELATED REQUIREMENTS

A. Section 260526 - Grounding and Bonding for Electrical Systems.

B. Section 260529 - Hangers and Supports for Electrical Systems.

C. Section 260553 - Identification for Electrical Systems: Identification products and requirements.

D. Section 260573 - Power System Studies: Additional criteria for the selection of equipment and associated protective devices specified in this section.

E. Section 262813 - Fuses.

G. Section 263600 - Transfer Switches: Automatic and non-automatic switches listed for use as transfer switch equipment.

1.4 REFERENCE STANDARDS

A. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

B. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

C. NEMA KS 1 - Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum); 2013.

E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

F. UL 50 - Enclosures for Electrical Equipment, Non-Environmental Considerations; Current Edition, Including All Revisions.

H. UL 98 - Enclosed and Dead-Front Switches; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work with other trades. Avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and within working clearances for electrical equipment required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.
 4. Notify QA+M architecture of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for enclosed switches and other installed components and accessories.

C. Shop Drawings: Indicate outline and support point dimensions, voltage and current ratings, short circuit current ratings, conduit entry locations, conductor terminal information, and installed features and accessories.
 1. Include dimensioned plan and elevation views of enclosed switches and adjacent equipment with all required clearances indicated.
 2. Include wiring diagrams showing all factory and field connections.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.
C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.

B. Handle carefully in accordance with manufacturer's written instructions to avoid damage to enclosed switch internal components, enclosure, and finish.

1.9 FIELD CONDITIONS

A. Maintain ambient temperature between -22 degrees F and 104 degrees F during and after installation of enclosed switches.

PART 2 PRODUCTS

2.1 MANUFACTURERS

C. Schneider Electric; Square D Products: www.schneider-electric.us.

D. Substitutions: See Section 016000 - Product Requirements.

E. Source Limitations: Furnish enclosed switches and associated components produced by the same manufacturer as the other electrical distribution equipment used for this project and obtained from a single supplier.

2.2 ENCLOSED SAFETY SWITCHES

A. Description: Quick-make, quick-break enclosed safety switches listed and labeled as complying with UL 98; heavy duty; ratings, configurations, and features as indicated on the drawings.

B. Provide products listed, classified, and labeled as suitable for the purpose intended.

C. Unless otherwise indicated, provide products suitable for continuous operation under the following service conditions:
 1. Altitude: Less than 6,600 feet.
 2. Ambient Temperature: Between -22 degrees F and 104 degrees F.
D. Horsepower Rating: Suitable for connected load.

E. Voltage Rating: Suitable for circuit voltage.

F. Short Circuit Current Rating:
 1. Provide enclosed safety switches, when protected by the fuses or supply side overcurrent protective devices to be installed, with listed short circuit current rating not less than the available fault current at the installed location as determined by short circuit study performed in accordance with Section 260573.

G. Provide with switch blade contact position that is visible when the cover is open.

H. Fuse Clips for Fusible Switches: As required to accept fuses indicated.
 1. Where NEMA Class R fuses are installed, provide rejection feature to prevent installation of fuses other than Class R.

I. Conductor Terminations: Suitable for use with the conductors to be installed.

J. Provide insulated, groundable fully rated solid neutral assembly where a neutral connection is required, with a suitable lug for terminating each neutral conductor.

K. Provide solidly bonded equipment ground bus in each enclosed safety switch, with a suitable lug for terminating each equipment grounding conductor.

L. Enclosures: Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E.
 1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1.
 b. Outdoor Locations: Type 3R.
 2. Finish for Painted Steel Enclosures: Manufacturer's standard, factory applied grey unless otherwise indicated.

M. Provide safety interlock to prevent opening the cover with the switch in the ON position with capability of overriding interlock for testing purposes.

N. Heavy Duty Switches:
 2. Conductor Terminations:
 a. Provide mechanical lugs unless otherwise indicated.
 b. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
 3. Provide externally operable handle with means for locking in the OFF position, capable of accepting three padlocks.
PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that the ratings of the enclosed switches are consistent with the indicated requirements.

C. Verify that mounting surfaces are ready to receive enclosed safety switches.

D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Perform work in accordance with NECA 1 (general workmanship).

C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

D. Provide required support and attachment in accordance with Section 260529.

E. Install enclosed switches plumb.

F. Except where indicated to be mounted adjacent to the equipment they supply, mount enclosed switches such that the highest position of the operating handle does not exceed 79 inches above the floor or working platform.

G. Provide grounding and bonding in accordance with Section 260526.

H. Provide fuses complying with Section 262813 for fusible switches as indicated or as required by equipment manufacturer's recommendations.

I. Identify enclosed switches in accordance with Section 260553.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform field inspection, testing, and adjusting in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS, except Section 4.
D. Perform inspections and tests listed in NETA ATS, Section 7.5.1.1.

E. Correct deficiencies and replace damaged or defective enclosed safety switches or associated components.

3.4 ADJUSTING

A. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

3.5 CLEANING

A. Clean dirt and debris from switch enclosures and components according to manufacturer's instructions.

B. Repair scratched or marred exterior surfaces to match original factory finish.

END OF SECTION
SECTION 262913 - ENCLOSED CONTROLLERS

PART 1 GENERAL

1.1 RELATED DOCUMENTS
A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES
A. Enclosed NEMA controllers for low-voltage (600 V and less) applications:
 1. Magnetic motor starters.
B. Overcurrent protective devices for motor controllers, including overload relays.
C. Control accessories:
 1. Auxiliary contacts.
 2. Pilot devices.
 3. Control and timing relays.
 4. Control power transformers.
E. Magnetic motor controllers.
F. Combination magnetic motor controllers and disconnects.

1.3 RELATED REQUIREMENTS
A. Section 260526 - Grounding and Bonding for Electrical Systems.
B. Section 260529 - Hangers and Supports for Electrical Systems.
C. Section 260553 - Identification for Electrical Systems: Identification products and requirements.
D. Section 260573 - Power System Studies: Additional criteria for the selection and adjustment of equipment and associated protective devices specified in this section.
E. Section 262813 - Fuses: Fuses for fusible switches.
 1. Includes requirements for spare fuses and spare fuse cabinets.
1.4 REFERENCE STANDARDS

B. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
C. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.
G. NEMA KS 1 - Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum); 2013.
I. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
J. UL 98 - Enclosed and Dead-Front Switches; Current Edition, Including All Revisions.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances required by NFPA 70.
 2. Coordinate the work to provide motor controllers and associated overload relays suitable for use with the actual motors to be installed.
 3. Coordinate the work to provide controllers and associated wiring suitable for interface with control devices to be installed.
 4. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
5. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.

1.6 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for motor controllers, enclosures, overcurrent protective devices, and other installed components and accessories.

C. Shop Drawings: Indicate dimensions, voltage, controller sizes, short circuit current ratings, conduit entry locations, conductor terminal information, and installed features and accessories.
 1. Include dimensioned plan and elevation views of enclosed controllers and adjacent equipment with all required clearances indicated.
 2. Include wiring diagrams showing all factory and field connections.

D. Maintenance Data: Include information on replacement parts and recommended maintenance procedures and intervals.

E. Product Data: Provide catalog sheets showing voltage, controller size, ratings and size of switching and overcurrent protective devices, short circuit ratings, dimensions, and enclosure details.

F. Test Reports: Indicate field test and inspection procedures and test results.

G. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

H. Maintenance Data: Replacement parts list for controllers.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

D. Products: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.

B. Handle carefully in accordance with manufacturer’s written instructions to avoid damage to internal components, enclosure, and finish.

1.9 FIELD CONDITIONS

A. Maintain field conditions within required service conditions during and after installation.

PART 2 PRODUCTS

2.1 MANUFACTURERS

B. Schneider Electric; Square D Products: www.schneider-electric.us.

D. Substitutions: See Section 016000 - Product Requirements.

E. Source Limitations: Furnish enclosed motor controllers and associated components produced by a single manufacturer and obtained from a single supplier.
 1. Motor-starting switches without overload protection may be produced by the same manufacturer as the wiring devices used for this project.

2.2 ENCLOSED CONTROLLERS

A. Provide enclosed controller assemblies consisting of all required components, control power transformers, instrumentation and control wiring, accessories, etc. as necessary for a complete operating system.

B. Provide products listed, classified, and labeled as suitable for the purpose intended.

C. Description: Enclosed controllers complying with NEMA ICS 2, and listed and labeled as complying with UL 60947-1 and UL 60947-4-1; ratings, configurations and features as indicated on the drawings.

D. Service Conditions:
 1. Provide controllers and associated components suitable for operation under the following service conditions without derating:
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

a. Altitude:
 1) Class 1 Km Equipment (devices utilizing power semiconductors, e.g. variable frequency controllers): Less than 3,300 feet.
 2) Class 2 Km Equipment (electromagnetic and manual devices): Less than 6,600 feet.

b. Ambient Temperature: Between 32 degrees F and 104 degrees F.

2. Provide controllers and associated components suitable for operation at indicated ratings under the service conditions at the installed location.

E. Short Circuit Current Rating:
 1. Provide controllers with listed short circuit current rating not less than the available fault current at the installed location as determined by short circuit study performed in accordance with Section 260573.

F. Conductor Terminations: Suitable for use with the conductors to be installed.

G. Enclosures:
 2. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1 or Type 12.
 b. Outdoor Locations: Type 3R or Type 4.
 3. Finish: Manufacturer's standard unless otherwise indicated.

H. Instrument Transformers:
 2. Select suitable ratio, burden, and accuracy as required for connected devices.

I. Magnetic Motor Starters: Combination type unless otherwise indicated.
 1. Combination Magnetic Motor Starters: NEMA ICS 2, Class A combination motor controllers with magnetic contactor(s), externally operable disconnect and overload relay(s).
 2. Configuration: Full-voltage non-reversing unless otherwise indicated.
 3. Minimum Starter Size: NEMA Size 0.
 4. Use of non-standard starter sizes smaller than specified standard NEMA sizes is not permitted.
 5. Disconnects: Disconnect switch type.
 a. Disconnect Switches: Fusible type unless otherwise indicated.
 b. Provide externally operable handle with means for locking in the OFF position. Provide safety interlock to prevent opening the cover with the disconnect in the ON position with capability of overriding interlock for testing purposes.
 c. Provide auxiliary interlock for disconnection of external control power sources where applicable.
 6. Overload Relays: Bimetallic thermal type unless otherwise indicated.

J. Manual Motor Starters:
 1. Description: NEMA ICS 2, Class A manually-operated motor controllers with overload relay(s).
2. Configuration: Non-reversing unless otherwise indicated.

3. Fractional-Horsepower Manual Motor Starters:
 a. Furnish with toggle operator.
 b. Overload Relays: Bimetallic or melting alloy thermal type.

4. Integral-Horsepower Manual Motor Starters:
 a. Furnish with toggle or pushbutton operator.
 b. Overload Relays: Bimetallic or melting alloy thermal type.

K. Motor-Starting Switches: Horsepower-rated switches without overload protection; toggle operator.

2.3 OVERCURRENT PROTECTIVE DEVICES

A. Overload Relays:
 1. Provide overload relays and, where applicable, associated current elements/heaters, selected according to actual installed motor nameplate data, in accordance with manufacturer's recommendations and NFPA 70; include consideration for motor service factor and ambient temperature correction, where applicable.
 2. Inverse-Time Trip Class Rating: Class 20 unless otherwise indicated or required.
 3. Trip-free operation.
 4. Visible trip indication.
 5. Resettable.
 a. Employ manual reset unless otherwise indicated.
 b. Do not employ automatic reset with two-wire control.
 6. Bimetallic Thermal Overload Relays:
 a. Interchangeable current elements/heaters.
 b. Adjustable trip; plus/minus 10 percent of nominal, minimum.
 c. Trip test function.
 7. Melting Alloy Thermal Overload Relays:
 a. Interchangeable current elements/heaters.

B. Fusible Disconnect Switches:
 1. Description: Quick-make, quick-break, dead-front fusible switch units complying with NEMA KS 1, and listed and labeled as complying with UL 98; ratings, configurations, and features as indicated on the drawings.
 2. Fuse Clips: As required to accept indicated fuses.
 a. Where NEMA Class R fuses are installed, provide rejection feature to prevent installation of fuses other than Class R.
 3. Provide externally operable handle with means for locking in the OFF position. Provide means for locking switch cover in the closed position. Provide safety interlock to prevent opening the cover with the switch in the ON position with capability of overriding interlock for testing purposes.

2.4 CONTROL ACCESSORIES

A. Auxiliary Contacts:
 1. Comply with NEMA ICS 5.
 2. Provide number and type of contacts indicated or required to perform necessary functions, including holding (seal-in) circuit and interlocking, plus one normally open (NO) and one normally closed (NC) spare contact for each magnetic motor starter, minimum.
B. Pilot Devices:
 1. Comply with NEMA ICS 5; heavy-duty type.
 2. Pushbuttons: Unless otherwise indicated, provide momentary, non-illuminated type with flush button operator; normally open or normally closed as indicated or as required.
 3. Selector Switches: Unless otherwise indicated, provide maintained, non-illuminated type with knob operator; number of switch positions as indicated or as required.
 4. Indicating Lights: Push-to-test type unless otherwise indicated.
 5. Provide LED lamp source for indicating lights and illuminated devices.

C. Control and Timing Relays:
 1. Comply with NEMA ICS 5.
 2. Provide number and type of relays indicated or required to perform necessary functions.

D. Control Power Transformers:
 1. Size to accommodate burden of contactor coil(s) and all connected auxiliary devices.
 2. Include primary and secondary fuses.

2.5 MANUAL CONTROLLERS

A. Manual Motor Controllers: NEMA ICS 2, AC general-purpose, Class A, manually operated, full-voltage controller with overload element, red pilot light, NO auxiliary contact, and push button operator.

2.6 AUTOMATIC CONTROLLERS

A. Magnetic Motor Controllers: NEMA ICS 2, AC general-purpose Class A magnetic controller for induction motors rated in horsepower.

2.7 ACCESSORIES

A. Auxiliary Contacts: NEMA ICS 2, 2 normally open contacts in addition to seal-in contact.

B. Cover Mounted Pilot Devices: NEMA ICS 5, standard duty oiltight type.

C. Selector Switches: H-O-A Rotary type.

D. Control Power Transformers: 120 volt secondary, 100 VA minimum, in each motor starter. Provide fused primary, secondary, and bond unfused leg of secondary to enclosure.

2.8 DISCONNECTS

A. Combination Controllers: Combine motor controllers with disconnects in common enclosure. Obtain IEC Class 2 coordinated component protection.
B. Thermal Magnetic Circuit Breakers: Integral thermal and instantaneous magnetic trip in each pole; UL listed.

C. Nonfusible Switch Assemblies: NEMA KS 1, enclosed knife switch with externally operable handle.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that ratings of enclosed controllers are consistent with the indicated requirements.

C. Verify that mounting surfaces are ready to receive enclosed controllers.

D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install controllers in accordance with NECA 1 (general workmanship).

C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

D. Provide required support and attachment in accordance with Section 260529.

E. Install enclosed controllers plumb and level.

F. Provide grounding and bonding in accordance with Section 260526.

G. Install all field-installed devices, components, and accessories.

H. Height: 5 ft to operating handle.

I. Provide fuses complying with Section 262813 for fusible switches as indicated.

J. Where accessories are not self-powered, provide control power source as indicated or as required to complete installation.
K. Set field-adjustable controllers and associated components according to installed motor requirements, in accordance with manufacturer’s recommendations and NFPA 70.

L. Select and install overload heater elements in motor controllers to match installed motor characteristics.

M. Identify enclosed controllers in accordance with Section 260553.

N. Provide engraved plastic nameplates; refer to Section 260553 for product requirements and location.

O. Neatly type label inside each motor controller door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, and voltage/phase rating. Place label in clear plastic holder.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform field inspection and testing in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Motor Starters: Perform inspections and tests listed in NETA ATS, Section 7.16.1.1. Tests listed as optional are not required.

E. Fusible Switches: Perform inspections and tests listed in NETA ATS, Section 7.5.1.1.

F. Correct deficiencies and replace damaged or defective enclosed controllers or associated components.

G. Perform inspections and tests listed in NETA ATS, Section 7.16.1.

3.4 ADJUSTING

A. Adjust tightness of mechanical and electrical connections to manufacturer’s recommended torque settings.

3.5 CLEANING

A. Clean dirt and debris from controller enclosures and components according to manufacturer’s instructions.

B. Repair scratched or marred exterior surfaces to match original factory finish.
3.6 CLOSEOUT ACTIVITIES

A. See Section 017800 - Closeout Submittals, for closeout submittals.

B. See Section 017900 - Demonstration and Training, for additional requirements.

3.7 PROTECTION

A. Protect installed enclosed controllers from subsequent construction operations.

END OF SECTION
SECTION 264300 - SURGE PROTECTIVE DEVICES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Surge protective devices for service entrance locations.

1.3 RELATED REQUIREMENTS

A. Section 260526 - Grounding and Bonding for Electrical Systems.

1.4 ABBREVIATIONS AND ACRONYMS

B. SPD: Surge Protective Device.

1.5 REFERENCE STANDARDS

B. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

C. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

F. UL 1283 - Standard for Electromagnetic Interference Filters; Current Edition, Including All Revisions.

1.6 ADMINISTRATIVE REQUIREMENTS

A. Coordination: Coordinate size and location of overcurrent device compatible with the actual surge protective device and location to be installed. Notify QA+M architecture of any conflicts or deviations from Contract Documents to obtain direction prior to ordering equipment.

1.7 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Product Data: Include detailed component information, voltage, surge current ratings, repetitive surge current capacity, voltage protection rating (VPR) for all protection modes, maximum continuous operating voltage (MCOV), nominal discharge current (I-n), short circuit current rating (SCCR), connection means including any required external overcurrent protection, enclosure ratings, outline and support point dimensions, weight, service condition requirements, and installed features.
 1. SPDs with EMI/RFI filter: Include noise attenuation performance.

C. Shop Drawings: Include wiring diagrams showing all factory and field connections with wire and circuit breaker/fuse sizes.

D. Certificates: Manufacturer's documentation of listing for compliance with the following standards:
 1. UL 1449.
 2. UL 1283 (for Type 2 SPDs).

E. Field Quality Control Test Reports.

F. Manufacturer's Installation Instructions: Include application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

G. Operation and Maintenance Data: Include information on status indicators and recommended maintenance procedures and intervals.

H. Warranty: Submit sample of manufacturer's warranty and documentation of final executed warranty completed in Town of Rocky Hill's name and registered with manufacturer.

I. Project Record Documents: Record actual connections and locations of surge protective devices.

1.8 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.
B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

D. Product Listing Organization Qualifications: An organization recognized by OSHA as a Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having jurisdiction.

1.9 DELIVERY, STORAGE, AND PROTECTION

A. Store in a clean, dry space in accordance with manufacturer's written instructions.

1.10 FIELD CONDITIONS

A. Maintain field conditions within manufacturer's required service conditions during and after installation.

1.11 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. Manufacturer's Warranty: Provide minimum five year warranty covering repair or replacement of surge protective devices showing evidence of failure due to defective materials or workmanship.

C. Exclude surge protective devices from any clause limiting warranty responsibility for acts of nature, including lightning, stated elsewhere.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Field-installed, Externally Mounted Surge Protective Devices:

B. Substitutions: See Section 016000 - Product Requirements.

C. Source Limitations: Furnish surge protective devices produced by a single manufacturer and obtained from a single supplier.
2.2 SURGE PROTECTIVE DEVICES - GENERAL REQUIREMENTS

A. Description: Factory-assembled surge protective devices (SPDs) for 60 Hz service; listed, classified, and labeled as suitable for the purpose intended; system voltage as indicated on the drawings.

B. Unless otherwise indicated, provide field-installed, externally-mounted or factory-installed, internally-mounted SPDs.

C. List and label as complying with UL 1449, Type 1 when connected on line side of service disconnect overcurrent device and Type 1 or 2 when connected on load side of service disconnect overcurrent device.

D. Protected Modes:

E. UL 1449 Voltage Protection Ratings (VPRs):
 1. 480Y/277V System Voltage: Not more than 1,500 V for L-N, L-G, and N-G modes and 2,000 V for L-L mode.

F. UL 1449 Maximum Continuous Operating Voltage (MCOV): Not less than 115% of nominal system voltage.

G. Enclosure Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 1. Indoor clean, dry locations: Type 1.

H. Mounting for Field-installed, Externally Mounted SPDs: Unless otherwise indicated, as specified for the following locations:
 1. Provide surface-mounted SPD where mounted in non-public areas or adjacent to surface-mounted equipment.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that the service voltage and configuration marked on the SPD are consistent with the service voltage and configuration at the location to be installed.

C. Verify system grounding and bonding is in accordance with Section 260526, including bonding of neutral and ground for service entrance and separately derived systems where applicable. Do not energize SPD until deficiencies have been corrected.
D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

A. Perform work in accordance with NECA 1 (general workmanship).

B. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

C. Unless indicated otherwise, connect service entrance surge protective device on line side of service disconnect main overcurrent device.

D. Do not energize SPD until bonding of neutral and ground for service entrance and separately derived systems is complete in accordance with Section 260526 where applicable. Replace SPDs damaged by improper or missing neutral-ground bond.

E. Disconnect SPD prior to performing any high potential testing. Replace SPDs damaged by performing high potential testing with SPD connected.

3.3 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Perform inspection, testing, and adjusting in accordance with Section 014000.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Perform inspections and tests listed in NETA ATS Section 7.19.1.

E. Procure services of a qualified manufacturer's representative to observe installation and assist in inspection, testing, and adjusting. Include manufacturer's reports with field quality control submittals.

END OF SECTION
SECTION 265100 - INTERIOR LIGHTING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section “Summary.”

1.2 SECTION INCLUDES

A. Interior luminaires.

B. Emergency lighting units.

C. Exit signs.

D. Ballasts and drivers.

E. Accessories.

1.3 RELATED REQUIREMENTS

A. Section 260529 - Hangers and Supports for Electrical Systems.

B. Section 260533.16 - Boxes for Electrical Systems.

C. Section 260553 - Identification for Electrical Systems: Identification products and requirements.

D. Section 260923 - Lighting Control Devices: Automatic controls for lighting including occupancy sensors, time switches, outdoor photo controls, and daylighting controls.

E. Section 262726 - Wiring Devices: Manual wall switches and wall dimmers.

F. Section 265600 - Exterior Lighting.

1.4 REFERENCE STANDARDS

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the installation of luminaires with mounting surfaces installed under other sections or by others. Coordinate the work with placement of supports, anchors, etc. required for mounting. Coordinate compatibility of luminaires and associated trims with mounting surfaces at installed locations.
 2. Coordinate the placement of luminaires with structural members, ductwork, piping, equipment, diffusers, fire suppression system components, and other potential conflicts installed under other sections or by others.
 3. Coordinate the placement of exit signs with furniture, equipment, signage or other potential obstructions to visibility installed under other sections or by others.
 4. Notify QA+M architecture of any conflicts or deviations from Contract Documents to obtain direction prior to proceeding with work.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.
B. Shop Drawings:
 1. Provide photometric calculations where luminaires are proposed for substitution.

C. Product Data: Provide manufacturer's standard catalog pages and data sheets including detailed information on luminaire construction, dimensions, ratings, finishes, mounting requirements, listings, service conditions, photometric performance, installed accessories, and ceiling compatibility; include model number nomenclature clearly marked with all proposed features.
 1. LED Luminaires:
 a. Include estimated useful life, calculated based on IES LM-80 test data.
 b. Include IES LM-79 test report upon request.
 2. Lamps: Include rated life, color temperature, color rendering index (CRI), and initial and mean lumen output.

D. Certificates for Dimming Ballasts: Manufacturer's documentation of compatibility with dimming controls to be installed.

E. Project Record Documents: Record actual connections and locations of luminaires and any associated remote components.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND PROTECTION

A. Receive, handle, and store products according to NECA/IESNA 500 (commercial lighting), NECA/IESNA 502 (industrial lighting), and manufacturer's written instructions.

B. Keep products in original manufacturer's packaging and protect from damage until ready for installation.

1.9 FIELD CONDITIONS

A. Maintain field conditions within manufacturer's required service conditions during and after installation.
1.10 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. Provide three year manufacturer warranty for LED luminaires, including drivers.

C. Provide five year pro-rata warranty for batteries for emergency lighting units.

D. Provide ten year pro-rata warranty for batteries for self-powered exit signs.

PART 2 PRODUCTS

2.1 LUMINAIRE TYPES

A. Furnish products as indicated in luminaire schedule included on the drawings.

B. Substitutions: First name listed on luminaire schedule equals the basis of design. Each alternate listed is an acceptable substitution. No other substitutions will be accepted.

2.2 LUMINAIRES

A. Provide products that comply with requirements of NFPA 70.

B. Provide products that are listed and labeled as complying with UL 1598, where applicable.

C. Provide products listed, classified, and labeled as suitable for the purpose intended.

D. Unless otherwise indicated, provide complete luminaires including lamp(s) and all sockets, ballasts, reflectors, lenses, housings and other components required to position, energize and protect the lamp and distribute the light.

E. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, hardware, supports, trims, accessories, etc. as necessary for a complete operating system.

F. Provide products suitable to withstand normal handling, installation, and service without any damage, distortion, corrosion, fading, discoloring, etc.

G. Recessed Luminaires:
 2. Luminaires Recessed in Insulated Ceilings: Listed and labeled as IC-rated, suitable for direct contact with insulation and combustible materials.
 3. Luminaires Recessed in Sloped Ceilings: Provide suitable sloped ceiling adapters.
H. LED Luminaires:
 1. Components: UL 8750 recognized or listed as applicable.
 2. Tested in accordance with IES LM-79 and IES LM-80.
 3. LED Estimated Useful Life: Minimum of 50,000 hours at 70 percent lumen maintenance, calculated based on IES LM-80 test data.

I. LED Luminaire Components: UL 8750 recognized or listed as applicable.

J. Track Lighting Systems: Provide track compatible with specified track heads, with all connectors, power feed fittings, dead ends, hangers and canopies as necessary to complete installation.

K. Luminaires Mounted in Continuous Rows: Provide quantity of units required for length indicated, with all accessories required for joining and aligning.

2.3 EMERGENCY LIGHTING UNITS

A. Description: Emergency lighting units complying with NFPA 101 and all applicable state and local codes, and listed and labeled as complying with UL 924.

B. Operation: Upon interruption of normal power source or brownout condition exceeding 20 percent voltage drop from nominal, solid-state control automatically switches connected lamps to integral battery power for minimum of 90 minutes of rated emergency illumination, and automatically recharges battery upon restoration of normal power source.

C. Battery:
 1. Sealed maintenance-free lead calcium unless otherwise indicated.
 2. Size battery to supply all connected lamps, including emergency remote heads where indicated.

D. Diagnostics: Provide power status indicator light and accessible integral test switch to manually activate emergency operation.

E. Provide low-voltage disconnect to prevent battery damage from deep discharge.

F. Accessories:
 1. Provide compatible accessory mounting brackets where indicated or required to complete installation.

2.4 EXIT SIGNS

A. Description: Exit signs and similar signs for special purpose applications such as area of refuge/rescue assistance.
B. Description: Internally illuminated exit signs with LEDs unless otherwise indicated; complying with NFPA 101 and all applicable state and local codes, and listed and labeled as complying with UL 924.
 1. Number of Faces: Single or double as indicated or as required for the installed location.
 2. Directional Arrows: As indicated or as required for the installed location.

C. Self-Powered Exit Signs:
 1. Operation: Upon interruption of normal power source or brownout condition exceeding 20 percent voltage drop from nominal, solid-state control automatically switches connected lamps to integral battery power for minimum of 90 minutes of rated emergency illumination, and automatically recharges battery upon restoration of normal power source.
 2. Battery: Sealed maintenance-free lead acid unless otherwise indicated.
 3. Diagnostics: Provide power status indicator light and accessible integral test switch to manually activate emergency operation.
 4. Provide low-voltage disconnect to prevent battery damage from deep discharge.

D. Accessories:
 1. Provide compatible accessory high impact polycarbonate vandal shields where indicated.
 2. Provide compatible accessory wire guards for exit signs located in gymnasium.

2.5 BALLASTS AND DRIVERS

A. Ballasts/Drivers - General Requirements:
 1. Provide ballasts containing no polychlorinated biphenyls (PCBs).
 2. Minimum Efficiency/Efficacy: Provide ballasts complying with all current applicable federal and state ballast efficiency/efficacy standards.

B. Dimmable LED Drivers:
 1. Dimming Range: Continuous dimming from 100 percent to five percent relative light output unless dimming capability to lower level is indicated, without flicker.
 2. Control Compatibility: Fully compatible with the dimming controls to be installed.
 a. Wall Dimmers: See Section 262726.
 b. Daylighting Controls: See Section 260923.

2.6 ACCESSORIES

A. Stems for Suspended Luminaires: Steel tubing, minimum 1/2" size, factory finished to match luminaire or field-painted as directed.

B. Threaded Rods for Suspended Luminaires: Zinc-plated steel, minimum 1/4" size, field-painted as directed.

C. Provide accessory plaster frames for luminaires recessed in plaster ceilings.
PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that outlet boxes are installed in proper locations and at proper mounting heights and are properly sized to accommodate conductors in accordance with NFPA 70.

C. Verify that suitable support frames are installed where required.

D. Verify that branch circuit wiring installation is completed, tested, and ready for connection to luminaires.

E. Verify that conditions are satisfactory for installation prior to starting work.

3.2 PREPARATION

A. Provide extension rings to bring outlet boxes flush with finished surface.

B. Clean dirt, debris, plaster, and other foreign materials from outlet boxes.

3.3 INSTALLATION

A. Coordinate locations of outlet boxes provided under Section 260533.16 as required for installation of luminaires provided under this section.

B. Install products in accordance with manufacturer's instructions.

C. Install luminaires securely, in a neat and workmanlike manner, as specified in NECA 500 (commercial lighting) and NECA 502 (industrial lighting).

D. Provide required support and attachment in accordance with Section 260529.

E. Install luminaires plumb and square and aligned with building lines and with adjacent luminaires.

F. Suspended Ceiling Mounted Luminaires:
 1. Do not use ceiling tiles to bear weight of luminaires.
 2. Do not use ceiling support system to bear weight of luminaires unless ceiling support system is certified as suitable to do so.
 3. Secure surface-mounted and recessed luminaires to ceiling support channels or framing members or to building structure.
 4. Secure pendant-mounted luminaires to building structure.
5. Secure lay-in luminaires to ceiling support channels using listed safety clips at four corners.
6. In addition to ceiling support wires, provide two galvanized steel safety wire(s), minimum 12 gage, connected from opposing corners of each recessed luminaire to building structure.
7. See appropriate Division 9 section where suspended grid ceiling is specified for additional requirements.

G. Recessed Luminaires:
 1. Install trims tight to mounting surface with no visible light leakage.

H. Suspended Luminaires:
 1. Unless otherwise indicated, specified mounting heights are to bottom of luminaire.
 2. Install using the suspension method indicated, with support lengths and accessories as required for specified mounting height.
 3. Provide minimum of two supports for each luminaire equal to or exceeding 4 feet nominal length, with no more than 4 feet between supports.
 4. Install canopies tight to mounting surface.

I. Wall-Mounted Luminaires: Unless otherwise indicated, specified mounting heights are to center of luminaire.

J. Install accessories furnished with each luminaire.

K. Bond products and metal accessories to branch circuit equipment grounding conductor.

L. Emergency Lighting Units:
 1. Unless otherwise indicated, connect unit to unswitched power from same circuit feeding normal lighting in same room or area. Bypass local switches, contactors, or other lighting controls.

M. Exit Signs:
 1. Unless otherwise indicated, connect unit to unswitched power from same circuit feeding normal lighting in same room or area. Bypass local switches, contactors, or other lighting controls.

N. Identify luminaires connected to emergency power system in accordance with Section 260553.

O. Install lamps in each luminaire.

3.4 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Inspect each product for damage and defects.

C. Operate each luminaire after installation and connection to verify proper operation.
D. Test self-powered exit signs and emergency lighting units to verify proper operation upon loss of normal power supply.

E. Correct wiring deficiencies and repair or replace damaged or defective products. Repair or replace excessively noisy ballasts as determined by QA+M architecture.

3.5 ADJUSTING

A. Aim and position adjustable luminaires to achieve desired illumination as indicated or as directed by QA+M architecture. Secure locking fittings in place.

B. Aim and position adjustable emergency lighting unit lamps to achieve optimum illumination of egress path as required or as directed by QA+M architecture or authority having jurisdiction.

C. Exit Signs with Field-Selective Directional Arrows: Set as indicated or as required to properly designate egress path as directed by QA+M architecture or authority having jurisdiction.

3.6 CLEANING

A. Clean surfaces according to NECA 500 (commercial lighting), NECA 502 (industrial lighting), and manufacturer’s instructions to remove dirt, fingerprints, paint, or other foreign material and restore finishes to match original factory finish.

3.7 CLOSEOUT ACTIVITIES

A. See Section 017800 - Closeout Submittals, for closeout submittals.

B. See Section 017900 - Demonstration and Training, for additional requirements.

C. Demonstration: Demonstrate proper operation of luminaires to QA+M architecture, and correct deficiencies or make adjustments as directed.

D. Just prior to Substantial Completion, replace all lamps that have failed.

3.8 PROTECTION

A. Protect installed luminaires from subsequent construction operations.

END OF SECTION
SECTION 265600 - EXTERIOR LIGHTING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors, and/or suppliers providing goods and services referenced in or related to this Section shall also be bound by the Related Documents identified in Division 01 Section "Summary."

1.2 SECTION INCLUDES

A. Exterior luminaires.

B. Ballasts.

C. Lamps.

D. Poles and accessories.

1.3 RELATED REQUIREMENTS

A. Section 033000 - Cast-in-Place Concrete: Materials and installation requirements for concrete bases for poles.

B. Section 260526 - Grounding and Bonding for Electrical Systems.

C. Section 260529 - Hangers and Supports for Electrical Systems.

D. Section 260533.16 - Boxes for Electrical Systems.

E. Section 260923 - Lighting Control Devices: Automatic controls for lighting including time switches and outdoor photo controls.

F. Section 262726 - Wiring Devices: Receptacles for installation in poles.

G. Section 265100 - Interior Lighting.

1.4 REFERENCE STANDARDS

E. IES RP-8 - Roadway Lighting; 2014.

F. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.

H. NEMA 410 - Performance Testing for Lighting Controls and Switching Devices with Electronic Drivers and Discharge Ballasts; 2011.

I. NEMA LE 4 - Recessed Luminaires, Ceiling Compatibility; 2012.

J. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate placement of poles and associated foundations with utilities, curbs, sidewalks, trees, walls, fences, striping, etc. installed under other sections or by others. Coordinate elevation to obtain specified foundation height.
 2. Notify QA+M architecture of any conflicts or deviations from Contract Documents to obtain direction prior to proceeding with work.

1.6 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

B. Shop Drawings:
 1. Indicate dimensions and components for each luminaire that is not a standard product of the manufacturer.
 2. Provide photometric calculations where luminaires are proposed for substitution upon request.
3. Provide structural calculations for each pole proposed for substitution.

C. Product Data: Provide manufacturer's standard catalog pages and data sheets including detailed information on luminaire construction, dimensions, ratings, finishes, mounting requirements, listings, service conditions, photometric performance, weight, effective projected area (EPA), and installed accessories; include model number nomenclature clearly marked with all proposed features.
 1. LED Luminaires:
 a. Include estimated useful life, calculated based on IES LM-80 test data.
 b. Include IES LM-79 test report upon request.
 2. Lamps: Include rated life and initial and mean lumen output.
 3. Poles: Include information on maximum supported effective projected area (EPA) and weight for the design wind speed.

D. Certificates for Poles and Accessories: Manufacturer's documentation that products are suitable for the luminaires to be installed and comply with designated structural design criteria.

E. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, installation, and starting of product.

F. Operation and Maintenance Data: Instructions for each product including information on replacement parts.

G. Project Record Documents: Record actual connections and locations of pole foundations, luminaires, and any pull or junction boxes.

1.7 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, handle, and store products according to NECA/IESNA 501 and manufacturer's written instructions.

B. Keep products in original manufacturer's packaging and protect from damage until ready for installation.

1.9 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. Provide three year manufacturer warranty for all LED luminaires, including drivers.
PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Refer to Light Fixture Schedule included on drawings.

B. Substitutions: First name listed on the Light Fixture Schedule equals the basis of design. Each alternate listed is an acceptable substitution. No other substitutions will be accepted.

2.2 LUMINAIRE TYPES

A. Furnish products as indicated in luminaire schedule included on the drawings.

B. Substitutions: See Section 016000 - Product Requirements.

2.3 LUMINAIREs

A. Provide products that comply with requirements of NFPA 70.

B. Provide products that are listed and labeled as complying with UL 1598, where applicable.

C. Provide products listed, classified, and labeled as suitable for the purpose intended.

D. Unless otherwise indicated, provide complete luminaires including lamp(s) and all sockets, ballasts, reflectors, lenses, housings and other components required to position, energize and protect the lamp and distribute the light.

E. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, hardware, poles, foundations, supports, trims, accessories, etc. as necessary for a complete operating system.

F. Provide products suitable to withstand normal handling, installation, and service without any damage, distortion, corrosion, fading, discoloring, etc.

G. Provide luminaires listed and labeled as suitable for wet locations unless otherwise indicated.

H. Recessed Luminaires:
 2. Luminaires Recessed in Insulated Ceilings: Listed and labeled as IC-rated, suitable for direct contact with insulation and combustible materials.
 3. Luminaires Recessed in Sloped Ceilings: Provide suitable sloped ceiling adapters.

I. LED Luminaires:
 1. Components: UL 8750 recognized or listed as applicable.
2. Tested in accordance with IES LM-79 and IES LM-80.
3. LED Estimated Useful Life: Minimum of 50,000 hours at 70 percent lumen maintenance, calculated based on IES LM-80 test data.

2.4 BALLASTS AND DRIVERS

A. Ballasts/Drivers - General Requirements:
 1. Provide ballasts containing no polychlorinated biphenyls (PCBs).
 2. Minimum Efficiency/Efficacy: Provide ballasts complying with all current applicable federal and state ballast efficiency/efficacy standards.

2.5 LAMPS

A. Lamps - General Requirements:
 1. Unless explicitly excluded, provide new, compatible, operable lamps in each luminaire.
 2. Verify compatibility of specified lamps with luminaires to be installed. Where lamps are not specified, provide lamps per luminaire manufacturer's recommendations.
 3. Minimum Efficiency: Provide lamps complying with all current applicable federal and state lamp efficiency standards.
 4. Color Temperature Consistency: Unless otherwise indicated, for each type of lamp furnish products which are consistent in perceived color temperature. Replace lamps that are determined by the QA+M architecture to be inconsistent in perceived color temperature.

2.6 POLES

A. All Poles:
 1. Provide poles and associated support components suitable for the luminaire(s) and associated supports and accessories to be installed.
 2. Structural Design Criteria:
 a. Comply with AASHTO LTS.
 b. Wind Load: Include effective projected area (EPA) of luminaire(s) and associated supports and accessories to be installed.
 c. Dead Load: Include weight of proposed luminaire(s) and associated supports and accessories.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that field measurements are as indicated.

B. Verify that outlet boxes are installed in proper locations and at proper mounting heights and are properly sized to accommodate conductors in accordance with NFPA 70.

C. Verify that suitable support frames are installed where required.
D. Verify that branch circuit wiring installation is completed, tested, and ready for connection to luminaires.

E. Verify that conditions are satisfactory for installation prior to starting work.

3.2 PREPARATION

A. Provide extension rings to bring outlet boxes flush with finished surface.

B. Clean dirt, debris, plaster, and other foreign materials from outlet boxes.

3.3 INSTALLATION

A. Coordinate locations of outlet boxes provided under Section 260533.16 as required for installation of luminaires provided under this section.

B. Install products in accordance with manufacturer's instructions.

C. Install luminaires in accordance with NECA/IESNA 501.

D. Provide required support and attachment in accordance with Section 260529.

E. Install luminaires plumb and square and aligned with building lines and with adjacent luminaires.

F. Recessed Luminaires:
 1. Install trims tight to mounting surface with no visible light leakage.

G. Wall-Mounted Luminaires: Unless otherwise indicated, specified mounting heights are to center of luminaire.

H. Pole-Mounted Luminaires:
 1. Maintain the following minimum clearances:
 b. Comply with utility company requirements.
 2. Foundation-Mounted Poles:
 a. Provide cast-in-place concrete foundations for poles as indicated, in accordance with Section 033000.
 1) Install anchor bolts plumb per template furnished by pole manufacturer.
 2) Position conduits to enter pole shaft.
 b. Install foundations plumb.
 c. Install poles plumb, using leveling nuts or shims as required to adjust to plumb.
 d. Tighten anchor bolt nuts to manufacturer's recommended torque.
 e. Install non-shrink grout between pole anchor base and concrete foundation, leaving small channel for condensation drainage.
f. Install anchor base covers or anchor bolt covers as indicated.

3. Grounding:
 a. Bond luminaires, metal accessories, metal poles, and foundation reinforcement to branch circuit equipment grounding conductor.
 b. Provide supplementary ground rod electrode as specified in Section 260526 at each pole bonded to grounding system as indicated.

4. Install separate service conductors, 12 AWG copper, from each luminaire down to handhole for connection to branch circuit conductors.

I. Install accessories furnished with each luminaire.

J. Bond products and metal accessories to branch circuit equipment grounding conductor.

K. Install lamps in each luminaire.

3.4 FIELD QUALITY CONTROL

A. See Section 014000 - Quality Requirements, for additional requirements.

B. Inspect each product for damage and defects.

C. Operate each luminaire after installation and connection to verify proper operation.

D. Correct wiring deficiencies and repair or replace damaged or defective products. Repair or replace excessively noisy ballasts as determined by QA+M architecture.

3.5 ADJUSTING

A. Aim and position adjustable luminaires to achieve desired illumination as indicated or as directed by QA+M architecture. Secure locking fittings in place.

B. Luminaires with Field-Rotatable Optics: Position optics according to manufacturer’s instructions to achieve lighting distribution as indicated or as directed by QA+M architecture.

3.6 CLEANING

A. Clean surfaces according to NECA/IESNA 501 and manufacturer’s instructions to remove dirt, fingerprints, paint, or other foreign material and restore finishes to match original factory finish.

3.7 CLOSEOUT ACTIVITIES

A. See Section 017800 - Closeout Submittals, for closeout submittals.

B. See Section 017900 - Demonstration and Training, for additional requirements.
C. Demonstration: Demonstrate proper operation of luminaires to QA+M architecture, and correct deficiencies or make adjustments as directed.

3.8 PROTECTION

A. Protect installed luminaires from subsequent construction operations.

END OF SECTION
SECTION 283100 - FIRE DETECTION AND ALARM

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Fire alarm system design and installation, including all components, wiring, and conduit.

B. Maintenance of fire alarm system under contract for specified warranty period.

1.3 RELATED SECTIONS

A. Section 01 91 13 - General Commissioning Requirements.

B. Section 07 84 00 - Firestopping: Materials and methods for work to be performed by this installer.

C. Section 21 13 00 - Fire-Suppression Sprinkler Systems: Supervisory, alarm, and actuating devices installed in sprinkler system.

D. Section 23 33 00 - Air Duct Accessories: Smoke dampers monitored and controlled by fire alarm system.

1.4 REFERENCES

D. Connecticut State Fire Safety Code; 2018

1.5 SUBMITTALS

A. See Section 01 33 00 - Submittial Procedures, for submittal procedures.

B. Proposal Documents: Submit the following with cost/time proposal:
1. NFPA 72 "Record of Completion", filled out to the extent known at the time.
2. Manufacturer's detailed data sheet for each control unit, initiating device, and notification appliance.
3. Certification by Contractor that the system design will comply with the contract documents.
5. Battery calculations.

C. Drawings must be prepared using AutoCAD Release 2002 or newer.
 1. Architect will provide floor plan drawings for Contractor's use; verify all dimensions on Architect-provided drawings.

D. Evidence of designer qualifications.

E. Design Documents: Submit all information required for plan review and permitting by authorities having jurisdiction, including but not limited to floor plans, riser diagrams, and description of operation:
 1. Copy (if any) of list of data required by authority having jurisdiction.
 2. NFPA 72 "Record of Completion", filled out to the extent known at the time.
 3. Clear and concise description of operation, with input/output matrix similar to that shown in NFPA 72 Appendix A-7-5-2.2(9), and complete listing of software required.
 4. System zone boundaries and interfaces to fire safety systems.
 5. Location of all components, circuits, and raceways; mark components with identifiers used in control unit programming.
 6. Circuit layouts; number, size, and type of raceways and conductors; conduit fill calculations; spare capacity calculations; notification appliance circuit voltage drop calculations.
 7. List of all devices on each signaling line circuit, with spare capacity indicated.
 8. Manufacturer's detailed data sheet for each component, including wiring diagrams, installation instructions, and circuit length limitations.
 9. Description of power supplies; if secondary power is by battery include calculations demonstrating adequate battery power.
 10. Certification by either the manufacturer of the control unit or by the manufacturer of each other component that the components are compatible with the control unit.
 11. Certification by the manufacturer of the control unit that the system design complies with the contract documents.
 12. Certification by Contractor that the system design complies with the contract documents.
 13. Do not show existing components to be removed.

F. Evidence of installer qualifications.

G. Evidence of instructor qualifications; training lesson plan outline.

H. Evidence of maintenance contractor qualifications, if different from installer.

I. Inspection and Test Reports:
 1. Submit inspection and test plan prior to closeout demonstration.
 2. Submit documentation of satisfactory inspections and tests.
 3. Submit NFPA 72 "Inspection and Test Form," filled out.
J. Operating and Maintenance Data: See Section 017800 for additional requirements; revise and resubmit until acceptable; have one set available during closeout demonstration:
1. Complete set of specified design documents, as approved by authority having jurisdiction.
2. Additional printed set of project record documents and closeout documents, bound or filed in same manuals.
3. Contact information for firm that will be providing contract maintenance and trouble call-back service.
4. List of recommended spare parts, tools, and instruments for testing.
5. Replacement parts list with current prices, and source of supply.
6. Detailed troubleshooting guide and large scale input/output matrix.
7. Preventive maintenance, inspection, and testing schedule complying with NFPA 72; provide printed copy and computer format acceptable to Town of Rocky Hill.
8. Detailed but easy to read explanation of procedures to be taken by non-technical administrative personnel in the event of system trouble, when routine testing is being conducted, for fire drills, and when entering into contracts for remodeling.

K. Project Record Documents: See Section 017800 for additional requirements; have one set available during closeout demonstration:
1. Complete set of floor plans showing actual installed locations of components, conduit, and zones.
2. "As installed" wiring and schematic diagrams, with final terminal identifications.
3. "As programmed" operating sequences, including control events by device, updated input/output chart, and voice messages by event.

L. Closeout Documents:
1. Certification by manufacturer that the system has been installed in compliance with his installation requirements, is complete, and is in satisfactory operating condition.
2. NFPA 72 "Record of Completion", filled out completely and signed by installer and authorized representative of authority having jurisdiction.

1.6 QUALITY ASSURANCE

A. Copies of Design Criteria Documents: Maintain at the project site for the duration of the project, bound together, an original copy of NFPA 72, the relevant portions of applicable codes, and instructions and guidelines of authorities having jurisdiction; deliver to Town of Rocky Hill upon completion.

B. Designer Qualifications: NICET Level III or IV (3 or 4) certified fire alarm technician or registered fire protection engineer, employed by fire alarm control panel manufacturer, Contractor, or installer, with experience designing fire alarm systems in the jurisdictional area of the authorities having jurisdiction.

C. Installer Qualifications: Firm with minimum 3 years documented experience installing fire alarm systems of the specified type and providing contract maintenance service as a regular part of their business.
1. Authorized representative of control unit manufacturer; submit manufacturer's certification that installer is authorized; include name and title of manufacturer's representative making certification.
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

2. Installer Personnel: At least 2 years of experience installing fire alarm systems.
3. Supervisor: NICET level III or IV (3 or 4) certified fire alarm technician; furnish name and address.
4. Contract maintenance office located within 50 miles of project site.
5. Certified in Rocky Hill, Connecticut as fire alarm installer.

D. Maintenance Contractor Qualifications: Same entity as installer or different entity with specified qualifications.
E. Instructor Qualifications: Experienced in technical instruction, understanding fire alarm theory, and able to provide the required training; trained by fire alarm control unit manufacturer.

1.7 WARRANTY

A. See Section 017800 - Closeout Submittals, for additional warranty requirements.

B. Provide control panel manufacturer's warranty that system components other than wire and conduit are free from defects and will remain so for 1 year after date of Substantial Completion.

C. Provide installer's warranty that the installation is free from defects and will remain so for 1 year after date of Substantial Completion.

1.8 COMMISSIONING

A. Where indicated in the equipment or commissioning specifications, engage a factory-authorized service representative, to perform startup service as per functional test sheets and requirements of Section 01 91 13 - General Commissioning Requirements.

B. Complete installation, startup checks and functional tests according to Section 01 91 13 - General Commissioning Requirements and manufacturers written instructions.

C. Operational Test: After electrical system has been energized, start units to confirm proper unit operation. Rectify malfunctions, replace defective parts with new ones and repeat the start up procedure.

D. Verify that equipment is installed and commissioned as per requirements of Section 01 91 13 and manufacturers written instructions/requirements.

E. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

F. Contractor shall replace all damaged components and components that failed the inspections at no additional charge.

G. Inspections by the Commissioning Agent shall be on “spot check basis”. Commissioning process does not reduce responsibility of installing contractors to provide a finished and fully functioning product.
H. This section shall in no way diminish the responsibility of the Contractors, Sub-contractors and Suppliers in performing all aspects of work and testing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in related specifications.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Fire Alarm Control Units - SimplexGrinnell; www.simplexgrinnell.com. Existing Simplex 4100u Fire Alarm Control Panel to remain. System to be expanded as required for new devices. Vendor shall include all panel expansion equipment to accommodate the additional devices being added to the existing system.

B. Initiating Devices, and Notification Appliances:
 1. Same manufacturer as control units.
 2. Provide all initiating devices and notification appliances made by the same manufacturer.

2.2 SYSTEM DESCRIPTION

A. General: Existing non-coded, addressable/conventional, microprocessor-based fire alarm system with initiating devices, notification appliances, and monitoring and control devices to remain. Provide new devices compatible with existing system, as indicated on the drawings and as specified herein.

B. Wiring/Signal Transmission:
 1. Transmission shall be hard-wired, using separate individual circuits for each zone of alarm operation as required or addressable signal transmission, dedicated to fire alarm service only.
 2. System connections for initiating (signaling) circuits and notification appliance circuits shall be Class B.
 3. Circuit Supervision: Circuit faults shall be indicated by a trouble signal at the FACP. Provide a distinctive indicating audible tone and alphanumeric annunciation.

C. Analog Smoke Sensors:
 1. Monitoring: FACP shall individually monitor sensors for calibration, sensitivity, and alarm condition, and shall individually adjust for sensitivity. The control unit shall determine the condition of each sensor by comparing the sensor value to the stored values.
 2. Environmental Compensation: The FACP shall maintain a moving average of the sensor's smoke chamber value to automatically compensate for dust, dirt, and other conditions that could affect detection operations.
 3. Programmable Sensitivity: Photoelectric Smoke Sensors shall have 7 sensitivity levels ranging from 0.2% to 3.7%, programmed and monitored from the FACP.
 4. Sensitivity Testing Reports: The FACP shall provide sensor reports that meet NFPA 72 calibrated test method requirements. The reports shall be viewed on a CRT Display or printed for annual recording and logging of the calibration maintenance schedule.
 5. The FACP shall automatically indicate when an individual sensor needs cleaning. The system shall provide a means to indicate that a sensor requires cleaning. When a
sensor's average value reaches a predetermined value, (3) progressive levels of reporting are provided. The first level shall indicate that a sensor is close to a trouble reporting condition and will be indicated on the FACP as "ALMOST DIRTY." This condition provides a means to alert maintenance staff of a dirty sensor without creating a trouble in the system. If this indicator is ignored, a second level "DIRTY SENSOR" condition shall be indicated at the FACP and subsequently a system trouble is reported [to the Central Monitoring Station]. The sensor base LED shall glow steady giving a visible indication at the sensor location. The "DIRTY SENSOR" condition shall not affect the sensitivity level required to alarm the sensor. If a "DIRTY SENSOR" is left unattended, and its average value increases to a third predetermined value, an "EXCESSIVELY DIRTY SENSOR" trouble condition shall be indicated at the control unit.

6. The FACP shall continuously perform an automatic self-test on each sensor which will check sensor electronics and ensure the accuracy of the values being transmitted. Any sensor that fails this test shall indicate a "SELF TEST ABNORMAL" trouble condition.

7. Multi-Sensors shall combine photoelectric smoke sensing and heat sensing technologies. An alarm shall be determined by either smoke detection, with selectable sensitivity from 0.2 to 3.7 %/ft obscuration; or heat detection, selectable as fixed temperature or fixed with selectable rate-of-rise; or based on an analysis of the combination of smoke and heat activity.

8. Programmable bases. It shall be possible to program relay and sounder bases to operate independently of their associated sensor.

9. Magnet test activation of smoke sensors shall be distinguished by its label and history log entry as being activated by a magnet.

D. Fire Suppression Monitoring:

1. Water flow: Activation of a water flow switch shall initiate general alarm operations.

2. Sprinkler valve tamper switch: The activation of any valve tamper switch shall activate system supervisory operations.

3. WSO: Water flow switch and sprinkler valve tamper switch shall be capable of existing on the same initiating zone. Activation of either device shall distinctly report which device is in alarm on the initiating zone.

PART 3 COMPONENTS

3.1 FIRE ALARM CONTROL PANEL (FACP)

A. General: Comply with UL 864, "Control Units for Fire-Protective Signaling Systems."

B. ADDRESSABLE MANUAL PULL STATIONS

1. Description: Addressable single- or double-action type, red LEXAN, with molded, raised-letter operating instructions of contrasting color. Station will mechanically latch upon operation and remain so until manually reset by opening with a key common with the control units.

2. Protective Shield: Where required provide a tamperproof, clear LEXAN shield and red frame that easily fits over manual pull stations. When shield is lifted to gain access to the station, a battery powered piercing warning horn shall be activated. The horn shall be silenced by lowering and realigning the shield. The horn shall provide 85dB at 10 feet and shall be powered by a 9 VDC battery.

C. SMOKE SENSORS
NEW BUILDING FOR
ROCK HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

1. General: Comply with UL 268, "Smoke Detectors for Fire Protective Signaling Systems." Include the following features:
 a. Factory Nameplate: Serial number and type identification.
 b. Operating Voltage: 24 VDC, nominal.
 c. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore normal operation.
 d. Plug-In Arrangement: Sensor and associated electronic components are mounted in a module that connects to a fixed base with a twist-locking plug connection. Base shall provide break-off plastic tab that can be removed to engage the head/base locking mechanism. No special tools shall be required to remove head once it has been locked. Removal of the detector head shall interrupt the supervisory circuit of the fire alarm detection loop and cause a trouble signal at the control unit.
 e. Quick Connect Arrangement: Photoelectric sensor and electronics in a single piece construction which shall twist-lock onto a mounting base that attaches to a standard electrical box.
 f. Each sensor base shall contain an LED that will flash each time it is scanned by the Control Unit (once every 4 seconds). In alarm condition, the sensor base LED shall be on steady.
 g. Each sensor base shall contain a magnetically actuated test switch to provide for easy alarm testing at the sensor location.
 h. Each sensor shall be scanned by the Control Unit for its type identification to prevent inadvertent substitution of another sensor type. Upon detection of a "wrong device", the control unit shall operate with the installed device at the default alarm settings for that sensor; 2.5% obscuration for photoelectric sensor, 135-deg F and 15-deg F rate-of-rise for the heat sensor, but shall indicate a "Wrong Device" trouble condition.
 i. The sensor's electronics shall be immune from false alarms caused by EMI and RFI.
 j. Sensors include a communication transmitter and receiver in the mounting base having a unique identification and capability for status reporting to the FACP. Sensor address shall be located in base to eliminate false addressing when replacing sensors.
 k. Removal of the sensor head for cleaning shall not require the setting of addresses.

2. Type: Smoke sensors shall be of the photoelectric or combination photoelectric / heat type. Where acceptable per manufacturer specifications, ionization type sensors may be used.

3. Bases: Relay output, sounder and isolator bases shall be supported alternatives to the standard base.

4. Duct Smoke Sensor: Photoelectric type, with sampling tube of design and dimensions as recommended by the manufacturer for the specific duct size and installation conditions where applied. Sensor includes relay as required for fan shutdown.
 a. Environmental compensation, programmable sensitivity settings, status testing, and monitoring of sensor dirt accumulation for the duct sensor shall be provided by the FACP.
 b. The Duct Housing shall provide a supervised relay driver circuit for driving up to 15 relays with a single "Form C" contact rated at 7A@ 28VDC or 10A@ 120VAC. This auxiliary relay output shall be fully programmable. Relay shall be mounted within 3 feet of HVAC control circuit.
 c. Duct Housing shall provide a relay control trouble indicator Yellow LED.
 d. Compact Duct Housing shall have a transparent cover to monitor for the presence of smoke. Cover shall secure to housing by means of four (4) captive fastening screws.
 e. Duct Housing shall provide two (2) Test Ports for measuring airflow and for testing. These ports will allow aerosol injection in order to test the activation of the duct smoke sensor.
 f. Duct Housing shall provide a magnetic test area and Red sensor status LED.
 g. For maintenance purposes, it shall be possible to clean the duct housing sampling tubes by accessing them through the duct housing front cover.
h. Each duct sensor shall have a Remote Test Station with an alarm LED and test switch.

i. Where indicated a NEMA 4X weatherproof duct housing enclosure shall provide for the circulation of conditioned air around the internally mounted addressable duct sensor housing to maintain the sensor housing at its rated temperature range. The housing shall be UL Listed to Standard 268A.

D. HEAT SENSORS
1. Thermal Sensor: Combination fixed-temperature and rate-of-rise unit with plug-in base and alarm indication lamp; 135-deg F fixed-temperature setting except as indicated.
2. Thermal sensor shall be of the epoxy encapsulated electronic design. It shall be thermistor-based, rate-compensated, self-restoring and shall not be affected by thermal lag.
3. Sensor fixed temperature sensing shall be independent of rate-of-rise sensing and programmable to operate at 135-deg F or 155-deg F. Sensor rate-of-rise temperature detection shall be selectable at the FACP for either 15-deg F or 20-deg F per minute.
4. Sensor shall have the capability to be programmed as a utility monitoring device to monitor for temperature extremes in the range from 32-deg F to 155-deg F.

E. ADDRESSABLE CIRCUIT INTERFACE MODULES
1. Addressable Circuit Interface Modules: Arrange to monitor one or more system components that are not otherwise equipped for addressable communication. Modules shall be used for monitoring of waterflow, valve tamper, non-addressable devices, and for control of evacuation indicating appliances and AHU systems.
2. Addressable Circuit Interface Modules will be capable of mounting in a standard electric outlet box. Modules will include cover plates to allow surface or flush mounting. Modules will receive their operating power from the signaling line or a separate two wire pair running from an appropriate power supply as required.
3. There shall be the following types of modules:
 a. Type 1: Monitor Circuit Interface Module:
 1) For conventional 2-wire smoke detector and/or contact device monitoring with Class B or Class A wiring supervision. The supervision of the zone wiring will be Class B. This module will communicate status (normal, alarm, trouble) to the FACP.
 2) For conventional 4-wire smoke detector with Class B wiring supervision. The module will provide detector reset capability and over-current power protection for the 4-wire detector. This module will communicate status (normal, alarm, trouble) to the FACP.
 b. Type 2: Line Powered Monitor Circuit Interface Module
 1) This type of module is an individually addressable module that has both its power and its communications supplied by the two wire multiplexing signaling line circuit. It provides location specific addressability to an initiating device by monitoring normally open dry contacts. This module shall have the capability of communicating four zone status conditions (normal, alarm, current limited, trouble) to the FACP.
 2) This module shall provide location specific addressability for up to five initiating devices by monitoring normally closed or normally open dry contact security devices. The module shall communicate four zone status conditions (open, normal, abnormal, and short). The two-wire signaling line circuit shall supply power and communications to the module.
 c. Type 3: Single Address Multi-Point Interface Modules
 1) This multipoint module shall provide location specific addressability for four initiating circuits and control two output relays from a single address. Inputs shall
provide supervised monitoring of normally open, dry contacts and be capable of communicating four zone status conditions (normal, open, current limited, and short). The input circuits and output relay operation shall be controlled independently and disabled separately.

2) This dual point module shall provide a supervised multi-state input and a relay output, using a single address. The input shall provide supervised monitoring of two normally open, dry contacts with a single point and be capable of communicating four zone status conditions (normal, open, current limited, and short). The two-wire signaling line circuit shall supply power and communications to the module.

3) This dual point module shall monitor an unsupervised normally open, dry contact with one point and control an output relay with the other point, using a single address. The two-wire signaling line circuit shall supply power and communications to the module.

d. Type 4: Line Powered Control Circuit Interface Module
1) This module shall provide control and status tracking of a Form "C" contact. The two-wire signaling line circuit shall supply power and communications to the module.

e. Type 5: 4-20 mA Analog Monitor Circuit Interface Module
1) This module shall communicate the status of a compatible 4-20 mA sensor to the FACP. The FACP shall annunciate up to three threshold levels, each with custom action message; display and archive actual sensor analog levels; and permit sensor calibration date recording.

4. All Circuit Interface Modules shall be supervised and uniquely identified by the control unit. Module identification shall be transmitted to the control unit for processing according to the program instructions. Modules shall have an on-board LED to provide an indication that the module is powered and communicating with the FACP. The LEDs shall provide a troubleshooting aid since the LED blinks on poll whenever the peripheral is powered and communicating.

F. MAGNETIC DOOR HOLDERS
1. Description: Units shall be listed to UL 228. Units are equipped for wall or floor mounting as indicated and are complete with matching door plate. Unit shall operate from a 120VAC, a 24VAC or a 24VDC source, and develops a minimum of 25 lbs. holding force.

G. ADDRESSABLE ALARM NOTIFICATION APPLIANCES
1. Addressable Notification Appliances: The Contractor shall furnish and install Addressable Notification Appliances and accessories to operate on compatible signaling line circuits (SLC).
 a. Addressable Notification appliance operation shall provide power, supervision and separate control of horns and strobes over a single pair of wires. The controlling channel (SLC) digitally communicates with each appliance and receives a response to verify the appliance's presence on the channel. The channel provides a digital command to control appliance operation. SLC channel wiring shall be unshielded twisted pair (UTP), with a capacitance rating of less than 60pf/ft and a minimum 3 twists (turns) per foot.
 b. Class B (Style 4) notification appliances shall be wired without requiring traditional in/out wiring methods; addressable "T" Tapping shall be permitted. Up to 63 appliances can be supported on a single channel.
 c. Each Addressable notification appliance shall contain an electronic module and a selectable address setting to allow it to occupy a unique location on the channel. This on-board module shall also allow the channel to perform appliance diagnostics that
assist with installation and subsequent test operations. A visible LED on each appliance shall provide verification of communications and shall flash with the appliances address setting when locally requested using a magnetic test tool.

2. **Addressable Controller:** Addressable Controller shall supervise Channel (SLC) wiring, communicate with and control addressable notification appliances. It shall be possible to program the High/Lo setting of the audible (horn) appliances by channel from the addressable controller.

3. **Horn:** Addressable horn shall be listed to UL 464. Horn appliances shall have a High/Lo Setting, programmable by channel from the addressable controller or by appliance from the host FACP. The horn shall have a minimum sound pressure level of 83 or 89 dBA @ 24VDC. The horn shall mount directly to a standard single gang, double gang or 4” square electrical box, without the use of special adapter or trim rings. Appliances shall be wired with UTP conductors, having a minimum of 3 twists per foot.

4. **Visible/Only:** Addressable strobe shall be listed to UL 1971. The V/O shall consist of a xenon flash tube and associated lens/reflector system. The V/O enclosure shall mount directly to standard single gang, double gang or 4” square electrical box, without the use of special adapters or trim rings. Appliances shall be wired with UTP conductors, having a minimum of 3 twists per foot. V/O appliances shall be provided with different minimum flash intensities of 15cd, 75cd and 110cd. Provide a label inside the strobe lens to indicate the listed candela rating of the specific Visible/Only appliance.

5. **Audible/Visible:** Addressable combination Audible/Visible (A/V) Notification Appliances shall be listed to UL 1971 and UL 464. The strobe light shall consist of a xenon flash tube and associated lens/reflector system. Provide a label inside the strobe lens to indicate the listed candela rating of the specific strobe. The horn shall have a minimum sound pressure level of 83 or 89 dBA @ 24VDC. The audible/visible enclosure shall mount directly to standard single gang, double gang or 4” square electrical box, without the use of special adapters or trim rings. Appliances shall be wired with UTP conductors, having a minimum of 3 twists per foot. The appliance shall be capable of two-wire synchronization with one of the following options:
 a. Synchronized Strobe with Horn on steady
 b. Synchronized Strobe with Temporal Code Pattern on Horn
 c. Synchronized Strobe with March Time cadence on Horn
 d. Synchronized Strobe firing to NAC sync signal with Horn silenced

6. **Isolator Module:** Isolator module provides short circuit isolation for addressable notification appliance SLC wiring. The Isolator module shall be listed to UL 864. The Isolator module shall be listed to UL 864. The Isolator shall mount directly to a minimum 2 1/8” deep, standard 4” square electrical box, without the use of special adapter or trim rings. Power and communications shall be supplied by the Addressable Controller channel SLC; dual port design shall accept communications and power from either port and shall automatically isolate one port from the other when a short circuit occurs. The following functionality shall be included in the Isolator module:
 a. Report faults to the host FACP.
 b. On-board Yellow LED provides module status.
 c. After the wiring fault is repaired, the Isolator modules shall test the lines and automatically restore the connection.

7. **Accessories:** The contractor shall furnish the necessary accessories.

H. NOTIFICATION APPLIANCE CIRCUIT EXPANSION

1. **Remote power supply/notification appliance circuit expansion panel.**
 a. Provide four Class B notification appliance circuits (NACs), each rated 2A at 24VDC and supervision for open, short, and overload conditions.
 b. Provide supervised auxiliary power output rated for 1A at 24VDC.
 c. Provide integral synchronization of visual circuits to match protocol assigned by fire alarm control panel.
PART 4 EXECUTION

4.1 INSTALLATION

A. Install in accordance with applicable codes, NFPA 72, NFPA 70, and the contract documents.

B. Conceal all wiring, conduit, boxes, and supports where installed in finished areas.

C. Obtain Town of Rocky Hill's approval of locations of devices, before installation.

D. Install instruction cards and labels.

4.2 INSPECTION AND TESTING FOR COMPLETION

A. Notify Town of Rocky Hill 7 days prior to beginning completion inspections and tests.

B. Notify authorities having jurisdiction and comply with their requirements for scheduling inspections and tests and for observation by their personnel.

C. Provide the services of the installer's supervisor or person with equivalent qualifications to supervise inspection and testing, correction, and adjustments.

D. Prepare for testing by ensuring that all work is complete and correct; perform preliminary tests as required.

E. Provide all tools, software, and supplies required to accomplish inspection and testing.

F. Perform inspection and testing in accordance with NFPA 72 and requirements of local authorities; document each inspection and test.

G. Correct defective work, adjust for proper operation, and retest until entire system complies with contract documents.

H. Diagnostic Period: After successful completion of inspections and tests, Operate system in normal mode for at least 14 days without any system or equipment malfunctions.
 1. Record all system operations and malfunctions.
 2. If a malfunction occurs, start diagnostic period over after correction of malfunction.
 3. Town of Rocky Hill will provide attendant operator personnel during diagnostic period; schedule training to allow Town of Rocky Hill personnel to perform normal duties.
 4. At end of successful diagnostic period, fill out and submit NFPA 72 "Inspection and Testing Form."
4.3 PERSONNEL INSTRUCTION

A. Provide the following instruction to designated Town of Rocky Hill personnel:
 2. Classroom Instruction: Town of Rocky Hill furnished classroom, on-site or at other local facility.
 3. Factory Instruction: At control unit manufacturer’s training facility.

B. Administrative: One-hour session(s) covering issues necessary for non-technical administrative staff; classroom:
 1. Initial Training: 1 session pre-closeout.
 2. Refresher Training: 1 session post-occupancy.

C. Basic Operation: One-hour sessions for attendant personnel, security officers, and engineering staff; combination of classroom and hands-on:
 1. Initial Training: 1 session pre-closeout.
 2. Refresher Training: 1 session post-occupancy.

D. Maintenance Technicians: Detailed training for electrical technicians, on programming, maintaining, repairing, and modifying; factory training:
 1. Initial Training: One 3-day session, pre-closeout.
 2. Refresher Training: One 1-day session post-occupancy.

E. Furnish the services of instructors and teaching aids; have copies of operation and maintenance data available during instruction.

F. Video tape all training sessions and provide a minimum of two copies to Owner.

4.4 CLOSEOUT

A. Closeout Demonstration: Demonstrate proper operation of all functions to Town of Rocky Hill.
 1. Be prepared to conduct any of the required tests.
 2. Have at least one copy of operation and maintenance data, preliminary copy of project record drawings, input/output matrix, and operator instruction chart(s) available during demonstration.
 3. Have authorized technical representative of control unit manufacturer present during demonstration.
 4. Demonstration may be combined with inspection and testing required by authority having jurisdiction; notify authority having jurisdiction in time to schedule demonstration.
 5. Repeat demonstration until successful.

B. Substantial Completion of the project cannot be achieved until inspection and testing is successful and:
 1. Specified diagnostic period without malfunction has been completed.
 2. Approved operating and maintenance data has been delivered.
 3. All aspects of operation have been demonstrated to Town of Rocky Hill.
 4. Final acceptance of the fire alarm system has been given by authorities having jurisdiction.
5. Specified pre-closeout instruction is complete.

C. Perform post-occupancy instruction within 3 months after Substantial Completion.

4.5 MAINTENANCE

A. Provide to Town of Rocky Hill, at no extra cost, a written maintenance contract for 2 years, to include the work described below.

B. Perform routine inspection, testing, and preventive maintenance required by NFPA 72, including:
 1. Maintenance of fire safety interface and supervisory devices connected to fire alarm system.
 2. Repairs required, unless due to improper use, accidents, or negligence beyond the control of the maintenance contractor.
 3. Record keeping required by NFPA 72 and authorities having jurisdiction.

C. Provide trouble call-back service upon notification by Town of Rocky Hill:
 1. Provide on-site response within 2 hours of notification.
 2. Include allowance for call-back service during normal working hours at no extra cost to Town of Rocky Hill.
 3. Town of Rocky Hill will pay for call-back service outside of normal working hours on an hourly basis, based on actual time spent at site and not including travel time; include hourly rate and definition of normal working hours in maintenance contract.

D. Provide a complete description of preventive maintenance, systematic examination, adjustment, cleaning, inspection, and testing, with a detailed schedule.

E. Maintain a log at each fire alarm control unit, listing the date and time of each inspection and call-back visit, the condition of the system, nature of the trouble, correction performed, and parts replaced. Submit duplicate of each log entry to Town of Rocky Hill’s representative upon completion of site visit.

F. Comply with Town of New Fairfield’s requirements for access to facility and security.

END OF SECTION
SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes:

1. Protecting existing vegetation to remain.
2. Removing existing vegetation.
3. Clearing and grubbing.
4. Stripping and stockpiling topsoil.
5. Stripping and stockpiling rock.
6. Removing above- and below-grade site improvements.
7. Disconnecting, capping or sealing, and removing site utilities.
8. Temporary erosion and sedimentation control.

1.3 DEFINITIONS

A. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.

B. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called “topsoil,” but in disturbed areas such as urban environments, the surface soil can be subsoil.

C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil; the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects larger than 2 inches in diameter; and free of weeds, roots, toxic materials, or other nonsoil materials.
D. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction and indicated on Drawings.

E. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction and indicated on Drawings.

F. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.6 INFORMATIONAL SUBMITTALS

A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.

1. Use sufficiently detailed photographs or video recordings.
2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plant designated to remain.

B. Topsoil stripping and stockpiling program.

C. Rock stockpiling program.

D. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

E. Burning: Burning is NOT permitted.

1.7 QUALITY ASSURANCE

A. Topsoil Stripping and Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.

B. Rock Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.

1.8 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 1. Do not proceed with work on adjoining property until directed by Architect.

C. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.

D. Utility Locator Service: Notify Call Before You Dig for area where Project is located before site clearing.

E. Do not commence site clearing operations until temporary erosion- and sedimentation-control and plant-protection measures are in place.

F. Soil Stripping, Handling, and Stockpiling: Perform only when the soil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Verify that trees, shrubs, and other vegetation to remain or to be relocated have been flagged and that protection zones have been identified and enclosed.

C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

D. Remove erosion and sedimentation controls, and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

A. Protect trees and plants remaining on-site.

B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations.

3.4 EXISTING UTILITIES

A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 1. Arrange with utility companies to shut off indicated utilities.
 2. Owner will arrange to shut off indicated utilities when requested by Contractor.

B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 1. Do not proceed with utility interruptions without Owner's written permission.

C. Excavate for and remove underground utilities indicated to be removed.

3.5 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 2. Grind down stumps and remove roots larger than 2 inches in diameter, obstructions, and debris to a depth of 18 inches below exposed subgrade.
 3. Use only hand methods or air spade for grubbing within protection zones.
 4. Chip removed tree branches and dispose of off-site.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.
3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.
 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects larger than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.

C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 1. Limit height of topsoil stockpiles to 72 inches.
 2. Do not stockpile topsoil within protection zones.
 3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 STOCKPILING ROCK

A. Remove from construction area naturally formed rocks that measure more than 1 foot across in least dimension. Do not include excavated or crushed rock.
 1. Separate or wash off non-rock materials from rocks, including soil, clay lumps, gravel, and other objects larger than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.

B. Stockpile rock without intermixing with other materials. Cover to prevent windblown debris from accumulating among rocks.
 1. Limit height of rock stockpiles to 36 inches.
 2. Do not stockpile rock within protection zones.
 3. Dispose of surplus rock. Surplus rock is that which exceeds quantity indicated to be stockpiled or reused.

3.8 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer’s written instructions. Keep paint off surfaces that will remain exposed.
3.9 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

B. Burning tree, shrub, and other vegetation waste is NOT permitted. Burning of other waste and debris is also prohibited.

C. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes:

1. Excavating and filling for rough grading the Site.
2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
3. Excavating and backfilling for buildings and structures.
4. Subbase course for concrete walks and pavements.
5. Subbase course and base course for asphalt paving.
6. Subsurface drainage backfill for walls and trenches.
7. Excavating and backfilling trenches for utilities and pits for buried utility structures.

B. Related Requirements:

1. Section 311000 “Site Clearing” for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.
2. Section 312319 “Dewatering” for lowering and disposing of ground water during construction.
3. Section 315000 "Excavation Support and Protection" for shoring, bracing, and sheet piling of excavations.

1.3 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.

1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.

1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.

2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.

3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

G. Fill: Soil materials used to raise existing grades.

H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. for bulk excavation or 3/4 cu. yd. for footing, trench, and pit excavation that cannot be removed by rock-excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:

1. Equipment for Footing, Trench, and Pit Excavation: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch- maximum-width, short-tip-radius rock bucket; rated at not less than 138-hp flywheel power with bucket-curving force of not less than 28,700 lbf and stick-crowd force of not less than 18,400 lbf with extra-long reach boom.

2. Equipment for Bulk Excavation: Late-model, track-mounted loader; rated at not less than 230-hp flywheel power and developing a minimum of 47,992-lbf breakout force with a general-purpose bare bucket.

I. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

J. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

K. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

L. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following manufactured products required:

1. Geotextiles.
2. Controlled low-strength material, including design mixture.
3. Warning tapes.

B. Samples for Verification: For the following products, in sizes indicated below:
 2. Warning Tape: 12 inches long; of each color.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. CONNDOT Certification, classification according to ASTM D 2487, and laboratory compaction curve according to ASTM D 1557: For each soil material proposed for fill and backfill as follows:

 1. Borrow
 2. Processed Aggregate / Processed Coarse Aggregate
 3. Subbase
 4. Bedding Material / Bedding Course / Select Backfill
 5. Controlled / Engineered / Granular fill
 6. No. 8 Stone
 7. No. 6 Stone Bedding Material
 8. No. 4 Stone
 9. No. 3 Stone
 10. ASTM C-33 Sand

C. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by earth-moving operations. Submit before earth moving begins.

D. Test Reports: Submit appropriate reports in accordance with the following criteria directly from the testing services to the Engineer, with copy to the Contractor:

 1. Laboratory collection and analysis of each soil material/source proposed from all on-site and borrow sources.
 2. Verification of suitability of subgrade material, in accordance with specified requirements.
 3. Report of actual unconfined compressive strength and/or results of bearing tests of each stratum tested.
 4. Soil Sampling: Prior to placement of any soil material on site, representative samples shall be collected and analyzed to verify the fill material meets the Connecticut Department of Environmental Protection (CTDEP) and Remediation Standard Regulations (RSRs) requirements. Samples shall be collected from the source area of the proposed material prior to excavation and delivery to or movement on the site. Sample analysis frequency will be equal to or greater than 1 sample per 1,000 cubic yards of soil.
 5. If more than one source of fill will be used, at least one (1) fill sample shall be collected and laboratory analyzed from each source (even if less than 1,000 cubic yards of material is obtained from the source).
 6. Samples being collected for analysis of Volatile Organic Compounds (VOCs) will not be composited or mixed.

 a. Fill samples will be analyzed by a Connecticut Department of Public Health certified laboratory for the following constituents:
 1) VOCs per EPA Method 8260B;
2) Extractable Total Petroleum Hydrocarbons (ETPH) per CTDEP approved method;
3) Polynuclear aromatic hydrocarbon (PAHs) compounds per EPA Method 8270C;
4) Mass and Synthetic Precipitation Leaching Procedure (SPLP) 8 RCRA metals per EPA Methods 6010 and 7471; and
5) Polychlorinated biphenyls (PCBs) per EPA Method 8082.

b. The analyses of the fill samples will be evaluated by the Engineer and the fill will not be transported to the site or used on site unless the results demonstrate compliance with the applicable RSR criteria for the site, which are the Residential Direct Exposure Criteria (DEC) and the GA Pollutant Mobility Criteria (PMC). The material must be approved by the Engineer prior to delivery to the site.

7. Testing reports must be submitted within seven calendar days of collection.

E. Construction Staging Plan for Site Grading Activities

F. Construction schedule for earth moving activities

1.6 QUALITY ASSURANCE

A. Blasting: Blasting is NOT permitted.

B. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

C. Employ and pay for a State Licensed environmental analytical laboratory to collect samples and perform all testing of the borrow material.

1. Borrow material shall be tested at the rate of once per 500 cubic yards and representative samples shall be collected at the source prior to initiation of work. Samples shall be collected, stored, and transported in accordance with laboratory recommendations.

1.7 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth-moving operations.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.

2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner’s property will be obtained by Owner before award of Contract.

1. Do not proceed with work on adjoining property until directed by Architect.

C. Utility Locator Service: Notify “Call Before You Dig for area where Project is located before beginning earth-moving operations.
D. Do not commence earth-moving operations until temporary site fencing and erosion- and sedimentation-control measures are in place.

E. Do not commence earth-moving operations until plant-protection measures are in place.

F. The following practices are prohibited within protection zones:
 1. Storage of construction materials, debris, or excavated material.
 2. Parking vehicles or equipment.
 3. Foot traffic.
 4. Erection of sheds or structures.
 5. Impoundment of water.
 6. Excavation or other digging unless otherwise indicated.
 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

G. Do not direct vehicle or equipment exhaust towards protection zones.

H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487, or a combination of these groups.
 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Imported material shall comply with Article M.02.02 of the Standard Specifications. Reclaimed aggregate shall satisfy resistance to abrasion and soundness requirements set forth in Article M.02.06 of the Standard Specification. Reclaimed aggregate composed of brick or asphalt is not permitted.

E. Base Course: Material shall comply with Article M.05.01 Processed Aggregate Base of the Standard Specifications except as modified below:

<table>
<thead>
<tr>
<th>US STANDARD SIEVE SIZE</th>
<th>PERCENT FINER BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25"</td>
<td>100</td>
</tr>
<tr>
<td>1"</td>
<td>90-100</td>
</tr>
<tr>
<td>3/4 "</td>
<td>75-100</td>
</tr>
<tr>
<td>1/4 "</td>
<td>25-60</td>
</tr>
<tr>
<td>NO. 40</td>
<td>10-35</td>
</tr>
<tr>
<td>NO. 100</td>
<td>3-12</td>
</tr>
<tr>
<td>NO. 200</td>
<td>0-5</td>
</tr>
</tbody>
</table>
Reclaimed aggregate shall satisfy resistance to abrasion and soundness requirements set forth in Article M.02.06 of the Standard Specification. Reclaimed aggregate composed of brick or asphalt is not permitted.

F. Controlled / Engineered / Structural / Granular Fill: Material shall comply with Article M.02.01 Granular Fill of the Standard Specifications except as modified below:

<table>
<thead>
<tr>
<th>US STANDARD SIEVE SIZE</th>
<th>PERCENT FINER BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5”</td>
<td>100</td>
</tr>
<tr>
<td>3/4”</td>
<td>50-100</td>
</tr>
<tr>
<td>No. 4</td>
<td>25-75</td>
</tr>
</tbody>
</table>

The fraction passing the No. 4 sieve shall have less than 15% passing the No. 200 sieve.

Material shall consist of sandy gravel, gravelly sand, free of organic matter, snow, ice or other unsuitable materials. Reclaimed aggregate shall satisfy resistance to abrasion and soundness requirements set forth in Article M.02.06 of the Standard Specification. Reclaimed aggregate shall not be used under building footprints. Reclaimed aggregate composed of brick or asphalt is not permitted.

G. Bedding Course and Select Backfill: Materials shall comply with Section M.08.01-21 of the Standard Specifications for bedding material.

H. No. 3, No. 4, No. 6 and No. 8 Stone: Materials shall comply with Section M.01.01 of the Standard Specifications respectively.

I. Sand: ASTM C 33/C 33M; fine aggregate.

J. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 GEOTEXTILES

A. All products must be listed on CONNDOT Qualified product list with can be obtained at http://www.ct.gov/dot/LIB/dot/documents/dresearch/conndot qpl.pdf.

B. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Survivability: As follows:
 a. Grab Tensile Strength: 157 lbf; ASTM D 4632.
 b. Sewn Seam Strength: 142 lbf; ASTM D 4632.
 c. Tear Strength: 56 lbf; ASTM D 4533.
 d. Puncture Strength: 56 lbf; ASTM D 4833.
3. Apparent Opening Size: No. 60 sieve, maximum; ASTM D 4751.
4. Permittivity: 0.2 per second, minimum; ASTM D 4491.
5. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.
C. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Survivability: As follows:
 a. Grab Tensile Strength: 247 lbf; ASTM D 4632.
 b. Sewn Seam Strength: 222 lbf; ASTM D 4632.
 c. Tear Strength: 90 lbf; ASTM D 4533.
 d. Puncture Strength: 90 lbf; ASTM D 4833.
3. Apparent Opening Size: No. 60 sieve, maximum; ASTM D 4751.
4. Permittivity: 0.02 per second, minimum; ASTM D 4491.
5. UV Stability: 50 percent after 500 hours’ exposure; ASTM D 4355.

D. Geotextile for use in Trench: Sections for “Sanitary Sewer Main” and “Sanitary Sewer Lateral” shall be Mirafi 140N or Supac 5NP Filter Fabric or approved equal.

2.3 ACCESSORIES

A. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.

B. Protect and maintain erosion and sedimentation controls during earth-moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.

3.4 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

B. Rock Excavation:

1. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:

 a. 24 inches outside of concrete forms other than at footings.
 b. 12 inches outside of concrete forms at footings.
 c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 e. 6 inches beneath bottom of concrete slabs-on-grade.
 f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide with vertical walls.

2. Wherever rock to be excavated is encountered, the Contractor shall strip or expose the rock to such an extent that in the Owner’s opinion the necessary measurements can be taken. The Contractor shall provide the Owner with a survey by a licensed land surveyor indicating top of rock elevations at points of intersection on a rectilinear grid with lines spaced sufficiently close to show accurately the rock surface contours. At the Owner’s option, an additional survey may be furnished by the Owner from a licensed surveyor. The volume of material conforming to the above limits derived from this survey data will be the basis of payment of this item. Quantity shall be calculated by the contractor and provided to the engineer for review and verification.

3. Rock excavation is to be paid at the unit prices established below (Basis For Payment): Prices include backfill with on-site excavated material if it is suitable. Prices also include all excavation and disposal of all surplus or unsuitable material. Prices include costs of shoring, de-watering, and sloping for sides of excavation as necessary. Payment and credit amounts shall be determined based on the limits identified above. The total quantity of earth or rock excavation encountered in each depth payment category shall be paid for at its respective unit price as shown below. For example, in a 15’ trench the first 6’ will be paid for at the 0’ - 6’ price; the next 4’ will be paid for at the over 6’ - 10’ price and the next 5’ will be paid for at the over 10’ - 15’ price. Thus three different price brackets will prevail.

4. If the conditions of the excavation work indicated are clearly of a special nature as identified by the Contractor and confirmed by the Engineer, the Contractor may ask the Owner for reconsideration of the established unit prices and if granted, the unit prices will not apply,
and prices will be negotiated in accordance with Article 13 "Compensations for Changes in the Work" of the General Conditions.

3.5 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

2. Pile Foundations: Stop excavations 6 to 12 inches above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.

3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

B. Excavations at Edges of Tree- and Plant-Protection Zones:

1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

2. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

1. Clearance: 12 inches each side of pipe or conduit.

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.

3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.

4. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

D. Trenches in Tree- and Plant-Protection Zones:

1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.

3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.8 SUBGRADE INSPECTION

A. Notify Architect when excavations have reached required subgrade.

B. If Architect determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

C. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.

2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.

E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Architect.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.
3.10 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 GENERAL BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:

1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
2. Surveying locations of underground utilities for Record Documents.
3. Testing and inspecting underground utilities.
4. Removing concrete formwork.
5. Removing trash and debris.
6. Removing temporary shoring, bracing, and sheeting.
7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.12 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with controlled fill; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

D. Trenches under Roadways: Provide 4-inch thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

E. Backfill voids with satisfactory soil while removing shoring and bracing.

F. Initial Backfill:

1. Soil Backfill: Place and compact initial backfill of satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.

 a. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

G. Final Backfill:

1. Soil Backfill: Place and compact final backfill of satisfactory soil to final subgrade elevation.
2. Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.

H. Warning Tape: Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.13 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

1. Under grass and planted areas, use satisfactory soil material.
2. Under walks and pavements, use satisfactory soil material.
3. Under steps and ramps, use engineered fill.
4. Under building slabs, use engineered fill.
5. Under footings and foundations, use engineered fill.

C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.14 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.

1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACTION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:

1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 92 percent.
3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 92 percent.
4. For utility trenches, compact each layer of initial and final backfill soil material at 92 percent.
3.16 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

1. Provide a smooth transition between adjacent existing grades and new grades.
2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:

1. Turf or Unpaved Areas: Plus or minus 1 inch.
2. Walks: Plus or minus 1 inch.
3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.17 SUBSURFACE DRAINAGE

A. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches of filter material, placed in compacted layers 6 inches thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698.

B. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade, in compacted layers 6 inches thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698.
2. Place and compact impervious fill over drainage backfill in 6-inch-thick compacted layers to final subgrade.

3.18 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place base course material over subbase course under hot-mix asphalt pavement.
3. Shape subbase course and base course to required crown elevations and cross-slope grades.
4. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.
5. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.

6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

C. Pavement Shoulders: Place shoulders along edges of subbase course and base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

3.19 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

A. Place drainage course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 2. Place drainage course 6 inches or less in compacted thickness in a single layer.
 3. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.20 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 2. Determine that fill material classification and maximum lift thickness comply with requirements.
 3. Determine, during placement and compaction that in-place density of compacted fill complies with requirements.

B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.

E. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2937, and ASTM D 6938, as applicable. Tests will be performed at the following locations and frequencies:
1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab but in no case fewer than three tests.

2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length but no fewer than two tests.

3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length but no fewer than two tests.

F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.21 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.22 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GN CB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section includes construction dewatering.

B. Related Requirements:

1. Section 013233 "Photographic Documentation" for recording preexisting conditions and dewatering system progress.
2. Section 312000 "Earth Moving" for excavating, backfilling, site grading, and controlling surface-water runoff and ponding.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Verify availability of Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review condition of site to be dewatered including coordination with temporary erosion-control measures and temporary controls and protections.
3. Review geotechnical report.
4. Review proposed site clearing and excavations.
5. Review existing utilities and subsurface conditions.
6. Review observation and monitoring of dewatering system.
1.4 ACTION SUBMITTALS

A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer licensed in the State of Connecticut.
 1. Include plans, elevations, sections, and details.
 2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
 3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
 4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer land surveyor and professional engineer.
B. Field quality-control reports.
C. Existing Conditions: Using photographs or video recordings, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.
D. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.7 FIELD CONDITIONS

A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.
 1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
 2. The geotechnical report is included elsewhere in Project Manual.
B. Survey Work: Engage a qualified land surveyor licensed in the State of Connecticut to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer.
2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.
3. Prevent surface water from entering excavations by grading, dikes, or other means.
4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
5. Remove dewatering system when no longer required for construction.

B. Regulatory Requirements: Comply with governing CT DEEP regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.

1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.
2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 311000 "Site Clearing," during dewatering operations.

3.2 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.
1. Space well points or wells at intervals required to provide sufficient dewatering.
2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.

C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
3. Maintain piezometric water level a minimum of 24 inches below bottom of excavation.

C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches below overlying construction.

3.4 FIELD QUALITY CONTROL

A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.

1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.

B. Survey-Work Benchmarks: Resurvey benchmarks weekly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Architect if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.
C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.

D. Prepare reports of observations.

3.5 PROTECTION

A. Protect and maintain dewatering system during dewatering operations.

B. Promptly repair damages to adjacent facilities caused by dewatering.

END OF SECTION 312319
SECTION 315000 - EXCAVATION SUPPORT AND PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section includes temporary excavation support and protection systems.

B. Related Requirements:

1. Section 013233 "Photographic Documentation" for recording preexisting conditions and excavation support and protection system progress.
2. Section 312000 "Earth Moving" for excavating and backfilling and for controlling surface-water runoff and ponding.
3. Section 312319 "Dewatering" for dewatering excavations.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Review geotechnical report.
2. Review existing utilities and subsurface conditions.
3. Review coordination for interruption, shutoff, capping, and continuation of utility services.
4. Review proposed excavations.
5. Review proposed equipment.
6. Review monitoring of excavation support and protection system.
7. Review coordination with waterproofing.
8. Review abandonment or removal of excavation support and protection system.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

1. Include construction details, material descriptions, performance properties, and dimensions of individual components and profiles, and calculations for excavation support and protection system.

B. Shop Drawings: For excavation support and protection system, prepared by or under the supervision of a qualified professional engineer licensed in the State of Connecticut.

1. Include plans, elevations, sections, and details.
2. Show arrangement, locations, and details of soldier piles, piling, lagging, tiebacks, bracing, and other components of excavation support and protection system according to engineering design.
3. Indicate type and location of waterproofing.
4. Include a written plan for excavation support and protection, including sequence of construction of support and protection coordinated with progress of excavation.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For land surveyor and professional engineer.

B. Contractor Calculations: For excavation support and protection system. Include analysis data signed and sealed by the qualified professional engineer licensed in the State of Connecticut responsible for their preparation.

C. Existing Conditions: Using photographs or video recordings, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by inadequate performance of excavation support and protection systems. Submit before Work begins.

D. Record Drawings: Identify locations and depths of capped utilities, abandoned-in-place support and protection systems, and other subsurface structural, electrical, or mechanical conditions.

1.6 FIELD CONDITIONS

A. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:

1. Do not proceed with interruption of utility without Owner’s written permission.

B. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from the data.

1. Make additional test borings and conduct other exploratory operations necessary for excavation support and protection according to the performance requirements.
2. The geotechnical report is included elsewhere in Project Manual.

C. Survey Work: Engage a qualified land surveyor licensed in the State of Connecticut to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Provide, design, monitor, and maintain excavation support and protection system capable of supporting excavation sidewalls and of resisting earth and hydrostatic pressures and superimposed and construction loads.

1. Contractor Design: Design excavation support and protection system, including comprehensive engineering analysis by a qualified professional engineer licensed in the State of Connecticut.
2. Prevent surface water from entering excavations by grading, dikes, or other means.
3. Install excavation support and protection systems without damaging existing buildings, structures, and site improvements adjacent to excavation.
4. Continuously monitor vibrations, settlements, and movements to ensure stability of excavations and constructed slopes and to ensure that damage to permanent structures is prevented.

2.2 MATERIALS

A. General: Provide materials that are either new or in serviceable condition.

B. Structural Steel: ASTM A 36/A 36M, ASTM A 690/A 690M, or ASTM A 992/A 992M.

C. Steel Sheet Piling: ASTM A 328/A 328M, ASTM A 572/A 572M, or ASTM A 690/A 690M; with continuous interlocks.

D. Wood Lagging: Lumber, mixed hardwood, nominal rough thickness of size and strength required for application.

E. Cast-in-Place Concrete: ACI 301, of compressive strength required for application.

F. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

G. Tiebacks: Steel bars, ASTM A 722/A 722M.

H. Tiebacks: Steel strand, ASTM A 416/A 416M.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards that could develop during excavation support and protection system operations.

1. Shore, support, and protect utilities encountered.

B. Install excavation support and protection systems to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Locate excavation support and protection systems clear of permanent construction so that construction and finishing of other work is not impeded.

3.2 SOLDIER PILES AND LAGGING

A. Install steel soldier piles before starting excavation. Extend soldier piles below excavation grade level to depths adequate to prevent lateral movement. Space soldier piles at regular intervals not to exceed allowable flexural strength of wood lagging. Accurately align exposed faces of flanges to vary not more than 2 inches from a horizontal line and not more than 1:120 out of vertical alignment.

B. Install wood lagging within flanges of soldier piles as excavation proceeds. Trim excavation as required to install lagging. Fill voids behind lagging with soil, and compact.

C. Install wales horizontally at locations indicated on Drawings and secure to soldier piles.

3.3 SHEET PILING

A. Before starting excavation, install one-piece sheet piling lengths and tightly interlock vertical edges to form a continuous barrier.

B. Accurately place the piling, using templates and guide frames unless otherwise recommended in writing by the sheet piling manufacturer. Limit vertical offset of adjacent sheet piling to 60 inches. Accurately align exposed faces of sheet piling to vary not more than 2 inches from a horizontal line and not more than 1:120 out of vertical alignment.

C. Cut tops of sheet piling to uniform elevation at top of excavation.

3.4 TIEBACKS

A. Drill, install, grout, and tension tiebacks.

B. Test load-carrying capacity of each tieback and replace and retest deficient tiebacks.

1. Have test loading observed by a qualified professional engineer responsible for design of excavation support and protection system.

C. Maintain tiebacks in place until permanent construction is able to withstand lateral earth and hydrostatic pressures.

3.5 BRACING

A. Bracing: Locate bracing to clear columns, floor framing construction, and other permanent work. If necessary to move brace, install new bracing before removing original brace.

1. Do not place bracing where it will be cast into or included in permanent concrete work unless otherwise approved by Architect.

2. Install internal bracing if required to prevent spreading or distortion of braced frames.
3. Maintain bracing until structural elements are supported by other bracing or until permanent construction is able to withstand lateral earth and hydrostatic pressures.

3.6 FIELD QUALITY CONTROL

A. Survey-Work Benchmarks: Resurvey benchmarks weekly during installation of excavation support and protection systems, excavation progress, and for as long as excavation remains open. Maintain an accurate log of surveyed elevations and positions for comparison with original elevations and positions. Promptly notify Architect if changes in elevations or positions occur or if cracks, sags, or other damage is evident in adjacent construction.

B. Promptly correct detected bulges, breakage, or other evidence of movement to ensure that excavation support and protection system remains stable.

C. Promptly repair damages to adjacent facilities caused by installation or faulty performance of excavation support and protection systems.

3.7 REMOVAL AND REPAIRS

A. Remove excavation support and protection systems when construction has progressed sufficiently to support excavation and earth and hydrostatic pressures. Remove in stages to avoid disturbing underlying soils and rock or damaging structures, pavements, facilities, and utilities.

1. Remove excavation support and protection systems to a minimum depth of 48 inches below overlying construction and abandon remainder.

2. Fill voids immediately with approved backfill compacted to density specified in Section 312000 "Earth Moving."

3. Repair or replace, as approved by Architect, adjacent work damaged or displaced by removing excavation support and protection systems.

END OF SECTION 315000
SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes:
 1. Cold milling of existing asphalt pavement.
 2. Hot-mix asphalt patching.
 3. Hot-mix asphalt paving.
 4. Hot-mix asphalt curbs.

B. Related Requirements:
 1. Section 024116 "Structure Demolition" for demolition and removal of existing asphalt pavement.
 2. Section 312000 "Earth Moving" for subgrade preparation, fill material, unbound-aggregate subbase and base courses, and aggregate pavement shoulders.
 3. Section 321373 "Concrete Paving Joint Sealants" for joint sealants and fillers at pavement terminations.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following:
 a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt.
 b. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Job-Mix Designs: Certification, by the Connecticut Department of Transportation, of approval of each job mix proposed for the Work. Certification shall include name of project covered under these specifications.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer and testing agency.
B. Material Certificates: For each paving material. Include statement that mixes containing recycled materials will perform equal to mixes produced from all new materials.
C. Material Test Reports: For each paving material, by a qualified testing agency.
D. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by the Connecticut Department of Transportation.
B. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated.
C. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the Connecticut Department of Transportation for asphalt paving work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 1. Tack Coat: Minimum air and surface temperature of 40 deg F.
 2. Asphalt Base Course: Minimum air and surface temperature of 40 deg F and rising at time of placement.
 3. Asphalt Surface Course: Minimum air and surface temperature of 40 deg F and rising at time of placement.

PART 2 - PRODUCTS

2.1 MIXES

A. Hot-Mix Asphalt: Dense, hot-laid, hot-mix asphalt plant mixes approved by the Connecticut Department of Transportation and complying with the following requirements:
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

1. Comply with Form 817 Section M.04– Bituminous Concrete Materials
2. Base Course: Form 817 Section M.04 “HMA S0.5 – Design Level 2”.
3. Surface Course: Form 817 Section M.04 “HMA S0.375 – Design Level 2”
4. Curbs: Form 817 Section M.04.02.1 “Curb Mix”.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.

B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction. Limit vehicle speed to 3 mph.
2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

C. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 COLD MILLING

A. Clean existing pavement surface of loose and deleterious material immediately before cold milling. Remove existing asphalt pavement by cold milling to grades and cross sections indicated.

1. Mill to a depth of 2 inches.
2. Mill to a uniform finished surface free of excessive gouges, grooves, and ridges.
3. Control rate of milling to prevent tearing of existing asphalt course.
4. Repair or replace curbs, manholes, and other construction damaged during cold milling.
5. Excavate and trim unbound-aggregate base course, if encountered, and keep material separate from milled hot-mix asphalt.
6. Patch surface depressions deeper than 1 inch after milling, before wearing course is laid.
7. Keep milled pavement surface free of loose material and dust.
8. Do not allow milled materials to accumulate on-site.

3.3 PATCHING

A. Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.

B. Portland Cement Concrete Pavement: Break cracked slabs and roll as required to reseat concrete pieces firmly.

1. Pump hot undersealing asphalt under rocking slab until slab is stabilized or, if necessary, crack slab into pieces and roll to reseat pieces firmly.
2. Remove disintegrated or badly cracked pavement. Excavate rectangular or trapezoidal patches, extending into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Recompact existing unbound-aggregate base course to form new subgrade.
C. Tack Coat: Before placing patch material, apply tack coat uniformly to vertical asphalt surfaces abutting the patch. Apply at a rate of 0.05 to 0.07 gal./sq. yd..

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

D. Placing Patch Material: Fill excavated pavement areas with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.

E. Placing Patch Material: Partially fill excavated pavements with hot-mix asphalt base mix and, while still hot, compact. Cover asphalt base course with compacted, hot-mix surface layer finished flush with adjacent surfaces.

3.4 REPAIRS

A. Leveling Course: Install and compact leveling course consisting of hot-mix asphalt surface course to level sags and fill depressions deeper than 1 inch in existing pavements.

1. Install leveling wedges in compacted lifts not exceeding 3 inches thick.

B. Crack and Joint Filling: Remove existing joint filler material from cracks or joints to a depth of 1/4 inch.

1. Clean cracks and joints in existing hot-mix asphalt pavement.
2. Use emulsified-asphalt slurry to seal cracks and joints less than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.
3. Use hot-applied joint sealant to seal cracks and joints more than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.

3.5 SURFACE PREPARATION

A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.

B. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.03 to 0.05 gal./sq. yd. for a non-milled surface and 0.05 to 0.07 gal./sq. yd. for a milled surface.

1. The material for tack coat shall not be heated in excess of 160 deg F and shall not be further diluted.
2. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
3. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.6 PLACING HOT-MIX ASPHALT

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.

1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
2. Place hot-mix asphalt surface course in single lift.
3. Spread mix at a minimum temperature of 265 deg F (min. 300 deg F. after October 15).
4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.
 1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1-1/2 inches from strip to strip to ensure proper compaction of mix along longitudinal joints.
 2. Complete a section of asphalt base course before placing asphalt surface course.

C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.7 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 1. Clean contact surfaces and apply tack coat to joints.
 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AM-22, for both "Ending a Lane" and "Resumption of Paving Operations."
 5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.

3.8 COMPACTION

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 1. Complete compaction before mix temperature cools to 185 deg F.

B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
 1. Density: All material placed in a lift shall be compacted to the degree specified in Tables 4.06-9 and 4.06-10 of the Standard Specifications. The density of each core will be determined using the production lot's average maximum theoretical specific gravity (Gmm) established during the testing of the parent material at the plant.
 2. Density testing shall comply with 4.06.03 paragraphs 10 through 13.
3. No adjustment to the contract sum will be made for positive density values in Tables 4.06-9 and 4.06-10 of the Standard Specifications. Negative density values on Tables 4.06-9 and 4.06-10 of the Standard Specifications will result in pavement removal and replacement.

D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.

F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.9 ASPHALT CURBS

A. Apply a light tack coat unless pavement surface is still tacky and free from dust. Spread mix at a minimum temperature of 250 deg F.

B. Place hot-mix asphalt to curb cross section indicated or, if not indicated, to local standard shapes, by machine.

3.10 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:

1. HMA S1: Plus or minus 3/8 inch.
2. HMA S0.25, S0.375, S0.5: Plus or minus 1/4 inch.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:

1. Base Course: 3/8 inch.
2. Surface Course (each lift): 1/4 inch.
3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549.
C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

D. In-Place Density: Core samples as required in Section 4.06.03 of the Standard Specifications.
 1. All material placed in a lift shall be compacted to the degree specified in Tables 4.06-9 and 4.06-10 of the Standard Specifications. The density of each core will be determined using the production lot's average maximum theoretical specific gravity (Gmm) established during the testing of the parent material at the plant.
 2. Density testing shall comply with 4.06.03 paragraphs 10 through 13.
 3. No adjustment to the contract sum will be made for positive density values in Tables 4.06-9 and 4.06-10 of the Standard Specifications. Negative density values on Tables 4.06-9 and 4.06-10 of the Standard Specifications will result in pavement removal and replacement.

E. Replace and compact hot-mix asphalt where core tests were taken.

F. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

END OF SECTION 321216
SECTION 321243 - POROUS FLEXIBLE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes:

1. Excavating and filling for rough grading of pavement areas.
2. Preparing subgrades for aggregate bases and pavements.
3. Subbase course and base course for porous asphalt paving.
4. Porous asphalt paving.

B. Related Requirements:

1. Section 311000 "Site Clearing" for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.
2. Section 312319 "Dewatering" for lowering and disposing of ground water during construction.
3. Section 312000 “Earth Moving” for preparation of subgrade.

1.3 DEFINITIONS

A. Choker/stabilizing layer – a layer of fine aggregate used to reduce the infiltration or erosion of fine soils (silos and clays).

B. Geotextile membrane - permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect, or drain.

C. Hydrologic conductivity - the ease with which a fluid (usually water) can move through pore spaces or fractures.
D. Hydrologic study - a study of the amount and quality of water being stored or conveyed on the land surface, and in soils and rocks near the surface.

E. Hydrologic Soil Groups - a group of soils having similar runoff potential under similar storm and cover conditions. The United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) defines four soil groups:

1. Group A is sand, loamy sand or sandy loam types of soils having a high rate of water transmission. It has low runoff potential and high infiltration rates even when thoroughly wetted.

2. Group B is silt loam or loam. It has a moderate infiltration rate when thoroughly wetted.

3. Group C soils are sandy clay loam. They have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water.

4. Group D soils are clay loam, silty clay loam, sandy clay, silty clay or clay. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, and shallow soils over nearly impervious material.

F. Impervious pavement – a typical dense graded pavement with typically 3-8% air voids that is not conducive to water infiltration/penetration.

G. Porous pavement – an open graded pavement with greater than 18% air voids to promote drainage of water via gravity.

H. Stone reservoir – A designed subsurface coarse-aggregate layer where water can be temporarily stored until it gradually percolates into an underlying uncompacted permeable native soil.

PART 2 - PRODUCTS

2.1 MATERIALS

A. The materials furnished for this work shall conform to the requirements of Sections M.01- M.10 where applicable. The specific materials shall meet the following requirements.

B. Aggregate Layers Materials Selection

1. To maximize storage capacity, the aggregate gradation for the stone reservoir shall meet the ranges specified for AASHTO No. 3 in Table 1 of AASHTO M43. This gradation is also found in Table M.01.01 of the CTDOT Form 817. If deemed acceptable by the engineer, a finer gradation may be allowed such as AASHTO No. 5. It is emphasized that AASHTO No. 3 will have a higher void content and associated water storage capacity than No. 5.

2. The gradation for the material in the choker/stabilizing layer shall meet the ranges specified for AASHTO No. 6, AASHTO No. 56 or AASHTO No. 57 in Table 1 of AASHTO M43.

3. In addition to the gradation requirements, the aggregates selected for use in both the stone reservoir and the choker/stabilizing layers shall meet the requirements in Table 1 below. All stone reservoir and choker/stabilizing layer coarse aggregates shall be of a uniform, clean, crushed condition.
4. Table 1. Stone Reservoir and Choker/Stabilizing Coarse Aggregate Requirements

<table>
<thead>
<tr>
<th>Flat & Elongated (5:1 ratio)</th>
<th>≤ 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Fractured Faces</td>
<td>95 – 100%</td>
</tr>
<tr>
<td>L.A. Abrasion loss (500 Revolutions)</td>
<td>≤ 50%</td>
</tr>
</tbody>
</table>

C. Asphalt Binder Selection for Porous Asphalt Pavement Surface Layer(s)

1. The asphalt binder used for the porous asphalt layers, will meet the requirements for one of the following:
 - PG 76-22 modified with SBS polymer
 - PG 64E-22 modified with SBS polymer

2. The separation tendency of the polymer from the binder shall be verified in accordance with ASTM D7173 using the Dynamic Shear Rheometer (DSR). In accordance with AASHTO T315, the DSR G*/sin(δ) results from the top and bottom sections of the ASTM D7173 test shall not differ by more than 10%. The results of ASTM D7173 shall be included on the Certified Test Report.

3. The supplier of the polymer modified binder shall indicate the maximum temperature to which the binder may be heated without damaging the polymer. This information shall accompany the material certification.

4. When polymer modifiers are not used, the binder shall be reinforced with fibers of either polyester or nylon.

5. In all cases, regardless of asphalt binder material selection, the mixtures must be tested in accordance with and meet the requirements of the next section below for "Porous Asphalt Pavement Surface Layers".

D. Aggregate Selection & Mix Requirements for Porous Asphalt Pavement Surface Layer(s)

1. The aggregates used in the porous asphalt layer(s) shall meet the requirements for CTDOT Superpave Level 2 mixes.

2. The Job Mix Formula shall conform to the following master range:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75"</td>
<td>100%</td>
</tr>
<tr>
<td>0.50"</td>
<td>80–100%</td>
</tr>
<tr>
<td>0.375"</td>
<td>55-75%</td>
</tr>
<tr>
<td>#4</td>
<td>10-25%</td>
</tr>
<tr>
<td>#8</td>
<td>5-10%</td>
</tr>
<tr>
<td>#200</td>
<td>3-5%</td>
</tr>
</tbody>
</table>

3. The mixture shall be compacted in accordance with AASHTO T312 or AASHTO T245.
4. Mixes compacted using a Superpave gyratory compactor shall be compacted with 50 gyrations. The maximum specific gravity of the mixture shall be measured in accordance with AASHTO T209 and air void determination made in accordance with AASHTO T269. The specimens shall have air voids at 50 gyrations of not less than 16%. AASHTO T331 shall be used to measure the bulk specific gravity of the compacted specimen.

5. Mixes compacted using Marshall Design procedures shall be compacted with 50 blows of the Marshall hammer. The maximum specific gravity of the mixture shall be measured in accordance with AASHTO T209 and air void determination made in accordance with AASHTO T269. The specimens shall have air voids at 50 blows of not less than 16%. AASHTO T331 shall be used to measure the bulk specific gravity of the compacted specimen.

6. The average asphalt binder film thickness shall be not less than 12.0 microns as calculated in accordance with CTDOT form MAT412s.

7. A dense graded mixture utilizing aggregates of the same parent source shall be tested in accordance with AASHTO T283. The minimum Tensile Strength Ratio of that set of specimens will be 80%. If the dense graded mixture does not achieve the minimum required Tensile Strength Ratio, then an anti-strip additive shall be blended with the asphalt binder used in the mixture for the PPS.

8. The mixture shall be tested in accordance with AASHTO T305 with a maximum allowable draindown of 0.3%. Fibers are permitted for use. If the draindown requirement cannot be met then the addition of polyester or nylon fibers to the mix will be required to reduce draindown values to acceptable limits so long as all other mix requirements are met.

9. The mixture shall be subjected to Cantabro testing in the Los Angeles machine in accordance with Tex-245-F [ref. S3]. The mixture shall be oven aged for 2 hours at compaction temperature in accordance with AASHTO R30 prior to compaction of the Cantabro specimens. The specimens shall show a Cantabro Loss of not more than 35.0% after 300 continuous revolutions. If these requirements cannot be met then further development of the mixture is required until the loss comes into conformance.

10. A workability additive is permitted to be used to aid in production and placement. Workability additives shall not negatively impact the performance criteria of the mixture.

E. Design of Aggregate Layers

1. The stone reservoir thickness shall be as noted on the plans.

2. The choker course will serve as the stabilizing layer of base aggregate on which the surface porous asphalt pavement layer(s) will be placed. The choker course shall be of a compacted thickness as noted on the plans.

PART 3 – EXECUTION

3.1 EXCAVATION AND SITE PREPARATION

A. Adjacent surfaces and structures shall be stabilized prior to excavation to prevent soil and contaminant laden runoff from running onto the site. This may include the use of vegetation, barriers and/or silt fence and geotextiles to prevent runoff onto the site.
B. Excavation shall be conducted utilizing tracked equipment to distribute the load over a wider area and reduce the risk of compacting the subsurface native soil (infiltration bed), which if it occurs will negatively impact infiltration rates.

C. Required depth of excavation will be confirmed and approved by the engineer.

D. Upon approval of the final infiltration bed depth, placement of geotextile fabric shall take place immediately.

E. Following the approval of final infiltration bed depth, completion of the porous asphalt pavement shall take place expeditiously to reduce the risk of runoff running onto the excavated site.

F. If sub-drains or overflow measures are included in the structure they shall be assembled and placed immediately prior to the first lift of the stone reservoir.

3.2 CONSTRUCTION & COMPACTION OF AGGREGATE LAYERS

A. The stone reservoir shall be placed in lifts of not more than 10 inches and, to ensure void capacity, compacted with no more than 1-2 passes of a lightweight roller or a vibratory plate compactor.

B. The choker course shall be placed at a compacted thickness of not more than 1.5 inches and compacted to the asphalt base grade with no more than 1-2 passes of a lightweight roller or a vibratory plate compactor.

C. Adequate placement of the aggregate layers in the porous structure shall be determined and approved by the engineer prior to placement of the porous asphalt base and/or surface layers.

3.3 CONSTRUCTION & COMPACTION OF POROUS ASPHALT PAVEMENT SURFACE LAYERS

A. Tack coat of any kind shall not be applied over the compacted aggregate layers or between the compacted porous asphalt layers. All other surfaces that will contact the porous asphalt such as utility structures, sidewalk edges, curbs and gutters shall be coated with Type RS-1 emulsion prior to placement of the asphalt layers.

B. Surface temperatures at the time of placement of any porous asphalt layers shall be a minimum of 50º F and rising.

C. Porous asphalt layers shall be placed in 2 lifts when a single lift cannot be adequately placed and compacted.

D. Each lift shall be spread with a suitable track paver such that the weight of the paver is distributed over as large a surface area as possible.

E. Breakdown rolling shall proceed immediately following placement. Two to four (2-4) passes of a static roller is suggested to accomplish this.

F. Finish rolling is recommended to occur between surface temperatures of 150 and 200º F. A 1-ton static roller is suggested for finish rolling.

G. Completion of finish rolling shall be determined when roller marks are smoothed sufficiently. This shall be decided by the engineer.
H. All constructed joints shall be butt/vertical joints. The cold side of any construction joint shall be coated with Type RS-1 emulsion. Every effort shall be made to close in joints on a daily basis.

3.4 PRODUCTION QA REQUIREMENTS

A. At least one sample shall be collected from haul units for every 600 tons of produced material.

B. A minimum of one test shall be conducted for each porous asphalt pavement area.

C. Test portions shall be split to size in accordance with AASHTO R47.

D. Maximum specific gravity shall be measured on the collected mix in accordance with AASHTO T209.

E. Specimens shall be compacted in a Superpave Gyratory Compactor in accordance with AASHTO T312 with 50 gyrations or in a Marshall compactor in accordance with AASHTO T245 with 50 blows of the Marshall hammer. Compaction of the test specimen will be in accordance with the method used in the mix design. Bulk specific gravity of the specimens shall then be determined on the compacted specimens in accordance with AASHTO T331.

F. Subsequent air void calculations shall be conducted in accordance with AASHTO T269.

G. Air voids as measured shall fall within the range of 16% to 22%.

H. Asphalt content of the plant produced mix shall be measured in accordance with AASHTO T308.

I. The asphalt content as measured shall be input into the CTDOT form MAT412s.

J. Mechanical analysis of the extracted aggregate from AASHTO T308 shall take place in accordance with AASHTO T30. The resulting gradation shall conform to the ranges stated in Section V.B. and input into the CTDOT form MAT412s.

K. The average binder film thickness as calculated and reported on CTDOT form MAT412s shall be a minimum of 12.0 microns.

END OF SECTION 321243
SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes Concrete Paving Including the Following:
 1. Curbs.
 2. Walks.

B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for general building applications of concrete.
 2. Section 321373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.
 3. Section 321723 "Pavement Markings" for painted markings.
 4. Section 321726 "Tactile Warning Surfacing" for detectable warning tiles.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash, slag cement, and other pozzolans.

B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 a. Concrete mixture design.
 b. Quality control of concrete materials and concrete paving construction practices.

2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete paving Subcontractor.
 e. Manufacturer's representative of stamped concrete paving system used for stamped detectable warnings.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.

C. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer of stamped detectable warnings, ready-mix concrete manufacturer and testing agency.

B. Material Certificates: For the following, from manufacturer:
 1. Cementitious materials.
 2. Steel reinforcement and reinforcement accessories.
 3. Admixtures.
 4. Curing compounds.
 5. Applied finish materials.
 6. Bonding agent or epoxy adhesive.
 7. Joint fillers.

C. Field quality-control reports.

1.7 QUALITY ASSURANCE

A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

B. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

C. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Build mockups of full-thickness sections of concrete paving to demonstrate typical joints; surface finish, texture, and color; curing; and standard of workmanship.
 2. Build mockups of concrete paving in the location and of the size indicated or, if not indicated, build mockups where directed by Architect and not less than 96 inches by 96 inches.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified independent testing agency to perform preconstruction testing on concrete paving mixtures.

1.9 FIELD CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
 2. Do not use frozen materials or materials containing ice or snow.
 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.

C. Hot-Weather Concrete Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.
2.1 CONCRETE, GENERAL

 A. ACI Publications: Comply with ACI 301 unless otherwise indicated.

2.2 FORMS

 A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less. Do not use notched and bent forms.
 B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 STEEL REINFORCEMENT

 A. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, fabricated from steel wire into flat sheets.
 C. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.
 D. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60 deformed bars; assembled with clips.
 E. Plain-Steel Wire: ASTM A 1064/A 1064M.
 F. Deformed-Steel Wire: ASTM A 1064/A 1064M.
 G. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 plain-steel bars. Cut bars true to length with ends square and free of burrs.
 H. Tie Bars: ASTM A 615/A 615M, Grade 60; deformed.
 I. Hook Bolts: ASTM A 307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.
 J. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
2.4 CONCRETE MATERIALS

A. Comply with Section M.03 of the Standard Specifications. Mix composition shall comply with Class “F”.

B. Water: Potable and complying with ASTM C 94/C 94M.

2.5 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

2.6 RELATED MATERIALS

A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber in preformed strips.

B. Epoxy-Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:

1. Types I and II, nonload bearing, Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

C. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.

2.7 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.

1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.

2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that comply with or exceed requirements.

B. Proportion mixtures to provide normal-weight concrete with the following properties:

2. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.53

 Slump Limit: 4 inches, plus or minus 1 inch.
C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 1. Air Content: 5-7 percent.

D. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.

E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

F. Concrete Mixtures: Normal-weight concrete.
 1. Compressive Strength (28 Days): Class “F” per the Standard Specifications
 2. Maximum W/C Ratio at Point of Placement: 0.53.
 3. Slump Limit: 4 inches, plus or minus 1 inch.

2.8 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Furnish batch certificates for each batch discharged and used in the Work.
 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.

B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.
 1. Completely proof-roll subbase in one direction. Limit vehicle speed to 3 mph.
 2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch according to requirements in Section 312000 "Earth Moving."

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

A. General: Comply with CRSI’s "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded-wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

E. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch overlap of adjacent mats.

3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.

1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.

1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.

2. Provide tie bars at sides of paving strips where indicated.
3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 1. Locate expansion joints at intervals of 15 feet unless otherwise indicated.
 2. Extend joint fillers full width and depth of joint.
 3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
 6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paving:
 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch radius. Repeat grooving of contraction joints after applying surface finishes
 a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.
 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 a. Tolerance: Ensure that sawed joints are within 3 inches either way from centers of dowels.
 3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch radius. Repeat tooling of edges after applying surface finishes.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.

B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.
C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.

E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement dowels and joint devices.

H. Screed paving surface with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutter: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface, perpendicular to line of traffic, to provide a uniform, fine-line texture.

3.8 DETECTABLE WARNING INSTALLATION

A. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Section 321726 "Tactile Warning Surfacing."

1. Tolerance for Opening Size: Plus 1/4 inch, no minus.

B. Cast-in-Place Detectable Warning Tiles: Form blockouts in concrete for installation of tiles specified in Section 321726 "Tactile Warning Surfacing." Screed surface of concrete where tiles are to be installed to elevation, so that edges of installed tiles will be flush with surrounding concrete paving. Embed tiles in fresh concrete to comply with Section 321726 "Tactile Warning Surfacing" immediately after screeding concrete surface.
3.9 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer’s written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound or a combination of these as follows:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period, using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.10 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch.
3. Surface: Gap below 10-feet long; unleveled straightedge not to exceed 1/2 inch.
4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
5. Lateral Alignment and Spacing of Dowels: 1 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
8. Joint Spacing: 3 inches.
3.11 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Testing Services: Testing and inspecting of composite samples of fresh concrete obtained according to ASTM C 172/C 172M shall be performed according to the following requirements:

1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C 231/C 231M, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.

G. Concrete paving will be considered defective if it does not pass tests and inspections.

H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

I. Prepare test and inspection reports.
3.12 REPAIR AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.

B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.

C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313
SECTION 321373 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes

1. Cold-applied joint sealants.
2. Joint-sealant backer materials.
3. Primers.

B. Related Requirements:

1. Section 079200 "Joint Sealants" for sealing nontraffic and traffic joints in locations not specified in this Section.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- wide joints formed between two 6-inch- long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

C. Paving-Joint-Sealant Schedule: Include the following information

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.

1.5 INFORMATIONAL SUBMITTALS

 A. Qualification Data: For Installer.

 B. Product Certificates: For each type of joint sealant and accessory.

1.6 QUALITY ASSURANCE

 A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

 B. Product Testing: Test joint sealants using a qualified testing agency.

1.7 FIELD CONDITIONS

 A. Do not proceed with installation of joint sealants under the following conditions:

 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

 A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 COLD-APPLIED JOINT SEALANTS

 A. Single-Component, Nonsag, Silicone Joint Sealant: ASTM D 5893/D 5893M, Type NS.

2.3 JOINT-SEALANT BACKER MATERIALS

 A. Joint-Sealant Backer Materials: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by joint-sealant manufacturer, based on field experience and laboratory testing.
2.4 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.

 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.

B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions.

C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

 1. Do not leave gaps between ends of joint-sealant backings.
 2. Do not stretch, twist, puncture, or tear joint-sealant backings.
 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:

 1. Place joint sealants so they fully contact joint substrates.
 2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
 1. Remove excess joint sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.

F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING AND PROTECTION

A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.

B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.5 PAVING-JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Joints within concrete paving.
 1. Joint Location:
 a. Expansion and isolation joints in concrete paving.
 b. Other joints as indicated.

END OF SECTION 321373
SECTION 321723 - PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section includes painted markings applied to asphalt and concrete pavement.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Review methods and procedures related to marking pavement including, but not limited to, the following:

 a. Pavement aging period before application of pavement markings.
 b. Review requirements for protecting pavement markings, including restriction of traffic during installation period.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include technical data and tested physical and performance properties.

B. Shop Drawings: For pavement markings.

1. Indicate pavement markings, colors, lane separations, defined parking spaces, and dimensions to adjacent work.

2. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.
1.5 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the Standard Specifications for pavement-marking work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 PAVEMENT-MARKING PAINT

A. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than three minutes.

1. Color: As indicated on plans.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is dry and in suitable condition to begin pavement marking according to manufacturer’s written instructions.

B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow paving to age for a minimum of 30 days before starting pavement marking.

C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to pavement. Mask an extended area beyond edges of each stencil to prevent paint application beyond the stencil. Apply paint so that it cannot run beneath the stencil.
SECTION 321726 - TACTILE WARNING SURFACING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes:

B. Related Requirements:

1. Section 321313 "Concrete Paving" for concrete walkways serving as substrates for tactile warning surfacing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Initial Selection: For each type of exposed finish requiring color selection.

C. Samples for Verification: For each type of tactile warning surface, in manufacturer's standard sizes unless otherwise indicated, showing edge condition, truncated-dome pattern, texture, color, and cross section; with fasteners and anchors.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For tactile warning surfacing, to include in maintenance manuals.
1.5 QUALITY ASSURANCE
 A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 1. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.7 PROJECT CONDITIONS
 A. Cold-Weather Protection: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen subgrade or setting beds. Remove and replace unit paver work damaged by frost or freezing.
 B. Weather Limitations for Mortar and Grout:
 2. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602. Provide artificial shade and windbreaks, and use cooled materials as required. Do not apply mortar to substrates with temperatures of 100 deg F and higher.
 a. When ambient temperature exceeds 100 deg F, or when wind velocity exceeds 8 mph and ambient temperature exceeds 90 deg F, set unit pavers within 1 minute of spreading setting-bed mortar.

1.8 WARRANTY
 A. Special Warranty: Manufacturer agrees to repair or replace components of tactile warning surfaces that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Deterioration of finishes beyond normal weathering and wear.
 b. Separation or delamination of materials and components.
 2. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 TACTILE WARNING SURFACING, GENERAL

A. Accessibility Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC A117.1 for tactile warning surfaces.

1. For tactile warning surfaces composed of multiple units, provide units that when installed provide consistent side-to-side and end-to-end dome spacing that complies with requirements.

B. Source Limitations: Obtain each type of tactile warning surfacing from single source with resources to provide materials and products of consistent quality in appearance and physical properties.

2.2 DETECTABLE WARNING TILES

A. Cast-in-Place Detectable Warning Tiles: Accessible truncated-dome detectable warning tiles configured for setting flush in new concrete walkway surfaces, with slip-resistant surface treatment on domes and field of tile.

3. Shapes and Sizes:
 a. Rectangular panel, as required to cover area indicated on plans.
 b. Radius panel, as required to cover area indicated on plans.
4. Dome Spacing and Configuration: 2.35-inch spacing, in square pattern.
5. Mounting:
 a. Embedded detectable warning tile wet-set into freshly poured concrete.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is in suitable condition to begin installation according to manufacturer's written instructions. Verify that installation of tactile warning surfacing will comply with accessibility requirements upon completion.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF TACTILE WARNING SURFACING

A. General: Prepare substrate and install tactile warning surfacing according to manufacturer's written instructions unless otherwise indicated.
B. Place tactile warning surfacing units in dimensions and orientation indicated. Comply with location requirements of AASHTO MP 12.

3.3 INSTALLATION OF DETECTABLE WARNING TILES

A. Cast-in-Place Detectable Warning Tiles:

1. Concrete Paving Installation: Comply with installation requirements in Section 321313 "Concrete Paving." Mix, place, and finish concrete to conditions complying with detectable warning tile manufacturer’s written requirements for satisfactory embedment of removable tile.

2. Set each detectable warning tile accurately and firmly in place with embedding anchors and fasteners attached, and firmly seat tile back in wet concrete by tamping or vibrating. If necessary, temporarily apply weight to tiles to ensure full contact with concrete.

3. Set surface of tile flush with surrounding concrete and adjacent tiles, with variations between tiles and between concrete and tiles not exceeding plus or minus 1/8 inch from flush.

4. Protect exposed surfaces of installed tiles from contact with wet concrete. Complete finishing of concrete paving surrounding tiles. Remove concrete from tile surfaces.

5. Clean tiles using methods recommended in writing by manufacturer.

3.4 CLEANING AND PROTECTION

A. Remove and replace tactile warning surfacing that is broken or damaged or does not comply with requirements in this Section. Remove in complete sections from joint to joint unless otherwise approved by Architect. Replace using tactile warning surfacing installation methods acceptable to Architect.

B. Protect tactile warning surfacing from damage and maintain free of stains, discoloration, dirt, and other foreign material.

END OF SECTION 321726
SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”
B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
C. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.
D. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.
E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.
G. 2010 ADA Standards for Accessible Design by the Department of Justice dated September 15, 2010 or as amended through the date of this project bid.

1.2 SUMMARY
A. Section Includes:
 1. Chain-link fences.
 2. Swing gates.
 3. Privacy slats.
 4. Cantilever slide gates.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.
 1. Inspect and discuss electrical roughing-in, equipment bases, and other preparatory work specified elsewhere.
 2. Review required testing, inspecting, and certifying procedures.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Fence and gate posts, rails, and fittings.
 b. Chain-link fabric, reinforcements, and attachments.
 c. Accessories: Privacy slats.
 d. Gates and hardware.

B. Shop Drawings: For each type of fence and gate assembly.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include accessories, hardware, gate operation, and operational clearances.

C. Samples for Initial Selection: For each type of factory-applied finish.

D. Samples for Verification: For each type of component with factory-applied finish, prepared on Samples of size indicated below:
 1. Polymer-Coated Components: In 6-inch lengths for components and on full-sized units for accessories.

E. Delegated-Design Submittal: For structural performance of chain-link fence and gate frameworks, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For professional engineer responsible for fence performance.
B. Product Certificates: For each type of chain-link fence, and gate.
C. Product Test Reports: For framework strength according to ASTM F 1043, for tests performed by a qualified testing agency.
D. Field quality-control reports.
E. Sample Warranty: For special warranty.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: For testing fence grounding; member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
B. Products shall be from qualified manufacturers having minimum of 5 years experience manufacturing fences and gates.
1.7 FIELD CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Failure to comply with performance requirements.
 b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design chain-link fence and gate frameworks.

B. Lightning Protection System: Maximum resistance-to-ground value of 25 ohms at each grounding location along fence under normal dry conditions.

2.2 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist according to "CLFMI Product Manual" and requirements indicated below:

1. Fabric Height: As indicated on Drawings.
2. Steel Wire for Fabric:
 a. 9 gauge, wire diameter of 0.148 inch for dumpster enclosure.
 b. 6 gauge, wire diameter of 0.192 inch for perimeter fence and gates.
 c. Mesh Size: 2 inches for dumpster enclosure.
 d. Mesh size: 1 inch for perimeter fence and gates.
 e. Polymer-Coated Fabric: ASTM F 668, class 2b over aluminum-coated steel wire.

 1) Color: Black, according to ASTM F 934.

 f. Coat selvage ends of metallic-coated fabric before the weaving process with manufacturer's standard clear protective coating.

3. Selvage: Knuckled at both selvages.
2.3 FENCE FRAMEWORK

A. Posts and Rails: ASTM F 1043 for framework, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:

1. Fence Height: As indicated on Drawings.
 a. Line Post: 1.9 inches in diameter.
 b. End, Corner, and Pull Posts: 2.375 inches.

Horizontal Framework Members: Intermediate top and bottom rails according to ASTM F 1043
 a. Top Rail: 1.66 inches in diameter.
4. Brace Rails: ASTM F 1043

5. Metallic Coating for Steel Framework:
 a. Type A: Not less than minimum 2.0-oz./sq. ft. average zinc coating according to ASTM A 123/A 123M or 4.0-oz./sq. ft. zinc coating according to ASTM A 653/A 653M.
6. Polymer coating over metallic coating
 a. Color: Black, according to ASTM F 934.
 b. Polymer coating shall be thermally fused class 2b, 10 mil. minimum thickness per ASTM F 1664.

2.4 TENSION WIRE

A. Polymer-Coated Steel Wire: 0.148-inch- diameter, tension wire according to ASTM F 1664, class 2b over aluminum-coated steel wire.
 1. Color: Black, according to ASTM F 934.

2.5 SWING GATES

A. General: ASTM F 900 for gate posts and single and double swing gate types as indicated on plans.
 1. Gate Leaf Width: As indicated.
 2. Framework Member Sizes and Strength: Based on gate fabric height as indicated.

B. Pipe and Tubing:
 1. Zinc-Coated Steel: ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framework
2. Gate Posts: Round tubular steel.
3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.

D. Hardware:
 1. Hinges: 360-degree inward and outward swing.
 2. Latch: Permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.

2.6 FITTINGS

A. Provide fittings according to ASTM F 626.

B. Post Caps: Provide for each post.
 1. Provide line post caps with loop to receive tension wire or top rail.

C. Rail and Brace Ends: For each gate, corner, pull, and end post.

D. Rail Fittings: Provide the following:
 1. Top Rail Sleeves: Pressed-steel or round-steel tubing not less than 6 inches long.
 2. Rail Clamps: Line and corner boulevard clamps for connecting intermediate and bottom rails to posts.

E. Tension and Brace Bands: Pressed steel.

F. Tension Bars: Steel, length not less than 2 inches shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading rod and turnbuckle or other means of adjustment.

H. Tie Wires, Clips, and Fasteners: According to ASTM F 626.
 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, according to the following:
 a. 9 gauge galvanized steel wire with class 2b polymer coating to match fence, 12” on center.

I. Finish of Fittings:
 1. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz./sq. ft. of zinc.
 a. Polymer class 2b coating over metallic coating to match chain link fabric.
2.7 PRIVACY SLATS

A. Tubular Polyethylene Slats: Minimum 0.023-inch-thick tubular polyethylene, manufactured for chain-link fences from virgin polyethylene with UV inhibitor, sized to fit mesh specified for direction indicated, with vandal-resistant fasteners and lock strips.

B. Color: Black.

2.8 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout, recommended in writing by manufacturer, for exterior applications.

B. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating, and that is recommended in writing by manufacturer for exterior applications.

2.9 GROUNDING MATERIALS

A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connectors and Grounding Rods: Listed and labeled for complying with UL 467.

1. Connectors for Below-Grade Use: Exothermic welded type.

2.10 CHAIN LINK CANTILEVER SLIDE GATE

A. Gate frames: Fabricate chain link cantilever slide gates in accordance with ASTM F-1184, Type II, Class 2, using aluminum members conforming to ASTM B 221, alloy and temper 6061-T6. Vertical members shall be 2 inch (50mm) square aluminum, weighing 1.13 lb./ft., 2 inch x 4 inch aluminum bottom frame member weighing 1.73 lb./ft., and a one-piece aluminum track/frame member weighing a minimum of 4.621 lb./ft. for Single Track and 7.95 lb./ft. for Dual Track. The 2 inch square frame member of said track/frame shall have a wall thickness of not less than .250 inches on all four sides. Aluminum alloy used shall be 6061-T6 only. Internal uprights shall be 2-inch square aluminum spaced equally at no more than 6 feet on center subdividing the gate frame into panels. Weld all members together forming a rigid one-piece frame integral with top track. Provide 2 truck assemblies for each gate leaf, except as indicated for gates larger than 30’ (9144mm). Frame sizes over 27’ (8230 mm) in length shall be shipped in 2 parts and field spliced with special attachments provided by the manufacturer.

1. Gate frame finish shall match adjacent new chain link fence.

B. Chain Link Fabric

1. Chain Link mesh size, and wire gauge to match that of adjacent new chain link fence. Fabric shall be attached between each internal upright with hook bolts.
spaced no more than 15 inches (380 mm) on center as recommended by the manufacturer.

C. Trussing: Each bay shall be cross-trussed by means of 1/4” cable with adjustable turnbuckles. Trusses will maintain the structural integrity of the gate while allowing for expansion and contraction of aluminum in varying weather conditions.

D. Top track/rail: Enclosed combination one-piece track and rail, aluminum extrusion with weight of:
 1. Openings up to 30’; 4.62 lbs./ft. Top track/rail to be a single formed profile with integrated center stabilizing web without welding. All wall thicknesses to be 0.25”.

D. Truck assembly: Swivel type, zinc die coated steel, with 6 sealed lubricant ball bearing rollers, 2 inches (50 mm) in diameter by 9/16” (14 mm) in width, and 2 side rolling wheels to ensure truck alignment in track. Mount trucks on post brackets using 7/8” (22 mm) diameter ball bolts with 5/8” (16 mm) shank. Truck assembly shall withstand same reaction load as track 2,000 # (907.2 kg.).

E. Gate hangers, brackets, guide assemblies, receivers, and latches: Malleable iron or steel, per ASTM F-2200.

F. Bottom guide wheel assemblies: Each assembly shall consist of two, 3” (75 mm) diameter wheels, straddling bottom horizontal gate rail, allowing adjustment to maintain gate frame plumb and in proper alignment. Attach one assembly to each support post.

G. End Plug: After gate has been installed, both ends of the combination track/frame member shall be closed off with a shock absorbing plastic block that shall also serve as a stop bracket.

H. Gate posts:
 1. For gates under 31'-0" (9449 mm): galvanized steel 4” (101.6 mm) OD schedule 40 pipe, ASTM F 1083, weighing 9.1 lb./ft. (13.6 kg/m). Provide 1 latch post and 2 support posts for single slide gates and 4 support posts for double slide gates.
 2. F 1083, weighing 9.1 lb./ft. (13.6 kg/m) each. Posts connected by welding 6 inch x 3/8 inch (12.7 x 9.5 mm) plate between posts as shown on drawings. Also one 4” (100 mm) latch post.
 3. Finish: to match adjacent new chain link fence.

2.11 GATE OPERATORS

A. Operators: Factory-assembled, automatic gate-operating system designed for gate size, type, weight, and frequency of use. Control system shall have characteristics suitable for Project conditions, with control stations, safety devices, and weatherproof enclosures.
 1. Operator design shall allow for removal of cover or motor without disturbing limit-switch adjustment and without affecting auxiliary emergency operation.
 2. Electronic components shall have built-in troubleshooting diagnostic feature.
 3. Unit shall be designed and wired for both right-hand/left-hand opening, permitting universal installation.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. UL Standard: Manufacture and label gate operators according to UL 325.

D. Motors: Comply with NEMA MG 1.
 1. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
 2. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
 4. Electrical Characteristics:
 a. Horsepower: 5.
 a. Voltage: 208 V ac, three phase, 60 hertz.

E. Gate Operators: Equipment base/pad mounted and as follows:
 1. Mechanical Slide Gate Operators:
 a. Duty: Heavy.
 b. Gate Speed: Minimum 60 feet per minute.
 c. Maximum Gate Weight: 3000 lb.
 d. Frequency of Use: Continuous duty.
 e. Operating Type: Enclosed Wheel and rail drive, with manual release.
 f. Drive Type: Enclosed worm gear and chain-and-sprocket reducers, roller-chain drive.
 g. Drive Type: V-belt and worm gear reducers, roller-chain drive.

F. Controls: Electric controls separated from gate and motor and drive mechanism, with NEMA 250, Type 4 enclosure for equipment base/pad mounting and with space for additional optional equipment.

G. Control Devices:
 1. Control Station: Momentary contact, three-button operated, located remotely from gate. Key switch to lock out open and close buttons.
 a. Function: Open, stop, and close.
 2. Card Reader: Functions only when authorized card is presented. Programmable, magnetic multiple-code system, permitting four different access time periods; face-lighted unit fully visible at night.
 a. Reader Type: Touch plate.
 b. Features: Timed anti-passback Capable of monitoring and auditing gate activity.
 3. Vehicle Loop Detector: System that includes automatic closing timer with adjustable time delay before closing, timer cut-off switch, and loop detector designed to open and close gate and hold gate open until traffic clears. Provide electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light
designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. Provide number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement at location shown on Drawings, and as recommended in writing by detection system manufacturer for function indicated.

a. Loop: Factory-preformed wire, in size indicated, for pave-over installation.

H. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:

1. Action: Reverse gate in both opening and closing cycles and hold until clear of obstruction.
2. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
3. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using take-up cable reel.
 a. Along entire gate leaf leading edge.
4. Photoelectric/Infrared Sensor: System designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

I. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully open and fully closed positions.

J. Emergency Release Mechanism: Quick-disconnect release of operator drive system, permitting manual operation if operator fails. Control circuit power is disconnected during manual operation.
 1. Type: Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge.

K. Operating Features:
 1. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features with capability of monitoring and auditing gate activity. Provide unit that is isolated from voltage spikes and surges.
2. System Integration: With controlling circuit board capable of accepting any type of input from external devices.
3. Master/Slave Capability: Control stations designed and wired for gate pair operation.
5. Open Override Circuit: Designed to override closing commands.
6. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.
7. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.

L. Accessories:
 1. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system.
 a. Fail Secure: Gate cycles on battery power, then fail safe when battery is discharged.
2. Instructional, Safety, and Warning Labels and Signs: Manufacturer's standard for components and features specified.

3. Equipment Bases/Pads: Precast concrete, **6 to 12 inches below frost line**, dimensioned and reinforced according to gate-operator component manufacturer's written instructions and as indicated on Drawings.

2.12 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C 1107M. Provide grout, recommended in writing by manufacturer, for exterior applications.

B. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating, and that is recommended in writing by manufacturer for exterior applications.

2.13 SETTING MATERIALS

A. Concrete: Minimum 28 day compressive strength of 3,000 psi.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that survey in first paragraph below is specified in Section 017300 "Execution" or is otherwise available. Consider using sleeves cast in new concrete substrates to install posts.

B. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.

 1. Do not begin installation before final grading is completed unless otherwise permitted by Engineer.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.
3.3 CHAIN-LINK FENCE INSTALLATION

A. Install chain-link fencing according to ASTM F 567 and more stringent requirements specified.
 1. Install fencing on established boundary lines inside property line or as noted on plans.

B. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

C. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.
 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Exposed Concrete: Extend 1 inches above grade; shape and smooth to shed water.
 b. Concealed Concrete: Place top of concrete 2 inches below grade to allow covering with surface material.
 c. Posts Set into Sleeves in Concrete: Use steel pipe sleeves preset and anchored into concrete for installing posts. After posts are inserted into sleeves, fill annular space between post and sleeve with nonshrink, nonmetallic grout or anchoring cement, mixed and placed according to anchoring material manufacturer's written instructions. Finish anchorage joint to slope away from post to drain water.
 d. Posts Set into Holes in Concrete: Form or core drill holes not less than 5 inches deep and 3/4 inch larger than OD of post. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink, nonmetallic grout or anchoring cement, mixed and placed according to anchoring material manufacturer's written instructions. Finish anchorage joint to slope away from post to drain water.

C. Terminal Posts: Install terminal end, corner, and gate posts according to ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more. For runs exceeding 500 feet, space pull posts an equal distance between corner or end posts.

D. Line Posts: Space line posts uniformly at 10 feet o.c.

E. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fence posts. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.
 1. Locate horizontal braces at midheight of fabric 72 inches or higher, on fences with top rail, and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.

F. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fence posts. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:
 1. Extended along bottom of fence fabric. Install bottom tension wire within 6 inches of bottom of fabric and tie to each post with not less than same diameter and type of wire.
G. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fence posts. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

H. Intermediate and Bottom Rails: Secure to posts with fittings.

I. Chain-Link Fabric: Apply fabric to inside of enclosing framework. Leave 1-inch bottom clearance between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

J. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts, with tension bands spaced not more than 15 inches o.c.

K. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric according to ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.

1. Maximum Spacing: Tie fabric to line posts at 12 inches o.c. and to rails at 24 inches o.c.

L. Fasteners: Install nuts for tension bands and carriage bolts on the side of fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.

Privacy Slats: Install slats in vertical direction, securely locked in place.

21.2 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric and hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation.

1. Cantilever gate movement shall not be initiated by gravity per ASTM F-1184.

2. All gate installations to conform to all applicable federal, state, and local codes as well as: ASTM F-567 and ASTM F-1184.

3.5 GROUNDING AND BONDING

A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fence and Gate Grounding:

1. Ground for fence and fence posts shall be a separate system from ground for gate and gate posts.

2. Install ground rods and connections at maximum intervals of 1500 feet.

3. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.

4. Ground fence on each side of gates and other fence openings.

a. Bond metal gates to gate posts.
b. Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.

C. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a ground rod located a maximum distance of 150 feet on each side of crossing.

D. Fences Enclosing Electrical Power Distribution Equipment: Ground according to IEEE C2 unless otherwise indicated.

E. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.

F. Connections:
 1. Make connections with clean, bare metal at points of contact.
 4. Make above-grade ground connections with mechanical fasteners.
 5. Make below-grade ground connections with exothermic welds.
 6. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

G. Bonding to Lightning Protection System: Ground fence and bond fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor according to NFPA 780.

H. Comply with requirements in Section 264113 "Lightning Protection for Structures."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests.

B. Grounding Tests: Comply with requirements in Section 264113 "Lightning Protection for Structures."

C. Prepare test reports.

3.7 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Automatic Gate Operator: Energize circuits to electrical equipment and devices, start units, and verify proper motor rotation and unit operation.
1. Hydraulic Operator: Purge operating system, adjust pressure and fluid levels, and check for leaks.

2. Test and adjust operator, controls, alarms, and safety devices. Replace damaged and malfunctioning controls and equipment.

3. Lubricate operator and related components.

C. Lubricate hardware and other moving parts.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain chain-link fences and gates.

END OF SECTION 323113
SECTION 323119 – ORNAMENTAL FENCE

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

C. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. The contractor shall provide all labor, materials and appurtenances necessary for installation of the welded ornamental steel fence system.

B. Related Requirements:

1. Section 033000 “Cast-in-Place Concrete” for fence post footings.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For gates. Include plans, elevations, sections, details, and attachments to other work.

C. Samples: For each fence material and for each color specified.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: Maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Fabricator of products.
B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.

 1. Include 8-foot length of fence complying with requirements.
 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 PRODUCT HANDLING AND STORAGE

 A. Upon receipt at the job site, all materials shall be checked to ensure that no damage occurred during shipping or handling. Materials shall be stored in such a manner to ensure proper ventilation and drainage, and to protect against damage, weather, vandalism and theft.

1.8 PRODUCT WARRANTY

 A. All structural fence components (i.e. rails, pickets, and posts) shall be warranted within specified limitations, by the manufacturer for a period of 20 years from date of original purchase. Warranty shall cover any defects in material finish, including cracking, peeling, chipping, blistering or corroding.

 B. Reimbursement for labor necessary to restore or replace components that have been found to be defective under the terms of manufactures warranty shall be guaranteed for five (5) years from date of original purchase.

PART 2 – MATERIALS

2.1 MANUFACTURER

 A. The fence system shall conform to Montage II® Welded and Rackable (ATF – All Terrain Flexibility) Ornamental Steel, Majestic™ design, 3-Rail style manufactured by Ameristar Fence Products, Inc., in Tulsa, Oklahoma or approved equal.

2.2 MATERIAL

 A. Steel material for fence panels and posts shall conform to the requirements of ASTM A653/A653M, with a minimum yield strength of 45,000 psi (310 MPa) and a minimum zinc (hot-dip galvanized) coating weight of 0.90 oz/ft² (276 g/m²), Coating Designation G-90.

 B. Material for pickets shall be 1” square x 14 Ga. tubing. The rails shall be steel channel, 1.75” x 1.75” x .105”. Picket holes in the rail shall be spaced 4.715” o.c.

 C. Fence posts shall be 2 1/2” square x 12 ga. tubing. Fence gate posts shall 4” square x 11 ga. tubing.

2.3 FABRICATION

 A. Pickets, rails and posts shall be pre-cut to specified lengths. Rails shall be pre-punched to accept pickets.
B. Pickets shall be inserted into the pre-punched holes in the rails and shall be aligned to standard spacing using a specially calibrated alignment fixture. The aligned pickets and rails shall be joined at each picket-to-rail intersection by a fusion welding process, thus completing the rigid panel assembly. The process produces a virtually seamless, spatter-free good-neighbor appearance, equally attractive from either side of the panel.

C. The manufactured panels and posts shall be subjected to an inline electrodeposition coating (E-Coat) process consisting of a multi-stage pretreatment/wash (with zinc phosphate), followed by a duplex application of an epoxy primer and an acrylic topcoat. The minimum cumulative coating thickness of epoxy and acrylic shall be 2 mils (0.058 mm). The color shall be black. The coated panels and posts shall be capable of meeting the performance of ASTM F2408.

D. The manufactured fence system shall be capable of meeting the vertical load, horizontal load, and infill performance requirements for Industrial weight fences under ASTM F2408.

E. Swing gates shall be fabricated using 1.75" x 14ga Forerunner double channel rail, 2" sq. x 11ga. gate ends, and 1" sq. x 14ga. pickets. Gates that exceed 6' in width will have a 1.75" sq. x 14ga. intermediate upright. All rail and upright intersections shall be joined by welding. All picket and rail intersections shall also be joined by welding. Gusset plates will be welded at each upright to rail intersection. Cable kits will be provided for additional trussing for all gates leaves over 6'.

PART 3 – EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, construction layout, and other conditions affecting performance of the Work.

B. Do not begin installation before final grading is completed unless otherwise permitted by Architect.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

1. Construction layout and field engineering are specified in Section 017300 "Execution."

3.3 FENCE INSTALLATION

A. Install fences according to manufacturer's written instructions.

B. Install fences by setting posts as indicated and fastening rails and infill panels to posts.
C. Post Excavation: Drill or hand-excavate holes for posts in firm, undisturbed soil. Excavate holes to a diameter and a depth as noted on the drawings.

D. Post Setting: Set posts in concrete soil at indicated spacing into firm, undisturbed soil.
 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices
 2. Concrete Fill: Place concrete around posts and sleeves and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Exposed Concrete: Extend 1 inches above grade. Finish and slope top surface to drain water away from post.
 b. Concealed Concrete: Top 2 inches below grade as indicated on Drawings to allow covering with surface material. Slope top surface of concrete to drain water away from post.
 3. Posts Set in Concrete: Extend post to within 6 inches of specified excavation depth, but not closer than 3 inches to bottom of concrete.
 4. Posts Set into Concrete in Sleeves: Use galvanized-steel pipe sleeves with inside diameter at least 3/4 inch larger than outside diagonal dimension of post, preset and anchored into concrete for installing posts.
 a. Extend posts at least 5 inches into sleeve.
 b. After posts have been inserted into sleeves, fill annular space between post and sleeve with nonshrink grout, mixed and placed to comply with grout manufacturer's written instructions; shape and smooth to shed water. Finish and slope top surface of grout to drain water away from post.
 5. Posts Set into Voids in Concrete: Form or core drill holes not less than 3/4 inch larger than outside diagonal dimension of post.
 a. Extend posts at least 5 inches into concrete.
 b. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink grout, mixed and placed to comply with grout manufacturer's written instructions. Finish and slope top surface of grout to drain water away from post.
 6. Space posts uniformly at 8 feet o.c.

3.4 GATE INSTALLATION
 A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage as noted on Drawings. Adjust hardware for smooth operation and lubricate where necessary.

3.5 FENCE INSTALLATION MAINTENANCE
 A. When cutting/drilling rails or posts adhere to the following steps to seal the exposed steel surfaces.
1. Remove all metal shavings from cut area.
2. Apply zinc-rich primer to thoroughly cover cut edge and/or drilled hole; let dry.
3. Apply 2 coats of custom finish paint matching fence color.
4. Failure to seal exposed surfaces per steps 1-3 above will negate warranty.

3.6 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1500 feet except as follows:
 1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.
 a. Gates and Other Fence Openings: Ground fence on each side of opening.
 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.

B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

C. Coordinate "Fences Enclosing Electrical Power Distribution Equipment" Paragraph below with electrical design. Plans and details on electrical Drawings may revise or illustrate application of requirement below or may require grounding that exceeds minimum requirements in IEEE C2. Fences enclosing electrical substations are often bonded to a station grounding mat.

D. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

E. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.

F. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

G. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 2. Make connections with clean, bare metal at points of contact.
 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
H. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

1. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance not less than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.

2. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify Architect promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.

3. Report: Prepare test reports of grounding resistance at each test location certified by a testing agency. Include observations of weather and other phenomena that may affect test results.

3.8 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Lubricate hardware, gate operators, and other moving parts.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's personnel to adjust, operate, and maintain gates.

3.10 CLEANING

A. The contractor shall clean the jobsite of excess materials.

END OF SECTION 323119
SECTION 329200 - TURF AND GRASSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes

1. Seeding.
2. Hydroseeding.
3. Turf renovation.

B. Related Requirements:

1. Section 329300 "Plants" for trees, shrubs and other plants.

1.3 DEFINITIONS

A. Finish Grade: Elevation of finished surface of planting soil.

B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscsicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.

C. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

D. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
E. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at project site.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer.

B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.

1. Certification of each seed mixture. Include identification of source and name and telephone number of supplier.

C. Product Certificates: For fertilizers, from manufacturer.

D. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of turf during a calendar year. Submit before expiration of required maintenance periods.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful turf establishment.

1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.

2. Experience: Five years’ experience in turf installation in addition to requirements in Section 014000 "Quality Requirements."

3. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

4. Personnel Certifications: Installer's field supervisor shall have certification in one of the following categories from the Professional Landcare Network:

 a. Landscape Industry Certified Technician - Exterior.
 b. Landscape Industry Certified Lawncare Manager.
 c. Landscape Industry Certified Lawncare Technician.

5. Pesticide Applicator: State licensed, commercial.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

B. Bulk Materials:

1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
3. Accompany each delivery of bulk materials with appropriate certificates.

1.9 FIELD CONDITIONS

A. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with initial maintenance periods to provide required maintenance from date of **Substantial Completion**

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 SEED

A. Grass Seed: Fresh, clean, dry, new-crop seed complying with the Association of Official Seed Analyst's "Rules for Testing Seeds" for purity and germination tolerances.

B. Seed Mixes

1. Quality: Seed of grass species as listed below for solar exposure, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:
2. Sun and Partial Shade: Proportioned by weight as follows:
 a. 50 percent Kentucky bluegrass (Poa pratensis).
 b. 30 percent creeping red fescue (Festuca rubra variety).
 c. 20 percent perennial ryegrass (Lolium perenne).
3. Shade: Proportioned by weight as follows:
 a. 50 percent creeping red fescue (Festuca rubra variety).
b. 35 percent Kentucky bluegrass (Poa pratensis).
c. 15 percent perennial ryegrass (Lolium perenne).

2.2 FERTILIZERS

A. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:

1. Composition: 1 lb/1000 sq.ft. (0.45 kg/92.9 sq. m) of actual nitrogen, 4 percent phosphorous, and 2 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

B. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

2.3 MULCHES

A. Straw Mulch: Provide air-dry, clean, mildew- and seed-free, salt hay or threshed straw of wheat, rye, oats, or barley.

B. Sphagnum Peat Mulch: Partially decomposed sphagnum peat moss, finely divided or of granular texture, and with a pH range of 3.4 to 4.8.

C. Muck Peat Mulch: Partially decomposed moss peat, native peat, or reed-sedge peat, finely divided or of granular texture, with a pH range of 6 to 7.5, and having a water-absorbing capacity of 1100 to 2000 percent, and containing no sand.

D. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch (25-mm) sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

1. Organic Matter Content: 50 to 60 percent of dry weight.
2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

E. Fiber Mulch: Biodegradable, dyed-wood, cellulose-fiber mulch; nontoxic and free of plant-growth or germination inhibitors; with a maximum moisture content of 15 percent and a pH range of 4.5 to 6.5.

F. Nonasphaltic Tackifier: Colloidal tackifier recommended by fiber-mulch manufacturer for slurry application; nontoxic and free of plant-growth or germination inhibitors.

G. Asphalt Emulsion: ASTM D 977, Grade SS-1; nontoxic and free of plant-growth or germination inhibitors.
2.4 PESTICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

2.5 EROSION-CONTROL MATERIALS

A. Erosion-Control Blankets: Biodegradable wood excelsior, straw, or coconut-fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.

B. Erosion-Control Fiber Mesh: Biodegradable burlap or spun-coir mesh, a minimum of 0.92 lb/sq. yd. (0.5 kg/sq. m), with 50 to 65 percent open area. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.

C. Erosion-Control Mats: Cellular, nonbiodegradable slope-stabilization mats designed to isolate and contain small areas of soil over steeply sloped surface, of 3-inch nominal mat thickness. Include manufacturer's recommended anchorage system for slope conditions.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to be planted for compliance with requirements and other conditions affecting installation and performance of the Work.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.

2. Suspend planting operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.

3. Uniformly moisten excessively dry soil that is not workable or dusty.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Engineer and replace with new planting soil.

3.2 PREPARATION

A. Protect structures; utilities; sidewalks; pavements; and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
1. Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray.
2. Protect grade stakes set by others until directed to remove them.

B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.3 TURF AREA PREPARATION

A. Limit subgrade preparation to areas that will be planted in the immediate future.

B. Loosen subgrade to a minimum depth of 4 inches. Remove stones larger than 1-1/2 inches in any dimension and sticks, roots, rubbish, and other extraneous materials.

C. Spread planting soil mixture to depth required to meet thickness, grades, and elevations shown, after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen.

1. Place approximately 1/2 the thickness of planting soil mixture required. Work into top of loosened subgrade to create a transition layer and then place remainder of planting soil mixture.
2. Allow for sod thickness in areas to be sodded.

D. Preparation of Unchanged Grades: Where lawns are to be planted in areas unaltered or undisturbed by excavating, grading, or surface soil stripping operations, prepare soil as follows:

1. Remove and dispose of existing grass, vegetation, and turf. Do not turn over into soil being prepared for lawns.
2. Till surface soil to a depth of at least 6 inches. Apply required soil amendments and initial fertilizers and mix thoroughly into top 4 inches of soil. Trim high areas and fill in depressions. Till soil to a homogenous mixture of fine texture.
3. Clean surface soil of roots, plants, sods, stones, clay lumps, and other extraneous materials harmful to plant growth.
4. Remove waste material, including grass, vegetation, and turf, and legally dispose of it off the Owner's property.

E. Grade lawn and grass areas to a smooth, even surface with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit fine grading to areas that can be planted in the immediate future. Remove trash, debris, stones larger than 3/4 inches in any dimension, and other objects that may interfere with planting or maintenance operations.

F. Moisten prepared lawn areas before planting when soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

G. Restore prepared areas if eroded or otherwise disturbed after fine grading and before planting.

3.4 PREPARATION FOR EROSION-CONTROL MATERIALS

A. Prepare area as specified in "Turf Area Preparation" Article.

B. For erosion-control mats, install planting soil in two lifts, with second lift equal to thickness of erosion-control mats. Install erosion-control mat and fasten as recommended by material manufacturer.
C. Fill cells of erosion-control mat with planting soil and compact before planting.

D. For erosion-control blanket or mesh, install from top of slope, working downward, and as recommended by material manufacturer for site conditions. Fasten as recommended by material manufacturer.

E. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

3.5 SEEDING

A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph (8 km/h).

1. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
2. Do not use wet seed or seed that is moldy or otherwise damaged.
3. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.

B. Sow seed at a total rate of 5 to 8 lbs/1000 sq. ft

C. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.

D. Protect seeded areas with slopes exceeding 1:4 with erosion-control blanket and 1:6 with erosion-control fiber mesh installed and stapled according to manufacturer’s written instructions.

E. Protect seeded areas with erosion-control mats where indicated on Drawings; install and anchor according to manufacturer’s written instructions.

F. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre to form a continuous blanket 1-1/2 inches in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment.

1. Anchor straw mulch by crimping into soil with suitable mechanical equipment.
2. Bond straw mulch by spraying with asphalt emulsion at a rate of 10 to 13 gal./1000 sq. ft. Take precautions to prevent damage or staining of structures or other plantings adjacent to mulched areas. Immediately clean damaged or stained areas.

3.6 HYDROSEEDING

A. Hydroseeding: Mix specified seed, commercial fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.

1. Mix slurry with nonasphaltic tackifier.
 Spray-apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre dry weight, and seed component is deposited at not less than the specified seed-sowing rate.

3.7 TURF RENOVATION

A. Renovate existing turf where indicated.
B. Renovate turf damaged by Contractor's operations, such as storage of materials or equipment and movement of vehicles.
 1. Reestablish turf where settlement or washouts occur or where minor regrading is required.
 2. Install new planting soil as required.

C. Remove sod and vegetation from diseased or unsatisfactory turf areas; do not bury in soil.

D. Remove topsoil containing foreign materials, such as oil drippings, fuel spills, stones, gravel, and other construction materials resulting from Contractor's operations, and replace with new planting soil.

E. Mow, dethatch, core aerate, and rake existing turf.

F. Remove weeds before seeding. Where weeds are extensive, apply selective herbicides as required. Do not use pre-emergence herbicides.

G. Remove waste and foreign materials, including weeds, soil cores, grass, vegetation, and turf, and legally dispose of them off Owner's property.

H. Till stripped, bare, and compacted areas thoroughly to a soil depth of 6 inches.

I. Apply soil amendments and fertilizer required for establishing new turf and mix thoroughly into top 4 inches of existing soil. Install new planting soil to fill low spots and meet finish grades.
 1. Soil Amendment(s): according to requirements of Section 329400 "Topsoil."
 2. Fertilizer: according to requirements of Section 329400 "Topsoil."

J. Apply seed and protect with straw mulch as required for new turf.

K. Water newly planted areas and keep moist until new turf is established.

3.8 TURF MAINTENANCE

A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
 1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
 2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
 3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

B. Watering: Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches.
 1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
2. Water turf with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.

C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow grass to a height of 2 to 3 inches.

D. Turf Postfertilization: Apply fertilizer after initial mowing and when grass is dry.

1. Use fertilizer that provides actual nitrogen of at least 1 lb/1000 sq. ft. to turf area.

3.9 SATISFACTORY TURF

A. Turf installations shall meet the following criteria as determined by Landscape Architect:

1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any area and bare spots not exceeding 5 by 5 inches.

B. Use specified materials to reestablish turf that does not comply with requirements, and continue maintenance until turf is satisfactory.

3.10 PESTICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.

B. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.11 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Owner's property.

C. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

D. Remove nondegradable erosion-control measures after grass establishment period.
3.12 MAINTENANCE SERVICE

A. Turf Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in "Turf Maintenance" Article. Begin maintenance immediately after each area is planted and continue until acceptable turf is established, but for not less than the following periods:

1. Seeded Turf: 60 days from date of Substantial Completion.
 a. When initial maintenance period has not elapsed before end of planting season, or if turf is not fully established, continue maintenance during next planting season.

END OF SECTION 329200
SECTION 329300 - PLANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. This Section includes the following:

1. Trees.
2. Shrubs.
4. Soil amendments.
5. Fertilizers and mulches.
6. Tree staples.

B. Related Sections: The following Sections contain requirements that relate to this Section:

1. Division 31 Section "Site Clearing" for protection of existing trees and planting, topsoil stripping and stockpiling, and site clearing.
2. Division 31 Section "Earth Moving" for excavation, filling, rough grading, and subsurface aggregate drainage and drainage backfill.
3. Division 32 Section “Topsoil” for topsoil and planting soil.

1.3 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product certificates signed by manufacturers certifying that their products comply with specified requirements.

1. Manufacturer's certified analysis for standard products.
2. Label data substantiating that plants, trees, shrubs, and planting materials comply with specified requirements.

C. Certification of grass seed from seed vendor for each grass-seed mixture stating the botanical and common name and percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.

D. Samples of each of the following:
 1. 5 lb of shredded pine bark in labeled plastic bags.

E. Qualification data for firms and persons specified in the "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and address of Landscape Architects and owners, and other information specified.

F. Material test reports from qualified independent testing agency indicating and interpreting test results relative to compliance of the following materials with requirements indicated.
 1. Analysis of existing surface soil.
 2. Analysis of imported topsoil.

G. Planting schedule indicating anticipated dates and locations for each type of planting.

H. Maintenance instructions recommending procedures to be established by Owner for maintenance of landscaping during an entire year. Submit before expiration of required maintenance periods.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced Installer who has completed landscaping work similar in material, design, and extent to that indicated for this Project and with a record of successful landscape establishment.

 1. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on the Project site during times that landscaping is in progress.

B. Testing Agency Qualifications: To qualify for acceptance, an independent testing agency must demonstrate to Engineer's satisfaction, based on evaluation of agency-submitted criteria conforming to ASTM E 699, that it has the experience and capability to satisfactorily conduct the testing indicated without delaying the Work.

C. Provide quality, size, genus, species, and variety of trees and shrubs indicated, complying with applicable requirements of ANSI Z60.1 "American Standard for Nursery Stock."

 1. Selection of trees and shrubs purchased will be made by Landscape Architect, who will tag stock at their place of growth before they are prepared for transplanting. Travel costs to and from the place of growth for the Landscape Architect shall be borne by the Contractor.

D. Measurements: Measure trees and shrubs according to ANSI Z60.1 with branches and trunks or canes in their normal position. Do not prune to obtain required sizes. Take caliper measurements 6 inches above ground for trees up to 4-inch caliper size, and 12 inches above ground for larger sizes. Measure main body of tree or shrub for height and spread; do not measure branches or roots tip-to-tip.
E. Preinstallation Conference: Conduct conference at Project site to comply with requirements of Division 1 Section "Project Management and Coordination."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaged Materials: Deliver packaged materials in containers showing weight, analysis, and name of manufacturer. Protect materials from deterioration during delivery and while stored at site.

B. Trees and Shrubs: Deliver freshly dug trees and shrubs. Do not prune before delivery, except as approved by Landscape Architect. Protect bark, branches, and root systems from sun scald, drying, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy natural shape. Provide protective covering during delivery. Do not drop trees and shrubs during delivery. The Landscape Architect reserves the right to reject any material delivered to the site which does not meet his satisfaction for size, condition, or defects.

C. Handle balled and burlapped stock by the root ball.

D. Deliver trees, shrubs, ground covers, and plants after preparations for planting have been completed and install immediately. If planting is delayed more than 6 hours after delivery, set planting materials in shade, protect from weather and mechanical damage, and keep roots moist.

2. Set balled stock on ground and cover ball with soil, peat moss, sawdust, or other acceptable material.
3. Do not remove container-grown stock from containers before time of planting.
4. Water root systems of trees and shrubs stored on site with a fine-mist spray. Water as often as necessary to maintain root systems in a moist condition.

1.6 PROJECT CONDITIONS

A. Field Measurements: Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work.

B. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion.

1. Spring Planting: April 1st through June 15th.
2. Fall Planting: September 1st through October 15th for evergreen material and September 1st through December 1st for deciduous materials.

C. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer’s written instructions and warranty requirements.

D. Excavation: When conditions detrimental to plant growth are encountered, such as rubble fill, adverse drainage conditions, or obstructions, notify Landscape Architect before planting.

1.7 COORDINATION AND SCHEDULING
A. Coordinate installation of planting materials during normal planting seasons for each type of plant material required.

B. Planting Seasons: Spring planting shall be that period from April 1 through June 15 of any year. Fall planting shall be that period from September 1 through October 15 of any year for evergreen material, and September 1 through December 1 for deciduous materials.

1.8 WARRANTY

A. General Warranty: The special warranty specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Site Contractor and the Landscape Contractor under requirements of the Contract Documents.

B. Special Warranty: Warrant the following living planting materials for a period of one year after date of Substantial Completion, against defects including death and unsatisfactory growth, except for defects resulting from abnormal weather conditions unusual for warranty period, or incidents that are beyond Landscape Contractor's control.

1. Trees.
2. Shrubs.
4. Plants.

C. Remove and replace dead planting materials immediately unless required to plant in the succeeding planting season.

D. Replace planting materials that are more than 25 percent dead or in an unhealthy condition at end of warranty period.

E. It is the Landscape Contractor's responsibility to make periodic site visits through the one year warranty period, to ensure the health of living plant material. The Landscape Contractor shall notify the Landscape Architect in writing if the health of living plant material is in jeopardy due to lack of maintenance, neglect, or abuse by the owner. If the Landscape Contractor does not meet this obligation he/she forfeits their right to additional compensation.

1.9 TREE AND SHRUB MAINTENANCE

A. Maintain trees and shrubs by pruning, cultivating, watering, weeding, fertilizing, restoring planting saucers, tightening and repairing stakes and guy supports, and resetting to proper grades or vertical position, as required to establish healthy, viable plantings. Spray as required to keep trees and shrubs free of insects and disease. Restore or replace damaged tree wrappings. Maintain trees and shrubs for the following period:

1. Maintenance Period: 12 months following Substantial Completion.

1.10 GROUND COVER MAINTENANCE

A. Maintain ground cover and plants by watering, weeding, fertilizing, and other operations as required to establish healthy, viable plantings for the following period:

1. Maintenance Period: 12 months following Substantial Completion.
PART 2 – PRODUCTS

2.1 TREE AND SHRUB MATERIAL

A. General: Furnish nursery-grown trees and shrubs conforming to ANSI Z60.1, with healthy root systems developed by transplanting or root pruning. Provide well-shaped, fully-branched, healthy, vigorous stock free of disease, insects, eggs, larvae, and defects such as knots, sun scald, injuries, abrasions, and disfigurement.

B. Grade: Provide trees and shrubs of sizes and grades conforming to ANSI Z60.1 for type of trees and shrubs required. Trees and shrubs of a larger size may be used if acceptable to Landscape Architect, with a proportionate increase in size of roots or balls.

C. Label at least 1 tree and 1 shrub of each variety and caliper with a securely attached, waterproof tag bearing legible designation of botanical and common name.

2.2 SHADE AND FLOWERING TREES

A. Shade Trees: Single-stem trees with straight trunk, well-balanced crown, and intact leader, of height and caliper indicated, conforming to ANSI Z60.1 for type of trees required.

 1. Branching Height: 1/3 to 1/2 of tree height.
 2. Branching height: Street trees minimum branch height 5’.

B. Small Trees: Small upright or spreading type, branched or pruned naturally according to species and type, and with relationship of caliper, height, and branching recommended by ANSI Z60.1, and stem form as follows:

 1. Form: Single stem.
 2. Form: Multistem, clump, with 2 or more main stems.

C. Provide balled and burlapped trees.

2.3 DECIDUOUS SHRUBS

A. Form and Size: Deciduous shrubs with not less than the minimum number of canes required by and measured according to ANSI Z60.1 for type, shape, and height of shrub.

 1. Container-grown deciduous shrubs will be acceptable in lieu of balled and burlapped deciduous shrubs subject to meeting ANSI Z60.1 limitations for container stock.

2.4 CONIFEROUS EVERGREENS

A. Form and Size: Normal-quality, well-balanced, coniferous evergreens, of type, height, spread, and shape required, conforming to ANSI Z60.1.

B. Form and Size: Specimen-quality, exceptionally heavy, tightly knit, symmetrically shaped coniferous evergreens.

C. Provide balled and burlapped coniferous evergreens.
2.5 BROADLEAF EVERGREENS

A. Form and Size: Normal-quality, well-balanced, broadleaf evergreens, of type, height, spread, and shape required, conforming to ANSI Z60.1.

B. Provide balled and burlapped broadleaf evergreens.

1. Container-grown broadleaf evergreens will be acceptable in lieu of balled and burlapped broadleaf evergreens subject to meeting ANSI Z60.1 limitations for container stock.

2.6 GROUND COVERS

A. Provide ground covers and plants established and well rooted in removable containers or integral peat pots and with not less than the minimum number and length of runners required by ANSI Z60.1 for the pot size indicated.

2.7 SOIL AMENDMENTS

A. Lime: ASTM C 602, Class T, agricultural limestone containing a minimum 80 percent calcium carbonate equivalent, with a minimum 99 percent passing a No. 8 sieve and a minimum 75 percent passing a No. 60 sieve.

1. Provide lime in the form of dolomitic limestone.

B. Aluminum Sulfate: Commercial grade, unadulterated.

C. Sand: Clean, washed, natural or manufactured sand, free of toxic materials.

D. Perlite: Horticultural perlite, soil amendment grade.

E. Water Absorbing Polymer: Watersorb by Polymers, Inc. www.watersorb.com

F. Sawdust or Ground-Bark Humus: Decomposed, nitrogen-treated, of uniform texture, free of chips, stones, sticks, soil, or toxic materials.

1. When site treated, mix with at least 0.15 lb of ammonium nitrate or 0.25 lb of ammonium sulfate per cu. ft. of loose sawdust or ground bark.

G. Manure: Well-rotted, unleached stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, and material harmful to plant growth.

H. Herbicides: EPA registered and approved, of type recommended by manufacturer.

I. Water: Potable.

2.8 FERTILIZER

A. Bonemeal: Commercial, raw, finely ground; minimum of 4 percent nitrogen and 20 percent phosphoric acid.
B. Superphosphate: Commercial, phosphate mixture, soluble; minimum of 20 percent available phosphoric acid.

C. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea-form, phosphorous, and potassium in the following composition:
 1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing agency.

D. Slow-Release Fertilizer: Granular fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing agency.

E. Fertilizer Tablets for Tree and Shrub Plantings: Shall be Healthy Start Macro Tablets®, as manufactured by Plant Health Care, Inc., Old Westbury, NY, \(\Sigma (516) 388-8786 \), or approved equal. The tablets shall have a nutrient analysis of 12-8-8 and contain a minimum twelve percent (12%) humic acid by weight, as well as biostimulants derived from sea kelp, amino acids, and a wetting agent derived from *Yucca schidigera*. Tablets shall contain a minimum 695,000 each of the following beneficial bacteria: nitrogen fixing, phosphorus solubilizing, and growth promoting. Twenty one gram (21 gm.) twenty four month (24 mo.) release tablets shall be added to the top four inches (4") of backfilled soil in the rates as per manufacturers recommendations.

F. Mycorrhizal Fungi Innoculant: Shall be applied by means of a three ounce (3 oz.) premeasured dry formulation packet, such as Mycor Tree Saver Transplant®, as manufactured by Plant Health Care, Inc., 440 William Pitt Way, Pittsburgh, PA, local number: \(\Sigma (516) 338-8786 \), or approved equal. Packets shall contain, as a minimum: one thousand (1000) live spores of Vesicular-Arbuscular fungi, including: *Entrephosphora columbiana*, *Glomus clarum*, *Glomus etunicatum*, and *Glomus sp.*; seventeen million five hundred thousand (17,500,000) live spores of Ectomycorrhizal fungi (*Pisolithus tinctorius*); Biostimulant ingredients including *Yucca schidigera* extract; soluble sea kelp extract derived from *Ascophyllum nodosum*; humic acids; and acrylamide copolymer gel as a water absorbent medium. Mycorrhizal fungi inoculant shall be added to the top six to eight inches (6-8") of backfill soil in each planting pit and thoroughly mixed to distribute the inoculant. The material shall be applied per manufacturers recommendations.

2.9 MULCHES

A. Organic Mulch: Organic mulch, free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of:
 1. Type: double shredded pine bark mulch, natural color.

2.10 MISCELLANEOUS MATERIALS

A. Antidesiccant: Water-insoluble emulsion, permeable moisture retarder, film forming, for trees and shrubs. Deliver in original, sealed, and fully labeled containers and mix according to manufacturer's instructions.

B. Provide tree irrigation bags such as TreeGator Jr. Pro as manufactured by Spectrum Products, or approved equal. Bags shall have a minimum fifteen (15) gallon capacity.
PART 3 EXECUTION

3.1 EXAMINATION

A. Examine areas to receive landscaping for compliance with requirements and for conditions affecting performance of work of this Section. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Lay out individual tree and shrub locations and areas for multiple plantings. Stake locations, outline areas, and secure Landscape Architect's acceptance before the start of planting work. Make minor adjustments as may be required.

3.3 PLANTING SOIL PREPARATION

A. Before mixing, clean topsoil of roots, plants, sods, stones, clay lumps, and other extraneous materials harmful to plant growth.

B. Mix soil amendments and fertilizers with topsoil at rates indicated. Delay mixing fertilizer if planting does not follow placing of planting soil within a few days.

1. Planting soil amendments shall be applied as indicated by soil tests.
2. Add water absorbing polymer. Mix thoroughly into media at a rate of 2.5 cups per cubic yard.

C. For tree pit or trench backfill, mix planting soil before backfilling and stockpile at site.

D. For planting beds and lawns, mix planting soil either prior to planting or apply on surface of topsoil and mix thoroughly before planting.

1. Mix lime with dry soil prior to mixing fertilizer. Prevent lime from contacting roots of acid-tolerant plants.
2. Apply phosphoric acid fertilizer, other than that constituting a portion of complete fertilizers, directly to subgrade before applying planting soil and tilling.

3.4 GROUND COVER AND PLANT BED PREPARATION

A. Loosen subgrade of planting bed areas to a minimum depth of 6 inches. Remove stones larger than 1-1/2 inches in any dimension and sticks, roots, rubbish, and other extraneous materials.

B. Spread planting soil mixture to depth required to meet thickness, grades, and elevations shown, after light rolling and natural settlement. Place approximately 1/2 the thickness of planting soil mixture required. Work into top of loosened subgrade to create a transition layer and then place remainder of planting soil mixture.

C. Till soil in beds to a minimum depth of 8 inches and mix with specified soil amendments and fertilizers.
3.5 EXCAVATION FOR TREES AND SHRUBS

A. Pits and Trenches: Excavate with vertical sides and with bottom of excavation slightly raised at center to assist drainage. Loosen hard subsoil in bottom of excavation.

 1. Ball- and Burlapped Trees and Shrubs: Excavate approximately 2 times as wide as ball diameter and equal to ball depth.

 2. Container-Grown Trees and Shrubs: Excavate to container width and depth, plus the following setting-layer depth:

 a) Setting Layer: Allow 6 inches of planting soil.

 3. Where drain tile is shown or required under planted areas, excavate to top of porous backfill over tile.

B. Dispose of subsoil removed from landscape excavations. Do not mix with planting soil or use as backfill.

C. Obstructions: Notify Landscape Architect if unexpected rock or obstructions detrimental to trees or shrubs are encountered in excavations.

 1. Hardpan Layer: Drill 6-inch diameter holes into free-draining strata or to a depth of 10 feet, whichever is less, and backfill with free-draining material.

D. Drainage: Notify Landscape Architect if subsoil conditions evidence unexpected water seepage or retention in tree or shrub pits.

E. Fill excavations with water and allow to percolate out, before placing setting layer and positioning trees and shrubs.

3.6 PLANTING TREES AND SHRUBS

A. Set ball- and burlapped stock plumb and in center of pit or trench with top of ball even with or slightly above adjacent finish grades as indicated.

 1. Place stock on firm existing grade or setting layer of compacted planting soil.

 2. Remove burlap and wire baskets from tops of balls and partially from sides, but do not remove from under balls. Remove pallets, if any, before setting. Do not use planting stock if ball is cracked or broken before or during planting operation.

 3. Place backfill around ball in layers, tamping to settle backfill and eliminate voids and air pockets. When pit is approximately 1/2 backfilled, water thoroughly before placing remainder of backfill. Repeat watering until no more is absorbed. Water again after placing and tamping final layer of backfill.

B. Set container-grown stock plumb and in center of pit or trench with top of ball even with or slightly above adjacent finish grades as indicated.

 1. Carefully remove containers so as not to damage root balls.

 2. Loosen roots on edge of root ball that have mataled.

 3. Place stock on setting layer of compacted planting soil.

 4. Place backfill around ball in layers, tamping to settle backfill and eliminate voids and air pockets. When pit is approximately 1/2 backfilled, water thoroughly before placing
remainder of backfill. Repeat watering until no more is absorbed. Water again after placing and tamping final layer of backfill.

5. If water absorbing polymer is not added to bulk topsoil, add water absorbing polymer to each plant per manufactureres requirements.

C. Dish and tamp top of backfill to form a 3-inch- high mound around the rim of the pit. Do not cover top of root ball with backfill.

D. Provide and install tree irrigation bags to all trees. Install irrigation bags and maintain during the guarantee period providing for irrigation of 1” per week.

3.7 TREE AND SHRUB PRUNING

A. Prune, thin, and shape trees and shrubs as directed by Landscape Architect.

B. Prune, thin, and shape trees and shrubs according to standard horticultural practice. Prune trees to retain required height and spread. Unless otherwise directed by Landscape Architect, do not cut tree leaders; remove only injured or dead branches from flowering trees. Prune shrubs to retain natural character. Shrub sizes indicated are size after pruning.

3.8 TREE ROOT BALL STAPLING

A. Stapling: Staple trees of 2- through 5-inch caliper. Staple trees of less than 2-inch caliper as required to prevent wind tip-out. Use 2 staples of length required to penetrate at least 12 inches below bottom of the rootball. Set staples per detail with short end penetrating the root ball and long end against the outside of rootball.

3.9 PLANTING GROUND COVER AND PLANTS

A. Space ground cover and plants as indicated on site detail.

B. Dig holes large enough to allow spreading of roots, and backfill with planting soil. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.

C. If water absorbing polymer is not added to bulk topsoil, add water absorbing polymer to each plant per manufactureres requirements.

3.10 MULCHING

A. Mulch backfilled surfaces of pits, trenches, planted areas, and other areas indicated.

B. Organic Mulch: Apply the following average thickness of organic mulch and finish level with adjacent finish grades. Do not place mulch against trunks or stems.

1. Trees: Thickness: 4 inches.
2. Shrubs: Thickness: 3 inches.

3.11 INSTALLATION OF MISCELLANEOUS MATERIALS
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

A. Apply antidesiccant using power spray to provide an adequate film over trunks, branches, stems, twigs, and foliage.

1. When deciduous trees or shrubs are moved in full-leaf, spray with antidesiccant at nursery before moving and again 2 weeks after planting.

3.12 CLEANUP AND PROTECTION

A. During landscaping, keep pavements clean and work area in an orderly condition.

B. Protect landscaping from damage due to landscape operations, operations by other Landscape Contractors and trades, and trespassers. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

3.13 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of it off the Owner's property.

3.14 PLANTING SOIL AMENDMENTS SCHEDULE

A. Tree Pits or Trenches: Provide soil amendments as recommended by the soil testing agency. Add water absorbing polymer per manufacturers requirements or as required above whichever is more stringent.

B. Ground Cover and Planting Beds: Provide soil amendments as recommended by the soil testing agency. Add water absorbing polymer per manufacturers requirements or as required above whichever is more stringent.

END OF SECTION 329300
SECTION 329400 – TOPSOIL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. This Section includes the following:

1. Testing, amending, placing and finish grading all stockpiled and borrow topsoil.
2. Provide all borrow topsoil necessary to properly complete all lawn and planting operations.

B. Related Sections include the following:

1. Division 31 Section “Site Clearing” for topsoil stripping.
2. Division 31 Section “Earth Moving” for site earthwork.
3. Division 32 Section “Plants” for plantings.

1.3 QUALITY ASSURANCE

A. Topsoil:

1. Source: The sources and use of the topsoil prior to stripping shall be known and documented. Pesticide use on the site shall be documented and provided to the Owner. Soils with a known use of residual (preemergence) herbicide within two years of stripping are not acceptable.

2. Testing: Representative samples of borrow topsoil and stockpiled topsoil shall be completely analyzed/tested to determine:

 a. Nutrient analysis using the Modified Morgan extractant for soil available P, K, Ca, and Mg.
 b. Soil pH.
 c. Organic content – determined by loss of weight on ignition.
d. Particle size analysis – sand, silt, and clay – analysis shall be determined using the hydrometer method of particle size analysis with size fractions based upon size limits established by USDA.

3. Before delivery of any borrow topsoil, furnish the Engineer with a 5 gallon sample of material.

4. Topsoil testing costs shall be borne by the Contractor. At least 3 tests shall be taken from each source, and from onsite materials. Provide a minimum of 3 tests per 1,000 cy delivered/amended at site.

5. Testing laboratory shall be approved by the Owner and Engineer, whose costs shall be borne by the Contractor.

B. Product Certificates: For soil amendments and fertilizers, signed by product manufacturer.

C. Qualification Data: Landscape installer qualifications: A qualified landscape installer, having completed similar projects in the last 10 years.

1. Installer’s Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when planting is in progress.

D. Soil-Testing Fields Laboratory Qualifications: An independent laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.

E. Fill Sampling: Prior to placement of fill material on site, representative samples will be collected and analyzed to verify the fill material meets the Connecticut Department of Environmental Protection (CTDEP) and Remediation Standard Regulations (RSRs) requirements. Samples shall be collected from the source area of the proposed fill prior to excavation and delivery of the fill. Sample analysis frequency will be equal to or greater than 1 sample per 5,000 cubic yards of fill.

F. If more than one source of fill will be used, at least one (1) fill sample shall be collected and laboratory analyzed from each source (even if less than 5,000 cubic yards of material is obtained from the source).

G. Samples being collected for analysis of Volatile Organic Compounds (VOCs) will not be composited or mixed.

1. Fill samples will be analyzed by a Connecticut Department of Public Health certified laboratory for the following constituents:

- VOCs per EPA Method 8260B;
- Extractable Total Petroleum Hydrocarbons (ETPH) per CTDEP approved method;
- Polynuclear aromatic hydrocarbon (PAHs) compounds per EPA Method 8270C;
- Mass and Synthetic Precipitation Leaching Procedure (SPLP) 8 RCRA metals per EPA Methods 6010 and 7471; and
- Polychlorinated biphenyls (PCBs) per EPA Method 8082.

2. The analyses of the fill samples will be evaluated by the Engineer and the fill will not be transported to the site or used on site unless the results demonstrate compliance with the applicable RSR criteria for the site, which are the Residential Direct Exposure Criteria (DEC) and the GA Pollutant Mobility Criteria (PMC). The material must be approved by the Engineer prior to delivery to the site.
1.4 SUBMITTALS

A. Submit topsoil test results to the Engineer for review. The Engineer will be the sole judge of acceptability.

1.5 PRODUCT HANDLING

A. Coordinate delivery of borrow topsoil such that it is placed as delivered and no stockpiling is required.

PART 2 – PRODUCTS

2.1 BORROW TOPSOIL FOR GENERAL PLANTING AND LOAM AND SEED AREAS

A. Texture

1. Shall be a sandy loam as per USDA Soil Classification as determined by laboratory particle size analysis, with the following additional particle size limits:

 - Sand – minimum 60% by weight, maximum 70%.
 - Silt – between 10 and 30%.
 - Clay – between 5 and 15% by weight.

2. Topsoil shall not contain materials harmful to plant life, to be clean, fertile, friable, and well draining. All topsoil to be free of any subsoil earth clods, sods, stones over ¾” in any dimension, sticks, roots, weeds, litter and other deleterious material.

3. Coarse Fragments: Topsoil must pass through a 1”-inch mesh and be free of stones and other foreign materials that are retained by the screen. Gravel between 2 mm and 9.5 mm shall not exceed 5 percent by weight.

4. Topsoil Source: Obtain topsoil displaced from naturally well-drained sites where topsoil occurs at least 4 inches deep; do not obtain from bogs or marshes.

5. Nutrient levels shall be achieved by the Contractor’s addition of amendments to the topsoil to meet the optimum nutrient levels specified in the testing laboratory report.

B. Permeability

1. The finished topsoil product must possess a permeability of between 0.5 and 3 inches per hour when compacted to 80% of maximum as determined by a standard Proctor test. Testing results shall be provided for review.

C. Organic Matter

1. Topsoil shall be uniform in quality and texture and contain organic matter and mineral elements necessary for sustaining healthy plant growth.

2. Topsoil shall have the following optimum ranges unless otherwise approved by the Engineer.

 - Organic Matter Content 6-8%
D. Soil Reaction: pH 6 - 7

E. Organic Amendments

1. Acceptable organic materials to achieve the organic matter range include commercially prepared compost with the following characteristics.
 a. Minimum fiber as retained by a 150 mm sieve: 60%
 b. Maximum mineral content: 15%
 c. Commercial Compost
 d. Minimum organic matter content: 50%
 e. Carbon-nitrogen ration: 20 to 30
 f. Particle size: <3/8"
 g. Metals: Not to exceed state standards for biosolids

F. Metals: Metals shall not exceed state standards for agricultural soils.

G. Sand Amendments

1. Sand required to achieve the specified permeability for topsoil should meet ASTM Standard C33, Concrete Sand, and possess a Coefficient of Uniformity less than 4 and a Fineness Modulus between 2.7 and 3.2

2.2 STOCKPILED TOPSOIL FOR GENERAL PLANTING AND LOAM AND SEED AREAS

A. Topsoil shall meet requirements of paragraph 2.1 above shall be screened to remove all foreign matter and debris.

B. Material must be approved for use prior to installation.

C. Provide all amendments as noted in 2.1 above (sand, organics, composts, etc.) to stockpiled topsoil if needed to bring topsoil in conformance with project requirements. Test after application of amendments.

2.3 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C 602, agricultural limestone containing a minimum 80 percent calcium carbonate equivalent and as follows:
 1. Class: Class T, with a minimum 99 percent passing through No. 8 sieve and a minimum 75 percent passing through No. 60 sieve.
 2. Provide lime in form of ground limestone.

B. Perlite: Horticultural perlite, soil amendment grade.
 1. Agricultural Gypsum: Finely ground, containing a minimum of 90 percent calcium sulfate.

2.4 PLANTING SOIL MIX

A. Planting Soil Mix: Mix topsoil with the following soil amendments and fertilizers in the following quantities.
1. Ratio of Loose Compost to Topsoil by Volume: as per testing laboratory results
2. Ratio of Loose Peat to Topsoil by Volume: as per testing laboratory results
3. Weight of Lime per 1000 Sq. Ft: as per testing laboratory results
4. Weight of Aluminum Sulfate per 1000 Sq. Ft: as per testing laboratory results
5. Weight of Agricultural Gypsum per 1000 Sq. Ft: as per testing laboratory results
6. Volume of Sand Plus 10 Percent per 1000 Sq. Ft: as per testing laboratory results
7. Weight of Commercial Fertilizer per 1000 Sq. Ft: as per testing laboratory results.

PART 3 – EXECUTION

3.1 SHAPING AND GRADING OF SUBSOIL AT ALL LAWN AREAS

A. After rough grading has been completed, shape and grade lawn subgrade areas to lines and levels as noted on the drawings and as required based on total amounts of approved topsoil to allow placement of uniform depth of topsoil. Adjustments may be necessary due to field conditions. Provide all shaping adjustments at no additional cost to the Owner.

B. Harrow or otherwise loosen the subgrade soil to 12” depth if required to correct for over compaction. Scarify subgrade prior to installation of topsoil.

C. After shaping of lawn subgrades remove all sticks, stones, or foreign material two (2) inches or greater in dimension. Remove debris and stone off-site.

3.2 TOPSOIL SPREADING

A. Once approved, no vehicular traffic will be allowed on finish subgrade. Topsoil will not be permitted to be spread until topsoil test reports have been submitted and approved. Topsoil shall not be delivered or worked in a frozen or muddy condition.

B. All topsoil, onsite or offsite, shall be screened to assure appropriate size distribution and mixing of amendment materials such as organics or sand.

1. Other mixing methodologies shall be reviewed with the Engineer.

C. Uniformly distribute and spread topsoil over all graded lawn areas to conform smoothly to the lines, grades, and elevations shown or otherwise required. All lawn areas to have a minimum of six (6) inches of topsoil after finished installation. All approved stockpiled topsoil is to be spread unless otherwise directed by the Engineer. Maintain consistent depths of material throughout the project area.

1. Manually supply topsoil around all trees to remain. Avoid damage to root systems.
2. Uniform topsoil layer is critical.

D. Re-supply and place topsoil to eroded, settled or damaged areas until all lawn areas are stabilized. Care shall be taken not to damage grass or pavement areas in the replacement to topsoil.
3.3 PROTECTION

A. Remove weeds prior to lawn development operations. No weeds shall be allowed to go to seed.

B. Keep heavy equipment, trucks, etc. off topsoil areas at all times.

C. If compaction occurs, scarify to the full depth of the topsoil and regrade topsoil.

D. Utilize only low bearing equipment for field work.

E. Equipment is not permitted on the field when the field is wet or damp.

3.4 EXCESS TOPSOIL

A. Material approved for reuse but not required to be installed remains the property of the Owner and shall be deposited at a location designated by the Owner.

B. Material not approved for reuse remains the property of the Contractor and is to be removed from the site.

END OF SECTION 329400
SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Geotechnical study prepared by GNCB Consulting Engineers, P.C., October 10, 2019.

D. References to the Standard Specifications for this section shall mean the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 817 supplemented and amended through the date of this project bid.

E. 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, DEP Bulletin 34 or as amended through the date of this project bid.

1.2 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Transition couplings.
 3. Cleanouts.
 4. Drains.
 5. Encasement for piping.
 7. Channel drainage systems.
 8. Catch basins.
 10. Stormwater disposal systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
 1. Manholes: Include plans, elevations, sections, details, frames, and covers.
 2. Catch basins. Include plans, elevations, sections, details, frames, covers, and grates.
 3. Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.

C. Field quality-control reports.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

D. Handle catch basins according to manufacturer's written rigging instructions.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Do not proceed with interruption of service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PE PIPE AND FITTINGS

A. Corrugated PE Drainage Pipe and Fittings NPS 3 to NPS 10: AASHTO M 252M, Type S, or Type SP (perforated) as indicated on plans with smooth waterway for coupling joints.

B. Corrugated PE Pipe and Fittings NPS 12 to NPS 60: AASHTO M 294M, Type S, or Type SP (perforated) as indicated on plans with smooth waterway for coupling joints.

2.2 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:

2. Fittings: ASTM D 3034, PVC with bell ends.

2.3 CONCRETE PIPE AND FITTINGS

A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76.
 1. Bell-and-spigot or tongue-and-groove ends and gasketed joints with ASTM C 443, rubber gaskets
 2. Class IV, Wall B.

2.4 TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping unless otherwise noted. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Concrete Pipes: ASTM C 443, rubber.
 3. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 4. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Shielded, Flexible Couplings:
 1. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Bolted Steel Transition Couplings:
 1. Comply with AWWA C219. Steel reducing coupling with shop coating. End rings, center ring, and gaskets coordinated with the two pipe diameters to be joined.
 2. Products:
 a. Romac Industries, Inc. Style RC400
 b. JCM Industries Model 204
 c. Smith-Blair Model 415

2.5 CLEANOUTS

A. Plastic Cleanouts:
 1. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.6 DRAINS

A. Cast-Iron Area Drains:
 1. Description: ASME A112.6.3 gray-iron round body with anchor flange and round grate. Include bottom outlet with inside calk or spigot connection, of sizes indicated.
2.2 Top-Loading Classification: Heavy Duty.

B. Cast-Iron Trench Drains:

1. Description: ASME A112.6.3, 6-inch wide top surface, rectangular body with anchor flange or other anchoring device, and rectangular grate. Include units of total length indicated and quantity of bottom outlets with inside calk or spigot connections, of sizes indicated.
2. Top-Loading Classification: Heavy Duty.

2.7 MANHOLES

A. Designed Precast Concrete Manholes:

1. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
4. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
5. Steps: ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
6. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope.

B. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch minimum width flange and 26-inch diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM DRAIN."

2.8 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 deformed steel.

C. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

2.9 CATCH BASINS
A. Designed Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.

1. Joint Sealants: ASTM C 990, bitumen or butyl rubber.
2. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch- diameter frame and grate.

B. Frames and Grates: ConnDOT standard type “C”, “C-L”, Type I double “C”, Type I double “C-L”, Type II double “C”, or Type II double “C-L” as indicated on plans. Grates shall be Type “A”, galvanized finish.

PART 3 - EXECUTION

3.1 EARTHWORK
A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION
A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure drainage piping according to the following:
 1. Install piping pitched down in direction of flow.
 2. Install piping with 36-inch minimum cover unless otherwise noted on the plans.
 3. Install PE corrugated sewer piping according to ASTM D 2321.
 4. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.
 5. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."
3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping according to the following:
 1. Join corrugated PE piping according to ASTM D 3212 for push-on joints.
 2. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasketed joints.
 4. Join dissimilar pipe materials with nonpressure-type flexible couplings.

3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Heavy-Duty, top-loading classification cleanouts.

B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding earth grade.

C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 DRAIN INSTALLATION

A. Install type of drains in locations indicated.

B. Embed drains in 4-inch minimum concrete around bottom and sides.

C. Fasten grates to drains if indicated.

D. Set drain frames and covers with tops flush with pavement surface.

E. Assemble trench sections with flanged joints.

F. Embed trench sections in 4-inch minimum concrete around bottom and sides.

3.6 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
3.7 CATCH BASIN INSTALLATION
 A. Construct catch basins to sizes and shapes indicated.
 B. Set frames and grates to elevations indicated.

3.8 CONCRETE PLACEMENT
 A. Place cast-in-place concrete according to ACI 318.

3.9 STORMWATER DISPOSAL SYSTEM INSTALLATION
 A. Piping Systems: Excavate trenches of width and depth, and install piping system, filter fabric, and backfill, according to piping manufacturer’s written instructions.

3.10 CONNECTIONS
 A. Connect nonpressure, gravity-flow drainage piping in building’s storm building drains.
 B. Make connections to existing piping and underground manholes.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.
 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
 C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 1. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Shielded flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

2. Use bolted-type pipe couplings for force-main joints or where indicated on plans.

3.11 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

1. Close open ends of piping with at least 8-inch thick, brick masonry bulkheads.
2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:

1. Remove manhole or structure and close open ends of remaining piping.
2. Remove top of manhole or structure down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to Section 312000 "Earth Moving."

3.12 IDENTIFICATION

A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.

1. Use detectable warning tape over piping and over edges of underground structures.

3.13 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate reports for each system inspection.
2. Defects requiring correction include the following:

a. Alignment: Less than full diameter of inside of pipe is visible between structures.
b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
d. Infiltration: Water leakage into piping.
e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
 b. Option: Test plastic piping according to ASTM F 1417.
 c. Option: Test concrete piping according to ASTM C 924.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.14 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

END OF SECTION 334100
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

SECTION 334600 - SUB DRAINAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Contractor, Subcontractors and/or suppliers providing goods or services referenced in or related to this Section shall also be bound by the Documents identified in Division 01 Section “Summary”, Paragraph 1.1A, entitled “Related Documents.”

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Perforated-wall pipe and fittings.
 2. Drainage conduits.
 3. Drainage panels.

1.3 ACTION SUBMITTALS

A. Product Data:
 1. Drainage conduits, including rated capacities.
 2. Drainage panels, including rated capacities.

PART 2 - PRODUCTS

2.1 PERFORATED-WALL PIPES AND FITTINGS

A. Perforated PE Pipe and Fittings:
 1. NPS 6 and Smaller: ASTM F 405 or AASHTO M 252, Type SP; corrugated – smooth interior, for coupled joints.
 2. NPS 8 and Larger: ASTM F 667; AASHTO M 252, Type SP; or AASHTO M 294, Type SP; corrugated – smooth interior; for coupled joints.
 3. Couplings: Manufacturer's standard, band type.

B. Perforated PVC Sewer Pipe and Fittings: ASTM D 2729, bell-and-spigot ends, for loose joints.

2.2 DRAINAGE PANELS

A. Molded-Sheet Drainage Panels: Prefabricated geocomposite, 36 to 60 inches wide with drainage core faced with geotextile filter fabric.
1. **Drainage Core:** Three-dimensional, nonbiodegradable, molded PP.
 a. Minimum Compressive Strength: 15,000 lbf/sq. ft when tested according to ASTM D 1621.
 b. Minimum In-Plane Flow Rate: 14 gpm/ft. of unit width at hydraulic gradient of 1.0 and compressive stress of 25 psig when tested according to ASTM D 4716.

2. **Filter Fabric:** Nonwoven needle-punched geotextile, manufactured for subsurface drainage, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with the following properties determined according to AASHTO M 288:
 a. Survivability: Class 2.
 b. Apparent Opening Size: No. 70 sieve, maximum.
 c. Permittivity: 1.5 sec⁻¹

3. **Film Backing:** Polymeric film bonded to drainage core surface.

2.3 **SOIL MATERIALS**

 A. **Soil materials are specified in Section 312000 "Earth Moving."**

PART 3 - EXECUTION

3.1 **EXAMINATION**

 A. Examine surfaces and areas for suitable conditions where subdrainage systems are to be installed.

 B. Verify that drainage panels installed as part of foundation wall waterproofing is properly positioned to drain into subdrainage system.

 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **EARTHWORK**

 A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.3 **FOUNDATION DRAINAGE INSTALLATION**

 A. Place impervious fill material on subgrade adjacent to bottom of footing after concrete footing forms have been removed. Place and compact impervious fill to dimensions indicated, but not less than 6 inches deep and 12 inches wide.

 B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.

 C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches.

 D. Install drainage piping as indicated in Part 3 "Piping Installation" Article for foundation subdrainage.
E. Add drainage course to width of at least 6 inches on side away from wall and to top of pipe to perform tests.

F. After satisfactory testing, cover drainage piping to width of at least 6 inches on side away from footing and above top of pipe to within 12 inches of finish grade.

G. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.

H. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches.

I. Install drainage panels on foundation walls as follows:
 1. Coordinate placement with other drainage materials.
 2. Lay perforated drainage pipe at base of footing. Install as indicated in Part 3 "Piping Installation" Article.
 4. Attach panels to wall beginning at subdrainage pipe. Place and secure molded-sheet drainage panels, with geotextile facing away from wall.

J. Place backfill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Final backfill to finish elevations and slope away from building.

3.4 UNDERSLAB UNDERDRAINAGE INSTALLATION

A. Excavate for underslab drainage system after subgrade material has been compacted but before drainage course has been placed. Include horizontal distance of at least 6 inches between drainage pipe and trench walls. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.

B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.

C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches.

D. Install drainage piping as indicated in Part 3 "Piping Installation" Article for underslab subdrainage.

E. Add drainage course to width of at least 6 inches on side away from wall and to top of pipe to perform tests.

F. After satisfactory testing, cover drainage piping with drainage course to elevation of bottom of slab, and compact and wrap top of drainage course with flat-style geotextile filter fabric.

G. Install horizontal drainage panels as follows:
 1. Coordinate placement with other drainage materials.
 2. Lay perforated drainage pipe at inside edge of footing.
 3. Place drainage panel over drainage pipe with core side up. Peel back fabric and wrap fabric around pipe. Locate top of core at bottom elevation of floor slab.
 4. Butt additional panels against other installed panels. If panels have plastic flanges, overlap installed panel with flange.
3.5 RETAINING WALL DRAINAGE INSTALLATION

A. Lay flat-style geotextile filter fabric in trench and overlap trench sides.

B. Place supporting layer of drainage course over compacted subgrade to compacted depth of not less than 4 inches.

C. Install drainage piping as indicated in Part 3 "Piping Installation" Article for retaining-wall subdrainage.

D. Add drainage course to width of at least 6 inches on side away from wall and to top of pipe to perform tests.

E. After satisfactory testing, cover drainage piping to width of at least 6 inches on side away from footing and above top of pipe to within 12 inches (300 mm) of finish grade.

F. Place drainage course in layers not exceeding 3 inches in loose depth; compact each layer placed and wrap top of drainage course with flat-style geotextile filter fabric.

G. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches (100 mm).

H. Install drainage panels on wall as follows:
 1. Coordinate placement with other drainage materials.
 2. Lay perforated drainage pipe at base of footing as described elsewhere in this Specification. Do not install aggregate.
 3. Mark horizontal calk line on wall at a point 6 inches (150 mm) less than panel width above footing bottom. Before marking wall, subtract footing width.
 5. Attach panel to wall at horizontal mark and at beginning of wall corner. Place core side of panel against wall. Do Not use concrete nails for attachment. Construction adhesives, or double-sided tape must be used instead of nails. Before using adhesives, discuss with waterproofing manufacturer.
 6. If another panel is required on same row, cut away 4 inches of installed panel core and wrap fabric over new panel.
 7. If additional rows of panel are required, overlap lower panel with 4 inches of fabric.
 8. Cut panel as necessary to keep top 12 inches below finish grade.
 9. For inside corners, bend panel. For outside corners, cut core to provide 3 inches for overlap.

I. Fill to Grade: Place satisfactory soil fill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Fill to finish grade.

3.6 LANDSCAPING DRAINAGE INSTALLATION

A. Provide trench width to allow installation of drainage conduit. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.

B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.

C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches.
NEW BUILDING FOR
ROCKY HILL SENIOR / COMMUNITY CENTER
ROCKY HILL, CT

E. Add drainage course to top of drainage conduits.

F. After satisfactory testing, cover drainage conduit to within 12 inches (300 mm) of finish grade.

G. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.

H. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches.

I. Fill to Grade: Place satisfactory soil fill material over drainage course. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Fill to finish grade.

3.7 PIPING INSTALLATION

A. Install piping beginning at low points of system, true to grades and alignment indicated, with unbroken continuity of invert. Bed piping with full bearing in filtering material. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions and other requirements indicated.

1. Foundation Subdrainage: Install piping level and with a minimum cover of 36 inches unless otherwise indicated.

2. Underslab Subdrainage: Install piping level.

3. Plaza Deck Subdrainage: Install piping level.

4. Retaining-Wall Subdrainage: When water discharges at end of wall into stormwater piping system, install piping level and with a minimum cover of 36 inches unless otherwise indicated.

5. Landscaping Subdrainage: Install piping pitched down in direction of flow, at a minimum slope of 0.5 > percent and with a minimum cover of 36 inches unless otherwise indicated.

7. Excavate recesses in trench bottom for bell ends of pipe. Lay pipe with bells facing upslope and with spigot end entered fully into adjacent bell.

B. Use increasers, reducers, and couplings made for different sizes or materials of pipes and fittings being connected. Reduction of pipe size in direction of flow is prohibited.

3.8 PIPE JOINT CONSTRUCTION

A. Join perforated PE pipe and fittings with couplings according to ASTM D 3212 with loose banded, coupled, or push-on joints.

B. Join perforated PVC sewer pipe and fittings according to ASTM D 3212 with loose bell-and-spigot, push-on joints.

C. Special Pipe Couplings: Join piping made of different materials and dimensions with special couplings made for this application. Use couplings that are compatible with and fit materials and dimensions of both pipes.
3.9 CLEANOUT INSTALLATION

A. Cleanouts for Subdrainage:
 1. Install cleanouts from piping to grade. Locate cleanouts at beginning of piping run and at changes in direction. Install fittings so cleanouts open in direction of flow in piping.

3.10 CONNECTIONS

A. Comply with requirements for piping specified in Section 334100 "Storm Utility Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect low elevations of subdrainage system to solid-wall-piping storm drainage system.

C. Where required, connect low elevations of foundation subdrainage to stormwater sump pumps. Comply with requirements for sump pumps specified in Section 221429 "Sump Pumps."

3.11 IDENTIFICATION

A. Arrange for installation of green warning tapes directly over piping. Comply with requirements for underground warning tapes specified in specified in Section 312000 "Earth Moving."
 1. Install PE warning tape or detectable warning tape over ferrous piping.
 2. Install detectable warning tape over nonferrous piping and over edges of underground structures.

3.12 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. After installing drainage course to top of piping, test drain piping with water to ensure free flow before backfilling.
 2. Remove obstructions, replace damaged components, and repeat test until results are satisfactory.

B. Drain piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.13 CLEANING

A. Clear interior of installed piping and structures of dirt and other superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of each day or when work stops.

END OF SECTION 334600