PROJECT MANUAL

VOLUME 2
SPECIFICATION DIVISIONS 22-32

EAST LYME PUBLIC SAFETY BUILDING RENOVATIONS
Town of East Lyme

277 West Main Street
Niantic, Connecticut 06357

S/P+A PROJECT NO. 19.087

Issued for 100% CD Review: February 3, 2020
Issued for Bid: February 12, 2020

Architects, Engineers and Interior Designers
Silver/Petrucelli + Associates, Inc.
3190 Whitney Avenue
Hamden, Connecticut 06518
EAST LYME PUBLIC SAFETY BUILDING RENOVATIONS
277 WEST MAIN STREET
NIANTIC, CT 06357

S/P+A PROJECT NO. 19.087

DIVISION 00 – PROCUREMENT AND CONTRACT REQUIREMENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invitation to Bid</td>
<td>8</td>
</tr>
<tr>
<td>Instructions to Bidders (AIA A701)</td>
<td>8</td>
</tr>
<tr>
<td>Supplementary Instructions to Bidders</td>
<td>8</td>
</tr>
<tr>
<td>Bid Form</td>
<td>3</td>
</tr>
<tr>
<td>CHRO Contract Compliance Regulations Notification To Bidders</td>
<td>5</td>
</tr>
<tr>
<td>Standard Form of Agreement between Owner and Contractor (AIA A101)</td>
<td>8</td>
</tr>
<tr>
<td>General Conditions of the Contract for Construction (AIA A201)</td>
<td>40</td>
</tr>
<tr>
<td>Supplementary General Conditions</td>
<td>9</td>
</tr>
<tr>
<td>Project Application and Project Certificate for Payment (AIA G702)</td>
<td>1</td>
</tr>
<tr>
<td>Project Application Continuation Sheet (AIA G703)</td>
<td>1</td>
</tr>
<tr>
<td>Prevailing Wage Rate Information</td>
<td>24</td>
</tr>
<tr>
<td>Drawing List</td>
<td>2</td>
</tr>
</tbody>
</table>

DIVISION 01 – GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>011000</td>
<td>Summary of Work</td>
<td>4</td>
</tr>
<tr>
<td>011401</td>
<td>Preservation and Restoration of Site Features</td>
<td>4</td>
</tr>
<tr>
<td>012100</td>
<td>Allowances</td>
<td>5</td>
</tr>
<tr>
<td>012200</td>
<td>Unit Prices</td>
<td>2</td>
</tr>
<tr>
<td>012300</td>
<td>Alternates</td>
<td>2</td>
</tr>
<tr>
<td>012500</td>
<td>Substitution Procedures</td>
<td>4</td>
</tr>
<tr>
<td>012600</td>
<td>Contract Modification Procedures</td>
<td>2</td>
</tr>
<tr>
<td>012900</td>
<td>Payment Procedures</td>
<td>4</td>
</tr>
<tr>
<td>013100</td>
<td>Project Management and Coordination</td>
<td>10</td>
</tr>
<tr>
<td>013200</td>
<td>Construction Progress Documentation</td>
<td>6</td>
</tr>
<tr>
<td>013233</td>
<td>Photographic Documentation</td>
<td>2</td>
</tr>
<tr>
<td>013300</td>
<td>Submittal Procedures</td>
<td>9</td>
</tr>
<tr>
<td>014000</td>
<td>Quality Requirements</td>
<td>8</td>
</tr>
<tr>
<td>014200</td>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>015000</td>
<td>Temporary Facilities and Controls</td>
<td>5</td>
</tr>
<tr>
<td>015713</td>
<td>Temporary Erosion and Sedimentation Controls</td>
<td>6</td>
</tr>
<tr>
<td>015714</td>
<td>Temporary Dust Controls</td>
<td>2</td>
</tr>
<tr>
<td>016000</td>
<td>Product Requirements</td>
<td>5</td>
</tr>
<tr>
<td>017300</td>
<td>Execution</td>
<td>7</td>
</tr>
<tr>
<td>017700</td>
<td>Closeout Procedures</td>
<td>5</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
<td>8</td>
</tr>
<tr>
<td>017830</td>
<td>Warranties and Bonds</td>
<td>3</td>
</tr>
<tr>
<td>017839</td>
<td>Project Record Documents</td>
<td>4</td>
</tr>
<tr>
<td>017900</td>
<td>Demonstration and Training</td>
<td>4</td>
</tr>
</tbody>
</table>

DIVISION 02 – EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>024119</td>
<td>Selective Demolition</td>
<td>7</td>
</tr>
<tr>
<td>024123</td>
<td>Site Demolition</td>
<td>5</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DIVISION 03 – CONCRETE

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>031000</td>
<td>Concrete Forming and Accessories</td>
<td>7</td>
</tr>
<tr>
<td>032000</td>
<td>Concrete Reinforcing</td>
<td>5</td>
</tr>
<tr>
<td>033000</td>
<td>Cast-In-Place Concrete</td>
<td>28</td>
</tr>
<tr>
<td>033200</td>
<td>Site Cast-In-Place Concrete</td>
<td>18</td>
</tr>
<tr>
<td>035413</td>
<td>Gypsum Cement Underlayment</td>
<td>4</td>
</tr>
<tr>
<td>035416</td>
<td>Hydraulic Cement Underlayment</td>
<td>4</td>
</tr>
</tbody>
</table>

DIVISION 04 – MASONRY

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>042000</td>
<td>Unit Masonry</td>
<td>18</td>
</tr>
</tbody>
</table>

DIVISION 05 – METALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>051200</td>
<td>Structural Steel Framing</td>
<td>9</td>
</tr>
<tr>
<td>053100</td>
<td>Steel Decking</td>
<td>6</td>
</tr>
<tr>
<td>054000</td>
<td>Cold-Formed Metal Framing</td>
<td>13</td>
</tr>
<tr>
<td>055000</td>
<td>Metal Fabrications</td>
<td>5</td>
</tr>
<tr>
<td>055200</td>
<td>Metal Railings</td>
<td>8</td>
</tr>
<tr>
<td>055213</td>
<td>Pipe and Tube Railings</td>
<td>7</td>
</tr>
</tbody>
</table>

DIVISION 06 – WOOD, PLASTICS AND COMPOSITES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>061000</td>
<td>Rough Carpentry</td>
<td>5</td>
</tr>
<tr>
<td>064113</td>
<td>Wood-Veneer-Faced Architectural Cabinets</td>
<td>10</td>
</tr>
<tr>
<td>064116</td>
<td>Plastic-Laminate-Clad Architectural Cabinets</td>
<td>7</td>
</tr>
</tbody>
</table>

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>071416</td>
<td>Cold Fluid-Applied Waterproofing</td>
<td>5</td>
</tr>
<tr>
<td>071613</td>
<td>Polymer Modified Cement Waterproofing</td>
<td>5</td>
</tr>
<tr>
<td>072100</td>
<td>Thermal Insulation</td>
<td>5</td>
</tr>
<tr>
<td>072726</td>
<td>Fluid Applied Membrane Air Barriers</td>
<td>7</td>
</tr>
<tr>
<td>075323</td>
<td>Ethylene-Propylene-Diene-Monomer (EPDM) Roofing</td>
<td>9</td>
</tr>
<tr>
<td>076200</td>
<td>Sheet Metal Flashing and Trim</td>
<td>7</td>
</tr>
<tr>
<td>077100</td>
<td>Roof Edge Specialties</td>
<td>7</td>
</tr>
<tr>
<td>078100</td>
<td>Applied Fireproofing</td>
<td>6</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
<td>4</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
<td>7</td>
</tr>
</tbody>
</table>

DIVISION 08 – OPENINGS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>081113</td>
<td>Hollow Metal Doors and Frames</td>
<td>7</td>
</tr>
<tr>
<td>081416</td>
<td>Flush Wood Doors</td>
<td>5</td>
</tr>
<tr>
<td>083113</td>
<td>Access Doors and Frames</td>
<td>4</td>
</tr>
<tr>
<td>083113.53</td>
<td>Security Access Doors and Frames</td>
<td>3</td>
</tr>
<tr>
<td>083344</td>
<td>Overhead Coiling Fire Curtains</td>
<td>6</td>
</tr>
<tr>
<td>083463</td>
<td>Detention Doors and Frames</td>
<td>12</td>
</tr>
<tr>
<td>083465</td>
<td>Security Doors and Frames</td>
<td>15</td>
</tr>
<tr>
<td>083613</td>
<td>Sectional Doors</td>
<td>6</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 084113</td>
<td>Aluminum-Framed Entrances and Storefronts</td>
<td>6</td>
</tr>
<tr>
<td>Section 085653</td>
<td>Security Windows</td>
<td>10</td>
</tr>
<tr>
<td>Section 087100</td>
<td>Door Hardware</td>
<td>17</td>
</tr>
<tr>
<td>Section 087163</td>
<td>Detention Door Hardware</td>
<td>12</td>
</tr>
<tr>
<td>Section 088000</td>
<td>Glazing</td>
<td>13</td>
</tr>
<tr>
<td>Section 088300</td>
<td>Mirrors</td>
<td>5</td>
</tr>
<tr>
<td>Section 088710</td>
<td>Safety and Security Window Film</td>
<td>3</td>
</tr>
<tr>
<td>Section 088853</td>
<td>Security Glazing</td>
<td>10</td>
</tr>
<tr>
<td>Section 089000</td>
<td>Louvers and Vents</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 09 – FINISHES

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 090000</td>
<td>Schedule of Finishes</td>
<td>7</td>
</tr>
<tr>
<td>Section 092216</td>
<td>Non-Structural Metal Framing</td>
<td>7</td>
</tr>
<tr>
<td>Section 092900</td>
<td>Gypsum Board</td>
<td>8</td>
</tr>
<tr>
<td>Section 095133</td>
<td>Acoustical Metal Pan Ceilings</td>
<td>7</td>
</tr>
<tr>
<td>Section 095753</td>
<td>Security Ceiling Assemblies</td>
<td>10</td>
</tr>
<tr>
<td>Section 096513</td>
<td>Resilient Base and Accessories</td>
<td>5</td>
</tr>
<tr>
<td>Section 096519</td>
<td>Resilient Tile Flooring</td>
<td>6</td>
</tr>
<tr>
<td>Section 096536</td>
<td>Static-Control Resilient Flooring</td>
<td>8</td>
</tr>
<tr>
<td>Section 096566</td>
<td>Resilient Athletic Flooring</td>
<td>5</td>
</tr>
<tr>
<td>Section 096723</td>
<td>Resinous Flooring</td>
<td>6</td>
</tr>
<tr>
<td>Section 099113</td>
<td>Exterior Painting</td>
<td>5</td>
</tr>
<tr>
<td>Section 099123</td>
<td>Interior Painting</td>
<td>7</td>
</tr>
<tr>
<td>Section 099300</td>
<td>Staining and Transparent Finishes</td>
<td>5</td>
</tr>
<tr>
<td>Section 099600</td>
<td>High Performance Coatings</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 10 – SPECIALTIES

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 101100</td>
<td>Visual Display Units (Pegboards)</td>
<td>5</td>
</tr>
<tr>
<td>Section 101400</td>
<td>Signage</td>
<td>5</td>
</tr>
<tr>
<td>Section 101426</td>
<td>Post and Panel Signage</td>
<td>7</td>
</tr>
<tr>
<td>Section 102113.14</td>
<td>Stainless Steel Toilet Compartments</td>
<td>6</td>
</tr>
<tr>
<td>Section 102213</td>
<td>Wire Mesh Partitions</td>
<td>7</td>
</tr>
<tr>
<td>Section 102600</td>
<td>Wall and Door Protection</td>
<td>5</td>
</tr>
<tr>
<td>Section 102800</td>
<td>Toilet, Bath, and Laundry Accessories</td>
<td>5</td>
</tr>
<tr>
<td>Section 102813.63</td>
<td>Detention Toilet Accessories</td>
<td>9</td>
</tr>
<tr>
<td>Section 104413</td>
<td>Fire Protection Cabinets</td>
<td>5</td>
</tr>
<tr>
<td>Section 104416</td>
<td>Fire Extinguishers</td>
<td>3</td>
</tr>
<tr>
<td>Section 105113</td>
<td>Metal Lockers</td>
<td>6</td>
</tr>
<tr>
<td>Section 105113.10</td>
<td>Metal Personal Storage Lockers</td>
<td>14</td>
</tr>
<tr>
<td>Section 105113.13</td>
<td>Metal Evidence Lockers</td>
<td>8</td>
</tr>
<tr>
<td>Section 107516</td>
<td>Ground Set Flagpoles</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 11 – EQUIPMENT

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 111900</td>
<td>Detention Equipment</td>
<td>4</td>
</tr>
<tr>
<td>Section 111916</td>
<td>Detention Gun Lockers</td>
<td>6</td>
</tr>
<tr>
<td>Section 113100</td>
<td>Residential Appliances</td>
<td>6</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DIVISION 12 – FURNISHINGS
- Section 122113 Horizontal Louver Blinds
- Section 123553.16 Plastic-Laminate Clad Laboratory Casework (Durcon Countertop & Sink)
- Section 123623.13 Plastic-Laminate Clad Countertops
- Section 124813 Entrance Floor Mats and Frames
- Section 125500 Detention Furniture

DIVISION 14 – CONVEYING EQUIPMENT
- Section 142400 Two-Stop Hole-less Hydraulic Passenger Elevator with 2,000-Pound Capacity

DIVISION 22 – PLUMBING
- Section 220513 Common Motor Requirements for Plumbing Equipment
- Section 220516 Expansion Fittings and Loops for Plumbing Piping
- Section 220517 Sleeves and Sleeve Seals for Plumbing Piping
- Section 220518 Escutcheons for Plumbing Piping
- Section 220519 Meters and Gages for Plumbing Piping
- Section 220523.12 Ball Valves for Plumbing Piping
- Section 220523.14 Check Valves for Plumbing Piping
- Section 220523.15 Gate Valves for Plumbing Piping
- Section 220529 Hangers and Supports for Plumbing Piping and Equipment
- Section 220553 Identification for Plumbing Piping and Equipment
- Section 220719 Plumbing Piping Insulation
- Section 221116 Domestic Water Piping
- Section 221119 Domestic Water Piping Specialties
- Section 221123 Domestic Water Pumps
- Section 221316 Sanitary Waste and Vent Piping
- Section 221319 Sanitary Waste Piping Specialties
- Section 221319.13 Sanitary Drains
- Section 223300 Electric, Domestic-Water Heaters
- Section 223400 Fuel-Fired, Domestic-Water Heaters
- Section 224213.13 Commercial Water Closets
- Section 224216.13 Commercial Lavatories
- Section 224216.16 Commercial Sinks
- Section 224223 Commercial Showers
- Section 224500 Emergency Plumbing Fixtures
- Section 224600 Security Plumbing Fixtures

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING
- Section 230000 Basic Mechanical Materials and Methods
- Section 230130.51 HVAC Air Distribution System Cleaning
- Section 230513 Common Motor Requirements for HVAC Equipment
- Section 230517 Sleeves and Sleeve Seals for HVAC Piping
- Section 230518 Escutcheons for HVAC Piping
- Section 230529 Hangers and Supports for HVAC Piping and Equipment
- Section 230548 Vibration and Seismic Controls for HVAC
- Section 230553 Identification for HVAC Piping and Equipment

East Lyme Public Safety Building Renovations – Niantic
TOC-4
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>230593</td>
<td>Testing, Adjusting, and Balancing for HVAC</td>
<td>17</td>
</tr>
<tr>
<td>230713</td>
<td>Duct Insulation</td>
<td>14</td>
</tr>
<tr>
<td>230900</td>
<td>Automatic Temperature Controls</td>
<td>29</td>
</tr>
<tr>
<td>231126</td>
<td>Facility Liquefied-Petroleum Gas Piping</td>
<td>14</td>
</tr>
<tr>
<td>232300</td>
<td>Refrigerant Piping</td>
<td>11</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ducts</td>
<td>16</td>
</tr>
<tr>
<td>233300</td>
<td>Air Duct Accessories</td>
<td>12</td>
</tr>
<tr>
<td>233346</td>
<td>Flexible Ducts</td>
<td>3</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC Power Ventilators</td>
<td>7</td>
</tr>
<tr>
<td>233600</td>
<td>Air Terminal Units</td>
<td>7</td>
</tr>
<tr>
<td>273713.23</td>
<td>Registers and Grilles</td>
<td>3</td>
</tr>
<tr>
<td>237416.11</td>
<td>Packaged Rooftop Air-Conditioning Units</td>
<td>16</td>
</tr>
<tr>
<td>237433</td>
<td>Dedicated Outdoor Air Systems</td>
<td>11</td>
</tr>
<tr>
<td>238127</td>
<td>VRV heat Pump Units</td>
<td>5</td>
</tr>
<tr>
<td>260500</td>
<td>Common Work Results for Electrical</td>
<td>4</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
<td>6</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
<td>6</td>
</tr>
<tr>
<td>260533</td>
<td>Raceway and Boxes for Electrical Systems</td>
<td>10</td>
</tr>
<tr>
<td>260548</td>
<td>Vibration and Seismic Controls for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
<td>9</td>
</tr>
<tr>
<td>260923</td>
<td>Lighting Control Devices</td>
<td>6</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
<td>9</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
<td>7</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>8</td>
</tr>
<tr>
<td>263213</td>
<td>Engine Generators</td>
<td>15</td>
</tr>
<tr>
<td>263600</td>
<td>Transfer Switches</td>
<td>9</td>
</tr>
<tr>
<td>265119</td>
<td>LED Interior Lighting</td>
<td>9</td>
</tr>
<tr>
<td>265619</td>
<td>LED Exterior Lighting</td>
<td>9</td>
</tr>
<tr>
<td>271100</td>
<td>Communication Equipment Rooms</td>
<td>8</td>
</tr>
<tr>
<td>271300</td>
<td>Communication Backbone Cabling</td>
<td>12</td>
</tr>
<tr>
<td>271500</td>
<td>Communications Horizontal Cabling</td>
<td>12</td>
</tr>
<tr>
<td>272100</td>
<td>Network Server Equipment</td>
<td>6</td>
</tr>
<tr>
<td>280513</td>
<td>Conductors and Cables for Electronic Safety and Security</td>
<td>11</td>
</tr>
<tr>
<td>280526</td>
<td>Grounding and Bonding for Electronic Safety and Security</td>
<td>4</td>
</tr>
<tr>
<td>280528</td>
<td>Pathways for Electronic Safety and Security</td>
<td>8</td>
</tr>
<tr>
<td>280544</td>
<td>Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling</td>
<td>3</td>
</tr>
<tr>
<td>281300</td>
<td>Access Controls</td>
<td>14</td>
</tr>
<tr>
<td>281600</td>
<td>Intrusion Detection</td>
<td>15</td>
</tr>
<tr>
<td>282300</td>
<td>Video Surveillance</td>
<td>14</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DIVISION 31 – EARTHWORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>311100</td>
<td>Clearing and Grubbing</td>
<td>4</td>
</tr>
<tr>
<td>312310</td>
<td>Earthwork</td>
<td>20</td>
</tr>
</tbody>
</table>

DIVISION 32 – EXTERIOR IMPROVEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>321216</td>
<td>Bituminous Concrete Pavement</td>
<td>2</td>
</tr>
<tr>
<td>321623</td>
<td>Curbing</td>
<td>6</td>
</tr>
<tr>
<td>321723</td>
<td>Pavement Markings</td>
<td>9</td>
</tr>
<tr>
<td>323113</td>
<td>Chain Link Fences and Gates</td>
<td>13</td>
</tr>
<tr>
<td>323300</td>
<td>Bollards</td>
<td>3</td>
</tr>
<tr>
<td>329100</td>
<td>Planting Soil</td>
<td>13</td>
</tr>
<tr>
<td>329200</td>
<td>Turf and Grass</td>
<td>13</td>
</tr>
</tbody>
</table>

APPENDIX

Limited Asbestos-Containing Materials Inspection Report, dated April 22, 2019 - Eagle Environmental 22

END OF TABLE OF CONTENTS
SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
 A. Comply with NEMA MG 1 unless otherwise indicated.
 B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
 A. Duty: Continuous duty at ambient temperature of 100 deg F and at altitude of 3300 feet above sea level.
 B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
SECTION 220516 - EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Flexible-hose packless expansion joints.
 2. Metal-bellows packless expansion joints.
 3. Rubber packless expansion joints.
 5. Alignment guides and anchors.
 6. Pipe loops and swing connections.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Delegated-Design Submittal: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For expansion joints to include in maintenance manuals.
1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

2.2 PACKLESS EXPANSION JOINTS

A. Flexible-Hose Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flex Pression Ltd.
 b. Flex-Hose Co., Inc.
 c. Flexicraft Industries.
 d. Mason Industries, Inc.
 e. Metraflex Company (The).
 f. Unisource Manufacturing, Inc.

2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.

4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.
 a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.

5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.

7. Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6: Carbon-steel fittings with flanged end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.

B. Metal-Bellows Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Adsco Manufacturing LLC.
 b. American BOA, Inc.
 c. Badger Industries, Inc.
 d. Expansion Joint Systems, Inc.
 e. Flex Pression Ltd.
 f. Flex-Hose Co., Inc.
 g. Flexicraft Industries.
 h. Flex-Weld, Inc.
 i. Flo Fab Inc.
 j. Hyspan Precision Products, Inc.
 k. Mason Industries, Inc.
 l. Metraflex Company (The).
 m. Proco Products, Inc.
 n. Senior Flexonics Pathway.
 o. Tozen Corporation.
 q. Unaflex.
 r. Unisource Manufacturing, Inc.
 s. Universal Metal Hose.
 t. WahlcoMetroflex.
 3. Type: Circular, corrugated bellows with external tie rods.
 4. Minimum Pressure Rating: 150 psig, unless otherwise indicated.
 5. Configuration: Single joint class(es), unless otherwise indicated.
 a. End Connections for Copper Tubing NPS 2 and Smaller: threaded.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: threaded.
 c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.
 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 and Larger: Flanged.

C. Rubber Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flex-Hose Co., Inc.
 c. Flexicraft Industries.
 d. Flex-Weld, Inc.
 e. Garlock Sealing Technologies.
 f. General Rubber Corporation.
 g. Mason Industries, Inc.
 h. Metraflex Company (The).
 i. Proco Products, Inc.
 j. Red Valve Company, Inc.
 k. Tozen Corporation.
 l. Unaflex.
 m. Unisource Manufacturing, Inc.
 4. Arch Type: Single or multiple arches with external control rods.
 5. Spherical Type: Single or multiple spheres with external control rods.
 6. Minimum Pressure Rating for NPS 1-1/2 to NPS 4: 150 psig at 220 deg F.
 7. Minimum Pressure Rating for NPS 5 and NPS 6: 140 psig at 200 deg F.
 8. Minimum Pressure Rating for NPS 8 to NPS 12: 140 psig at 180 deg F.
 10. Material for Fluids Containing Gas, Hydrocarbons, or Oil: Buna-N.

2.3 GROOVED-JOINT EXPANSION JOINTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Anvil International.
 2. Shurjoint Piping Products.
 3. Victaulic Company.

B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.
C. Standard: AWWA C606, for grooved joints.

D. Nipples: Galvanized, ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.

2.4 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Adsco Manufacturing LLC.
 b. Advanced Thermal Systems, Inc.
 c. Flex-Hose Co., Inc.
 d. Flexicraft Industries.
 e. Flex-Weld, Inc.
 f. Hyspan Precision Products, Inc.
 g. Mason Industries, Inc.
 h. Metraflex Company (The).
 i. Senior Flexonics Pathway.
 j. U.S. Bellows, Inc.
 k. Unisource Manufacturing, Inc.

2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.

B. Anchor Materials:

1. Steel Shapes and Plates: ASTM A 36/A 36M.
2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

5. Chemical Fasteners: Insert-type stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.

 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.

B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

C. Install rubber packless expansion joints according to FSA-PSJ-703.

D. Install grooved-joint expansion joints to grooved-end steel piping.

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.

C. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install two guides on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

C. Attach guides to pipe, and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:

2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.
F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.

1. Anchor Attachment to Steel Structural Members: Attach by welding.
2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 22016
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 STACK-SLEEVE FITTINGS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Zurn Industries, LLC.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).
5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic or Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).
5. Proco Products, Inc.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.
B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Copper piping: Molded PVC sleeves.
 b. Ferrous Piping (all sizes): Galvanized-steel-pipe sleeves.

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with rough-brass finish.
 h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 i. Bare Piping in Equipment Rooms: Split-casting brass type with rough-brass finish.
 j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bimetallic-actuated thermometers.
2. Filled-system thermometers.
4. Thermowells.
5. Dial-type pressure gages.
7. Test plugs.
8. Test-plug kits.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ashcroft Inc.
2. Ernst Flow Industries.
3. Marsh Bellofram.
8. REOTEMP Instrument Corporation.
10. Trerice, H. O. Co.
11. Watts; a Watts Water Technologies company.
12. Weiss Instruments, Inc.
13. Weksler Glass Thermometer Corp.
14. WIKA Instrument Corporation.
15. Winters Instruments - U.S.

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle and rigid, bottom, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 FILLED-SYSTEM THERMOMETERS

A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ashcroft Inc.
 b. Marsh Bellofram.
 c. Miljoco Corporation.
 e. REOTEMP Instrument Corporation.
f. Trerice, H. O. Co.
g. Weiss Instruments, Inc.

3. Case: Sealed type, cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Element: Bourdon tube or other type of pressure element.
5. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
8. Window: Glass.
10. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device rigid, bottom; with ASME B1.1 screw threads.
11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.

a. Design for Thermowell Installation: Bare stem.

12. Accuracy: Plus or minus 1 percent of scale range.

2.3 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Trerice, H. O. Co.

3. Case: Cast aluminum; 6-inch nominal size.
4. Case Form: Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.

 a. Design for Thermowell Installation: Bare stem.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum and of length to suit installation.

 a. Design for Thermowell Installation: Bare stem.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.4 THERMOWELLS

A. Thermowells:

 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.5 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Ashcroft Inc.
c. Ernst Flow Industries.
d. Flo Fab Inc.
e. Marsh Bellofram.
f. Miljoco Corporation.
g. Noshok.
h. Palmer Wahl Instrumentation Group.
i. REOTEMP Instrument Corporation.
j. Tel-Tru Manufacturing Company.
k. Trerice, H. O. Co.
l. Watts; a Watts Water Technologies company.
m. Weiss Instruments, Inc.

3. Case: Liquid-filled Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.6 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and porous-metal-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.7 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flow Design, Inc.
3. Nexus Valve, Inc.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Company, Inc.
6. Trerice, H. O. Co.
7. Watts; a Watts Water Technologies company.
8. Weiss Instruments, Inc.
9. Weksler Glass Thermometer Corp.

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: EPDM self-sealing rubber.

2.8 TEST-PLUG KITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flow Design, Inc.
3. Nexus Valve, Inc.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Company, Inc.
6. Trerice, H. O. Co.
7. Watts; a Watts Water Technologies company.
8. Weiss Instruments, Inc.

B. Furnish one test-plug kit containing thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.

D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.

E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.

F. Carrying Case: Metal or plastic, with formed instrument padding.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install test plugs in piping tees.

K. Install thermometers in the following locations:

1. Inlet and outlet of each water heater.
2. Inlets and outlets of each domestic water pump.

L. Install pressure gages in the following locations:

1. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.
3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater and Pump shall be the following:
 1. Liquid-filled Sealed, bimetallic-actuated type.
 4. Test plug with EPDM self-sealing rubber inserts.

B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.
B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F.
C. Scale Range for Domestic Cooled-Water Piping: 0 to 100 deg F.

3.6 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 200 psi.
B. Scale Range for Domestic Water Piping: 0 to 200 psi.

END OF SECTION 220519
SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze ball valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Lance Valves.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Watts; a Watts Water Technologies company.

2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded or soldered.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.

VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:
 1. Refer to Valve Schedule on Drawings

END OF SECTION 220523.12
SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene-diene terpolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Apollo Valves; Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions.
 d. Hammond Valve.
 e. Jenkins Valves; Crane Energy Flow Solutions.
 f. KITZ Corporation.
 g. Macomb Groups (The).
 h. Milwaukee Valve Company.
 i. NIBCO INC.
j. Powell Valves.
k. Red-White Valve Corporation.
l. Stockham; Crane Energy Flow Solutions.
m. Watts; a Watts Water Technologies company.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

B. Bronze Swing Check Valves with Nonmetallic Disc, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Jenkins Valves; Crane Energy Flow Solutions.
 e. KITZ Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corporation.
 i. Stockham; Crane Energy Flow Solutions.
 j. Watts; a Watts Water Technologies company.

2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: PTFE.

C. Bronze Swing Check Valves with Bronze Disc, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Apollo Valves; Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions.
 d. Jenkins Valves; Crane Energy Flow Solutions.
 e. Jomar Valve.
 f. KITZ Corporation.
 g. Macomb Groups (The).
h. Milwaukee Valve Company.
i. NIBCO INC.
j. Red-White Valve Corporation.
k. Stockham; Crane Energy Flow Solutions.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 300 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded or soldered. See valve schedule articles.
f. Disc: Bronze.

D. Bronze Swing Check Valves with Nonmetallic Disc, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane; Crane Energy Flow Solutions.
b. Hammond Valve.
c. Jenkins Valves; Crane Energy Flow Solutions.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Watts; a Watts Water Technologies company.

2. Description:

a. Standard: MSS SP-80, Type 4.
b. CWP Rating: 300 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded or soldered. See valve schedule articles.
f. Disc: PTFE.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.
D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.
2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
3. Lift Check Valves: With stem upright and plumb.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded
3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves with bronze disc, Class 125, with threaded end connections.
SECTION 220523.15 - GATE VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze gate valves.
 2. Iron gate valves.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. NRS: Nonrising stem.
 C. OS&Y: Outside screw and yoke.
 D. RS: Rising stem.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set gate valves closed to prevent rattling.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. RS Valves in Insulated Piping: With 2-inch stem extensions.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE GATE VALVES

A. Bronze Gate Valves, NRS, Class 125:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Apollo Valves; Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions.
 d. Hammond Valve.
 e. Jenkins Valves; Crane Energy Flow Solutions.
 f. Jomar Valve.
 g. KITZ Corporation.
 h. Macomb Groups (The).
 i. Milwaukee Valve Company.
GATE VALVES FOR PLUMBING PIPING

j. NIBCO INC.
k. Powell Valves.
l. Red-White Valve Corporation.
m. Stockham; Crane Energy Flow Solutions.
n. Watts; a Watts Water Technologies company.

2. Description:

a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

B. Bronze Gate Valves, RS, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. American Valve, Inc.
b. Apollo Valves; Conbraco Industries, Inc.
c. Crane; Crane Energy Flow Solutions.
d. Hammond Valve.
e. Jenkins Valves; Crane Energy Flow Solutions.
f. KITZ Corporation.
g. Macomb Groups (The).
h. Milwaukee Valve Company.
i. NIBCO INC.
j. Powell Valves.
k. Stockham; Crane Energy Flow Solutions.
l. Watts; a Watts Water Technologies company.

2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

C. Bronze Gate Valves, NRS, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Apollo Valves; Conbraco Industries, Inc.
b. Hammond Valve.
c. KITZ Corporation.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Powell Valves.
g. Red-White Valve Corporation.
h. Watts; a Watts Water Technologies company.

2. Description:

a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

D. Bronze Gate Valves, RS, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Apollo Valves; Conbraco Industries, Inc.
b. Crane; Crane Energy Flow Solutions.
c. Hammond Valve.
d. KITZ Corporation.
e. Macomb Groups (The).
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Powell Valves.
i. Stockham; Crane Energy Flow Solutions.
j. Watts; a Watts Water Technologies company.

2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 IRON GATE VALVES

A. Iron Gate Valves, NRS, Class 150:
GATE VALVES FOR PLUMBING PIPING

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Flo Fab Inc.
 d. Hammond Valve.
 e. Jenkins Valves; Crane Energy Flow Solutions.
 f. KITZ Corporation.
 g. Legend Valve & Fitting, Inc.
 h. Macomb Groups (The).
 i. Milwaukee Valve Company.
 j. NIBCO INC.
 k. Powell Valves.
 l. Red-White Valve Corporation.
 m. Stockham; Crane Energy Flow Solutions.
 n. Watts; a Watts Water Technologies company.
 o. Zurn Industries, LLC.

2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: Gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

B. Iron Gate Valves, OS&Y, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Flo Fab Inc.
 d. Hammond Valve.
 e. Jenkins Valves; Crane Energy Flow Solutions.
 f. KITZ Corporation.
 g. Legend Valve & Fitting, Inc.
 h. Macomb Groups (The).
 i. Milwaukee Valve Company.
 j. NIBCO INC.
 k. Powell Valves.
 l. Red-White Valve Corporation.
 m. Stockham; Crane Energy Flow Solutions.
 n. Watts; a Watts Water Technologies company.

2. Description:
GATE VALVES FOR PLUMBING PIPING

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 200 psig.
c. Body Material: Gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

C. Iron Gate Valves, NRS, Class 250:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. NIBCO INC.
 d. Stockham; Crane Energy Flow Solutions.

2. Description:

 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: Gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

D. Iron Gate Valves, OS&Y, Class 250:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Powell Valves.
 g. Stockham; Crane Energy Flow Solutions.
 h. Watts; a Watts Water Technologies company.

2. Description:

 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: Gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. Use gate valves for shutoff service only.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
3.5 VALVE SCHEDULE

A. Refer to Drawing Schedule.
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Fiberglass pipe hangers.
4. Metal framing systems.
5. Thermal-hanger shield inserts.
6. Fastener systems.
7. Pipe stands.
8. Pipe positioning systems.
9. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Fiberglass strut systems.
 4. Pipe stands.
 5. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. Flex-Strut Inc.
 d. Thomas & Betts Corporation; A Member of the ABB Group.
 e. Unistrut; Part of Atkore International.
 f. Wesanco, Inc.
 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 4. Channels: Continuous slotted steel channel with inturned lips.
 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Carpenter & Paterson, Inc.
3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 9.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers and fiberglass pipe hangers and fiberglass strut systems and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
5. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
6. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
7. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
11. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
12. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
13. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
14. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
15. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

16. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

17. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.

18. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

19. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

20. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
a. Horizontal (MSS Type 54): Mounted horizontally.
b. Vertical (MSS Type 55): Mounted vertically.
c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
c. Carlton Industries, LP.
d. Champion America.
e. Craftmark Pipe Markers.
f. emedco.
g. Kolbi Pipe Marker Co.
h. LEM Products Inc.
i. Marking Services, Inc.
j. Seton Identification Products.

2. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

4. Background Color: Black.

5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
b. Brimar Industries, Inc.
c. Carlton Industries, LP.
d. Champion America.
e. Craftmark Pipe Markers.
f. emedco.
g. Kolbi Pipe Marker Co.
h. LEM Products Inc.
i. Marking Services, Inc.
j. Seton Identification Products.

2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

4. Background Color: Black.

5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
6. emedco.
7. LEM Products Inc.
8. Marking Services Inc.
10. Seton Identification Products.
11. Stranco, Inc.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8-inch-thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: Yellow.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.
4. Carlton Industries, LP.
5. Champion America.
7. emedeo.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.
11. Seton Identification Products.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 STENCILS

A. Stencils for Piping:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brimar Industries, Inc.
 b. Carlton Industries, LP.
 c. Champion America.
 d. Craftmark Pipe Markers.
 e. Kolbi Pipe Marker Co.
 f. Marking Services Inc.
2. Lettering Size: Size letters according to ASME A13.1 for piping.
4. Stencil Paint: Exterior, gloss, acrylic enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
5. Identification Paint: Exterior, acrylic enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

2.5 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.
4. Carlton Industries, LP.
5. Champion America.
7. emedco.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Sevices Inc.
11. Seton Identification Products.

B. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain or S-hook.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
6. emedco.
8. LEM Products Inc.
9. Marking Services Inc.
10. Seton Identification Products.

B. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Division 9.

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule:

1. Domestic Water Piping
 a. Background: Safety green.

2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Safety gray.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Hot Water: 2 inches, round.

2. Valve-Tag Colors:

3. Letter Colors:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Sanitary waste piping exposed to freezing conditions.
5. Storm-water piping exposed to freezing conditions.
6. Piping systems requiring Plenum Rating.
7. Roof drains and rainwater leaders.
8. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:

1. Section 220716 "Plumbing Equipment Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:
 a. One 10-foot section of NPS 2 straight pipe.
 b. One each of a 90-degree threaded, welded, and flanged elbow.
 c. One each of a threaded, welded, and flanged tee fitting.
 d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 e. Four support hangers including hanger shield and insert.
 f. One threaded strainer and one flanged strainer with removable portion of insulation.
 g. One threaded reducer and one welded reducer.
 h. One pressure temperature tap.
i. One mechanical coupling.

2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
4. Obtain Architect's approval of mockups before starting insulation application.
5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
7. Demolish and remove mockups when directed.

D. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

G. PLENUM RATED Insulation, basis of design FyreWrap 0.5 Plenum Insulation.

1. Product made from high-temperature insulation made from a calcia, magnesia, silica chemistry designed to enhance biosolubility.
 a. Thickness 1/2"
 b. Nominal Density 8pcf
 c. Standard Product Form Scrim Encapsulated
 d. Product Availability 24"w x 25LF 48"w x 25LF
 e. Flame Spread / Smoke Developed Rating <25 / <50 (encapsulated)

2. Typical System Properties
 b. UL 1887 – modified results Passes; Intertek Design Nos. UNI/BI 20-03, UNI/BI 20-04
 c. Plastic Pipe and Cable Sheathing PVC, CPVC, PB, PE, PP, PVDF and ABS
d. Plastic Pipe Size (minimum) 1" or larger individual pipes or pipe bundles Plastic Coated Cable Groupings 3 or more multi-stranded telecommunication wires

e. ASTM E136 Non-combustibility Passes

f. ASTM E84, UL 723, ULC S102.2 UL File No. R14514

3. Install on all existing ABS / PVC, non-plenum rated piping per manufacturer’s instructions.

2.2 INSULATING CEMENTS

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Ramco Insulation, Inc.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
c. Foster Brand; H. B. Fuller Construction Products.
d. Mon-Eco Industries, Inc.

D. PVC Jacket Adhesive: Compatible with PVC jacket. PLENUM RATED

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation.

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.

3. Service Temperature Range: 0 to 180 deg F.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Knauf Insulation.
 e. Mon-Eco Industries, Inc.
 f. Vimasco Corporation.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Vimasco Corporation.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.

4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants PLENUM RATED:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.

B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Foster Brand; H. B. Fuller Construction Products.
 b. Vimasco Corporation.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2.10 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications PLENUM RATED.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Compac Corporation.
 c. Venture Tape.
 2. Width: 2 inches.
 3. Thickness: 6 mils.
 5. Elongation: 500 percent.
 6. Tensile Strength: 18 lbf/inch in width.
2.12 SECUREMENTS

A. Bands:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. RPR Products, Inc.

2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2.13 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Engineered Brass Company.
 b. Insul-Teet Products Co.
 c. McGuire Manufacturing.
 d. Plumberex Specialty Products, Inc.
 e. Truebro.
 f. Zurn Industries, LLC.

 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Truebro.
 b. Zurn Industries, LLC.
2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for
above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and [three] locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 PIPING INSULATION SCHEDULE

A. Refer to Drawing Schedule

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.
 2. PVC: 20 mils thick.

D. Piping, Exposed:
 1. None.
 2. PVC: 30 mils thick.

END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Copper tube and fittings.
2. Ductile-iron pipe and fittings.
3. PEX
4. Piping joining materials.
5. Encasement for piping.
6. Transition fittings.
7. Dielectric fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.

B. Field quality-control reports.

1.5 FIELD CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of water service.
2. Do not interrupt water service without Construction Manager's written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

C. Comply with NSF Standard 372 for low lead.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

G. Copper Pressure-Seal-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Elkhart Products Corporation.
 c. NIBCO INC.
 d. Viega LLC.
 e. Mueller Industries
 2. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 3. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

H. Appurtenances for Grooved-End Copper Tubing:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Grinnell Mechanical Products.
 c. Shurjoint Piping Products.
 d. Victaulic Company.

2. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75/B 75M copper tube or ASTM B 584 bronze castings.

3. Mechanical Couplings for Grooved-End Copper Tubing:
 a. Copper-tube dimensions and design similar to AWWA C606.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating: 300 psig.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe:
 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Standard-Pattern, Mechanical-Joint Fittings:
 1. AWWA C110/A21.10, ductile or gray iron.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

C. Compact-Pattern, Mechanical-Joint Fittings:
 1. AWWA C153/A21.53, ductile iron.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

D. Push-on-Joint, Ductile-Iron Pipe:
 1. AWWA C151/A21.51.
 2. Push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

E. Standard-Pattern, Push-on-Joint Fittings:
 1. AWWA C110/A21.10, ductile or gray iron.

F. Compact-Pattern, Push-on-Joint Fittings:
DOMESTIC WATER PIPING

1. AWWA C153/A21.53, ductile iron.

H. Appurtenances for Grooved-End, Ductile-Iron Pipe:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Shurjoint Piping Products.
 b. Smith-Cooper International.
 c. Star Pipe Products.
 d. Victaulic Company.
 2. Fittings for Grooved-End, Ductile-Iron Pipe: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions that match pipe.
 3. Mechanical Couplings for Grooved-End, Ductile-Iron-Piping:
 a. AWWA C606 for ductile-iron-pipe dimensions.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating:
 1) NPS 14 to NPS 18: 250 psig.
 2) NPS 20 to NPS 46: 150 psig.

2.4 PEX TUBE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Apollo Valves; Conbraco Industries, Inc.
 2. Elkhart Products Corporation.
 3. IPEX USA LLC.
 4. Uponor.
 5. Viega LLC.
 6. Watts Radiant; a Watts Water Technologies company.
 7. Zurn Industries, LLC.

B. Tube Material: PEX plastic according to ASTM F 876 and ASTM F 877.

C. Fittings: ASTM F 1807, metal insert and copper crimp rings.

D. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 876; with plastic or corrosion-resistant-metal valve for each outlet.
2.5 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

F. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.6 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105/A21.5.

B. Form: Sheet or tube.

C. Color: Black or natural.

2.7 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Dresser, Inc.
 c. Ford Meter Box Company, Inc. (The).
 e. JCM Industries, Inc.
2.8 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industrial Unions, LLC.
 e. Jomar Valve.
 f. Matco-Norca.
 g. Watts; a Watts Water Technologies company.
 h. Wilkins.
 i. Zurn Industries, LLC.

3. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.
 f. Zurn Industries, LLC.

3. Factory-fabricated, bolted, companion-flange assembly.
4. Pressure Rating: 125 psig minimum at 180 deg F.
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

2. Nonconducting materials for field assembly of companion flanges.
4. Gasket: Neoprene or phenolic.
5. Bolt Sleeves: Phenolic or polyethylene.

E. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elster Perfection Corporation.
 b. Grinnell Mechanical Products.
 c. Matco-Norca.
 d. Precision Plumbing Products.
 e. Victaulic Company.
 3. Electroplated steel nipple complying with ASTM F 1545.
 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
 5. End Connections: Male threaded or grooved.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install underground ductile-iron pipe in PE encasement according to ASTM A674 or AWWA C105/A21.5.

E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

H. Install domestic water piping level without pitch and plumb.

I. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

L. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

M. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

N. Install piping to permit valve servicing.

O. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

P. Install piping free of sags and bends.

Q. Install fittings for changes in direction and branch connections.

R. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

S. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."
T. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

U. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

H. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
I. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 and larger: Use dielectric flanges or flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Support piping and tubing not listed in this article according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

 1. Piping Inspections:
a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.

c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging procedures prescribed by authorities having jurisdiction; if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
 c. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
3.12 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Refer to Drawing Schedule

3.13 VALVE SCHEDULE

A. Refer to Drawing Schedule

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vacuum breakers.
 2. Balancing valves.
 3. Temperature-actuated, water mixing valves.
 4. Strainers.
 5. Outlet boxes.
 6. Hose bibbs.
 7. Wall hydrants.
 8. Drain valves.
 10. Trap-seal primer valves.
 11. Trap-seal primer systems.
 13. Flexible connectors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.
 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Ames Fire & Waterworks.
 c. Apollo Valves; Conbraco Industries, Inc.
 d. Cash Acme.
 e. FEBCO.
 f. Rain Bird Corporation.
 g. Toro Company (The).
 h. Watts; a Watts Water Technologies company.
 i. Zurn Industries, LLC.

3. Size: NPS 1/4 to NPS 3, as required to match connected piping.

5. Inlet and Outlet Connections: Threaded.

6. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; Conbraco Industries, Inc.
 b. Arrowhead Brass Products.
 c. Cash Acme.
 d. Legend Valve & Fitting, Inc.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts; a Watts Water Technologies company.
DOMESTIC WATER PIPING SPECIALTIES

h. Woodford Manufacturing Company.
i. Zurn Industries, LLC.

5. Finish: Rough bronze.

C. Pressure Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Ames Fire & Waterworks.
 c. Apollo Valves; Conbraco Industries, Inc.
 d. FEBCO.
 e. Flomatic Corporation.
 f. Toro Company (The).
 g. Watts; a Watts Water Technologies company.
 h. Zurn Industries, LLC.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig maximum, through middle third of flow range.
5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

D. Laboratory-Faucet Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Watts; a Watts Water Technologies company.
 c. Woodford Manufacturing Company.
 d. Zurn Industries, LLC.

5. End Connections: Threaded.
6. Finish: Chrome plated.

E. Spill-Resistant Vacuum Breakers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Watts; a Watts Water Technologies company.
 c. Zurn Industries, LLC.

3. Operation: Continuous-pressure applications.

4. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.4 BACKFLOW PREVENTERS

A. Hose-Connection Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Watts; a Watts Water Technologies company.
 c. Woodford Manufacturing Company.

3. Operation: Up to 10-foot head of water back pressure.

4. Inlet Size: NPS 1/2 or NPS 3/4.

5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.

6. Capacity: At least 3-gpm flow.

B. Backflow-Preventer Test Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. FEBCO.
 c. Flomatic Corporation.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.

2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.5 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Corporation.
 d. NIBCO INC.
 e. Schneider Electric USA, Inc.
 f. TACO Incorporated.
 g. Watts; a Watts Water Technologies company.

2. Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.

3. Body: brass or bronze.

4. Size: Same as connected piping, but not larger than NPS 2.

5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.6 SELF ACTUATING THERMOSTATIC BALANCING VALVE (SATBV)

A. Basis of Design: Furnish and install CircuitSolver as indicated on the plans. CircuitSolver shall be self contained and fully automatic without additional piping or control mechanisms. Valve shall be a CircuitSolver as manufactured by ThermOmegaTech, Inc., or equivalent by approved manufacturer.

1. SATBV device shall regulate the flow of recirculated domestic hot water based on water temperature entering the SATBV regardless of system operating pressure.
 a. Even when fully closed the SATBV shall bypass a small amount hot water to maintain dynamic control of the recirculating loop.
 b. SATBV shall be factory adjustable as required by project conditions.
 c. SATBV shall be available in sizes ranging from ½” NPT to 2” NPT.

2. SATBV device’s body and all internal components shall be constructed of stainless steel with major components constructed of type 303 stainless steel.

 A. SATBV sizes ½” through 2” shall be rated to 200 PSIG maximum working pressure.
 1. All SATBV shall be standard tapered female pipe thread, NPT.
 B. All SATBV shall be rated to 300°F (148.9°C) maximum working temperature.
 C. All SATBV shall be NSF-61 certified for use in all domestic water systems.
 D. Thermal actuator shall be spring loaded and self cleaning, delivering closing thrust sufficient to keep orifice opening free of scale deposits.

3. Installation of CIRCUITSOLVER shall be made by qualified tradesmen. Install SATBV in each domestic hot water return piping branch beyond last hot water device in that branch.

 A. Provide suitable line size isolation valves, unions, and strainer as indicated in piping detail shown on the drawings.
 B. Provide suitable access panel as required in non-accessible ceilings and walls.
2.7 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Armstrong International, Inc.
 c. Cash Acme.
 d. Honeywell Home Water Controls.
 e. Legend Valve & Fitting, Inc.
 f. Leonard Valve Company.
 g. Powers.
 h. Symmons Industries, Inc.
 i. TACO Incorporated.
 j. Watts; a Watts Water Technologies company.
 k. Zurn Industries, LLC.

4. Type: Thermostatically controlled, water mixing valve.

5. Material: Bronze body with corrosion-resistant interior components.

6. Connections: Threaded union inlets and outlet.

7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.

8. Refer to Drawing Schedules for additional criteria

B. Primary, Thermostatic, Water Mixing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Apollo Valves; Conbraco Industries, Inc.
 c. Armstrong International, Inc.
 d. Honeywell Home Water Controls
 e. Lawler Manufacturing Company, Inc.
 f. Leonard Valve Company.
 g. Powers.
 h. Symmons Industries, Inc.
 i. Zurn Industries, LLC.

3. Pressure Rating: 125 psig minimum unless otherwise indicated.

4. Refer to Drawing Schedules for additional criteria
2.8 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.

2.9 HOSE BIBBS

A. Hose Bibbs:

4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
7. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
9. Finish for Service Areas: Chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.10 WALL HYDRANTS

A. Moderate-Climate Wall Hydrants:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Watts; a Watts Water Technologies company.
 e. Woodford Manufacturing Company.
 f. Zurn Industries, LLC.
4. Operation: Loose key.
5. Inlet: NPS 3/4 or NPS 1.
6. Outlet:
 a. Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
 b. Garden-hose thread complying with ASME B1.20.7.

7. Box: Deep, flush mounted with cover.
8. Box and Cover Finish: Chrome plated.
9. Outlet:
 a. Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
 b. Garden-hose thread complying with ASME B1.20.7.

11. Operating Key(s): Two with each wall hydrant.

B. Vacuum Breaker Wall Hydrants:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Arrowhead Brass Products.
 d. Mansfield Plumbing Products LLC.
 e. Prier Products, Inc.
 f. Watts; a Watts Water Technologies company.
 g. Woodford Manufacturing Company.
 h. Zurn Industries, LLC.

2. Standard: ASSE 1019, Type A or Type B.

3. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
4. Classification: Type A, for automatic draining with hose removed or Type B, for automatic draining with hose removed or with hose attached and nozzle closed.
7. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
8. Inlet: NPS 1/2 or NPS 3/4.

2.11 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: Class 125.
5. Inlet: NPS 3/4 threaded or solder joint.
6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

C. Stop-and-Waste Drain Valves:

1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
2. Pressure Rating: 200-psig minimum CWP or Class 125.
5. Drain: NPS 1/8 side outlet with cap.

2.12 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 c. Josam Company.
 d. MIFAB, Inc.
 e. Precision Plumbing Products.
 f. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; a subsidiary of McWane Inc.
 h. Watts; a Watts Water Technologies company.
 i. Zurn Industries, LLC.
3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.
2.13 TRAP SEAL PROTECTION DEVICES

A. Barrier Type Trap Seal Protection Devices:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. SureSeal Manufacturing
 c. Provent Systems Inc.
 3. Body: ASB Plastic
 4. Diaphragm & Sealing Gasket: Neoprene Rubber
 5. Size: 2 inch, 3 inch, or 4 inch.

2.14 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Flex Pression Ltd.
 2. Flex-Hose Co., Inc.
 3. Flexicraft Industries.
 4. Flex-Weld, Inc.
 5. Hyspan Precision Products, Inc.
 7. Metraflex Company (The).
 8. Proco Products, Inc.
 10. Unaflex.
 11. Universal Metal Hose.

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
3. Do not install bypass piping around backflow preventers.

B. Install balancing valves in locations where they can easily be adjusted.

C. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

1. Install cabinet-type units recessed in or surface mounted on wall as specified.

D. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

E. Set nonfreeze, nondraining-type post hydrants in concrete or pavement.

F. Install water-hammer arresters in water piping according to PDI-WH 201.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

2. Thermostatic mixing valves.
B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each vacuum breaker according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 221123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. In-line, sealless centrifugal pumps.

1.3 DEFINITIONS
 A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.
1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flo Fab Inc.
2. Grundfos Pumps Corp.
3. TACO Comfort Solutions, Inc.
4. WILO USA LLC - WILO Canada Inc.

B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.

C. Pump Construction:

1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
2. Casing: Bronze, with threaded or companion-flange connections.
4. Motor: Single speed, unless otherwise indicated.

D. Capacities and Characteristics:

1. Refer to schedules on drawings for pump requirements

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

A. Pressure Switches: Electric, adjustable for control of water-supply pump.

1. Type: Water-immersion pressure sensor, for installation in piping.
2. Enclosure: NEMA 250, Type 4X.
3. Operation of Pump: On or off.
4. Transformer: Provide if required.
5. Power Requirement: 120 V, ac.

B. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 1. Type: Water-immersion temperature sensor, for installation in piping.
 2. Range: 65 to 200 deg F.
 3. Enclosure: NEMA 250, Type 4X.
 4. Operation of Pump: On or off.
 5. Transformer: Provide if required.
 7. Settings: Start pump at 105 deg F (adj) and stop pump at 120 deg F (adj).

C. Timers: Electric, for control of hot-water circulation pump.
 1. Type: Programmable, seven-day clock with manual override on-off switch.
 2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
 3. Operation of Pump: On or off.
 4. Transformer: Provide if required.
 5. Power Requirement: 120-V ac.
 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.

D. Time-Delay Relays: Electric, for control of hot-water circulation pump between water heater and connected hot-water storage tank.
 1. Type: Adjustable time-delay relay.
 2. Range: Up to five minutes.
 4. Enclosure: NEMA 250, Type 4X.
 5. Operation of Pump: On or off.
 6. Transformer: Provide if required.
 8. Programmable Sequence of Operation: Limit pump operation to periods of burner operation plus maximum five minutes after the burner stops.

E. Integral Pump Control
 One-touch operation
 Intuitive one-touch operation for selecting seven different hydraulic settings.
 3 Fixed Speeds
 3 Constant Pressure settings
 AutoAdapt feature
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.

C. Install vertically mounted, in-line, close-coupled centrifugal pumps with shaft vertical.

D. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of size required to support pump weight.

 1. Comply with requirements for vibration isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
 2. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

E. Install pressure switches in water supply piping.

F. Install thermostats in hot-water return piping.

G. Install timers in water heater / mechanical room.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.

 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:

 a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 b. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 c. Vertically mounted, in-line, close-coupled centrifugal pumps.
 d. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."
D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties."

1. Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."

E. Connect pressure switches, thermostats, time-delay relays, and timers to pumps that they control.

3.4 IDENTIFICATION

A. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Set pressure switches, thermostats, timers, and time-delay relays for automatic starting and stopping operation of pumps.
5. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Start motor.
8. Open discharge valve slowly.
9. Adjust temperature settings on thermostats.
10. Adjust timer settings.

3.6 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For hubless, single-stack drainage system. Include plans, elevations, sections, and details.

1.4 INFORMATIONAL SUBMITTALS
 A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.
 B. Field quality-control reports.

1.5 FIELD CONDITIONS
 A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Architect, Construction Manager and Owner no fewer than two days in advance of proposed interruption of sanitary waste service.
SANITARY WASTE AND VENT PIPING

2. Do not proceed with interruption of sanitary waste service without Construction Manager's and Owner's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 PIPING MATERIALS

A. Facility shall have Plenum Return Ceilings, all above grade piping to be metallic or plenum rated. Below grade piping can be value engineered to solid core schedule 40 PVC if there is a cost savings to the owner.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es).

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Heavy-Duty, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Charlotte Pipe and Foundry Company.
c. Clamp-All Corp.
d. Mission Rubber Company, LLC; a division of MCP Industries.
e. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 2. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Fernco Inc.
 3) Froet Industries LLC.
SANITARY WASTE AND VENT PIPING

4) Mission Rubber Company, LLC; a division of MCP Industries.
5) Plastic Oddities.

c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
d. End Connections: Same size as and compatible with pipes to be joined.
e. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

3. Shielded, Nonpressure Transition Couplings:

a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 2) Mission Rubber Company, LLC; a division of MCP Industries.

c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
d. End Connections: Same size as and compatible with pipes to be joined.

d. Center-Sleeve Material: Manufacturer's standard.

4. Pressure Transition Couplings:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Dresser, Inc.
 3) EBAA Iron, Inc.
 4) Ford Meter Box Company, Inc. (The).
 6) JCM Industries, Inc.
 7) Romac Industries, Inc.
 8) Viking Johnson.

c. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
d. Center-Sleeve Material: Manufacturer's standard.
SANITARY WASTE AND VENT PIPING

e. Gasket Material: Natural or synthetic rubber.
f. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:

1. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) A.Y. McDonald Mfg. Co.
 2) Capitol Manufacturing Company.
 3) Central Plastics Company.
 4) HART Industrial Unions, LLC.
 5) Jomar Valve.
 6) Matco-Norca.
 7) Watts; a Watts Water Technologies company.
 8) Wilkins.
 9) Zurn Industries, LLC.
 b. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 125 psig minimum at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

2. Dielectric Flanges:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) Matco-Norca.
 4) Watts; a Watts Water Technologies company.
 5) Wilkins.
 6) Zurn Industries, LLC.
 b. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 125 psig minimum at 180 deg F.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

3. Dielectric-Flange Insulating Kits:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1) Advance Products & Systems, Inc.
2) Calpico, Inc.
3) Central Plastics Company.
4) Pipeline Seal and Insulator, Inc.

b. Description:

1) Nonconducting materials for field assembly of companion flanges.
2) Pressure Rating: 150 psig.
3) Gasket: Neoprene or phenolic.
4) Bolt Sleeves: Phenolic or polyethylene.
5) Washers: Phenolic with steel backing washers.

4. Dielectric Nipples:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Elster Perfection Corporation.
2) Grinnell Mechanical Products.
3) Matco-Norca.
4) Precision Plumbing Products.
5) Victaulic Company.

b. Description:

1) Standard: IAPMO PS 66.
2) Electroplated steel nipple.
3) Pressure Rating: 300 psig at 225 deg F.
4) End Connections: Male threaded or grooved.
5) Lining: Inert and noncorrosive, propylene.

2.7 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Standard: ASTM A 674 or AWWA C105/A 21.5.

B. Material: Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.

C. Form: Sheet or tube.

D. Color: Black or natural.
PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 a. Straight tees, elbows, and crosses may be used on vent lines.
 3. Do not change direction of flow more than 90 degrees.
 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
a. Reducing size of waste piping in direction of flow is prohibited.

K. Lay buried building waste piping beginning at low point of each system.
 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 3. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 2 percent downward in direction of flow for piping NPS 4 and larger.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

O. Install engineered soil and waste and vent piping systems as follows:
 2. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

P. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 2. Install drains in sanitary waste gravity-flow piping.
 a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

R. Install sleeves for piping penetrations of walls, ceilings, and floors.
1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs.

1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors.

1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.

1. Cut threads full and clean using sharp dies.
2. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 c. Do not use pipe sections that have cracked or open welds.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

1. Install transition couplings at joints of piping with small differences in ODs.
4. In Underground Force Main Piping:
 a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 b. NPS 2 and Larger: Pressure transition couplings.

B. Dielectric Fittings:
1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
4. Vertical Piping: MSS Type 8 or Type 42, clamps.
5. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
6. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
7. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
SANITARY WASTE AND VENT PIPING

2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
3. NPS 2-1/2: 108 inches with 1/2-inch rod.
4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
5. NPS 6: 10 feet with 5/8-inch rod.
6. NPS 8: 10 feet with 3/4-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

J. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:
 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.
 b. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping.

B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 c. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 d. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.
3.9 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Repair damage to adjacent materials caused by waste and vent piping installation.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Refer to Drawing Schedules.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cleanouts.
2. Roof flashing assemblies.
3. Through-penetration firestop assemblies.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.
C. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Shop Drawings:

1. Show fabrication and installation details for frost-resistant vent terminals.
2. Wiring Diagrams: Power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14 for plastic sanitary waste piping specialty components.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 CLEANOUTS

A. Cast-Iron Exposed Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M.

3. Size: Same as connected drainage piping

5. Closure: Countersunk plug.

6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Cast-Iron Exposed Floor Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Oatey.
 d. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; a subsidiary of McWane Inc.
 f. Watts; a Watts Water Technologies company.
 g. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M

3. Refer to Drawing Schedules for characteristics and capacities
4. **Riser:** ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. **Cast-Iron Wall Cleanouts:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. **Standard:** ASME A112.36.2M. Include wall access.

3. **Size:** Same as connected drainage piping.

4. **Body:** Hub-and-spigot, cast-iron soil pipe T-branch as required to match connected piping.

5. **Closure Plug:**

 a. Brass
 b. Countersunk head.
 c. Drilled and threaded for cover attachment screw.
 d. Size: Same as or not more than one size smaller than cleanout size.

2.3 **ROOF FLASHING ASSEMBLIES**

A. **Roof Flashing Assemblies:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 b. Thaler Metal Industries Ltd.
 c. Zurn Industries, LLC.

2. **Description:** Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

 b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.4 **THROUGH-PENETRATION FIRESTOP ASSEMBLIES**

A. **Through-Penetration Firestop Assemblies:**
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ProSet Systems Inc.

3. Size: Same as connected soil, waste, or vent stack.
4. Sleeve: Molded-PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
6. Special Coating: Corrosion resistant on interior of fittings.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Floor-Drain, Trap-Seal Primer Fittings:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

B. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

C. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

D. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

E. Vent Caps:
1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
2. Size: Same as connected stack vent or vent stack.

F. Frost-Resistant Vent Terminals:

1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

G. Expansion Joints:

2. Body: Cast iron with bronze sleeve, packing, and gland.
3. End Connections: Matching connected piping.
4. Size: Same as connected soil, waste, or vent piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

E. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

F. Install through-penetration firestop assemblies in plastic stacks at floor penetrations.

1. Comply with requirements in Section 078413 "Penetration Firestopping."

G. Assemble open drain fittings and install with top of hub 1 inch above floor.
SANITARY WASTE PIPING SPECIALTIES

H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

K. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

L. Install vent caps on each vent pipe passing through roof.

M. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

N. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

O. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

P. Install wood-blocking reinforcement for wall-mounting-type specialties.

Q. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

B. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.

C. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

D. Set flashing on floors and roofs in solid coating of bituminous cement.

E. Secure flashing into sleeve and specialty clamping ring or device.

F. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."

G. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 221319.13 - SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Floor drains.

1.3 DEFINITIONS
 A. ABS: Acrylonitrile-butadiene styrene.
 B. FRP: Fiberglass-reinforced plastic.
 C. HDPE: High-density polyethylene.
 D. PE: Polyethylene.
 E. PP: Polypropylene.
 F. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES
 A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 14 for plastic sanitary piping specialty components.
2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Josam Company.
 d. MIFAB, Inc.
 e. Prier Products, Inc.
 f. Tyler Pipe; a subsidiary of McWane Inc.
 g. Watts; a Watts Water Technologies company.
 h. Zurn Industries, LLC.

2. Standard: ASME A112.6.3.

3. Refer to Drawing Schedules for characteristics and capacities.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
3. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 a. Maintain integrity of waterproof membranes where penetrated.

5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements in Section 221319 "Sanitary Waste Piping Specialties" for backwater valves, air admittance devices and miscellaneous sanitary drainage piping specialties.

C. Install piping adjacent to equipment to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319.13
SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Thermostatic control, electric, tankless, domestic-water heaters.
 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

 B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Seismic Qualification Certificates: For commercial domestic-water heaters, accessories, and components, from manufacturer.

 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

 B. Product Certificates: For each type of tankless, electric, domestic-water heater, from manufacturer.

 C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
D. Source quality-control reports.
E. Field quality-control reports.
F. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For electric, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.7 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 2. Warranty Periods: From date of Substantial Completion.
PART 2 - PRODUCTS

2.1 ELECTRIC, TANKLESS, DOMESTIC-WATER HEATERS

A. Thermostatic Control, Electric, Tankless, Domestic-Water Heaters:
 1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Eemax
 b. Chronomite
 c. Stiebel Eltron, Inc

 2. **Standard:** UL 499 for electric, tankless, (domestic-water heater) heating appliance.
 3. **Construction:** Copper piping or tubing complying with NSF 61 Annex G barrier materials for potable water, without storage capacity.
 b. Pressure Rating: 150 psig.
 c. Heating Element: Resistance heating system.
 d. Temperature Control: Thermostat.
 e. Safety Control: High-temperature-limit cutoff device or system.
 f. Jacket: Aluminum or steel with enameled finish or plastic.

 4. **Support:** Bracket for wall mounting.
 5. For Refer to Capacity and Characteristics refer to drawings schedules

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. **Factory Tests:** Test and inspect domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Electric, Tankless, Domestic-Water Heater Mounting: Install electric, tankless, domestic-water heaters above floor on wall bracket.
 1. Maintain manufacturer's recommended clearances.
 2. Arrange units so controls and devices that require servicing are accessible.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 5. Anchor domestic-water heaters to substrate.

B. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping,"

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain tankless, electric, domestic-water heaters.

END OF SECTION 223300
SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Commercial, gas-fired, high-efficiency, storage, domestic-water heaters.
 2. Domestic-water heater accessories.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings:

 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.

 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Product Certificates: For each type of commercial, gas-fired, domestic-water heater, from manufacturer.

C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

D. Source quality-control reports.

E. Field quality-control reports.

F. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASME Compliance:

1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.

C. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 1) Storage Tank: Three.
 2) Controls and Other Components: One year.

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

A. Commercial, Gas-Fired, High-Efficiency, Storage, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AERCO International, Inc.
 c. Heat Transfer Products, Inc.
 d. Lochinvar, LLC.
 e. PVI Industries, LLC.
 f. Rheem Manufacturing Company.
 g. Smith, A. O. Corporation.
 h. State Industries.

3. Description: Manufacturer's proprietary design to provide at least 95 percent combustion efficiency at optimum operating conditions.
 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
c. Lining: Glass, Nickel plate, or Phenolic coating complying with NSF 61 Annex G barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.

5. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 e. Jacket: Steel with enameled finish.
 f. Burner or Heat Exchanger: Comply with UL 795 or approved testing agency requirements for gas-fired, high-efficiency, domestic-water heaters and LP-gas fuel.
 g. Temperature Control: Adjustable thermostat.
 h. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
 i. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

B. Capacity and Characteristics:
 1. Refer to Drawing Schedules
 2. Provide Gas Pressure Regulator, coordinate requirements with equipment

3. Electrical Characteristics:
 a. Volts: 120.
 b. Phase: Single.
 c. Hertz: 60.
 d. Minimum Circuit Ampacity: 7.5.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Flexcon Industries.
2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

4. Capacity and Characteristics:
 a. Refer to Drawing Schedules
 b. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

B. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.

C. Heat-Trap Fittings: ASHRAE 90.2.

D. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
 1. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."

F. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include pressure rating as required to match gas supply.

G. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
H. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.

I. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.

J. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

K. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." Or Section 033053 "Miscellaneous Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer’s recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

C. Install gas-fired, domestic-water heaters according to NFPA 58.

1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 231126 "Facility Liquefied-Petroleum Gas Piping."

D. Install commercial domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

E. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

G. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

H. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

I. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

J. Fill domestic-water heaters with water.

K. Charge domestic-water compression tanks with air.
3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."

B. Comply with requirements for gas piping specified in Section 231126 "Facility Liquefied-Petroleum Gas Piping."

C. Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and re-inspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 223400
SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pressure Assist Water closet.
 2. Toilet seats.

1.3 DEFINITIONS
 A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.
 B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS, PRESSURE ASSIST

A. Water Closets, Floor Mounted, Bottom Outlet, Close-Coupled Flushometer Tank:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Gerber Plumbing Fixtures LLC.
 d. Kohler Co.
 e. Zurn Industries, LLC.

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Pressure assisted.
 f. Rim Contour: Elongated.
 g. Water Consumption: Maximum 1.6 gal. per flush.
 h. Color: White.

3. Bowl-to-Drain Connecting Fitting: ASTM A1045 or ASME A112.4.3.

4. Flushometer Tank: Pressure assisted.

2.2 TOILET SEATS

A. Toilet Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Bemis Manufacturing Company.
 c. Centoco Manufacturing Corporation.
 d. Church Seats; Bemis Manufacturing Company.
 e. Kohler Co.
 f. Olsonite Seat Co.
 g. TOTO USA, INC.
h. Zurn Industries, LLC.

4. Type: Commercial (Heavy duty).
5. Shape: Elongated rim, open front.
8. Seat Cover: Not required.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:

1. Install level and plumb according to roughing-in drawings.
2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.

B. Install toilet seats on water closets.

C. Wall Flange and Escutcheon Installation:

1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

D. Joint Sealing:

1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to water-closet color.
3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13
SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Lavatories.
 2. Faucets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Servicing and adjustments of automatic faucets.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory: Vitreous china, wall mounted, with back.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Briggs Plumbing Products, Inc.
 c. Gerber Plumbing Fixtures LLC.
 d. Kohler Co.
 e. Mansfield Plumbing Products LLC.
 f. Sloan Valve Company.
 g. Zurn Industries, LLC.

2. Fixture:
 b. Type: For wall hanging.
 c. Refer to Drawing Schedules for characteristics and capacities.

3. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1.

2.2 MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, two-handle mixing, commercial, solid-brass valve.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Bradley Corporation.
 c. Chicago Faucets; Geberit Company.
 d. Delta Faucet Company.
COMMERCIAL LAVATORIES

e. Elkay Manufacturing Co.
f. Gerber Plumbing Fixtures LLC.
g. GROHE America, Inc.
h. Just Manufacturing.
i. Kohler Co.
j. Moen Incorporated.
k. Speakman Company.
l. T & S Brass and Bronze Works, Inc.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.

4. Refer to Drawings Schedules for characteristics and capacities.

2.3 SUPPORTS

A. Type II Lavatory Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.
 c. MIFAB, Inc.
 d. Wade Drains.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.

B. Type III Lavatory Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.
 c. MIFAB, Inc.
 d. Wade Drains.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.
2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 2. Chrome-plated, rigid-copper-pipe and brass straight or offset tailpieces riser.

2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.6 SUPPORTS

A. Type II Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

B. Type III Lavatory Carrier:
 1. Standard: ASME A112.6.1M.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.

B. Examine counters and walls for suitable conditions where lavatories will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-mounted lavatories.

C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.

D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13
SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Service basins.
 2. Sinks.
 3. Sink faucets.
 4. Supply fittings.
 5. Waste fittings.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For sinks to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

A. Service Basins: Terrazzo, floor mounted.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Florestone Products Co., Inc.
 d. Stern-Williams Co., Inc.

2. Fixture:
 b. Refer to Drawing Schedules for characteristics and capacities.

3. Mounting: On floor and flush to wall.

B. Service Basins: Plastic, floor mounted Poly Tub.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Crane Plumbing, L.L.C.
 c. Commercial Enameling Company.
 d. Gerber Plumbing Fixtures LLC.
 e. Zurn Industries, LLC.

2. Fixture:
 b. Refer to Drawing Schedules for characteristics and capacities.

2.2 SINK

A. Utility Sinks: Stainless steel, counter mounted.
COMMERCIAL SINKS

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Tabco.
 b. Eagle Group.
 c. Elkay Manufacturing Co.
 d. Just Manufacturing.

2. Fixture:
 b. Refer to Drawing Schedules for characteristics and capacities.

3. Supply Fittings:
 b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 1) Operation: angle stops.
 2) Risers: NPS 1/2, chrome-plated, soft-copper flexible tube.

4. Waste Fittings:
 b. Trap(s):
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3) Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.
 c. Continuous Waste:
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, 0.032-inch-thick brass tube.

5. Mounting: On counter with sealant.

2.3 SINK FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet-spout materials that will be in contact with potable water.

B. Sink Faucets: Manual type, two-lever-handle mixing valve.
 1. Faucets.
COMMERCIAL SINKS

2.4 SUPPORTS

A. Type II Sink Carrier:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Wade Drains.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.
 2. Standard: ASME A112.6.1M.

2.5 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.
C. **Supply Piping**: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.

D. **Supply Stops**: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. **Operation**: Loose key.

F. **Risers**:
 2. Chrome-plated, soft-copper flexible tube.

2.6 WASTE FITTINGS

A. **Standard**: ASME A112.18.2/CSA B125.2.

B. **Drain**: Grid type with NPS 1-1/2 offset and straight tailpiece.

C. **Trap**:
 1. **Size**: NPS 1-1/2.
 2. **Material**: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3. **Material**: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.7 GROUT

B. **Characteristics**: Nonshrink; recommended for interior and exterior applications.

C. **Design Mix**: 5000-psi, 28-day compressive strength.

D. **Packaging**: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-hung sinks.

C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.

D. Set floor-mounted sinks in leveling bed of cement grout.

E. Install water-supply piping with stop on each supply to each sink faucet.

1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."

2. Install stops in locations where they can be easily reached for operation.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

G. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

H. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.
3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16
SECTION 224223 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Individual FRP showers.
 2. Shower faucets.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for showers and basins.
 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For shower faucets to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
PART 2 - PRODUCTS

2.1 INDIVIDUAL SHOWERS

A. Individual FRP Showers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aqua Glass Corporation.
 b. Clarion Bathware.
 c. Florestone Products Co., Inc.
 d. LASCO Bathware.
 e. MAAX.
 f. Praxis Industries, LLC.
 g. Sterling.
 h. Swan Corporation (The).

2. General: FRP, accessible, shower enclosure with faucet and receptor and appurtenances.
3. Refer to Drawing Schedules for characteristics and capacities.
5. Type: Sectional unit without top.
8. Bathing Surface: Slip resistant according to ASTM F 462.

2.2 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Controls.
 c. Chicago Faucets; Geberit Company.
 d. FNW; Ferguson Enterprises, Inc.
 e. Kohler Co.
 f. Lawler Manufacturing Company, Inc.
 g. Leonard Valve Company.
 h. Matco-Norca.
 i. Moen Incorporated.
 j. Powers.
k. Sloan Valve Company.
l. Speakman Company.
m. Zurn Industries, LLC.

2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; shower head, hand shower, and diverter valve.

3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 b. Refer to Drawing Schedules for characteristics and capacities.

2.3 GROUT
 B. Characteristics: Nonshrink; recommended for interior and exterior applications.
 C. Design Mix: 5000-psi, 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.
 B. Examine walls and floors for suitable conditions where showers will be installed.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Assemble shower components according to manufacturers' written instructions.
 B. Install showers level and plumb according to roughing-in drawings.
 C. Install water-supply piping with stop on each supply to each shower faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.
D. Install shower flow-control fittings with specified maximum flow rates in shower arms.

E. Set shower receptors in leveling bed of cement grout.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.

B. Clean showers, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

END OF SECTION 224223
SECTION 224500 - EMERGENCY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Eyewash equipment.
2. Water-tempering equipment.

1.3 DEFINITIONS

A. Accessible Fixture: Emergency plumbing fixture that can be approached, entered, and used by people with disabilities.
B. Plumbed Emergency Plumbing Fixture: Fixture with fixed, potable-water supply.
D. Tepid: Moderately warm.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include flow rates and capacities, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: Submit certificates of performance testing specified in "Source Quality Control" Article.
B. Field quality-control test reports.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For emergency plumbing fixtures to include in operation and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Flushing-Fluid Solution: Separate lot and equal to at least 200 percent of amount of solution installed for each self-contained unit.

1.8 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment."

C. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for fixture materials that will be in contact with potable water.

PART 2 - PRODUCTS

2.1 EYEWASH EQUIPMENT

A. Deck-Mounted, Plumbed Drench Hoses:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Acorn Safety.
 b. Bradley Corporation.
 c. Encon Safety Products.
 d. Guardian Equipment Co.
 e. Haws Corporation.
 f. Speakman Company.
 g. Stingray Systems LLC.
 h. WaterSaver Faucet Co.

2. Capacity: Not less than 0.4 gpm.
4. Drench Hose: Hand-held spray head with squeeze-handle actuation and hose.
5. Mounting: In hole in deck.

2.2 WATER-TEMPERING EQUIPMENT

A. Hot- and Cold-Water, Water-Tempering Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Safety.
 b. Armstrong International, Inc.
 c. Bradley Corporation.
 d. Encon Safety Products.
 e. Guardian Equipment Co.
 f. Haws Corporation.
 g. Lawler Manufacturing Company, Inc.
 h. Leonard Valve Company.
 i. Powers.
 j. Speakman Company.
 k. Stingray Systems LLC.

2. Description: Factory-fabricated equipment with thermostatic mixing valve.
 a. Thermostatic Mixing Valve: Designed to provide 85 deg F tepid, potable water at emergency plumbing fixtures, to maintain temperature at plus or minus 5 deg F throughout required 15-minute test period, and in case of unit failure to continue cold-water flow, with union connections, controls, metal piping, and corrosion-resistant enclosure.
 b. Supply Connections: For hot and cold water.

2.3 SOURCE QUALITY CONTROL

A. Certify performance of emergency plumbing fixtures by independent testing organization acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before plumbed emergency plumbing fixture installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 EMERGENCY PLUMBING FIXTURE INSTALLATION

A. Assemble emergency plumbing fixture piping, fittings, control valves, and other components.

B. Install fixtures level and plumb.

C. Fasten fixtures to substrate.

D. Install shutoff valves in water-supply piping to fixtures. Use ball or gate valve if specific type valve is not indicated. Install valves chained or locked in open position if permitted. Install valves in locations where they can easily be reached for operation. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."

1. Exception: Omit shutoff valve on supply to group of plumbing fixtures that includes emergency equipment.

2. Exception: Omit shutoff valve on supply to emergency equipment if prohibited by authorities having jurisdiction.

E. Install dielectric fitting in supply piping to emergency equipment if piping and equipment connections are made of different metals. Comply with requirements for dielectric fittings specified in Section 221116 "Domestic Water Piping."

F. Install thermometers in supply and outlet piping connections to water-tempering equipment. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

G. Install escutcheons on piping wall and ceiling penetrations in exposed, finished locations. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 CONNECTIONS

A. Connect hot- and cold-water-supply piping to hot- and cold-water, water-tempering equipment. Connect output from water-tempering equipment to emergency plumbing fixtures. Comply with requirements for hot- and cold-water piping specified in Section 221116 "Domestic Water Piping."

B. Where installing piping adjacent to emergency plumbing fixtures, allow space for service and maintenance of fixtures.

3.4 IDENTIFICATION

A. Install equipment nameplates or equipment markers on emergency plumbing fixtures and equipment and equipment signs on water-tempering equipment. Comply with requirements for identification materials specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.5 FIELD QUALITY CONTROL

A. Mechanical-Component Testing: After plumbing connections have been made, test for compliance with requirements. Verify ability to achieve indicated capacities.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Emergency plumbing fixtures and water-tempering equipment will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust or replace fixture flow regulators for proper flow.

B. Adjust equipment temperature settings.

END OF SECTION 224500
SECTION 224600 - SECURITY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Combination units.
2. Showers.

1.3 DEFINITIONS

A. Accessible Service Space: Service area in secure space behind wall-mounted fixtures.

B. Back-Access Fixture: Security plumbing fixture designed to mount on wall sleeve built into wall or on wall, so installation and removal of fixture, piping, and other components are accessible only from service space behind wall.

C. Front-Access Fixture: Security plumbing fixture designed to mount on wall with installation and removal from fixture side of wall, and with piping and other components accessible only from access panel in fixture.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for security plumbing fixtures.
2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For security plumbing fixtures and components to include in maintenance manuals.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Flushometer-Valve Repair Kits: Equal to 10 percent of quantity of each type installed, but no fewer than 2 of each type.

PART 2 - PRODUCTS

2.1 COMBINATION UNITS

A. ADA Combination Units: Back access, on floor, cabinet, with water closet and lavatory.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Acorn Engineering
 b. Bradley Corporation
 c. Willoughby Industries

2. Refer to Drawing Schedules for capacity and characteristics
3. Material: stainless steel; corrosion-resistant metal for internal piping and bracing.
4. Finish: ASTM A 480/A 480M, No. 4 polished finish on exposed surfaces.
5. Cabinet with backsplash.
 a. Water-Closet Bowl Location: Refer to Architectural drawings of apron.

6. Accessories:

7. Mounting: Bolts through wall sleeve into accessible service space.
8. Water Closet:
 b. Bowl:
 1) Type: Elongated, with back inlet, integral trap, and blowout design with back outlet and contoured seat.
 2) Seat Surface: ASTM A 480/A 480M, No. 7 polished finish.
 3) Punching: Two holes for installation of separate toilet seat.
 4) Outlet Connection: NPS 4, horizontal with cleanout and slip joint.

9. Lavatory:
 b. Location: In top of cabinet.
 c. Receptor: rectangular bowl with integral soap depression.
d. Hot- and Cold-Water and Bubbler Supply Valves: Mechanical-metering type with push-button actuation and individual check stops complying with ASME A112.18.1/CSA B125.1.
e. Filler Spout: Backsplash mounted.
f. Drain: Integral punched grid with NPS 1-1/4 minimum waste and trap complying with ASME A112.18.2/CSA B125.2.

10. Wall Sleeve: Galvanized-steel frame of dimensions required to match fixture. Include steel bars or other design to prevent escape if fixture is removed.

B. Ligature Resistant Combination Units: Front access, on floor, cabinet, with water closet and lavatory.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Acorn Engineering
 b. Bradley Corporation
 c. Willoughby Industries

2. Refer to Drawing Schedules for capacity and characteristics
3. Finish: ASTM A 480/A 480M, No. 4 polished finish on exposed surfaces.
4. Cabinet with backsplash and access panel.

 a. Water-Closet Bowl Location: Refer to Architectural drawings.

5. Accessories:

6. Mounting: Bolts through wall sleeve into accessible service space.
7. Water Closet:

 b. Bowl:

 1) Type: Elongated, with back inlet, integral trap, and blowout design with back outlet and contoured seat.
 2) Seat Surface: ASTM A 480/A 480M, No. 7 polished finish.
 3) Punching: Two holes for installation of separate toilet seat.
 4) Outlet Connection NPS 4, horizontal with cleanout and slip joint.

8. Lavatory:

 b. Location: In top of cabinet.
 c. Receptor: Oval bowl with integral soap depression.
 d. Hot- and Cold-Water and Bubbler Supply Valves: Mechanical-metering type with push-button actuation and individual check stops complying with ASME A112.18.1/CSA B125.1.
 e. Filler Spout: Backsplash mounted.
SECURITY PLUMBING FIXTURES

f. Drain: Integral punched grid with NPS 1-1/4 minimum waste and trap complying with ASME A112.18.2/CSA B125.2.

9. Wall Sleeve: Galvanized-steel frame of dimensions required to match fixture. Include steel bars or other design to prevent escape if fixture is removed.

2.2 SHOWERS

A. Showers: Ligature Resistant Back access, cabinet.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Acorn Engineering
 b. Bradley Corporation
 c. Willoughby Industries

2. Fixture:

 b. Refer to Drawing Schedules for capacity and characteristics
 c. Finish: ASTM A 480/A 480M, No. 4 polished finish on exposed surfaces.
 d. Hot- and Cold-Water Supply Valves: Mechanical-metering type with individual check stops complying with ASME A112.18.1/CSA B125.1.
 e. Soap Dish: Recessed, stainless steel.

4. Mounting: Bolts through wall into accessible service space.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.

B. Examine walls and floors for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install security plumbing fixtures level and plumb according to roughing-in drawings.
B. Install back-access, stainless-steel fixtures as follows:
 1. Install wall sleeve in wall if indicated.
 2. Install fixture on wall sleeve or wall, as indicated, with access from accessible service space.
 3. Extend supply piping from service space to fixture.
 4. Install soil and waste piping from fixture and extend into service space.
 5. Install fixture trap in service space instead of below fixture drain.

C. Install front-access, stainless-steel fixtures as follows:
 1. Install fixture support or mounting bracket.
 2. Install fixture on support; mount components inside of or attached to fixture.
 3. Extend supply piping from pipe space to fixture.
 4. Install trap below fixture and extend soil and waste piping into pipe space.

D. Install fixture outlets with gasket seals.

E. Install fixtures designated "accessible" according to ICC A117.1 for heights, dimensions, and clearances.

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible fixtures. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

G. Seal joints between fixtures, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

H. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with requirements for water piping specified in Section 221116 "Domestic Water Piping."

C. Comply with requirements for soil and waste drainage piping specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust flushometer valves and flow-control valves on fixtures.
3.5 CLEANING AND PROTECTION

A. After installing fixtures, inspect and repair damaged finishes.

B. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224600
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Mechanical sleeve seals.
 3. Sleeves.
 4. Escutcheons.
 5. Grout.
 6. Mechanical demolition.
 7. Equipment installation requirements common to equipment sections.
 8. Concrete bases.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Electrical Characteristics for Mechanical Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS
 A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
 B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS
 A. Refer to individual Division 15 piping Sections for special joining materials not listed below.
 B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
 D. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
 E. Welding Filler Metals: Comply with AWS D10.12.

2.3 MECHANICAL SLEEVE SEALS
 A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 C. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

2.4 SLEEVES
 A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.5 ESCUTCHEONS
 A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
 C. One-Piece, Cast-Brass Type: With set screw.
1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

2.6 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, twenty-eight (28) day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 15 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Section 078413 "Penetration Firestopping" for materials.

Q. Verify final equipment locations for roughing-in.

R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and
F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION – COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise
indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, twenty-eight (28) day compressive-strength concrete and reinforcement as specified in Division 3.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES
 A. Refer to Section 051200 “Structural Steel Framing” for structural steel.
 B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.
 C. Field Welding: Comply with AWS D1.1.

3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES
 A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.
 B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
 C. Attach to substrates as required to support applied loads.

3.8 GROUTING
 A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.
 B. Clean surfaces that will come into contact with grout.
 C. Provide forms as required for placement of grout.
 D. Avoid air entrapment during placement of grout.
 E. Place grout, completely filling equipment bases.
 F. Place grout on concrete bases and provide smooth bearing surface for equipment.
 G. Place grout around anchors.
 H. Cure placed grout.
END OF SECTION 230000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes cleaning HVAC air-distribution equipment, ducts, plenums, and system components.

1.3 DEFINITIONS
 A. ASCS: Air systems cleaning specialist.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For an ASCS.
 B. Strategies and procedures plan.
 C. Cleanliness verification report.

1.5 QUALITY ASSURANCE
 A. ASCS Qualifications: A certified member of NADCA.
 1. Certification: Employ an ASCS certified by NADCA on a full-time basis.
 2. Supervisor Qualifications: Certified as an ASCS by NADCA.
 B. UL Compliance: Comply with UL 181 and UL 181A for fibrous-glass ducts.
 C. Cleaning Conference: Conduct conference at Project site.
 1. Review methods and procedures related to HVAC air-distribution system cleaning including, but not limited to, review of the cleaning strategies and procedures plan.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine HVAC air-distribution equipment, ducts, plenums, and system components to determine appropriate methods, tools, and equipment required for performance of the Work.

B. Perform "Project Evaluation and Recommendation" according to NADCA ACR 2006.

C. Prepare written report listing conditions detrimental to performance of the Work.

D. Proceed with work only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare a written plan that includes strategies and step-by-step procedures. At a minimum, include the following:

1. Supervisor contact information.
2. Work schedule including location, times, and impact on occupied areas.
3. Methods and materials planned for each HVAC component type.
4. Required support from other trades.
5. Equipment and material storage requirements.
6. Exhaust equipment setup locations.

B. Use the existing service openings, as required for proper cleaning, at various points of the HVAC system for physical and mechanical entry and for inspection.

3.3 CLEANING

A. Clean all supply, return, exhaust and outside air ductwork associated with work of this project.

B. Comply with NADCA ACR 2006.

C. Remove visible surface contaminants and deposits from within the HVAC system.

D. Systems and Components to Be Cleaned:

1. Air devices for supply and return air.
2. Air-terminal units.
3. Ductwork:
a. Supply-air ducts, including turning vanes, to the air-handling unit.
b. Return-air ducts to the air-handling unit.
c. Exhaust-air ducts.
d. Outside air intake ducts.

4. Air-Handling Units:
 a. Interior surfaces of the unit casing.
 b. Coil surfaces compartment.
 c. Condensate drain pans.
 d. Fans, fan blades, and fan housings.

5. Exhaust Fans:
 a. Interior surfaces of the unit casing.
 b. Roof curbs.
 c. Associated louvers.
 d. Fan, fan blades and fan housings.

6. Filters and filter housings.

E. Collect debris removed during cleaning. Ensure that debris is not dispersed outside the HVAC system during the cleaning process.

F. Particulate Collection:
 1. For particulate collection equipment, include adequate filtration to contain debris removed. Locate equipment downwind and away from all air intakes and other points of entry into the building.
 2. HEPA filtration with 99.97 percent collection efficiency for particles sized 0.3 micrometer or larger shall be used where the particulate collection equipment is exhausting inside the building.

G. Control odors and mist vapors during the cleaning and restoration process.

H. Mark the position of manual volume dampers and air-directional mechanical devices inside the system prior to cleaning. Restore them to their marked position on completion of cleaning.

I. System components shall be cleaned so that all HVAC system components are visibly clean. On completion, all components must be returned to those settings recorded just prior to cleaning operations.

J. Clean all air-distribution devices, registers, grilles, and diffusers.

K. Clean visible surface contamination deposits according to NADCA ACR 2006 and the following:
 1. Clean air-handling units, airstream surfaces, components, condensate collectors, and drains.
 2. Ensure that a suitable operative drainage system is in place prior to beginning wash-down procedures.
 3. Clean evaporator coils, reheat coils, and other airstream components.
L. Duct Systems:
 1. Create service openings in the HVAC system as necessary to accommodate cleaning.
 2. Mechanically clean duct systems specified to remove all visible contaminants so that the systems are capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).

M. Debris removed from the HVAC system shall be disposed of according to applicable Federal, state, and local requirements.

N. Mechanical Cleaning Methodology:
 1. Source-Removal Cleaning Methods: The HVAC system shall be cleaned using source-removal mechanical cleaning methods designed to extract contaminants from within the HVAC system and to safely remove these contaminants from the facility. No cleaning method, or combination of methods, shall be used that could potentially damage components of the HVAC system or negatively alter the integrity of the system.
 a. Use continuously operating vacuum-collection devices to keep each section being cleaned under negative pressure.
 b. Cleaning methods that require mechanical agitation devices to dislodge debris that is adhered to interior surfaces of HVAC system components shall be equipped to safely remove these devices. Cleaning methods shall not damage the integrity of HVAC system components or damage porous surface materials such as duct and plenum liners.

O. Cleaning Mineral-Fiber Insulation Components:
 a. Fibrous-glass thermal or acoustical insulation elements present in equipment or ductwork shall be thoroughly cleaned with HEPA vacuuming equipment while the HVAC system is under constant negative pressure and shall not be permitted to get wet according to NADCA ACR 2006.
 b. Cleaning methods used shall not cause damage to fibrous-glass components and will render the system capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).
 c. Fibrous materials that become wet shall be discarded and replaced.

P. Coil Cleaning:
 1. See NADCA ACR 2006, "Coil Surface Cleaning" Section. Type 1, or Type 1 and Type 2, cleaning methods shall be used to render the coil visibly clean and capable of passing Coil Cleaning Verification (see applicable NADCA ACR 2006).
 2. Coil drain pans shall be subject to NADCA ACR 2006, "Non-Porous Surfaces Cleaning Verification." Ensure that condensate drain pans are operational.
 3. Cleaning methods shall not cause any appreciable damage to, cause displacement of, inhibit heat transfer, or cause erosion of the coil surface or fins, and shall comply with coil manufacturer's written recommendations when available.
 4. Rinse thoroughly with clean water to remove any latent residues.

P. Antimicrobial Agents and Coatings:
1. Apply antimicrobial agents and coatings if active fungal growth is reasonably suspected or where unacceptable levels of fungal contamination have been verified. Apply antimicrobial agents and coatings according to manufacturer's written recommendations and EPA registration listing after the removal of surface deposits and debris.

2. When used, antimicrobial treatments and coatings shall be applied after the system is rendered clean.

3. Apply antimicrobial agents and coatings directly onto surfaces of interior ductwork.

4. Sanitizing agent products shall be registered by the EPA as specifically intended for use in HVAC systems and ductwork.

3.4 CLEANLINESS VERIFICATION

A. Verify cleanliness according to NADCA ACR 2006, "Verification of HVAC System Cleanliness" Section.

B. Verify HVAC system cleanliness after mechanical cleaning and before applying any treatment or introducing any treatment-related substance to the HVAC system, including biocidal agents and coatings.

C. Perform visual inspection for cleanliness. If no contaminants are evident through visual inspection, the HVAC system shall be considered clean. If visible contaminants are evident through visual inspection, those portions of the system where contaminants are visible shall be re-cleaned and subjected to re-inspection for cleanliness.

D. Additional Verification:

1. Perform surface comparison testing or NADCA vacuum test.

2. Conduct NADCA vacuum gravimetric test analysis for nonporous surfaces.

E. Verification of Coil Cleaning:

1. Measure static-pressure differential across each coil.

2. Coil will be considered clean if cleaning restored the coil static-pressure differential within 10 percent of the differential measured when the coil was first installed.

3. Coil will be considered clean if the coil is free of foreign matter and chemical residue, based on a thorough visual inspection.

F. Prepare a written cleanliness verification report. At a minimum, include the following:

1. Written documentation of the success of the cleaning.

2. Site inspection reports, initiated by supervisor, including notation on areas of inspection, as verified through visual inspection.

3. Surface comparison test results if required.

4. Gravimetric analysis (nonporous surfaces only).

5. System areas found to be damaged.

G. Photographic Documentation: Comply with requirements in Section 013233 "Photographic Documentation."
3.5 RESTORATION

A. Restore and repair HVAC air-distribution equipment, ducts, plenums, and components according to NADCA ACR 2006, "Restoration and Repair of Mechanical Systems" Section.

B. Restore service openings capable of future reopening. Comply with requirements in Section 233113 "Metal Ducts." Include location of service openings in Project closeout report.

C. Replace fibrous-glass materials that cannot be restored by cleaning or resurfacing. Comply with requirements in Section 233113 "Metal Ducts" and Section 233116 "Nonmetal Ducts."

D. Replace damaged insulation according to Section 230713 "Duct Insulation."

E. Ensure that closures do not hinder or alter airflow.

F. New closure materials, including insulation, shall match opened materials and shall have removable closure panels fitted with gaskets and fasteners.

G. Reseal fibrous-glass ducts. Comply with requirements in Section 233116 "Nonmetal Ducts."

END OF SECTION 230130.51
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
 A. Comply with NEMA MG 1 unless otherwise indicated.
 B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
 A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
 B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.

1. For motors with 2:1 speed ratio, consequent pole, single winding.
2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:

1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
 B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
 C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
 E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS
 A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
2.3 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and
sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Sleeve-seal fittings.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Stack-sleeve fittings.

5. Interior Partitions:

END OF SECTION 230517
SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
 E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated rough-brass finish.
h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated rough-brass finish.
j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Fiberglass pipe hangers.
 4. Metal framing systems.
 5. Fiberglass strut systems.
 6. Thermal-hanger shield inserts.
 7. Fastener systems.
 8. Pipe stands.
 9. Equipment supports.

B. Related Sections:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 3. Section 230548 "Vibration and Seismic Controls for HVAC for vibration isolation devices.
 4. Section 233113 "Metal Ducts for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Fiberglass strut systems.
 4. Pipe stands.
 5. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
3. Channels: Continuous slotted steel channel with inturned lips.
4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade I polyisocyanurate with 125- minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig, ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade I polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.
2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113 "Exterior Painting" Section 099123 "Interior Painting" and Section 099600 "High Performance Coatings."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Open-spring isolators.
5. Housed-spring isolators.
6. Restrained-spring isolators.
8. Pipe-riser resilient supports.
9. Resilient pipe guides.
10. Elastomeric hangers.
11. Spring hangers.
12. Snubbers.
13. Restraint channel bracings.
15. Seismic-restraint accessories.
16. Mechanical anchor bolts.
17. Adhesive anchor bolts.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 1. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic and wind forces required to select vibration isolators and seismic and wind restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
 4. Seismic- and Wind-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Air-Mounting System Performance Certification: Include natural frequency, load, and damping test data performed by an independent agency.

E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-spring mounts and restrained-air-spring mounts to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cambridge
2. Mason Industries
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.

C. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.

D. Size: Factory or field cut to match requirements of supported equipment.

E. Verify availability of various pad materials and their properties with manufacturers.

F. Pad Material: Oil and water resistant with elastomeric properties.

G. Surface Pattern: Waffle pattern.

H. Retain first subparagraph below if pad is infused with synthetic fibers.

I. Infused nonwoven cotton or synthetic fibers.

2.2 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cambridge
2. Mason Industries.
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.

C. Mounting Plates:

a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.

b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
D. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mason Industries.
2. Cambridge
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.

C. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mason Industries.
2. Cambridge
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.

C. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

D. Minimum Additional Travel: 50 percent of the required deflection at rated load.

E. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

F. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

G. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
H. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.5 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mason Industries.
2. Cambridge
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.

C. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

D. Minimum Additional Travel: 50 percent of the required deflection at rated load.

E. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

F. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

G. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.

 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.

 b. Top housing with attachment and leveling bolt, threaded mounting holes and internal leveling device, elastomeric pad.

2.6 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mason Industries.
2. Cambridge
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.

C. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
b. Top plate with threaded mounting holes, elastomeric pad.
c. Internal leveling bolt that acts as blocking during installation.

D. Restraint: Limit stop as required for equipment and authorities having jurisdiction.

E. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

F. Minimum Additional Travel: 50 percent of the required deflection at rated load.

G. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

H. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Mason Industries.
 2. Cambridge
 4. Vibration Eliminator Co., Inc.
 5. Vibration Isolation.

C. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.

 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
2.8 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch-thick neoprene.

1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.11 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.
2.12 SNUBBERS

A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.

2.13 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.14 RESTRAINT CABLES

A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.15 SEISMIC-RESTRAINT ACCESSORIES

A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.

B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.16 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
2.17 ADHESIVE ANCHOR BOLTS

A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.18 VIBRATION ISOLATION EQUIPMENT BASES

A. Steel Rails: Factory-fabricated, welded, structural-steel rails.
 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 a. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Rails shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

B. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.
 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

C. Concrete Inertia Base: Factory-fabricated or field-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic[- and wind]-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete." Section 033053 "Miscellaneous Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:

1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

E. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

F. Install cables so they do not bend across edges of adjacent equipment or building structure.

G. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

K. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate
with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 232113 "Hydronic Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 5. Test to 90 percent of rated proof load of device.
 7. Measure isolator deflection.
 8. Verify snubber minimum clearances.
 9. Test and adjust restrained-air-spring isolator controls and safeties.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.7 AIR-SPRING ISOLATOR INSTALLATION

A. Independent Isolator Installation:
 1. Install tank valve into each air isolator.
 2. Inflate each isolator to height and pressure specified on Drawings.
3.8 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete." Section 033053, "Miscellaneous Cast-in-Place Concrete."

END OF SECTION 230548
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Duct labels.
5. Valve tags.
6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

D. Where devices and terminal units are installed above ceiling, coordinate installation of ceiling grid identifiers.
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS
A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS
A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
C. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
D. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
E. Fasteners: Stainless-steel rivets or self-tapping screws.
F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
G. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.
2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

C. Valve Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Included mounting screws.

1. Frame: Extruded Aluminum.
2. Glazing: ASTM C1036, Type I, Class I, Glazing Quality B, 2.5-mm, single thickness glass.

2.6 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

2.7 ACCESS PANEL AND DOOR MARKERS: 1/16-inch thick, engraved laminated plastic with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch center hole for attachment. Fasteners: Self-tapping, stainless steel screws or contact type, permanent adhesive.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

C. HVAC Equipment Installed Above T-Bar Ceiling: Label T-bar grid with mechanical equipment identifier as shown on the drawings. Use label maker with peel and stick labels, blue background, and black lettering.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, with painted color coded bands, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 20 feet along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.

D. Pipe Label Color Schedule:
 a. Gas:
 1) Background Color: Yellow
 2) Letter Color: Black

3.4 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue: For cold-air supply ducts.
2. Yellow: For hot-air supply ducts.
4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Stenciled Duct Label Option: Stenciled labels, showing service and flow direction, may be provided instead of plastic-laminated duct labels, at Installer's option, if lettering larger than 1 inch high is needed for proper identification because of distance from normal location of required identification.

C. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 10 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve Tag Color:
 Gas: Natural

3. Letter Color:
 a. Gas: Black

C. Valves and Hydronic Specialties Installed Above T-Bar Ceiling: Label T-bar with peel and stick labels, color blue.

3.6 VALVE SCHEDULE INSTALLATION

A. Mount valve schedule on wall in accessible location in each major equipment room.

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.8 AUTOMATIC TEMPERATURE CONTROLS IDENTIFICATION

A. ATC Controllers Installed Above T-Bar Ceiling: Label T-bar grid with ATC identifiers. Use label maker with peel and stick labels, yellow background, and black lettering.
3.9 TERMINAL UNITS

A. Mark all terminal units so that the markings can be easily read from the most likely viewing position (e.g., through the ceiling below, etc.).

B. Terminal Units Installed Above T-Bar Ceiling: Label T-bar with terminal unit identifier as shown on the drawings. Use label maker with peel and stick labels, blue background, and black lettering.

END OF SECTION 230553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Variable-air-volume systems.

2. Testing, adjusting, and balancing existing systems and equipment.
3. Sound tests.
4. Vibration tests.
5. Duct leakage tests.
6. Control system verification.

1.3 DEFINITIONS

B. BAS: Building automation systems.
D. TAB: Testing, adjusting, and balancing.
F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
b. The TAB plan.
c. Needs for coordination and cooperation of trades and subcontractors.
d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:

1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC, NEBB or TABB.

1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC, NEBB or TABB.
2. TAB Technician: Employee of the TAB specialist and certified by AABC, NEBB or TABB as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.
G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
i. Windows and doors are installed.

j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance", ASHRAE 111, NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems", SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.

2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."

3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.
I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.

2. Verify that the system is under static pressure control.

3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:

a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.

b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.

c. When maximum airflow is correct, balance the air outlets downstream from terminal units.

d. Adjust controls so that terminal is calling for minimum airflow.

e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.

f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.

g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.

a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.

b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary.
 f. Measure and record all operating data.
 g. Verify tracking between supply and return fans.

3.6 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.
B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.7 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Record fan and motor operating data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:
 1. Entering- and leaving-water temperature.
 2. Water flow rate.
 3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
 4. Dry-bulb temperature of entering and leaving air.
 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 6. Airflow.

B. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Entering- and leaving-air temperature at full load.
 4. Voltage and amperage input of each phase at full load.
 5. Calculated kilowatt at full load.
 6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each steam coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Airflow.
 3. Inlet steam pressure.

D. Measure, adjust, and record the following data for each refrigerant coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.

3.9 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at 15 locations as designated by the Architect.
B. Instrumentation:

1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:

1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment off.
6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz] with the equipment operating.
7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:

1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
 d. Sound pressure level in each octave band with equipment on and off.
2. Plot sound pressure levels on NC worksheet with equipment on and off.

3.10 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than 10.

B. Instrumentation:

1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
4. Verify calibration date is current for vibration meter before taking readings.

C. Test Procedures:
 1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
 2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
 3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
 4. Record CPM or rpm.
 5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.

D. Reporting:
 1. Report shall record location and the system tested.
 2. Include horizontal-vertical-axial measurements for tests.
 3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally "smooth" to "good."
 4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.11 DUCT LEAKAGE TESTS
A. Witness the duct pressure testing performed by Installer.
B. Verify that proper test methods are used and that leakage rates are within specified tolerances.
C. Report deficiencies observed.

3.12 CONTROLS VERIFICATION
A. In conjunction with system balancing, perform the following:
 1. Verify temperature control system is operating within the design limitations.
 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 3. Verify that controllers are calibrated and function as intended.
 4. Verify that controller set points are as indicated.
 5. Verify the operation of lockout or interlock systems.
 6. Verify the operation of valve and damper actuators.
 7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.13 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.

1. Measure and record the operating speed, airflow, and static pressure of each fan.
2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
3. Check the refrigerant charge.
4. Check the condition of filters.
5. Check the condition of coils.
6. Check the operation of the drain pan and condensate-drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:

1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
4. Balance each air outlet.
3.14 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.15 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.16 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.
 3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB specialist.
 3. Project name.
 4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Fan drive settings including settings and percentage of maximum pitch diameter.
 e. Inlet vane settings for variable-air-volume systems.
 f. Settings for supply-air, static-pressure controller.
 g. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.
3. Pipe and valve sizes and locations.
4. Terminal units.
5. Balancing stations.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Refrigerant expansion valve and refrigerant types.
i. Refrigerant suction pressure in psig.
j. Refrigerant suction temperature in deg F.
k. Inlet steam pressure in psig.

G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

a. System and air-handling-unit number.
b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft.
g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

H. Air-Terminal-Device Reports:

1. Unit Data:

a. System and air-handling unit identification.
b. Location and zone.
c. Apparatus used for test.
d. Area served.
e. Make.
f. Number from system diagram.
g. Type and model number.
h. Size.
i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm.
b. Air velocity in fpm.
c. Preliminary airflow rate as needed in cfm.
d. Preliminary velocity as needed in fpm.
e. Final airflow rate in cfm.
f. Final velocity in fpm.
g. Space temperature in deg F.

I. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:

a. System and air-handling-unit identification.
b. Location and zone.
c. Room or riser served.
d. Coil make and size.
e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.

J. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.17 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of commissioning authority.

B. Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, design professional may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.
3.18 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Related Sections:

1. Section 230716 "HVAC Equipment Insulation."
2. Section 230719 "HVAC Piping Insulation."
3. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application of field-applied jackets.
4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation.
materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Armacell
 b. Aeroflex USA
 c. Kflex USA

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap
 b. Johns Manville; Microlite
 c. Knauf Insulation; Friendly Feel Duct Wrap
 d. Manson Insulation Inc.; Alley Wrap
 e. Owens Corning; SOFTR All-Service Duct Wrap

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. CertainTeed Corp.
 b. Fibrex Insulations Inc
 c. Johns Manville
d. Knauf Insulation
e. Manson Insulation Inc.
f. Owens Corning

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

E. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 2. Service Temperature Range: 0 to 180 deg F.

C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 2. Service Temperature Range: Minus 50 to plus 220 deg F.
 3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 2. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Width: 2 inches.
 2. Thickness: 3.7 mils.
 3. Adhesion: 100 ounces force/inch in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 3/4 inch wide with wing seal.
 2. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. Insulation Pins and Hangers:
 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
C. Wire: 0.062-inch soft-annealed, stainless steel.

2.11 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.
G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches (50 mm)] [4 inches (100 mm)] o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

1. Comply with requirements in Section 078413 "Penetration Firestopping."

E. Insulation Installation at Floor Penetrations:

1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation.Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).

5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

 A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

 1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each duct system defined in the "Duct Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
7. Outdoor, concealed supply and return.
8. Outdoor, exposed supply and return.

B. Items Not Insulated:

1. Fibrous-glass ducts.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and required R-values are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Supply ducts:

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Conceled:
 1. None.
DUCT INSULATION

END OF SECTION 230713
1. GENERAL

1.1 Related Documents

A. All work of this Division shall be coordinated and provided by the Building Automation System (BAS) Contractor.

B. The work of this Division shall be scheduled, coordinated, and interfaced with the associated work of other trades. Reference the Division 23 and 26 Sections for details.

C. The work of this Division shall be as required by the Specifications, Point Schedules and Drawings.

D. If the BAS Contractor believes there are conflicts or missing information in the project documents, the Contractor shall promptly request clarification and instruction from the design team.

1.2 DEFINITIONS

A. Analog: A continuously variable system or value not having discrete levels. Typically exists within a defined range of limiting values.

B. Binary: A two-state system where an “ON” condition is represented by one discrete signal level and an “OFF” condition is represented by a second discrete signal level.

C. Building Automation System (BAS): The total integrated system of fully operational and functional elements, including equipment, software, programming, and associated materials, to be provided by this Division BAS Contractor and to be interfaced to the associated work of other related trades.

D. BAS Contractor: The Contractor to provide the work of this Division. This Contractor shall be the primary manufacturer, installer, commissioner and ongoing service provider for the BAS work.

E. Control Sequence: A BAS pre-programmed arrangement of software algorithms, logical computation, target values and limits as required to attain the defined operational control objectives.

F. Direct Digital Control: The digital algorithms and pre-defined arrangements included in the BAS software to provide direct closed-loop control for the designated equipment and controlled variables. Inclusive of Proportional, Derivative and Integral control algorithms together with target values, limits, logical functions, arithmetic functions, constant values, timing considerations and the like.

G. BAS Network: The total digital on-line real-time interconnected configuration of BAS digital processing units, workstations, panels, sub-panels, controllers, devices and associated elements individually known as network nodes. May exist as one or more fully interfaced and integrated sub-networks, LAN, WAN or the like.

H. Node: A digitally programmable entity existing on the BAS network.
I. BAS Integration: The complete functional and operational interconnection and interfac-
ing of all BAS work elements and nodes in compliance with all applicable codes, stand-
ards and ordinances so as to provide a single coherent BAS as required by this Division.

J. Provide: The term “Provide” and its derivatives when used in this Division shall mean to
furnish, install in place, connect, calibrate, test, commission, warrant, document and sup-
ply the associated required services ready for operation.

K. PC: IBM-compatible Personal Computer from a recognized major manufacturer

L. Furnish: The term “Furnish” and its derivatives when used in this Division shall mean
supply at the BAS Contractor’s cost to the designated third party trade contractor for in-
stallation. BAS Contractor shall connect furnished items to the BAS, calibrate, test, com-
mission, warrant and document.

M. Wiring: The term “Wiring” and its derivatives when used in this Division shall mean pro-
vide the BAS wiring and terminations.

N. Install: The term “Install” and its derivatives when used in this Division shall mean re-
cieve at the jobsite and mount.

O. Protocol: The term “protocol” and its derivatives when used in this Division shall mean a
defined set of rules and standards governing the on-line exchange of data between BAS
network nodes.

P. Software: The term “software” and its derivatives when used in this Division shall mean
all of programmed digital processor software, preprogrammed firmware and project spe-
cific digital process programming and database entries and definitions as generally under-
stood in the BAS industry for real-time, on-line, integrated BAS configurations.

Q. The use of words in the singular in these Division documents shall not be considered as
limiting when other indications in these documents denote that more than one such item is
being referenced.

R. Headings, paragraph numbers, titles, shading, bolding, underscores, clouds and other sym-
bolic interpretation aids included in the Division documents are for general information
only and are to assist in the reading and interpretation of these Documents.

S. The following abbreviations and acronyms may be used in describing the work of this Di-
vision:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AI</td>
<td>Analog Input</td>
</tr>
<tr>
<td>AN</td>
<td>Application Node</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AO</td>
<td>Analog Output</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigeration and Air Conditioning Engineers</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>CZC</td>
<td>Commercial Zone Control</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DC</td>
<td>Digital Controller</td>
</tr>
<tr>
<td>DCX</td>
<td>Digital Controller with extension capability</td>
</tr>
<tr>
<td>DCXM</td>
<td>Digital Controller Master with extension capability</td>
</tr>
<tr>
<td>DDC</td>
<td>Direct Digital Control</td>
</tr>
<tr>
<td>DI</td>
<td>Digital Input</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Output</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electronically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>EV</td>
<td>Commercial Zone Control</td>
</tr>
<tr>
<td>FAS</td>
<td>Fire Alarm Detection and Annunciation System</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HOA</td>
<td>Hand-Off-Auto</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>MCC</td>
<td>Motor Control Center</td>
</tr>
<tr>
<td>MD</td>
<td>Master Display Controller</td>
</tr>
<tr>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>NIC</td>
<td>Not In Contract</td>
</tr>
<tr>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>OWS</td>
<td>Operator Workstation</td>
</tr>
<tr>
<td>OAT</td>
<td>Outdoor Air Temperature</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio Frequency Interference</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Temperature Device</td>
</tr>
<tr>
<td>NAC</td>
<td>Network Area Controller</td>
</tr>
<tr>
<td>SI</td>
<td>Systems Integrator</td>
</tr>
<tr>
<td>SPDT</td>
<td>Single Pole Double Throw</td>
</tr>
<tr>
<td>SPST</td>
<td>Single Pole Single Throw</td>
</tr>
<tr>
<td>XVGA</td>
<td>Extended Video Graphics Adapter</td>
</tr>
<tr>
<td>TBA</td>
<td>To Be Advised</td>
</tr>
<tr>
<td>TEC</td>
<td>Networked Thermostat Equipment Controller</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TTD</td>
<td>Thermistor Temperature Device</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>UNT</td>
<td>Unitary Controller</td>
</tr>
<tr>
<td>VAC</td>
<td>Volts, Alternating Current</td>
</tr>
<tr>
<td>VAV</td>
<td>Variable Air Volume</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts, Direct Current</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>
1.3 BAS DESCRIPTION

A. BMS contractor shall replace the existing Honeywell JACE – 6 with a new JACE 8000 supervisory controller. All new controllers will communicate via BACnet. BMS Contractor shall integrate the existing RTU controllers via BACnet. The site has existing Honeywell VAV controllers that are to be replaced. BMS contractor shall provide controls demo.

B. All New HVAC RTUs and DOAS to have new BACnet controllers provided by the DOAS/RTU Manufacturer.

C. BMS contractor shall provide new graphics for the new HVAC equipment.

D. This specification for a Building Automation System (BAS) as detailed herein shall be strictly enforced. Provide a Building Automation System (BAS) incorporating BACnet Testing Laboratories (BTL) certified BACnet devices communicating over a Master-Slave Token Passing (MSTP) network at the field level and Niagara 4 based network managers at the network level. The Niagara 4 based network managers shall bridge the BACnet/MSTP field communications network to the owner’s Local and/or Wide Area Network, as designated by the owner, and shall communicate seamlessly with the other existing Niagara 4 based devices on the owner’s enterprise-wide BAS network.

E. The BAS shall consist of Direct Digital Control (DDC) controllers, Building Controllers (BC), network management tools, programming tools, web browser based Graphical User Interface, sensors, relays, valves, actuators, and other equipment as may be necessary to provide for a complete and operational control system for the HVAC and other building related systems as described within these specifications.

F. The BAS Contractor shall manage and coordinate the BAS work in a timely manner in consideration of the Project schedules. Coordinate with the associated work of other trades so as to not impede or delay the work of associated trades.

G. BACnet components not supplied by the primary manufacturer of the BAS shall be integrated to share common software for network communications, time scheduling, alarm handling, and history logging.

H. The documentation contained in this section and other contract documents pertaining to HVAC Controls is schematic in nature. The Contractor shall provide hardware and software necessary to implement the functions shown or as implied in the contract documents.

I. System configuration and monitoring shall be performed via a PC-type computer. Under no circumstances shall the PC be used as a control device for the network. It can be used for storage of data.

J. Open Systems Design - It is the owners expressed goal to implement an open Building Automaton System that will allow products from different manufacturers and/or suppliers to be integrated into a single unified system in order to provide flexibility for expansion, maintenance, and service of the system. The BAS provided shall maintain open interoperability in the following areas.

K. Network Management - Network management tools shall be based upon Niagara Framework technology as developed by the Tridium Corporation. All tools and hardware provided shall comply with the current release of the Niagara 4 Framework platform.
L. User Access - The supplied system must incorporate the ability to access all data using standard Web browsers without requiring a proprietary operator/user interface and configuration programs.

M. Databases - All controller program graphics and network databases shall be provided in a Niagara Framework 4 format. The database shall be stored on the owner PC and provide on a separate CD upon final acceptance of the project. An updated database shall be provided on a CD at the end of the warranty period.

N. Building Controllers (BC) - All BCs (devices that provide for communication between the field level controllers and the owner’s wide and/or local area network, and manage facility global functions such as alarms, trends, schedules and normalization of data) shall conform to the current release of the Niagara 4 Framework. All BCs shall be furnished with extended memory. No BC shall be provided with less than 128 MB of RAM. The number of BACnet or Lonworks nodes (controllers) attached to any Niagara 4 based network manager shall not exceed the following limits:

<table>
<thead>
<tr>
<th>COMBINED MEMORY</th>
<th>M4IMUM NUMBER OF NODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 MB SDRAM/64 MB SERIAL FLASH</td>
<td>25</td>
</tr>
<tr>
<td>256 MB DDR RAM/128 MB SERIAL FLASH</td>
<td>50</td>
</tr>
<tr>
<td>1 GB DDR2 RAM/1 GB SERIAL FLASH</td>
<td>125</td>
</tr>
</tbody>
</table>

Regardless of the m4imum number of nodes indicated above, it is ultimately the exclusive responsibility of the systems integrator/building controls contractor to ensure that the BC has adequate resources for the number of nodes (controllers) attached to it.

O. Remote Data Access: The system shall support the Internet Browser-based remote access to the building data. The BAS contractor shall coordinate with the Owner’s IT department to ensure all remote browser access (if desired by the owner) is protected with the latest Niagara Software updates and a VPN (Virtual Private Network) must be installed to protect the owner’s network from cyber attacks.

P. Direct Digital Controllers (DDC) - All DDC devices for HVAC and lighting control, with the exception of DDC device furnished as part of the OEM control package, shall be certified to the current LONMARK and BTL standards appropriate to their application provided an appropriate LONMARK or BTL Certification standard exist. All points within a controller including hard I/O and software based points shall be available for viewing, management, and manipulation through the Niagara Framework tools.

Q. Software Tools - All software tools needed for full functional use, including programming of BCs and DDC, network management and expansion, and graphical user interface development, of the BAS described within these specifications, shall be provided to the owner or his designated agent. Any licensing required by the manufacturer now and into the future, including changes to the licensee of the software tools and the addition of hardware corresponding to the licenses, to allow for a complete and operational system for both normal day to day operation and servicing shall be provided. Any such changes to the designated license holders shall be made by the manufacturer upon written request by
the owner or his agent. Any cost associated with the license changes shall be identified within the BAS submittals.

R. Programming Tools - Provide freely available Niagara 4 Wizards to facilitate the programming and configuration of all of the DDC devices that are provided for the HVAC and lighting control. Wizards shall be provided free of charge and be compatible with the current published versions of the network management tool that is provided as part of this project. The wizard software shall be available for public access from the manufacturer’s web site. These wizard programming tools shall be compatible with at least 3 other brands of the Niagara Framework network management tools. The SI shall demonstrate as part of their prequalification as to how they intend to comply with these requirements.

S. Software License Agreement - The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition of this contract. Such license shall grant use of all programs and application software to Owner as defined by the manufacturer's license agreement, but shall protect manufacturer's rights as it relates to disclosure of trade secrets contained within said software. The Owner shall be the named license holder of all software associated with any and all incremental work on the project(s). In addition, the Owner shall receive ownership of all job specific configuration documentation, data files, and application-level software developed for the project. This shall include all custom, job specific software code, databases and documentation for all configuration and programming that is generated for a given project and/or configured for use with the BC, BAS Server(s), and any related LAN / WAN / Intranet and Internet connected routers and devices. Any and all required IDs and passwords for access to any component or software program shall be provided to the owner.

T. The System Integrator shall provide as part of the submittals a copy of the Niagara Compatibility Statement (NiCS) verifying that all aspect of the Niagara Framework as provided maintain an Open System Design. The System as provided shall confirm with the following NiCS

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION COMPATIBILITY IN</td>
<td>All</td>
</tr>
<tr>
<td>STATION COMPATIBILITY OUT</td>
<td>All</td>
</tr>
<tr>
<td>TOOL COMPATIBILITY IN</td>
<td>All</td>
</tr>
<tr>
<td>TOOL COMPATIBILITY OUT</td>
<td>All</td>
</tr>
</tbody>
</table>

U. Provide remote access via WEB/Mobile Brower and mobile applications for unlimited users without requiring proprietary software fees, seat licensing or restricted/annual licensing.

V. All building automation controllers and peripherals are required to be readily available from multiple local sources for direct purchase. Single source availability of said devices is not acceptable.

W. The BAS system must be programmed utilizing a non-proprietary software tool such as Niagara Workbench. Additional software for configuration is not permitted. Proprietary software configuration tools are not acceptable. Copy of Niagara Workbench to be provided to owner after project completion.

X. Owner to receive administration rights to all features, functionality and configuration of the building automation system
1.4 Quality Assurance

A. General - The HVAC Control System shall be furnished, engineered, and installed by a licensed Controls Contractor or System Integrator (SI). All work provided under this section shall be provided by direct employees of the SI or under the direct supervision of the SI personnel.

B. System Integrator Qualifications

1. The SI must be regularly engaged in the service and installation of JCI N2, BACnet, and Niagara 4 based systems as specified herein. The SI shall have a minimum of 5 years’ experience in the sales, installation, engineering, programming servicing and commissioning of the Niagara4 platform and the field controllers as proposed.

2. The system integrator must be an authorized factory direct representative in good standing of the manufacturer of the proposed hardware and software components. Provide a letter dated within the last 6 months, from the manufacturer certifying that the System Integrator is an authorized factory direct representative.

3. The SI shall have an office within 50 miles of the Building site that is staffed with a minimum of five (5) technicians who have successfully completed the factory authorized training of the proposed manufactures hardware and software components and have successfully completed a Niagara 4 certification course. supplying complete maintenance. SI must provide proof of required training. The SI capabilities shall include engineering and design of control systems, programming, electrical installation of control systems, troubleshooting and service. SI shall be staffed to provide support services on a 24 hour, 7-day-a-week basis.

4. The SI shall submit a list of no less than three (3) similar projects, which have similar Building Automation Systems as specified herein installed by the SI. These projects must be on-line and functional such that the Owner’s/User’s representative can observe the system in full operation.

C. Hardware and Software Component Manufacturer Qualifications

1. The manufacturer of the hardware and software components must be primarily engaged in the manufacture of both LonWorks and BACnet based systems as specified herein, and must have been so for a minimum of five (5) years. The manufacturer shall demonstrate that they are the manufacturer of all DDC devices and Niagara 4 products provided.

2. The manufacturer of the hardware and software components as well as its subsidiaries must be a member in good standing of the BACnet International, and the BACnet Manufacturers Association.

3. The manufacturer of the hardware and software components shall have a technical support group accessible via a toll free number that is staffed with qualified personnel, capable of providing instruction and technical support service for networked control systems.
1.5 Submittals

A. Submit 6 complete sets of documentation in the following phased delivery schedule:
 1. Valve and damper schedules
 2. Equipment data cut sheets
 3. System schematics, including:
 a. sequence of operations
 b. point names
 c. point addresses
 d. point to point wiring
 e. interface wiring diagrams
 f. panel layouts
 g. system riser diagrams
 4. Visio® or AutoCAD compatible as-built drawings

B. Upon project completion, submit operation and maintenance manuals, consisting of the following:
 1. Index sheet, listing contents in alphabetical order
 2. Manufacturer's equipment parts list of all functional components of the system, disk of system schematics, including wiring diagrams
 3. Description of sequence of operations
 4. As-Built interconnection wiring diagrams
 5. User’s documentation containing product, system architectural and programming information.
 6. Trunk cable schematic showing remote electronic panel locations, and all trunk data
 7. List of connected data points, including panels to which they are connected and input device (ionization detector, sensors, etc.)
 8. Copy of the warranty
 9. Recommended spare parts list

1.6 Training - Meet all applicable Training requirements of Division 1, Division 15, and the following.

A. Instruct the operators how to accomplish control of the system. Include basic troubleshooting and override of equipment and controls in the event of system failure.

B. Training Allowance: Provide not less than (8) hours formal training to the Owner’s designated operations personnel.

C. Trainers - Persons conducting the training shall hold a Niagara certification, be knowledgeable in the workings of the system, and shall be regularly engaged in training exercises, so as to provide effective training.

D. Training Classes - Prior to conducting training, prepare and submit for approval the proposed training literature and topics. Submit this information at least two weeks prior to the first class.

1.7 Warranty
A. The HVAC Control System shall be free from defects in workmanship and material under normal use and service. If within twelve (12) months from the date of substantial completion or the owner receives beneficial use of the system, the installed equipment is found to be defective in operation, workmanship or materials, the building systems contractor shall replace, repair or adjust the defect at no cost. Service shall be provided within the next business day upon notice from Owner’s designated Representative.

B. The warranty shall extend to material that is supplied and installed by the Contractor. Material supplied but not installed by the Contractor shall be covered per the above to the extent of the product only. Installation labor shall be the responsibility of the trade contractor performing the installation.

C. All corrective software modifications made during warranty service periods shall be updated on all user documentation and on user and manufacturer archived software disks.

1.8 Ownership of Proprietary Material

A. Project-specific software and documentation shall become Owner's property. This includes, but is not limited to:

1. Graphics
2. Record drawings
3. Database
4. Application programming code
5. Documentation
6. Provide to the owner the highest level administrative password for the system. This password is to be filed away by the owner and not used during the warranty period. This is to protect the owners’ interest in the system they purchased.

1.9 References

A. All work shall conform to the following Codes and Standards, as applicable:

1. National Electric Code (NEC) and all other applicable local Electric Codes.
2. Underwriters Laboratories (UL) listing and labels.
3. UL 916 Energy Management
5. NFPA 90A - Standard For The Installation Of Air Conditioning And Ventilating Systems.
7. National Electric Manufacturer’s Association (NEMA).
8. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
9. Institute of Electrical and Electronic Engineers (IEEE).
11. Electronics Industries Association (EIA).
12. Occupational Safety and Health Administration (OSHA).
14. Americans with Disabilities Act (ADA)

B. In the case of conflicts or discrepancies, the more stringent regulation shall apply.

C. All work shall meet the approval of the Authorities Having Jurisdiction at the project site.

2. PART 2 - PRODUCTS

2.1 Acceptable Manufactures

A. Acceptable Tridium Niagara manufacturers of the hardware and software components as specified herein are as follows:

1. Honeywell WEBs
2. Johnson Controls Facility Explorer
3. Distech

B. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.

C. Controls shall be microprocessor based Interoperable Niagara4 Controllers. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.

 1. The Contractor shall use only operator workstation software, controller software, custom application programming language, and controllers from the corresponding manufacturer and product line. The use of field level controllers from multiple manufacturers is acceptable provided no proprietary configuration or programming software is needed. Other products specified herein (such as sensors, valves, dampers, and actuators) need not be manufactured by the above manufacturers.

2.2 Networks – Any required Niagara 4 based network managers supplied under this section shall bridge the Lonworks, BACnet or ModBus field bus to the owner’s Local Area Network (LAN) and/or Wide Area Network (WAN) as designated by the owner. The network managers shall communicate at no less than 100 Megabits/sec over the Ethernet network and shall support BACnet over IP, Java, XML, HTTP, Fox and SOAP for maximum flexibility as it relates to the integration of building data with enterprise information systems. The system shall provide support for multiple network managers, Building Controllers (BC), user workstations and, if specified, a local server. The WAN and/or LAN will be provided by others. The SI shall coordinate with the General Contractor for the access to the WAN and/or LAN.

 A. Network minimum physical and media access requirements:
 a. Ethernet; IEEE standard 802.3
b. Cable; 100 Base-T, UTP-8 wire, category 5 Minimum throughput; 100 Mbps

B. Network Access - Remote Access - For Local Area Network installations; provide access to the WAN and/or LAN from a remote location, via the Internet. The Owner shall provide a connection to the Internet to enable access via high speed cable modem, asynchronous digital subscriber line (ADSL) modem, ISDN line, T1 Line or via the customer’s Intranet to a corporate server providing access to an Internet Service Provider (ISP). The Owner agrees to pay monthly access charges for connection and ISP.

2.3 Network Field Level Controllers – The communication network between the field level controllers shall be Lonworks TP/FT 10 bus topology, BACnet MSTP, BACnet/IP, Modbus RS-485 or Modbus/IP. All wiring shall be provided in accordance with the standards for the appropriate protocol. The number of devices on any one network shall not exceed 90% of capacity.

2.4 Network Management Devices – These various devices will service multiple functions on the network depending on network design, communication medium and needed task. These functions can include: management of traffic on the network, reconfiguring and strengthening of signals, the conversion of protocols, normalizing of data, global management of alarms, trends and schedules, control logic, protocol conversion and web page hosting for use as a Graphical User Interface.

A. Building Controller (BC) – This Niagara Framework based device shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control devices connected to the BC.

1. It shall be provided with these features
 a. Web page hosting
 b. Extended memory
 d. Appropriate hardware and driver(s) associated with the protocol it manages
 e. Din rail mounted power supply

2. Provide multiple Building Controllers as necessary. In order to maintain peak performance of the network, limit the maximum consumed resources to 80 percent as indicated by the resource meter resident in the network management tools.

3. Provide for the creation of a minimum of eight of alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc. Manage alarms as defined in the points list.

4. Provide timed (schedule) routing of alarms by class, object, group, or node.

5. Provide alarm generation from binary object “runtime” and/or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control. Control equipment and network failures shall be treated as alarms and annunciated.

6. Alarms shall be annunciated in any of the following manners as defined by the user:
 a. Screen message text
 b. Email of the complete alarm message to multiple recipients.
Provide the ability to route and email alarms based on:
1. Day of week
2. Time of day
3. Recipient
c. Mobile phone text message.
d. Graphic with flashing alarm object(s)
e. Printed message, routed directly to a dedicated alarm printer

7. The following shall be recorded by the BC for each alarm (at a minimum):
 a. Time and date
 b. Location (building, floor, zone, office number, etc.)
 c. Equipment (air handler #, access way, etc.)
 d. Acknowledge time, date, and user who issued acknowledgement.
 e. Number of occurrences since last acknowledgement.

8. Alarm actions may be initiated by user defined programmable objects created for that purpose.

9. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.

10. A log of all alarms shall be maintained by the BC and/or a server (if configured in the system) and shall be available for review by the user.

11. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.

12. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.

13. Data Collection and Storage - The BC shall collect data for any property of any object and store this data as defined in the points list.

14. The data collection shall be performed by log objects, resident in the BC that shall have, at a minimum, the following configurable properties:

15. Designating the log as interval or deviation.

16. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.

17. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.

18. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.

19. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.

20. Audit Log - Provide and maintain an Audit Log that tracks all activities performed on the BC. Provide the ability to specify a buffer size for the log and the ability to archive log based on time or when the log has reached its user-defined buffer size. Provide the ability to archive the log locally (to the BC), to another BC on the network, or to a server. For each log entry, provide the following data:
 a. Time and date
 b. User ID
 c. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

3. BUILDING AUTOMATION SYSTEM CONTROLLERS
3.1 All controllers shall be designed for easy installation and servicing including removable enclosures, removable terminals, and factory applied labels for all I/O. All internal points within the Programmable Controllers shall be fully supported by the Graphical User Interface (GUI), allowing the user to easily modify them and monitor them. All of the internal programming points (e.g. variables, constants, PID’s, timers, inputs and outputs) shall be exposed to the network on dedicated network variable outputs. All controllers programs and schedules shall contain non-volatile flash memory. Upon a loss of power all controllers shall perform a self restart.

3.2 Programmable Controllers (PC) – a controller designed for more complex sequences of operations such as built up AHU, central plant operations, electrical monitoring, and control and management for chillers, boilers and generators. The PCs are to allow for the flexibility of custom control programming to meet the needed sequences of operation.

3.3 Performance
 A. Each PC shall have a minimum of 64K of Non-volatile Flash memory for control applications and 128K non-volatile flash memory for storage with a 8 bit processor. The PC shall have a minimum ambient operating temperature range of -0°C to 70°C or 32°F to 158°F.
 B. Inputs – Analog inputs shall have the following minimum level of performance: 16-bit A to D resolution; allow monitoring of platinum 100 ohms, platinum 1000 ohm, nickel 1000 ohms, thermistor 10K type II, thermistor 10K type III, voltage input 0-10VDC, current input 4-20mA, digital input, pulsed input minimum 2 Hz.
 C. Outputs – Outputs shall be either software configurable to be either analog or digital or dedicated digital only - Analog outputs shall be selectable as voltage of 0-10 VDC (linear) or 4-20mA or Digital outputs shall be 0-12 VDC (off/on), floating or PWM. Outputs shall have an adjustable range of 2 seconds to 15 minutes. Output Resolution shall be a minimum 8 bits digital / analog converter. All individual outputs and power supply shall be protected by an auto reset fuse. There shall be an LED status indicator on each of the outputs.
 D. Programmable Controller Features
 1. Provide an onboard network communication jack
 2. The PC shall be provided with a diagnostic indicator lights for power and network communication of transmit and receive along with a light indication position for each output
 3. Hand/Off/Auto Switches – For all controllers applied to a AHU, Chiller, Pumps Cooling Tower or Boiler, provide for the manual override and adjustment of all Analog and Digital outputs through a three position switch giving the selection of Hand, Off and Auto (HOA). A HOA shall be provided for each separate digital and analog output from the controller and be an integral part of the controller. HOA switches external from the controller shall not be accepted. For the Analog outputs the Hand position of the switch shall provide for the adjustment of the output signal through a linear scaled potentiometer. The position of the HOA shall be monitored and an alarm shall be delivered to the Graphical User Interface should the switch be in an Off or Hand position. An indicating LED shall be provided on the controller for each HOA indicating
position of the switch. For all Analog outputs, the indicating LED shall provide a linear indication of the position of the Potentiometer through a variation in the intensity of the indicator LED and be provided as a numerical value that can be viewed at the Graphical User Interface.

4. Enclosures – Provide for an enclosure with a separate back plate with terminals such that the electronic portion of the controller can be easily removed for ease of installation and servicing.

4. BAS SOFTWARE TOOLS

4.1 Controller Programming Software

A. Provide Wizards or objects that facilitate the programming and configuration of the Configurable Controllers (CC), Programmable Controller (PC) and or the Special Purpose Configurable Controllers (SPCC) sequence of operation through menu driven wizard. The programming tools shall perform the following functions:

1. PC programming shall be accomplished by graphical programming language (GPL) where objects are used to define different portions of the control sequence. All control sequences programmed into the PC shall be stored in non-volatile memory. Systems that only allow selection of sequences from a library or table are not acceptable. All code must be exportable to a library for future use.

2. CC and SPCC – Provide for the programming of the required sequence of operation through an intuitive configuration menu driven selection process. The configuration tools menu shall define items such as I/O configurations, set point, delays, PID loops, optimum start stops, and network variables settings. The configuration tool must indicate the device status and allows system override. Graphical programming language as described for the PC is acceptable.

5. USER INTERFACES

5.1 Provide for a series of browser accessible graphical screens that are resident on the BC and Server that represent the systems controllers and managed by that BC and its associated controllers.

A. The Web browser client shall support at a minimum, the following functions:

1. Unlimited concurrent users shall be able to simultaneously login without the need of any additional user licenses or fees.

2. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.

3. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the GUI shall be supported by the Web browser interface.
4. HTML programming shall not be required to display system graphics or data on a Web page.

5. Storage of the graphical screens shall be in the Building Controller (BC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.

6. Real-time values displayed on a Web page shall update automatically without requiring a manual “refresh” of the Web page.

7. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
 a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 b. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 c. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 d. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
 e. View logs and charts
 f. View and acknowledge alarms

8. The system shall provide the capability to specify a user’s (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to just their defined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.

9. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

5.2 Reports and Summaries

 a. Reports and Summaries shall be generated and directed to the user interface displays, with subsequent assignment to printers, or disk. As a minimum, the system shall provide the following reports:
 a. All points in the BAS
 b. All points in each BAS application
 c. All points in a specific controller
 d. All points in a user-defined group of points
 e. All points currently in alarm
 f. All BAS schedules
2. Schedules
 a. A graphical display for time-of-day scheduling and override scheduling of building operations shall be provided. At a minimum, the following functions shall be provided:
 a. Regular schedules
 b. Repeating schedules
 c. Exception Schedules
 b. Weekly schedules shall be provided for each group of equipment with a specific time use schedule.
 c. It shall be possible to define one or more exception schedules for each schedule including references to calendars
 d. Monthly calendars shall be provided that allow for simplified scheduling of holidays and special days. Holidays and special days shall be user-selected with the pointing device or keyboard.

3. Password
 a. Multiple-level password access protection shall be provided to allow the user/manager to user interface control, display, and data manipulation capabilities deemed appropriate for each user, based on an assigned password.
 b. Each user shall have the following: a user name, a password, and access levels.
 c. The system shall provide the capability to require a password of minimum length and require a combination of characters and numerical or special characters.
 d. When entering or editing passwords, the system shall not echo the actual characters for display on the monitor.
 e. The system shall provide unlimited flexibility with access rights. A minimum of four levels of access shall be provided along with the ability to customize the system to provide additional levels.
 f. A minimum of 100 unique passwords shall be supported.
 g. Operators shall be able to perform only those commands available for their respective passwords. Display of menu selections shall be limited to only those items defined for the access level of the password used to log-on.
 h. The system shall automatically generate a report of log-on/log-off and system activity for each user.
 i. All log data shall be available in .pdf, .txt, and .csv formats.

4. Historical Data Collection
a. All numeric, binary or data points in the system data shall allow their values to be logged over time (trend log). Each historical record shall include the point’s name, a time stamp including time zone, and the point’s value.

b. The Network Area Controller (NAC) shall have the ability to store its historical data records locally and periodically to a remote server on the network (archiving).

c. The configuration of the historical data collection shall allow for recording data based on change of value or on a user-defined time interval.

d. The configuration of the historical data collection shall allow for the collection process to stop or rollover when capacity has been reached.

e. A historical data viewing utility shall be provided with access to all history records. This utility shall allow historical data to be viewed in a table or chart format.

f. The history data table view shall allow the user to hide/show columns and to filter data based on time and date. The history data table shall allow exporting to .txt, .csv, or .pdf file formats.

g. The historical data chart view shall allow different point histories to be displayed simultaneously, and also provide panning and zooming capabilities.

5. Audit Log

a. For each log entry, provide the following data;
 a. Time and date
 b. User ID
 c. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

6. Database Backup and Storage

a. The user shall have the ability to backup the System Controller databases.

5.3 INPUT DEVICE CHARACTERISTICS

A. General Requirements

1. Installation, testing, and calibration of all sensors, transmitters, and other input devices shall be provided to meet the system requirements.

B. Temperature Sensors

1. General Requirements:
 a. Sensors and transmitters shall be provided, as outlined in the input/output summary and sequence of operations.
 b. The temperature sensor shall be of the resistance type, and shall be either two-wire 1000 ohm nickel RTD, or two-wire 1000 ohm platinum RTD.
 c. The following point types (and the accuracy of each) are required, and their associated accuracy values include errors associated with the sensor, lead wire, and A to D conversion:
2. Offices/Conference Spaces
 a. Room sensors shall be constructed for either surface or wall box mounting.
 b. Room sensors shall have the following options when specified:
 a. Adjustable – with override button

C. Thermo wells
 a. When thermo wells are required, the sensor and well shall be supplied as a complete assembly, including wellhead and Greenfield fitting.
 b. Thermo wells shall be pressure rated and constructed in accordance with the system working pressure.
 c. Thermo wells and sensors shall be mounted in a threadolet or 1/2” NFT saddle and allow easy access to the sensor for repair or replacement.
 d. Thermo wells shall be constructed of 316 stainless steel.

D. Outside Air Sensors
 a. Outside air sensors shall be designed to withstand the environmental conditions to which they will be exposed. They shall also be provided with a solar shield.
 b. Sensors exposed to wind velocity pressures shall be shielded by a perforated plate that surrounds the sensor element.
 c. Temperature transmitters shall be of NEMA 3R construction and rated for ambient temperatures.

E. Duct Mount Sensors
 a. Duct mount sensors shall mount in an electrical box through a hole in the duct, and be positioned so as to be easily accessible for repair or replacement.
 b. Duct sensors shall be insertion type and constructed as a complete assembly, including lock nut and mounting plate.
 c. For outdoor air duct applications, a weatherproof mounting box with weatherproof cover and gasket shall be used.

F. Averaging Sensors
 a. For ductwork greater in any dimension that 48 inches and/or where air temperature stratification exists, an averaging sensor with multiple sensing points shall be used.
 b. For plenum applications, such as mixed air temperature measurements, a string of sensors mounted across the plenum shall be used to account for stratification.
and/or air turbulence. The averaging string shall have a minimum of 4 sensing points per 12-foot long segment.

c. Capillary supports at the sides of the duct shall be provided to support the sensing string.

G. Differential Pressure Transmitters

1. General Water Pressure Transmitter Requirements:
 a. Pressure transmitters shall be constructed to withstand 100% pressure over-range without damage, and to hold calibrated accuracy when subject to a momentary 40% over-range input.
 b. Pressure transmitters shall transmit a 0 to 5 VDC, 0 to 10 VDC, or 4 to 20 mA output signal.
 c. Differential pressure transmitters used for flow measurement shall be sized to the flow sensing device, and shall be supplied with Tee fittings and shut-off valves in the high and low sensing pick-up lines to allow the balancing Contractor and Owner permanent, easy-to-use connection.
 d. A minimum requirement of a NEMA 1 housing shall be provided for the transmitter. Transmitters shall be located in accessible local control panels wherever possible.

2. Differential Water Pressure Applications (0” - 20” w.c.)
 a. The differential pressure transmitter shall be of industrial quality and transmit a linear, 4 to 20 mA output in response to variation of flow meter differential pressure or water pressure sensing points.
 b. The differential pressure transmitter shall have non-interactive zero and span adjustments that are adjustable from the outside cover and meet the following performance specifications:
 a. .01-20” w.c. input differential pressure range.
 b. 4-20 mA output.
 c. Maintain accuracy up to 20 to 1 ratio turndown.
 d. Reference Accuracy: +0.2% of full span.

3. Steam or Water Pressure Applications (0” - 20” w.c.)
 a. The pressure transmitter shall be of industrial quality and transmit a linear, 4 to 20 mA output in response to variation of flow meter differential pressure or water pressure sensing points.
 b. The pressure transmitter shall have non-interactive zero and span adjustments that are adjustable from the outside cover and meet the following performance specifications:
 a. .01-20” w.c. input differential pressure range.
 b. 4-20 mA output.
 c. Maintain accuracy up to 20 to 1 ratio turndown.
 d. Reference Accuracy: +0.2% of full span.

H. Smoke Detectors

1. Ionization type air duct detectors shall be furnished as specified elsewhere in Division 15 for installation under Division 16. All wiring for air duct detectors shall be provided under Division 26, Fire Alarm System.

I. Status and Safety Switches
1. General Requirements
 a. Switches shall be provided to monitor equipment status, safety conditions, and generate alarms at the BAS when a failure or abnormal condition occurs. Safety switches shall be provided with two sets of contacts and shall be inter-lock wired to shut down respective equipment.

2. Current Sensing Switches
 a. The current sensing switch shall be self-powered with solid-state circuitry and a dry contact output. It shall consist of a current transformer, a solid state current sensing circuit, adjustable trip point, solid state switch, SPDT relay, and an LED indicating the on or off status. A conductor of the load shall be passed through the window of the device. It shall accept over-current up to twice its trip point range.
 b. Current sensing switches shall be used for run status for fans, pumps, and other miscellaneous motor loads.
 c. Current sensing switches shall be calibrated to show a positive run status only when the motor is operating under load. A motor running with a broken belt or coupling shall indicate a negative run status.
 d. Acceptable manufacturers: Veris Industries Hawkeye H100, 500, 600, 800, 900 Series

3. Air Filter Status Switches
 a. Differential pressure switches used to monitor air filter status shall be of the automatic reset type with SPDT contacts rated for 2 amps at 120VAC.
 b. A complete installation kit shall be provided, including: static pressure tops, tubing, fittings, and air filters.
 c. Provide appropriate scale range and differential adjustment for intended service.

4. Air Flow Switches
 a. Differential pressure flow switches shall be bellows actuated mercury switches or snap acting micro-switches with appropriate scale range and differential adjustment for intended service.

5. Low Temperature Limit Switches
 a. The low temperature limit switch shall be of the manual reset type with Double Pole/Single Throw snap acting contacts rated for 16 amps at 120VAC.
 b. The sensing element shall be a minimum of 15 feet in length and shall react to the coldest 18-inch section. Element shall be mounted horizontally across duct in accordance with manufacturers recommended installation procedures.
 c. For large duct areas where the sensing element does not provide full coverage of the air stream, additional switches shall be provided as required to provide full protection of the air stream.

5.4 OUTPUT DEVICE CHARACTERISTICS

A. Actuators
 1. General Requirements
a. Damper and valve actuators shall be electronic, as specified in the System Description section.

B. Electronic Damper Actuators

a. Electronic damper actuators shall be direct shaft mount.

b. Modulating and two-position actuators shall be provided as required by the sequence of operations. Damper sections shall be sized based on actuator manufacturer’s recommendations for face velocity, differential pressure and damper type. The actuator mounting arrangement and spring return feature shall permit normally open or normally closed positions of the dampers, as required. All actuators (except terminal units) shall be furnished with mechanical spring return unless otherwise specified in the sequences of operations. All actuators shall have external adjustable stops to limit the travel in either direction, and a gear release to allow manual positioning.

c. Modulating actuators shall accept 24 VAC or VDC power supply, consume no more than 15 VA, and be UL listed. The control signal shall be 2-10 VDC or 4-20 mA, and the actuator shall provide a clamp position feedback signal of 2-10 VDC. The feedback signal shall be independent of the input signal and may be used to parallel other actuators and provide true position indication. The feedback signal of one damper actuator for each separately controlled damper shall be wired back to a terminal strip in the control panel for trouble-shooting purposes.

d. Two-position or open/closed actuators shall accept 24 or 120 VAC power supply and be UL listed. Isolation, smoke, exhaust fan, and other dampers, as specified in the sequence of operations, shall be furnished with adjustable end switches to indicate open/closed position or be hard wired to start/stop associated fan. Two-position actuators, as specified in sequences of operations as “quick acting,” shall move full stroke within 20 seconds. All smoke damper actuators shall be quick acting.

C. Electronic Valve Actuators

a. Electronic valve actuators shall be manufactured by the valve manufacturer.

b. Each actuator shall have current limiting circuitry incorporated in its design to prevent damage to the actuator.

c. Modulating and two-position actuators shall be provided as required by the sequence of operations. Actuators shall provide the minimum torque required for proper valve close-off against the system pressure for the required application. The valve actuator shall be sized based on valve manufacturer’s recommendations for flow and pressure differential. All actuators shall fail in the last position unless specified with mechanical spring return in the sequence of operations. The spring return feature shall permit normally open or normally closed positions of the valves, as required. All direct shaft mount rotational actuators shall have external adjustable stops to limit the travel in either direction.

d. Modulating Actuators shall accept 24 VAC or VDC and 120 VAC power supply and be UL listed. The control signal shall be 2-10 VDC or 4-20 mA and the actuator shall provide a clamp position feedback signal of 2-10 VDC. The feedback signal shall be independent of the input signal, and may be used to parallel other actuators and provide true position indication. The feedback signal of
each valve actuator (except terminal valves) shall be wired back to a terminal strip in the control panel for trouble-shooting purposes.
e. Two-position or open/closed actuators shall accept 24 or 120 VAC power supply and be UL listed. Butterfly isolation and other valves, as specified in the sequence of operations, shall be furnished with adjustable end switches to indicate open/closed position or be hard wired to start/stop the associated pump or chiller.

D. Control Dampers
1. The BAS Contractor shall furnish all automatic dampers. All automatic dampers shall be sized for the application by the BAS Contractor or as specifically indicated on the Drawings.
2. All dampers used for throttling airflow shall be of the opposed blade type arranged for normally open or normally closed operation, as required. The damper is to be sized so that, when wide open, the pressure drop is a sufficient amount of its close-off pressure drop to shift the characteristic curve to near linear.
3. All dampers used for two-position, open/close control shall be parallel blade type arranged for normally open or closed operation, as required.
4. Damper frames and blades shall be constructed of either galvanized steel or aluminum. Minimum blade length in any section shall be 60”. Damper blades shall be 16-gauge minimum and shall not exceed eight (8) inches in width. Damper frames shall be 16-gauge minimum hat channel type with corner bracing. All damper bearings shall be made of reinforced nylon, stainless steel or oil-impregnated bronze. Dampers shall be tight closing, low leakage type, with synthetic elastomer seals on the blade edges and flexible stainless steel side seals. Dampers of 48”x48” size shall not leak in excess of 8.0 cfm per square foot when closed against 4” w.g. static pressure when tested in accordance with AMCA Std. 500.
5. Airfoil blade dampers of double skin construction with linkage out of the air stream shall be used whenever the damper face velocity exceeds 1500 FPM or system pressure exceeds 2.5” w.g., but no more than 4000 FPM or 6” w.g.
6. One piece rolled blade dampers with exposed or concealed linkage may be used with face velocities of 1500 FPM or below.

E. Control Relays
1. Control Pilot Relays
 a. Control pilot relays shall be of a modular plug-in design with retaining springs or clips.
 b. Mounting bases shall be snap-mount.
 c. SPDT, DPDT, 3PDT, or 4PDT relays shall be provided, as appropriate for application.
 d. Contacts shall be rated for 10 amps at 120VAC.
 e. Relays shall have an integral indicator light, manual override and check button or integral H-O-A switch.
 f. Acceptable manufacturers: Veris Industries VMD-F Series
F. Control Valves

1. All automatic control valves shall be fully proportioning and provide near linear heat transfer control. The valves shall be quiet in operation and fail-safe open, closed, or in their last position. All valves shall operate in sequence with another valve when required by the sequence of operations. All control valves shall be sized by the control manufacturer, and shall be guaranteed to meet the heating and cooling loads, as specified. All control valves shall be suitable for the system flow conditions and close against the differential pressures involved. Body pressure rating and connection type (sweat, screwed, or flanged) shall conform to the pipe schedule elsewhere in this Specification.

2. Chilled water control valves shall be modulating plug, ball, and/or butterfly, as required by the specific application. Modulating water valves shall be sized per manufacturer’s recommendations for the given application. In general, valves (2 or 3-way) serving variable flow air handling unit coils shall be sized for a pressure drop equal to the actual coil pressure drop, but no less than 5 PSI. Valves (3-way) serving constant flow air handling unit coils with secondary circuit pumps shall be sized for a pressure drop equal to 25% the actual coil pressure drop, but no less than 2 PSI. Mixing valves (3-way) serving secondary water circuits shall be sized for a pressure drop of no less than 5 PSI. Valves for terminal reheat coils shall be sized for a 2 PSIG pressure drop, but no more than a 5 PSI drop.

3. Ball valves shall be used for hot and chilled water applications, water terminal reheat coils, radiant panels, unit heaters, package air conditioning units, and fan coil units except those described hereinafter.

4. Modulating plug water valves of the single-seat type with equal percentage flow characteristics shall be used for all special applications as indicated on the valve schedule. Valve discs shall be composition type. Valve stems shall be stainless steel.

5. Butterfly valves shall be acceptable for modulating large flow applications greater than modulating plug valves, and for all two-position, open/close applications. In-line and/or three-way butterfly valves shall be heavy-duty pattern with a body rating comparable to the pipe rating, replaceable lining suitable for temperature of system, and a stainless steel vane. Valves for modulating service shall be sized and travel limited to 50 degrees of full open. Valves for isolation service shall be the same as the pipe. Valves in the closed position shall be bubble-tight.

5.5 MISCELLANEOUS DEVICE CHARACTERISTICS

A. Local Control Panels

1. All control panels supplied by the BAS Contractor, without exception, shall be prefabricated and tested by the BAS manufacturer, incorporating the BAS manufacturer’s latest design standards and layouts. All control panels shall be of steel construction, UL inspected, and listed as a UL assembly and carry the UL 508 label listing. Control panels shall be fully enclosed, with perforated sub-panel, hinged door, and slotted flush latch. The BAS Contractor shall provide as part of the project submittal written verification of the BAS manufacturer’s panel facility ISO9001 and UL certifications.

2. In general, the control panels shall consist of the DDC controller(s), display module as specified and indicated on the plans, and I/O devices—such as relays, transducers, and
so forth—that are not required to be located external to the control panel due to func-
tion. Where specified the display module shall be flush mounted in the panel face un-
less otherwise noted.

3. All I/O connections on the DDC controller shall be provide via removable or fixed
screw terminals.

4. Low and line voltage wiring shall be segregated. All provided terminal strips and wir-
ing shall be UL listed, 300-volt service and provide adequate clearance for field wir-
ing.

5. All wiring shall be neatly installed in plastic wire trough.

6. A convenience 120 VAC duplex receptacle shall be provided in each enclosure, fused
on/off power switch, and required transformers.

B. Power Supplies

1. DC power supplies shall be sized for the connected device load. Total rated load shall
not exceed 75% of the rated capacity of the power supply.

2. Input: 120 VAC +10%, 60Hz.

3. Output: 24 VDC.

4. Line Regulation: +0.05% for 10% line change.

5. Load Regulation: +0.05% for 50% load change.

6. Ripple and Noise: 1 mV rms, 5 mV peak to peak.

7. An appropriately sized fuse and fuse block shall be provided and located next to the
power supply.

8. A power disconnect switch shall be provided next to the power supply.

6. PART 3 - EXECUTION

6.1 BAS SPECIFIC REQUIREMENTS

A. Graphic Displays

1. Provide a color graphic system flow diagram display for each system with all points as
indicated on the point list. At a minimum the contractor shall insure there are graphics
depicting building floor plans, all central panels, boiler rooms, zone control, and ani-
mated 3-dimensional graphics for each unit ventilator, air handler, fan coil, etc..

2. User shall access the various system schematics via a graphical penetration scheme
and/or menu selection.

B. Actuation / Control Type

1. Unit Mounted Equipment

 a. Where control devices are indicated to be unit mounted, the BAS Contractor
 shall supply and ship all DDC controllers, relays, transformers, valves and
damper actuators to the unit equipment manufacturer for mounting and wiring.
The unit manufacturer shall mount and wire the controllers as per the BAS Contractor’s control wiring diagrams and instructions.

b. All damper and valve actuation shall be electric, spring return fail-safe and normally open or closed as specified herein.

2. Air Handling Equipment
 a. All Air Handling Equipment shall be 100% DDC controlled.
 b. All damper and valve actuation shall be electric.

6.2 INSTALLATION PRACTICES

A. BAS Wiring

1. All conduit, wiring, accessories and wiring connections required for the installation of the Building Automation System, as herein specified, shall be provided by the BAS Contractor unless specifically shown on the Electrical Drawings under Division 26 Electrical. All wiring shall comply with the requirements of applicable portions of Division 26 and all local and national electric codes, unless specified otherwise in this section.

2. All BAS wiring materials and installation methods without exception are to comply with the following BAS manufacturers recommended installation standards.
 a. All Analog Input, Analog Output, Binary Input, Binary Output and 24VAC control cables shall be UL Plenum Rated and color coded as follows; Analog Input Cable – Yellow Jacket, Analog Output Cable – Tan Jacket, Binary Input Cable – Orange Jacket, Binary Output Cable – Violet Jacket, 24VAC Cable – Grey Jacket.
 b. All Field Bus and Ethernet LAN communications cables shall be UL Plenum Rated and be color coded as follows; Field Bus – Blue Jacket with Yellow Stripe, Ethernet LAN Cable – Violet Jacket.
 c. All Ethernet LAN communications cable be UL Plenum Rated and shall meet or exceed Category 6 rating.

3. The sizing, type and provision of cable, conduit, cable trays, and raceways shall be the design responsibility of the BAS Contractor. If complications arise, however, due to the incorrect selection of cable, cable trays, raceways and/or conduit by the BAS Contractor, the Contractor shall be responsible for all costs incurred in replacing the selected components.

4. Class 2 Wiring
 a. All Class 2 (24VAC or less) wiring shall be installed in conduit unless otherwise specified.
 b. Conduit is not required for Class 2 wiring in concealed accessible locations. Class 2 wiring not installed in conduit shall be supported every 5’ from the building structure utilizing metal hangers designed for this application. Wiring shall be installed parallel to the building structural lines. All wiring shall be installed in accordance with local code requirements.
 c. Class 2 signal wiring and 24VAC power can be run in the same conduit. Power wiring 120VAC and greater cannot share the same conduit with Class 2 signal wiring.
AUTOMATIC TEMPERATURE CONTROLS

d. Provide for complete grounding of all applicable signal and communications cables, panels and equipment so as to ensure system integrity of operation. Ground cabling and conduit at the panel terminations. Avoid grounding loops.

B. BAS Line Voltage Power Source
 1. 120-volt AC circuits used for the Building Automation System shall be taken from panel boards and circuit breakers provided by Division 26.
 2. Circuits used for the BAS shall be dedicated to the BAS and shall not be used for any other purposes.
 3. DDC terminal unit controllers may use AC power from motor power circuits.

C. BAS Raceway
 1. All cables to be open plenum rated with EMT in exposed areas.
 2. Where it is not possible to conceal raceways in finished locations, surface raceway (Wiremold) may be used as approved by the Architect.
 3. All conduits and raceways shall be installed level, plumb, at right angles to the building lines and shall follow the contours of the surface to which they are attached.
 4. Flexible Metal Conduit shall be used for vibration isolation and shall be limited to 3 feet in length when terminating to vibrating equipment. Flexible Metal Conduit may be used within partition walls. Flexible Metal Conduit shall be UL listed.

D. Penetrations
 1. Provide fire stopping for all penetrations used by dedicated BAS conduits and raceways.
 2. All openings in fire proofed or fire stopped components shall be closed by using approved fire resistive sealant.
 3. All wiring passing through penetrations, including walls shall be in conduit or enclosed raceway.
 4. Penetrations of floor slabs shall be by core drilling. All penetrations shall be plumb, true, and square.

E. BAS Identification Standards
 1. Node Identification. All nodes shall be identified by a permanent label fastened to the enclosure. Labels shall be suitable for the node location. Cable types specified in Item A shall be color coded for easy identification and troubleshooting.

F. BAS Panel Installation
 1. The BAS panels and cabinets shall be located as indicated at an elevation of not less than 2 feet from the bottom edge of the panel to the finished floor. Each cabinet shall be anchored per the manufacturer’s recommendations.
 2. The BAS contractor shall be responsible for coordinating panel locations with other trades and electrical and mechanical contractors.

G. Input Devices
 1. All Input devices shall be installed per the manufacturer recommendation
2. Locate components of the BAS in accessible local control panels wherever possible.

H. HVAC Input Devices – General
 1. All Input devices shall be installed per the manufacturer recommendation
 2. Locate components of the BAS in accessible local control panels wherever possible.
 3. The mechanical contractor shall install all in-line devices such as temperature wells, pressure taps, airflow stations, etc.
 5. Outside Air Sensors
 a. Sensors shall be mounted on the North wall to minimize solar radiant heat impact or located in a continuous intake flow adequate to monitor outside air conditions accurately.
 b. Sensors shall be installed with a rain proof, perforated cover.
 6. Water Differential Pressure Sensors
 a. Differential pressure transmitters used for flow measurement shall be sized to the flow-sensing device.
 b. Differential pressure transmitters shall be supplied with tee fittings and shut-off valves in the high and low sensing pick-up lines.
 c. The transmitters shall be installed in an accessible location wherever possible.
 7. Duct Temperature Sensors:
 a. Duct mount sensors shall mount in an electrical box through a hole in the duct and be positioned so as to be easily accessible for repair or replacement.
 b. The sensors shall be insertion type and constructed as a complete assembly including lock nut and mounting plate.
 c. For ductwork greater in any dimension than 48 inches or where air temperature stratification exists such as a mixed air plenum, utilize an averaging sensor.
 d. The sensor shall be mounted to suitable supports using factory approved element holders.
 8. Space Sensors:
 a. Shall be mounted per ADA requirements.
 b. Provide lockable tamper-proof covers in public areas and/or where indicated on the plans.
 9. Low Temperature Limit Switches:
 a. Install on the discharge side of the first water or steam coil in the air stream.
 b. Mount element horizontally across duct in a serpentine pattern insuring each square foot of coil is protected by 1 foot of sensor.
 c. For large duct areas where the sensing element does not provide full coverage of the air stream, provide additional switches as required to provide full protection of the air stream.
 10. Air Differential Pressure Status Switches:
 a. Install with static pressure tips, tubing, fittings, and air filter.
11. Water Differential Pressure Status Switches:
 a. Install with shut off valves for isolation.

I. HVAC Output Devices
 1. All output devices shall be installed per the manufacturer’s recommendation. The mechanical contractor shall install all in-line devices such as control valves, dampers, airflow stations, pressure wells, etc.
 2. Actuators: All control actuators shall be sized capable of closing against the maximum system shut-off pressure. The actuator shall modulate in a smooth fashion through the entire stroke.
 3. Control Dampers: Shall be opposed blade for modulating control of airflow. Parallel blade dampers shall be installed for two position applications.
 4. Control Valves: Shall be sized for proper flow control with equal percentage valve plugs. The maximum pressure drop for water applications shall be 5 PSI. The maximum pressure drop for steam applications shall be 2 PSI.

6.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain control systems and components.

 1. Provide (8) Hours of Training
 2. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment and schedules.
 3. Provide operator training on data display, alarm and status descriptors, requesting data, executing commands, calibrating and adjusting devices, resetting default values, and requesting logs. Include a minimum of 40 hours' dedicated instructor time on-site.
 4. Review data in maintenance manuals. Refer to Division 1 Sections "Contract Closeout" or "Operation and Maintenance Data."
 5. Schedule training with Owner, through Architect, with at least seven days' advance notice.

6.5 ON-SITE ASSISTANCE

A. Occupancy Adjustments: Within one year of date of Substantial Completion, provide up to three Project site visits, when requested by Owner, to adjust and calibrate components and to assist Owner's personnel in making program changes and in adjusting sensors and controls to suit actual conditions.

7. SEQUENCES OF OPERATION

7.1 Existing JACE Supervisory Controller
BMS Contractor shall replace the existing JACE 6 with a new JACE 8000 with 3-Year SMA (Software Maintenance Agreement). BMS contractor shall replace the existing JACE I/O Modules with new modules.

BMS Contractor shall provide APC UPS for new JACE 8000.

7.2 Existing RTU 1 and 3

BMS Contractor shall integrate to the existing BACnet thermostats. RTU 1 and 3 control points are also located on the JACE I/O Modules. Existing wiring and control end devices can be reused. New Niagara 4 graphics to be created for existing RTUs. BMS contractor to verify functional operation of the existing controllers and end devices.

Control points for RTU-1 & 3 that are on JACE IO modules include:
- Return Air Temperature (Qty 2)
- Discharge Air Temperature (Qty 2)
- Fan Status (Qty 2)
- RTU-1 Bypass damper (RTU-3 does not appear to have a bypass damper)
- Outside Air Temperature (Front Corner)
- Space Temperature Sensors (Qty 7)

7.3 New VAV Boxes with Electric Heat

New and Existing VAV Boxes shall have new VAV controllers and temperature sensors installed.

Run Conditions - Scheduled:
The unit shall run according to a user definable time schedule in the following modes:
- Occupied Mode: The unit shall maintain
 - A 75°F (adj.) cooling setpoint
 - A 70°F (adj.) heating setpoint.
- Unoccupied Mode (night setback): The unit shall maintain
 - A 85°F (adj.) cooling setpoint.
 - A 55°F (adj.) heating setpoint.

Alarms shall be provided as follows:
AUTOMATIC TEMPERATURE CONTROLS

- **High Zone Temp:** If the zone temperature is greater than the cooling setpoint by a user definable amount (adj.).

- **Low Zone Temp:** If the zone temperature is less than the heating setpoint by a user definable amount (adj.).

Zone Setpoint Adjust:
The occupant shall be able to adjust the zone temperature heating and cooling setpoints at the zone sensor.

Reversing Variable Volume Terminal Unit - Flow Control:
The unit shall maintain zone setpoints by controlling the airflow through one of the following:

Occupied:
- When zone temperature is greater than its cooling setpoint, the zone damper shall modulate between the minimum occupied airflow (adj.) and the maximum cooling airflow (adj.) until the zone is satisfied.

- When the zone temperature is between the cooling setpoint and the heating setpoint, the zone damper shall maintain the minimum required zone ventilation (adj.).

- When zone temperature is less than its heating setpoint, the controller shall enable heating to maintain the zone temperature at its heating setpoint. Additionally, if warm air is available from the AHU, the zone damper shall modulate between the minimum occupied airflow (adj.) and the maximum heating airflow (adj.) until the zone is satisfied.

Unoccupied:
- When the zone is unoccupied the zone damper shall control to its minimum unoccupied airflow (adj.).

- When the zone temperature is greater than its cooling setpoint, the zone damper shall modulate between the minimum unoccupied airflow (adj.) and the maximum cooling airflow (adj.) until the zone is satisfied.

- When zone temperature is less than its unoccupied heating setpoint, the controller shall enable heating to maintain the zone temperature at the setpoint. Additionally, if warm air is available from the AHU, the zone damper shall modulate between the minimum unoccupied airflow (adj.) and the auxiliary heating airflow (adj.) until the zone is satisfied.

Electric Reheating Stage:
The controller shall measure the zone temperature and stage the reheating to maintain its setpoint. To prevent short cycling, the stage shall have a user definable (adj.) minimum runtime.
The reheating shall be enabled whenever:

- Outside air temperature is less than 65°F (adj.).
- AND the zone temperature is below setpoint.
- AND sufficient airflow is provided.

Discharge Air Temperature:
The controller shall monitor the discharge air temperature.

Alarms shall be provided as follows:
- High Discharge Air Temp: If the discharge air temperature is greater than 120°F (adj.).
- Low Discharge Air Temp: If the discharge air temperature is less than 40°F (adj.).

<table>
<thead>
<tr>
<th>Hardware Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Name</td>
</tr>
<tr>
<td>Airflow</td>
</tr>
<tr>
<td>Discharge Air Temp</td>
</tr>
<tr>
<td>Zone Setpoint Adjust</td>
</tr>
<tr>
<td>Zone Temp</td>
</tr>
<tr>
<td>Zone Damper</td>
</tr>
<tr>
<td>Reheating Stage 1</td>
</tr>
<tr>
<td>Reheat Stage 2 (VAV-5)</td>
</tr>
</tbody>
</table>

7.4 **Gas Detection System (CO/NO2):**

BMS Contractor shall integrate the Gas Detection System to the BMS via BACnet IP or MS/TP. Gas Detection Panel with relays shall control SF - 1. Fan shall cycle on low limit threshold reading. Alarm strobe shall be active on high limit threshold reading.

Mount CO Sensors 3 to 5 feet above finished floor. Mount NO2 Sensors 1 to 3 feet below ceiling.
Provide additional wall mounted switch to activate apparatus bay exhaust and supply fan.

BMS Contractor shall monitor status of SF – 1 and EF-1.

<table>
<thead>
<tr>
<th>Point Name</th>
<th>Hardware Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Status</td>
<td>AI</td>
</tr>
<tr>
<td>Fan Low Speed</td>
<td>AO</td>
</tr>
<tr>
<td>Fan High Speed</td>
<td>BI</td>
</tr>
<tr>
<td>Fan Damper Actuator with End Switch</td>
<td>BO</td>
</tr>
<tr>
<td>CO (Qty X)</td>
<td></td>
</tr>
<tr>
<td>NO2 (Qty X)</td>
<td></td>
</tr>
</tbody>
</table>

7.5 New RTU – 2

BMS contractor shall provide demo of existing RTU -2 BACnet thermostat and associated sensors.

RTU – 2 Factory Mounted Controller:

BMS Contractor shall integrate to the RTU Manufacturer provided controller. BMS contractor shall provide low voltage wiring of RTU manufacturer field wired sensors.

Run Conditions - Scheduled:
The unit shall run based upon an operator adjustable schedule.

Freeze Protection:
The unit shall shut down and generate an alarm upon receiving a freezestat status.

High Static Shutdown:
The unit shall shut down and generate an alarm upon receiving an high static shutdown signal.

Supply Air Smoke Detection:
The unit shall shut down and generate an alarm upon receiving a supply air smoke detector status.

Supply Fan:
The supply fan shall run anytime the unit is commanded to run, unless shutdown on safeties. To prevent short cycling, the supply fan shall have a user definable (adj.) minimum runtime.

Alarms shall be provided as follows:
- Supply Fan Failure: Commanded on, but the status is off.
- Supply Fan in Hand: Commanded off, but the status is on.
- Supply Fan Runtime Exceeded: Status runtime exceeds a user definable limit (adj.).

Supply Air Duct Static Pressure Control:
The controller shall measure duct static pressure and shall modulate the supply fan VFD speed to maintain a duct static pressure setpoint of 1.5in H2O (adj.). The supply fan VFD speed shall not drop below 30% (adj.).

Alarms shall be provided as follows:
- High Supply Air Static Pressure: If the supply air static pressure is 25% (adj.) greater than setpoint.
- Low Supply Air Static Pressure: If the supply air static pressure is 25% (adj.) less than setpoint.
- Supply Fan VFD Fault.

Supply Air Temperature Setpoint - Optimized:
The controller shall monitor the supply air temperature and shall maintain a supply air temperature setpoint reset based on zone cooling and heating requirements.

The supply air temperature setpoint shall be reset for cooling based on zone cooling requirements as follows:
- The initial supply air temperature setpoint shall be 55°F (adj.).
- As cooling demand increases, the setpoint shall incrementally reset down to a minimum of 53°F (adj.).
- As cooling demand decreases, the setpoint shall incrementally reset up to a maximum of 72°F (adj.).
- If more zones need heating than cooling, then the supply air temperature setpoint shall be reset for heating as follows:
 - The initial supply air temperature setpoint shall be 82°F (adj.).
 - As heating demand increases, the setpoint shall incrementally reset up to a maximum of 85°F (adj.).
 - As heating demand decreases, the setpoint shall incrementally reset down to a minimum of 72°F (adj.).

Cooling Stages:
The controller shall measure the supply air temperature and stage the cooling to maintain its cooling setpoint. To prevent short cycling, there shall be a user definable (adj.) delay between stages, and each stage shall have a user definable (adj.) minimum runtime.

The cooling shall be enabled whenever:
- Outside air temperature is greater than 60°F (adj.), and the economizer (if present) is disabled or fully open, and the supply fan status is on, and the heating (if present) is not active.
Alarms shall be provided as follows:
 a. High Supply Air Temp: If the supply air temperature is 5°F (adj.) greater than set-point.

Gas Heating Stages:
The controller shall measure the supply air temperature and stage the heating to maintain its heating setpoint. To prevent short cycling, there shall be a user definable (adj.) delay between stages, and each stage shall have a user definable (adj.) minimum runtime.

The heating shall be enabled whenever:
 a. Outside air temperature is less than 65°F (adj.).
 b. AND the supply fan status is on.
 c. AND the cooling (if present) is not active.

The heating stages shall run for freeze protection whenever:
 a. Supply air temperature drops from 40°F to 35°F (adj.).
 b. AND the supply fan status is on.

Alarms shall be provided as follows:
 a. Low Supply Air Temp: If the supply air temperature is 5°F (adj.) less than set-point.

Economizer:
The controller shall measure the mixed air temperature and modulate the economizer dampers in sequence to maintain a setpoint 2°F (adj.) less than the supply air temperature setpoint. The outside air dampers shall maintain a minimum adjustable position of 20% (adj.) open whenever occupied.

The economizer shall be enabled whenever:
 a. Outside air temperature is less than 65°F (adj.).
 b. AND the outside air enthalpy is less than 22Btu/lb (adj.)
 c. AND the outside air temperature is less than the return air temperature.
 d. AND the outside air enthalpy is less than the return air enthalpy. AND the supply fan status is on.

The economizer shall close whenever:
 a. Mixed air temperature drops from 40°F to 35°F (adj.)
 b. OR the freezestat (if present) is on.
 c. OR on loss of supply fan status.

The outside and exhaust air dampers shall close and the return air damper shall open when the unit is off. If Optimal Start Up is available the mixed air damper shall operate as described in the occupied mode except that the outside air damper shall modulate to fully closed.

Minimum Outside Air Ventilation - Carbon Dioxide (CO2) Control:
When in the occupied mode, the controller shall measure the return air CO2 concentration and
modulate the outside air dampers open on rising CO2 concentrations, overriding normal damper operation to maintain a CO2 setpoint of 750 ppm (adj.).

Mixed Air Temperature:
The controller shall monitor the mixed air temperature and use as required for economizer control (if present) or preheating control (if present).

Alarms shall be provided as follows:
 a. High Mixed Air Temp: If the mixed air temperature is greater than 90°F (adj.).
 b. Low Mixed Air Temp: If the mixed air temperature is less than 45°F (adj.).

Return Air Carbon Dioxide (CO2) Concentration Monitoring:
The controller shall measure the return air CO2 concentration.

Alarms shall be provided as follows:
 a. High Return Air Carbon Dioxide Concentration: If the return air CO2 concentration is greater than 1000ppm (adj.) when in the unit is running.

Return Air Humidity:
The controller shall monitor the return air humidity and use as required for economizer control (if present) or humidity control (if present).

Alarms shall be provided as follows:
 a. High Return Air Humidity: If the return air humidity is greater than 70% (adj.).
 b. Low Return Air Humidity: If the return air humidity is less than 35% (adj.).

Return Air Temperature:
The controller shall monitor the return air temperature and use as required for setpoint control or economizer control (if present).

Alarms shall be provided as follows:
 a. High Return Air Temp: If the return air temperature is greater than 90°F (adj.).
 b. Low Return Air Temp: If the return air temperature is less than 45°F (adj.).

Supply Air Temperature:
The controller shall monitor the supply air temperature.

Alarms shall be provided as follows:
 a. High Supply Air Temp: If the supply air temperature is greater than 120°F (adj.).
 b. Low Supply Air Temp: If the supply air temperature is less than 45°F (adj.).

<table>
<thead>
<tr>
<th>BACnet Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Name</td>
</tr>
<tr>
<td>Mixed Air Temp</td>
</tr>
<tr>
<td>Point Name</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Return Air Carbon Dioxide PPM</td>
</tr>
<tr>
<td>Return Air Humidity</td>
</tr>
<tr>
<td>Return Air Temp</td>
</tr>
<tr>
<td>Supply Air Humidity</td>
</tr>
<tr>
<td>Supply Air Static Pressure</td>
</tr>
<tr>
<td>Supply Air Temp</td>
</tr>
<tr>
<td>Humidifier</td>
</tr>
<tr>
<td>Mixed Air Dampers</td>
</tr>
<tr>
<td>Supply Fan VFD Speed</td>
</tr>
<tr>
<td>Freezestat</td>
</tr>
<tr>
<td>High Static Shutdown</td>
</tr>
<tr>
<td>Supply Air Smoke Detector</td>
</tr>
<tr>
<td>Supply Fan Status</td>
</tr>
<tr>
<td>Supply Fan VFD Fault</td>
</tr>
<tr>
<td>Cooling Stage 1</td>
</tr>
<tr>
<td>Cooling Stage 2</td>
</tr>
<tr>
<td>Heating Stage 1</td>
</tr>
<tr>
<td>Heating Stage 2</td>
</tr>
<tr>
<td>Humidifier Enable</td>
</tr>
<tr>
<td>Supply Fan Start/Stop</td>
</tr>
</tbody>
</table>
7.5 DOAS- 1 and Cell Area

DOAS- 1 Factory Provided Controller:

BMS Contractor shall integrate to the DOAS Manufacturer provided controller. BMS contractor shall provide low voltage wiring of DOAS manufacturer field sensors.

The following smoke control sequence of operation includes configuration and programming by the Fire Alarm System Contractor and additional monitoring by the BMS system. The smoke control system consists of the holding cell areas (Qty 3 Cells).

The Fire Alarm System shall provide automatic operation of the smoke exhaust fan EF-6, dedicated makeup air fan DOAS-1 interlocks, cell exhaust motorized dampers, supply and exhaust smoke dampers and disabling associated supply air VAV terminal units in accordance with the smoke control sequence indicated below.

The BMS system shall provide secondary monitoring of smoke damper position status as shown and monitor smoke exhaust fan EF - 6 run status. The BMS system shall also monitor the fire alarm system for a “Normal Mode” condition. An alarm will be generated within the BMS system if a smoke damper indicates it is not in the open position during fire alarm system “Normal Mode”.

The smoke control system for the holding cell area shall be activated by either of the following:

- Automatically via an output from the Fire Alarm Control Panel, through operation of the automatic sprinkler system in the holding cell area
- Automatically via an output from the Fire Alarm Control Panel, through the operation of a smoke duct detector located in the holding cell area or adjacent spaces
- Manually operated by the Fire Department through a keyed switch located next to the Fire Alarm Control Panel.

Smoke control system shall provide a means to pressurize and exhaust each of the three (3) smoke control compartments within the holding area – Cell 1, Cell 2 and Cell 3

The system shall have the following modes of operations:
- Normal Operation
- Fire/Smoke Alarm on any other floor/area outside of the zones
- Fire/Smoke Alarm within any of the holding area zones

Normal Operation:
- DOAS-1 shall operate per BAS sequences. All fire/smoke dampers shall be in open mode. All motorized dampers serving exhaust grilles in holding cells shall be at minimum “closed” position (set for air balancing purposes).

Fire/Smoke Alarm on any other floor/area outside of the zones:
• When a fire or smoke condition is detected in any other zone outside of the area served by DOAS-1 the following shall occur:

DOAS-1 return/exhaust fan shall de-energize. DOAS-1 supply fan shall run to supply air to the I-3 occupancy space to pressurize the space. EF -6 shall remain de-energized and associated EF -6 isolation damper closed. DOAS-1 supply and return fire/smoke dampers at demising wall to adjacent occupancy shall close.

Fire/Smoke Alarm within any of the holding area zones:

• Exhaust air duct detector(s) shall monitor each individual zone for smoke detection.
• Upon activation of a detector in any one zone the following shall occur:
 a. Damper isolating EF -6 shall open. EF -6 shall energize.
 b. DOAS-1 return/exhaust fan shall de-energize. Damper isolating DOAS-1 exhaust air shall close. DOAS-1 supply fan shall run continuously. DOAS-1 supply and return fire/smoke dampers at demising wall to adjacent occupancy shall close.
 c. For the zone of activation:
 • All motorized dampers associated with exhaust registers shall fully open.
 • All VAV boxes serving supply diffusers shall fully close.
 d. For zones outside of the area of activation:
 • All fire/smoke dampers associated with the exhaust air shall close, except for those on the duct main permitting exhaust air to EF -6.
 • All VAV boxes and fire/smoke dampers associated with the supply air shall be fully open.
 e. A fire control panel shall have the capability to energize the smoke control system in either mode as well as to manually override each zone.

Upon deactivation of smoke control system all dampers and manual selection of normal operation, fans, equipment, etc. and proof of safeties, shall revert to normal operating sequences.

Note: DOAS-1 shall have four F/A system control modules to allow the Fire Alarm System to override the BMS control as required. Override operation may be automatic as described above or may be a manual command by Fire Department personnel at the fire alarm panel. The four modules and their use are as follows:

• DOAS-1 “smoke unit shutdown” – complete DOAS-1 shutdown, fans off dampers closed
• DOAS-1 “safety bypass” – allows safeties to be bypassed, including “smoke shutdown”
• DOAS-1 “supply fan enable” – allows F/A system to start the supply fan and open associated outdoor air damper.
• DOAS-1 “exhaust fan enable” – allows F/A system to start the exhaust fan and open associated exhaust damper.

Associated VAV terminal boxes shall also have a Fire Alarm system module which will de-energize power and allow the VAV box damper to spring open. BMS contractor shall provide a remote spring return damper actuator for VAV boxes associated in this area.
7.6 Dehumidifier

Local Control:
BMS Contractor shall provide low voltage wiring for Dehumidifier Manufacturer provided sensors. Dehumidifier will not be connected to the BAS.

7.7 Electric Wall Heaters

Units to be controlled via integral thermostats. Units shall not be integrated into the BMS.

7.8 Split Systems (AHU/HP)

Non DDC Control of Split Systems. BMS Contractor shall provide low voltage condenser unit wiring and wiring of manufacturer provided space sensor.

BMS contractor shall monitor space temperature. BMS contractor shall install flat plate space temperature sensor.

Alarms shall be provided as follows:
- High Zone Temp: If the zone temperature is greater than the cooling setpoint by a user definable amount (adj.).
- Low Zone Temp: If the zone temperature is less than the heating setpoint by a user definable amount (adj.).

<table>
<thead>
<tr>
<th>Hardware Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Name</td>
</tr>
<tr>
<td>Space Temperature</td>
</tr>
</tbody>
</table>

7.9 Exhaust Fans

EF – 1 shall be interlocked with CO/NO2 system. Fan shall activate based upon input from CO/NO2 sensors. Fan status will be monitored by BMS.

EF – 2 shall be controlled a light switch. Fan status will be monitored by BMS.

EF – 3 shall run continuously. BMS shall monitor status only

EF-4 shall be controlled by a local wall switch.
EF – 5 (Elevator Machine Room) shall be controlled via a stand-alone thermostat. Fan status shall be monitored by BMS system.

EF-6: Refer to DOAS-1 sequence.

EF-7 shall be controlled by a local wall switch.

END OF SECTION 15900
SECTION 231126 - FACILITY LIQUEFIED-PETROLEUM GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.

1.3 DEFINITIONS
 A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.
 B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
 C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
 D. LPG: Liquefied-petroleum gas.

1.4 PERFORMANCE REQUIREMENTS
 A. Minimum Operating-Pressure Ratings:
 1. For Piping Containing Only Vapor:
 a. Piping and Valves: 125 psig unless otherwise indicated.
 B. LPG System Pressure within Buildings: Pressure range. 10”-14” W.C. (adjustable).
C. Delegated Design: Design restraints and anchors for LPG piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which LPG piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which LPG piping is shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Welding certificates.

E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For LPG equipment and accessories to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing LPG piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store pipes and tubes with protective PE coating to avoid damaging coating and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.
1.9 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing LPG Service: Do not interrupt LPG service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of LPG supply according to requirements indicated:

1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of LPG service.
2. Do not proceed with interruption of LPG service without Construction Manager's or Owner's written permission.

1.10 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedules 40 and 80, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground, and stainless steel underground.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Coating: PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.
4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.
5. Striker Plates: Steel, designed to protect tubing from penetrations.
6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.
7. Operating-Pressure Rating: 5 psig

2.2 PIPING SPECIALTIES

A. Flexible Piping Joints:
 1. Approved for LPG service.
 2. Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 3. Minimum working pressure of 250 psig and 250 deg F operating temperature.
 4. Flanged- or threaded-end connections to match equipment connected and shall be capable of minimum 3/4-inch misalignment.
 5. Maximum 36-inch length for liquid LPG lines.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for LPG.
C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M.
2.4 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.

1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

B. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.

1. CWP Rating: 125 psig.
2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Apollo Valves; Conbraco Industries, Inc.
 c. BrassCraft Manufacturing Co.; a Masco company.
 d. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation.
3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for LPG service with "WOG" indicated on valve body.

2.5 PRESSURE REGULATORS

A. General Requirements:
1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves & Instruments; a brand of Emerson Process Management.
 d. Invensys.
 e. Itron Gas.
 f. Richards Industries.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.

5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

C. Maximum Inlet Pressure: Verify existing.

D. Line Pressure Regulators: Comply with ANSI Z21.80.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Innovative Thermal Technologies.
 d. Fisher Control Valves & Instruments; a brand of Emerson Process Management.
 e. Invensys.
 f. Itron Gas.
 g. Maxitrol Company.
 h. Richards Industries.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industrial Unions, LLC.
FACILITY LIQUEFIED-PETROLEUM GAS PIPING

231126-8

East Lyme Public Safety Building Renovations – Niantic

e. Jomar Valve.
f. Matco-Norca.
g. Watts; a Watts Water Technologies company.
h. Wilkins.
i. Zurn Industries, LLC.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for LPG piping system to verify actual locations of piping connections before equipment installation.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Close equipment shutoff valves before turning off LPG to premises or piping section.
 B. Inspect LPG piping according to NFPA 58 and to determine that LPG utilization devices are turned off in piping section affected.
 C. Comply with NFPA 58 requirements for prevention of accidental ignition.

3.3 INDOOR PIPING INSTALLATION
 A. Comply with NFPA 58 for installation and purging of LPG piping.
 B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
 D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 G. Locate valves for easy access.
 H. Install LPG piping at uniform grade of 2 percent down toward drip and sediment traps.
 I. Install piping free of sags and bends.
 J. Install fittings for changes in direction and branch connections.
 K. Verify final equipment locations for roughing-in.
L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where readily accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed LPG piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 1. Above Accessible Ceilings: LPG piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 2. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 3. Prohibited Locations:
 a. Do not install LPG piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install LPG piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use LPG piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
V. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.5 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full ID of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Ch. 22, "Pipe and Tube."
F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for LPG service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.6 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

D. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:

1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.7 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install LPG piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliances and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.
3.8 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.9 PAINTING

A. Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for painting interior and exterior LPG piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components with factory-applied paint or protective coating.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components with factory-applied paint or protective coating.

1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex gloss.
 d. Color: Yellow.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge LPG according to NFPA 58 and requirements of authorities having jurisdiction.

C. LPG piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain LPG equipment.
3.12 PIPING SCHEDULE

A. Refer to Drawing Schedules.

END OF SECTION 231126
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Refrigerant pipes and fittings.
2. Refrigerant piping valves and specialties.
3. Refrigerants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve, refrigerant piping, and piping specialty.

1. Include pressure drop, based on manufacturer's test data, for the following:

 a. Thermostatic expansion valves.
 b. Solenoid valves.
 c. Filter dryers.
 d. Strainers.
 e. Pressure-regulating valves.

B. Shop Drawings:

1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
2. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
3. Show interface and spatial relationships between piping and equipment.
4. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE
 A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING
 A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Line Test Pressure for Refrigerant R-410A:

2.2 COPPER TUBE AND FITTINGS
 A. Copper Tube: ASTM B 280, Type ACR.
 B. Wrought-Copper Fittings: ASME B16.22.
 C. Wrought-Copper Unions: ASME B16.22.
 D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
 E. Brazing Filler Metals: AWS A5.8/A5.8M.
 F. Flexible Connectors:
 2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
3. Operator: Rising stem and hand wheel.
5. End Connections: Socket, union, or flanged.
7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
1. Body and Bonnet: Forged brass or cast bronze.
2. Packing: Molded stem, back seating, and replaceable under pressure.
3. Operator: Rising stem.
5. Seal Cap: Forged-brass or valox hex cap.
6. End Connections: Socket, union, threaded, or flanged.
8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
6. End Connections: Socket, union, threaded, or flanged.
7. Maximum Opening Pressure: 0.50 psig.
9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

E. Solenoid Valves: Comply with AHRI 760 and UL 429; listed and labeled by a National Recognized Testing Laboratory (NRTL).
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24, 115, 208-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.
6. Maximum Operating Temperature: 240 deg F.

G. Thermostatic Expansion Valves: Comply with AHRI 750.
1. Body, Bonnet, and Seal Cap: Forged brass or steel.
4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
5. Suction Temperature: 40 deg F.
7. Reverse-flow option (for heat-pump applications).
8. End Connections: Socket, flare, or threaded union.

H. Straight-Type Strainers:
2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.
5. Maximum Operating Temperature: 275 deg F.

I. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

J. Moisture/Liquid Indicators:
2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in parts per million (ppm).
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.
K. Replaceable-Core Filter Dryers: Comply with AHRI 730.
 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 4. Designed for reverse flow (for heat-pump applications).
 5. End Connections: Socket.
 9. Maximum Operating Temperature: 240 deg F.

L. Mufflers:
 2. End Connections: Socket or flare.
 4. Maximum Operating Temperature: 275 deg F.

M. Receivers: Comply with AHRI 495.
 1. Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 2. Comply with UL 207; listed and labeled by an NRTL.
 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
 5. End Connections: Socket or threaded.
 7. Maximum Operating Temperature: 275 deg F.

N. Liquid Accumulators: Comply with AHRI 495.
 2. End Connections: Socket or threaded.
 4. Maximum Operating Temperature: 275 deg F.

2.4 REFRIGERANTS

A. ASHRAE 34, R-134a: Tetrafluoroethane.

B. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.

C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

E. Install a full-size, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.

1. Install valve so diaphragm case is warmer than bulb.
2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by 2010 ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for the device being protected:

1. Solenoid valves.
2. Thermostatic expansion valves.
3. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Section 230923 "Automatic Temperature Controls" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.
N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps and double risers to entrain oil in vertical runs.
4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:

1. Shot blast the interior of piping.
2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and to restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches minimum rod, 1/4 inch.
3.3 REFRIGERANT PIPING

3. NPS 1: Maximum span, 72 inches; minimum rod, 1/4 inch.
4. NPS 1-1/4: Maximum span, 96 inches; minimum rod, 3/8 inch.
5. NPS 1-1/2: Maximum span, 96 inches; minimum rod, 3/8 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

B. Prepare test and inspection reports.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 4. Duct liner.
 5. Sealant and gaskets.
 6. Hangers and supports.
 7. Seismic-restraint devices.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233116 "Nonmetal Ducts" for fibrous-glass ducts, thermostet fiber-reinforced plastic ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
 3. Section 233119 "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
 4. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7. SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.

B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
 6. Fittings.
 7. Reinforcement and spacing.
 8. Seam and joint construction.
 9. Penetrations through fire-rated and other partitions.
 10. Equipment installation based on equipment being used on Project.
 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Delegated-Design Submittal:
 1. Sheet metal thicknesses.
 2. Joint and seam construction and sealing.
 3. Reinforcement details and spacing.
 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Suspended ceiling components.
 3. Structural members to which duct will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Penetrations of smoke barriers and fire-rated construction.
 6. Items penetrating finished ceiling including the following:
a. Lighting fixtures.
b. Air outlets and inlets.
c. Speakers.
d. Sprinklers.
e. Access panels.
f. Perimeter moldings.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-
support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G90
2. Finishes for Surfaces Exposed to View: Mill phosphatized.
C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Flexible Elastomeric Duct Liner: Non-porous, Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 2. Water Vapor Permeability (perm-in): <0.06
 3. Water absorption (lbs/sf): 0.091
 4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Insulation Pins and Washers:
 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 3. Butt transverse joints without gaps, and coat joint with adhesive.
 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.

6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.

7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.

8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.

10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 1. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
 4. Solids Content: Minimum 60 percent.
 5. Shore A Hardness: Minimum 60.
 7. Mold and mildew resistant.
 8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 9. VOC: Maximum 395 g/L.
10. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

11. Maximum Static-Pressure Class: 10-inch wg, positive or negative.

12. Service: Indoor or outdoor.

13. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.

3. Grade: NS.

5. Use: O.

6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:

1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.

2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.

3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

F. Trapeze and Riser Supports:

3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES

A. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

B. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

C. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections, reinforcing steel angle clamped to hanger rod.

D. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, where possible, plus allowance for insulation thickness.
I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger / Support Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems.", ASCE/SEI 7.

1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
2. Brace a change of direction longer than 12 feet.

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

F. Drilling for and Setting Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

B. Paint all exposed ductwork. Coordinate color selection with architect.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Leakage Tests:

2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 b. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
 c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
 d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
 e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
4. Test for leaks before applying external insulation.
5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new duct systems before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 “Air Duct Accessories” for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.
3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:
 1. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Return Ducts:
 1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

D. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 24.
d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units <Insert equipment>:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

F. Intermediate Reinforcement:

G. Liner:
 1. Supply Air Ducts: Flexible elastomeric, 1 inch thick.
 2. Return Air Ducts: Flexible elastomeric 1 inch thick.
 3. Supply Fan Plenums: Flexible elastomeric, 1 inch thick.
 4. Return-Plenums: Flexible elastomeric, 1 inch thick.

H. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Backdraft and pressure relief dampers.
 3. Control dampers.
 4. Fire dampers.
 5. Smoke dampers.
 6. Combination fire and smoke dampers.
 7. Flange connectors.
 8. Duct silencers.
 10. Duct-mounted access doors.
 11. Flexible connectors.
 12. Duct accessory hardware.

B. Related Requirements:
 1. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.
 2. Section 233723 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control-damper installations.

d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.

e. Duct security bars.

f. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and <Insert finish designation> finish for exposed ducts.

C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Greenheck
 2. Prefco Products, Inc.
 3. Ruskin Company

B. Description: Gravity balanced.

D. Maximum System Pressure: 2.5-inch wg.

E. Frame: Hat-shaped, 0.063-inch- thick extruded aluminum with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, 6063T5 extruded aluminum, 0.050”.

G. Blade Action: Parallel.

H. Blade Seals: Vinyl.

I. Blade Axles:
 1. Material: Aluminum.

J. Return Spring: Adjustable tension.

K. Bearings: Synthetic polycarbonate sleeve type.

L. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
 4. Chain pulls.
 5. Screen Mounting: Rear mounted.
 7. Screen Type: Bird.
 8. 90-degree stops.
2.4 MANUAL VOLUME DAMPERS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Metalaire
 2. Ruskin Company
 3. Nailor Industries

B. Standard, Steel, Manual Volume Dampers:
 1. Standard leakage rating, with linkage outside airstream.
 2. Suitable for horizontal or vertical applications.
 3. Frames:
 a. Frame: Hat-shaped, 0.0635 inch- thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 4. Blades:
 a. Multiple blade.
 b. Opposed blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.
 6. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 7. Tie Bars and Brackets: Galvanized steel.

2.5 CONTROL DAMPERS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Ruskin Company
 2. Greenheck
 3. Nailor Industries

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. 0.0635-inch- thick, galvanized sheet steel.
 3. Mitered and welded corners.

D. Blades:
1. Multiple blade with maximum blade width of 6 inches.
2. Opposed-blade design.
4. 0.064 inch thick single skin.

E. Blade Axles: 1/2-inch- diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Greenheck
 2. Nailor Industries
 3. Ruskin Company

B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: Refer to architectural code plan for associated ratings.

E. Frame: Multiple-blade type, fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 16 gauge thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 16 gauge thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 SMOKE DAMPERS

A. Equipment provided exclusively by the following manufacturers:
 1. Ruskin Company
 2. Greenheck
 3. Nailor Industries

B. General Requirements: Label according to UL 555S by an NRTL.

C. Refer to architectural code plans for locations.

D. Smoke Detector: Integral, factory wired for single-point connection.

E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with mechanically attached corners and mounting flange.

F. Blades: Roll-formed, horizontal, overlapping, 16 gauge thick, galvanized sheet steel.

G. Leakage: Class II.

H. Rated pressure and velocity to exceed design airflow conditions.

I. Mounting Sleeve: Factory-installed, 0.05-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulk.

J. Damper Motors: Two-position action.

K. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Automatic Temperature Controls"
 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 7. Electrical Connection: 115 V, single phase, 60 Hz.

L. Accessories:

 1. Auxiliary switches for signaling.
2. Test and reset switches, damper remote mounted.

2.8 COMBINATION FIRE AND SMOKE DAMPERS

A. Equipment provided exclusively by one of the following manufacturers
 1. Ruskin Company
 2. Greenheck
 3. Nailor Industries

B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: Refer to architect’s code plan for associated ratings and requirements.

E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with mechanically attached corners and mounting flange.

G. Smoke Detector: Integral, factory wired for single-point connection.

H. Blades: Roll-formed, horizontal, overlapping, 0.063-inch-thick, galvanized sheet steel.

I. Leakage: Class I.

J. Rated pressure and velocity to exceed design airflow conditions.

K. Mounting Sleeve: Factory-installed, 0.05-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

L. Master control panel for use in dynamic smoke-management systems.

M. Damper Motors: Two-position action.

N. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or
adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 115 V, single phase, 60 Hz.

O. Accessories:

1. Auxiliary switches for signaling.
2. Test and reset switches, damper remote mounted.

2.9 FLANGE CONNECTORS

A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.10 TURNING VANES

A. Equipment provided exclusively by one of the following manufacturers:
 1. Metal Aire
 2. Ductmate Industries, Inc.
 3. Duro Dyne Corp.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vaness and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.11 DUCT-MOUNTED ACCESS DOORS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Greenheck
 2. Nailor Industries
 3. Ductmate Industries, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.

2.12 DUCT ACCESS PANEL ASSEMBLIES

A. Labeled according to UL 1978 by an NRTL.

B. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.

C. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.

D. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

E. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.13 FLEXIBLE CONNECTORS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Duro Dyne Corp.
 2. Ventfabrics, Inc.
 3. Ward Industries, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 1. Minimum Weight: 24 oz./sq. yd..
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 - "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain
applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.
2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream and downstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream and downstream from turning vanes.
9. Upstream or downstream from duct silencers.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.
M. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

N. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

O. Connect flexible ducts to metal ducts with draw bands or adhesive plus sheet metal screws.

P. Install duct test holes where required for testing and balancing purposes.

Q. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Insulated flexible ducts.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For flexible ducts.
 1. Include plans showing locations and mounting and attachment details.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from installers of the items involved.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION
 B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
 C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."
2.2 INSULATED FLEXIBLE DUCTS

A. Products provided by one of the following manufacturers:
 1. Buckley Associates
 2. Hart and Cooley
 3. Johns Manville

B. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 20 to plus 210 deg F.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches to suit duct size.

B. Non-Clamp Connectors: Adhesive plus sheet metal screws.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

D. Connect flexible ducts to metal ducts with draw bands or adhesive plus sheet metal screws.

E. Install duct test holes where required for testing and balancing purposes.

F. Installation:
 1. Install ducts fully extended.
 2. Do not bend ducts across sharp corners.
 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
 5. Install flexible ducts in a direct line, without sags, twists, or turns.
G. Supporting Flexible Ducts:

1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.

END OF SECTION 233346
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Centrifugal roof ventilators.
 2. In-line centrifugal fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on sea level.

B. Operating Limits: Classify according to AMCA 99.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:

 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. **Vibration Isolation Base Details**: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

2. **Design Calculations**: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.5 INFORMATIONAL SUBMITTALS

A. **Coordination Drawings**: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Roof framing and support members relative to duct penetrations.
2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. **Operation and Maintenance Data**: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set for each belt-driven unit.

1.8 QUALITY ASSURANCE

A. **Electrical Components, Devices, and Accessories**: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. **AMCA Compliance**: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. **UL Standards**: Power ventilators shall comply with UL 705.

1.9 COORDINATION

A. Coordinate size and location of structural-steel support members.
B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Equipment exclusively provided by one of the following manufacturers:
 1. Greenheck
 2. Loren Cook

B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 1. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 3. Burglar Bars: [1/2-inch- (13-mm-)] [5/8-inch- (16-mm-)] [3/4-inch- (19-mm-)] thick steel bars welded in place to form 6-inch (150-mm) squares.
2.2 IN-LINE CENTRIFUGAL FANS

A. Equipment exclusively provided by one of the following manufacturers:
 1. Greenheck
 2. Loren Cook

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 3. Companion Flanges: For inlet and outlet duct connections.
 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Enclosure Type: Totally enclosed, fan cooled.

2.4 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of
Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

C. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.

D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

E. Support suspended units from structure using threaded steel rods and spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Section 230548 "Vibration and Seismic Controls for HVAC."

F. Install units with clearances for service and maintenance.

G. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.
3.5

END OF SECTION 233423
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Shutoff, single-duct air terminal units with electric heat.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of air terminal unit.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For air terminal units.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 4. Hangers and supports, including methods for duct and building attachment[, seismic restraints,] and vibration isolation.

C. Delegated-Design Submittal:
 1. Materials, fabrication, assembly, and spacing of hangers and supports.
 2. Include design calculations[, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation] for selecting hangers and supports[and seismic restraints].

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Size and location of initial access modules for acoustic tile.
3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Instructions for resetting minimum and maximum air volumes.
 b. Instructions for adjusting software set points.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fan-Powered-Unit Filters: Furnish [one] <Insert number> spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

C. ASHRAE Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 - Heating, Ventilating, and Air Conditioning."

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

A. Equipment provided by one of the following manufacturers:
 1. Enviro-tec
 2. Price
 3. Daikin
 4. Carrier
B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

C. Casing: 0.034-inch-thick galvanized steel, single wall.
 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 3. Air Outlet: S-slip and drive connections.
 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from zero to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.

E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 1. Maximum Damper Leakage: AHRI 880 rated, 2 percent of nominal airflow at 3-inch wg inlet static pressure.

F. Electric-Resistance Heating Coils: Nickel-chromium heating wire, free of expansion noise and hum, mounted in ceramic inserts in a galvanized-steel housing; with primary automatic, and secondary manual, reset thermal cutouts. Terminate elements in stainless-steel, machine-staked terminals secured with stainless-steel hardware. Provide electric-resistance heating coils for air terminal units scheduled on Drawings.
 1. Stage(s): 1, 2.
 2. SCR controlled.
 3. Access door interlocked disconnect switch.
 4. Downstream air temperature sensor with local connection to override discharge-air temperature to not exceed a maximum temperature set point (adjustable).
 5. Nickel chrome 80/20 heating elements.
 6. Airflow switch for proof of airflow.
 7. Fuses in terminal box for overcurrent protection (for coils more than 48 A).
 8. Mercury contactors.
 10. Magnetic contactor for each step of control (for three-phase coils).

G. Control devices shall be compatible with temperature controls system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 1. Terminal Unit Controller: Pressure-independent, variable-air-volume (VAV) controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:
 a. Occupied and unoccupied operating mode.
 b. Remote reset of airflow or temperature set points.
 c. Adjusting and monitoring with portable terminal.
d. Communication with temperature-control system specified in Section 230923 "Automatic Temperature Controls."

2. Room Sensor: Wall mounted with temperature set-point adjustment and access for connection of portable operator terminal.

H. Controls:

1. Suitable for operation with duct pressures between 0.25- and 3.0-inch wg inlet static pressure.
2. System-powered, wall-mounted thermostat.

2.3 CASING LINER

A. Casing Liner: Fibrous-glass duct liner, complying with ASTM C 1071, NFPA 90A; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Minimum Thickness: 1/2 inch.
2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

2.4 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to AHRI 880.

1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and AHRI certification seal.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.2 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install hangers and braces designed to support the air terminal units and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."; ASCE/SEI 7. Comply with requirements for seismic-restraint devices in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on air terminal units that are suspended with vibration isolators.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

F. Drilling for and Setting Anchors:
 1. Identify position of reinforcing steel and other embedded items before drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Install heavy-duty sleeve anchors with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.3 TERMINAL UNIT INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

C. Install wall-mounted thermostats.

3.4 CONNECTIONS

A. Where installing piping adjacent to air terminal unit, allow space for service and maintenance.

B. Hot-Water Piping: Comply with requirements in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties," and connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.

C. Comply with requirements in Section 233113 "Metal Ducts” for connecting ducts to air terminal units.

D. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.5 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.

2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air terminal unit will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.
3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 3. Verify that controls and control enclosure are accessible.
 4. Verify that control connections are complete.
 5. Verify that nameplate and identification tag are visible.
 6. Verify that controls respond to inputs as specified.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Louver face diffusers.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
 2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples: For each exposed product and for each color and texture specified. Actual size of smallest diffuser indicated.

C. Samples for Initial Selection: For diffusers with factory-applied color finishes. Actual size of smallest diffuser indicated.

D. Samples for Verification: For diffusers, in manufacturer's standard sizes to verify color selected. Actual size of smallest diffuser indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 RECTANGULAR AND SQUARE CEILING DIFFUSERS

A. Equipment provided exclusively by one of the following manufacturers:
 1. Greenheck
 2. Titus
 3. Metalaire

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Steel.

D. Finish: Baked enamel, white.

E. Face Style: Four cone.

F. Mounting: As required.

G. Pattern: Adjustable.

H. Accessories:
 1. Equalizing grid.
 2. Plaster ring.
 4. Wire guard.
 5. Sectorizing baffles.
 6. Operating rod extension.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Adjustable blade face grilles.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples: For each exposed product and for each color and texture specified. Smallest size register and grille indicated.

C. Samples for Initial Selection: For registers and grilles with factory-applied color finishes. Smallest size register and grille indicated.

D. Samples for Verification: For registers and grilles, in manufacturer's standard sizes to verify color selected. Smallest size register and grille indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 GRILLES

A. Adjustable Blade Face Grille:
 1. Equipment provided by one of the following manufacturers:
 a. Price
 b. Titus
 c. Metalaire
 3. Finish: Baked enamel, white.
 7. Frame: 1 inch wide.
 9. Accessories:
 a. Front-blade gang operator.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install registers and grilles level and plumb.
B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.23
SECTION 237416.13 - PACKAGED ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, large-capacity, rooftop air-conditioning units (RTUs) with the following components:

1. Casings.
2. Fans, drives, and motors.
3. Coils.
4. Refrigerant circuit components.
5. Air filtration.
7. Dampers.
8. Electrical power connections.
9. Controls.
10. Roof curbs.
11. Accessories.

1.3 DEFINITIONS

A. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, large-capacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

1.4 ACTION SUBMITTALS

A. Product Data: For each RTU.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Include rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
3. Include unit dimensions and weight.
4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
5. Fans:
 a. Include certified fan-performance curves with system operating conditions indicated.
 b. Include certified fan-sound power ratings.
 c. Include fan construction and accessories.
 d. Include motor ratings, electrical characteristics, and motor accessories.
6. Include certified coil-performance ratings with system operating conditions indicated.
7. Include filters with performance characteristics.
8. Include gas furnaces with performance characteristics.
9. Include factory selection calculations for each antimicrobial ultraviolet lamp installation.
10. Include dampers, including housings, linkages, and operators.

B. Shop Drawings: For each packaged, large-capacity, rooftop air-conditioning units.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Include design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 3. Wind- and Seismic-Restraint Details: Detail fabrication and attachment of wind and seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.

B. Sample Warranty: For manufacturer's warranty.

C. Seismic Qualification Data: Certificates, for RTUs, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Restraint of internal components.

D. Product Certificates: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Source quality-control reports.

F. System startup reports.

G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One (1) set of filters for each unit.
2. Gaskets: One (1) set for each access door.
3. Fan Belts: One (1) set for each belt-driven fan.
4. Filters: One (1) set of filters for each unit.

1.8 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace components of outdoor, semi-custom, air-handling unit that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of RTUs and components.

C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE 15 Compliance: For refrigeration system safety.

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

G. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design mounting and restraints for RTUs, including comprehensive engineering analysis.

1. Design RTU supports to comply with wind and seismic performance requirements.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Carrier Corporation; a unit of United Technologies Corp.
2. Daikin Applied
3. Trane
4. Johnson Controls

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction:

1. Outside Casing Wall: Galvanized steel, minimum 18-gauge-thick with manufacturer's standard finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
2. Inside Casing Wall: G90-coated galvanized steel, 0.034-inch-thick, perforated forty percent (40%) free area.
3. Floor Plate: G90 galvanized steel, treadplate, minimum thick.
4. Casing Insulation:
 b. Insulation Thickness: 2 inches.
 c. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roof of unit.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Panels and Doors:

1. Panels:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 b. Fasteners: Two (2) or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
PACKAGED ROOFTOP AIR-CONDITIONING UNITS

d. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

2. Access Doors:
 a. Hinges: A minimum of two (2) ball-bearing hinges or stainless-steel piano hinge and two (2) wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Locations and Applications:
 a. Fan Section: Doors and inspection and access panels.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panels.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

4. Service Light: 100-W vaporproof fixture with switched junction box located outside adjacent to door.

E. Condensate Drain Pans:

1. Location: Each type of cooling coil.
2. Construction:
 a. Single-wall, galvanized-steel or noncorrosive polymer sheet.

3. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.

4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two (2) planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
7. Depth: A minimum of 2 inches deep.
9. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
2.4 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

B. Supply-Air Fans: Centrifugal, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.
 1. Shafts: With field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway.
 2. Shaft Bearings:
 a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.
 3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 4. Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel or aluminum hub swaged to backplate and fastened to shaft with setscrews.
 5. Mounting: For internal vibration isolation and seismic control. Factory-mount fans with manufacturer's standard restrained vibration isolation mounting devices having a minimum static deflection of 1-inch.
 6. Shaft Lubrication Lines: Extended to a location outside the casing.
 7. Flexible Connector: Factory fabricated with a fabric strip minimum 3½ inches wide, attached to two (2) strips of minimum 2¼-inch-wide by 0.028-inch-thick, galvanized-steel sheet.

C. Drives, Direct: Factory-mounted, direct drive.

D. Drives, Belt: Factory-mounted, V-belt drive, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.
 1. Pulleys: Cast iron or cast steel with split, tapered bushing, dynamically balanced at the factory.
 2. Belts: Oil resistant, non-sparking and non-static; in matched sets for multiple-belt drives.
 3. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.146-inch-thick, ¾-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.

E. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated ECM motors.
F. Relief-Air Fan: shaft mounted on permanently lubricated motor.

G. Motors:

1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

3. Enclosure Type: Open, dripproof.

4. Enclosure Materials: Cast iron.

5. Efficiency: Premium efficient as defined in NEMA MG 1.

6. Motor Pulleys: Adjustable pitch for use with 5-hp motors and smaller; fixed pitch for use with motors larger than 5 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.

2.5 COILS

A. General Requirements for Coils:

1. Comply with AHRI 410.

2. Fabricate coils section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).

3. Coils shall not act as structural component of unit.

B. Supply-Air Refrigerant Coil:

1. Tubes: Copper.

2. Fins:
 b. Fin Spacing: Maximum twelve (12) fins per inch.

3. Fin and Tube Joints: Mechanical bond.

5. Frames: Galvanized steel.

6. Coatings: None.

7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

C. Outdoor-Air Refrigerant Coil:

1. Tubes: Copper.

2. Fins:
 b. Fin Spacing: Maximum twelve (12) fins per inch.
3. Fin and Tube Joints: Mechanical bond.
5. Frames: Galvanized steel.
6. Coatings: None.
7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

D. Hot-Gas Reheat Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 b. Fin Spacing: Maximum twelve (12) fins per inch.
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
 6. Coatings: None.
 7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.
 8. Suction-discharge bypass valve.

2.6 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, variable speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

B. Refrigeration Specialties:
 1. Refrigerant: R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.
 9. Low-ambient kit high-pressure sensor.
 11. Hot-gas bypass solenoid valve with a replaceable magnetic coil.
 12. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.

2.7 AIR FILTRATION

A. Panel Filters:
1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
2. Filter Unit Class: UL 900.
3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.

2.8 GAS FURNACES

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.
B. CSA Approval: Designed and certified by and bearing label of CSA.
C. Burners: Stainless-steel.
 1. Rated Minimum Turndown Ratio: 30 to 1.
 3. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

D. Heat-Exchanger and Drain Pan: Stainless-steel.
E. Venting, Gravity: Gravity vented with vertical extension.
F. Venting, Power: Power vented, with integral, motorized centrifugal fan interlocked with gas valve with vertical extension.
G. Safety Controls:

2.9 DAMPERS

A. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg
B. Barometric relief dampers.
C. Electronic Damper Operators:
 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.

4. Non-Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.

5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.

6. Size dampers for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.

8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

9. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on non-spring-return actuators.

11. Power Requirements (Modulating): Maximum 10 VA at 24 V ac or 8 W at 24 V dc.

12. Proportional Signal: 2 to 10 V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.

13. Temperature Rating: Minus 22 to plus 122 deg F.

2.10 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.11 ROOF CURBS

A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment" for wind-load requirements.
C. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C1071, Type I or II.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C916, Type I.

2.12 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

C. Remote potentiometer to adjust minimum economizer damper position.

D. Return-air bypass damper.

E. Factory- or field-installed demand-controlled ventilation.

F. Safeties:
 1. Smoke detector.
 2. Condensate overflow switch.
 3. Phase-loss reversal protection.
 4. High- and low-pressure control.
 5. Gas furnace airflow-proving switch.

G. Coil guards of painted, galvanized-steel wire.

H. Hail guards of galvanized steel, painted to match casing.

I. Vertical vent extensions to increase the separation between the outdoor-air intake and the flue-gas outlet.

J. Door switches to disable heating or reset set point when open.
K. Outdoor air intake weather hood.

L. Service Lights and Switch: Factory installed in each accessible section with weatherproof cover. Factory wire lights to a single-point field connection.

2.13 MATERIALS

A. Steel:
 1. ASTM A 36 for carbon structural steel.
 2. ASTM A 568 for steel sheet.

B. Stainless-Steel:
 1. Manufacturer's standard grade for casing.
 2. Manufacturer's standard type, ASTM A 240 for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A 653.

2.14 SOURCE QUALITY CONTROL

A. AHRI Compliance:
 1. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 2. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs
 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:
 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
 2. Damper leakage tested in accordance with AMCA 500-D.
 3. Operating Limits: Classify according to AMCA 99.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with Architectural Drawings. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

C. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

3.3 PIPING CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to RTU, allow space for service and maintenance.

C. Connect piping to unit mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest equipment or roof drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

F. Refrigerant Piping: Comply with applicable requirements in Section 232300 "Refrigerant Piping." Install shutoff valve and union or flange at each supply and return connection.

3.4 DUCT CONNECTIONS

A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.

3.5 ELECTRICAL CONNECTIONS

A. Connect electrical wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 260553 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs as layers of black with engraved white letters at least ½-inch-high.
 3. Locate nameplate where easily visible.

3.6 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions.
 1. Inspect for visible damage to unit casing.
 2. Inspect for visible damage to furnace combustion chamber.
 3. Inspect for visible damage to compressor, coils, and fans.
 4. Inspect internal insulation.
 5. Verify that labels are clearly visible.
 6. Verify that clearances have been provided for servicing.
 7. Verify that controls are connected and operable.
 8. Verify that filters are installed.
 9. Clean condenser coil and inspect for construction debris.
 10. Clean furnace flue and inspect for construction debris.
 11. Connect and purge gas line.
 12. Remove packing from vibration isolators.
 13. Inspect operation of barometric relief dampers.
 14. Verify lubrication on fan and motor bearings.
 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 16. Adjust fan belts to proper alignment and tension.
 17. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.
18. Inspect and record performance of interlocks and protective devices; verify sequences.
19. Operate unit for an initial period as recommended or required by manufacturer.
20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency.
 a. Measure gas pressure on manifold.
 b. Inspect operation of power vents.
 c. Measure combustion-air temperature at inlet to combustion chamber.
 d. Measure flue-gas temperature at furnace discharge.
 e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
22. Adjust and inspect high-temperature limits.
23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.
27. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Relief-air fan operation.
 f. Smoke and firestat alarms.
29. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.8 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.9 CLEANING

A. After completing system installation and testing, adjusting, and balancing RTUs and air-distribution systems and after completing startup service, clean RTUs internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.10 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 237416.13
Part 1 — GENERAL

1.01 SYSTEM DESCRIPTION:
 Outdoor roof curb or slab mounted, electronically controlled, cooling or cooling/heating unit utilizing hermetic scroll compressors with crankcase heaters for cooling duty and gas combustion or electric resistance heaters for heating duty. Units shall discharge supply air vertically or horizontally as shown on contract drawings.

1.02 QUALITY ASSURANCE
 B. Unit shall be listed as a total package by ETL and ETL, Canada.
 C. Gas heat equipped units shall be designed to conform to ANSI Standard Z83.8, Gas-Fired heaters (U.S.A.) / CSA Standard 2.6-2013 (Canada).
 D. Roof curb shall be designed to NRCA (National Roofing Contractors Association) criteria per Bulletin B-1986.
 E. Insulation and adhesive shall meet NFPA (National Fire Protection Association) 90A requirements for flame spread and smoke generation.

1.03 DELIVERY, STORAGE AND HANDLING
 Unit shall be stored and handled per manufacturer’s recommendations.

Part 2 — PRODUCTS

2.01 EQUIPMENT
 A. General:
 The unit shall be a packaged, factory-assembled heating and/or cooling system. The unit shall consist of all factory wiring with a single point power connection, refrigerant piping and charge (R-410A), operating oil charge, single refrigerant circuit (sizes 03-08) or dual refrigerant circuits (sizes 10-55), with a microprocessor-based control system. The unit shall, based on project requirements, include all special features necessary to provide fully conditioned ventilation air at neutral conditions to the building.
 B. Unit Cabinet:
 1. Double wall design, constructed of G-90 galvanized steel, bonderized and pre-coated with a polyester pre-coat finish.
 a. Top cover shall be a minimum of 18-gage sheet metal for D Cabinet and a minimum of 20-gage sheet metal for A, B, and C Cabinet, with 2.0-in. thick, closed cell polyisocyanurate foam insulation with an R-13 rating and a 24-gage sheet metal interior liner.
 b. Access panels and doors shall be a minimum of 20-gage sheet metal with 2.0-in. thick, closed cell polyisocyanurate foam insulation with an R-13 rating with a 24-gage sheet metal interior liner. Access doors shall be equipped with stainless steel hinges and quarter turn, adjustable, draw tight cam-action latches.
 c. Corner and center posts shall be 16 or 18-gage galvanized steel.
d. Basepans shall be 16 or 18-gage galvanized steel. All openings through the basepan shall have upturned flanges at least 0.5 inch in height.

e. Basepans shall be insulated with 0.375-in. thick closed cell foam insulation.

f. Condensate pan shall be 20-gage stainless steel insulated with closed cell neoprene insulation.

h. Roof sections shall be sloped for proper drainage.

2. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM (American Society for Testing and Material) B117 (scribed specimen).

3. Unit shall have insulated access doors, hinged for easy access to the controls compartment and all other areas requiring servicing. Each door shall seal against a triple-edge, co-extruded EPDM gasket to help prevent air and water leakage and for ease and safety during servicing.

4. Interior cabinet surfaces shall be lined with 24-gage galvanized steel.

5. Unit shall have a factory-installed, sloped condensate drain connection fabricated of stainless steel with welded corners and drain connection.

6. Unit shall be equipped with fittings in frame rails to facilitate overhead rigging.

7. Filters shall be accessible through a hinged access panel.

8. The outdoor air opening shall have a factory-provided hood with bird screen.

C. Fans:

1. Indoor Evaporator Fans:

 a. Direct drive plenum fan shall be provided and all axial and radial clearances must be equal to or greater than fan manufacturer's recommendations for full-rated fan performance and efficiency.

 b. Base mounted and external rotor fans with electronic communication motors shall be statically and dynamically balanced at the factory as a single rotating assembly to a quality level of G=2.5 in accordance with DIN ISO 1940-1.

 c. Modulating Supply Fan: Package shall include a VFD (variable frequency drive) (or optional EC motor on smaller sizes) controlled direct drive supply fan hard mounted (or on optional spring vibration isolation).

 d. Modulating Exhaust Fan: Package shall include a VFD (or optional EC motor on smaller sizes) controlled direct drive exhaust fan hard mounted (or on optional spring vibration isolation). VFD and ECM control shall be based on return duct pressure.

 e. Fan Status Switch: The unit shall be equipped with a current sensing switch to provide proof of airflow.

2. Condenser Fans:

 a. Fans shall be external rotor, direct-driven axial fans with a minimum 5 1/2-in. spun venturi for high efficiency and low noise, with formed and profiled blades.

 b. The fan motor assembly shall be end mounted to a structurally rigid welded finger guard.

 c. Fans shall discharge air vertically upward and the finger guard shall be powder coated.

 d. Fans shall be statically and dynamically balanced as an assembly to a quality level of G=6.3 in accordance with DIN ISO 1940-1.
D. Compressors:

1. Fully hermetic, scroll type compressors with overload protection and short cycle protection with minimum on and off cycle timers.
2. Compressor shall be installed in a compartment accessible through hinged access doors, isolated from the treated air stream.
3. Line voltage controls, operating controls, refrigerant circuit access points, refrigerant flow control devices and compressors shall be accessible from a single location behind opposed hinged access doors for ease of service.
4. Compressors shall be mounted on rubber in shear isolators and refrigerant lines to include loops to absorb reaction torque.
5. Reverse rotation protection shall be provided for all compressors.
6. Lead circuit compressor shall be variable capacity type, capable of modulating output from 100% down to 50% of nominal capacity (20-55 tons), or 20% of nominal capacity (3-18 tons).
7. Lag circuit compressor (10-55 tons) shall be fixed speed scroll with hot gas bypass.

E. Coils:
1. Standard evaporator coil shall have enhanced surface aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with brazed tube joints.
2. Standard condenser coil shall be microchannel heat exchanger (MCHX).
3. Coils shall be vendor certified for 650 psig prior to unit assembly; leak tested at 300 psig, with a final test at 475 psig.
4. Optional coil coatings for corrosion protection shall be available.

F. Refrigerant Components:
1. Unit shall be equipped with single refrigerant circuit (sizes 03-08) or dual refrigerant circuits (sizes 10-55), with each circuit containing:
 a. Solid core filter drier.
 b. Field-adjustable, externally equalized thermostatic expansion valve.
 c. Minimum load valve (hot gas bypass).
 d. Service access ports.
2. Unit shall be equipped with condenser fan speed VFD to maintain head pressure. In the Recirculating mode, fan speed control will allow operation of compressors down to 35°F.

G. Filter Section:
1. Standard filter section shall be supplied with 2-in. thick MERV-8 pleated media filters.
2. Dirty Filter Status Switch: The manual reset filter status switch shall be a pressure differential switch and will indicate a dirty filter. The switch shall be factory installed.

H. Controls and Safeties:
1. Microprocessor Controls:
 a. BACnet¹, Modbus², and LonWorks³ protocol capable.
b. Control program options shall include multiple variations for control priority, night set back and selectable overrides for field selection.

c. Shall provide a 5°F temperature difference between cooling and heating set points to meet ASHRAE Standard 90.1-2016.

d. Shall provide an alarm indicator and an audible alarm signal.

e. Shall provide and display a current alarm list and an alarm history list.

f. Compressor minimum run time (5 minutes) and minimum off time (5 minutes) shall be provided.

g. Shall have service run test capability

h. Shall have a service Diagnostic mode.

i. Single circuit systems shall have a mechanical method of capacity modulation and dual circuit system shall have at least (1) compressor with a mechanical method of capacity modulation controlled with system logic to maintain supply-air temperature set point.

j. Unit shall be complete with self-contained low voltage control circuit.

2. Safeties:

a. Unit shall incorporate an electronic compressor lockout which provides optional reset capability should any of the following safety devices trip and shut off compressor:

 1.) Compressor lockout protection provided for either internal or external overload.
 2.) Low-pressure protection.
 3.) Freeze protection (evaporator coil).
 4.) High-pressure protection.
 5.) Loss of charge protection.

b. Supply-air sensor shall be located in the unit and shall be used for compressor stage and modulation control.

c. Unit shall be equipped with a supply fan status switch to protect the system in the event of a fan drive failure.

d. Induced draft heating section shall be provided with the following minimum protections:

 1.) High-temperature limit switch.
 2.) Differential pressure switch to prove induced draft.
 3.) Flame rollout switch.
 4.) Flame proving controls.
 5.) Redundant style gas valve.

I. Operating Characteristics:

1. Unit shall be capable of starting and running at 115°F outdoor ambient air temperature.

2. Unit with standard controls will operate in cooling down to an outdoor ambient temperature of 55°F.

3. Units shall be equipped with a motorized two position outdoor air (OA) damper for 100% OA operation. Control and isolation dampers to have a leakage rate of less than 5 scfm per sq ft at 1 in. pressure differential.

4. For systems with gas heat, unit shall be provided with fan time delay to prevent cold air delivery.

J. Electrical Requirements:
1. All unit power wiring shall enter unit cabinet at a single location with a single power point connection.

2. All units shall have a touch-safe control panel with separate high and low voltage sections.

3. Phase/Voltage Monitor: A factory-installed under-voltage and phase loss sensor shall stop the unit whenever voltage is too low, phases are out of sequence, or a phase is dropped. The unit will restart automatically within five minutes after the correct power is supplied.

K. Motors:

1. Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have either internal line break thermal and current overload protection or external current overload modules with compressor temperature sensors.

2. All condenser fan motors shall be totally enclosed air-over (IP54) with permanently lubricated ball bearings, class F insulation and manual reset overload protection.

3. All indoor-fan motors shall meet the standard efficiency requirements as established by the Energy Independence and Security Act of 2007 (EISA), effective December 10, 2010.

4. Standard indoor fan motors (except for EC motors) shall be open drip proof design with optional totally enclosed fan motors available.

L. Optional Features:

1. Hot Gas Reheat:

A factory-installed hot gas reheat (HGRH) coil shall be available. The HGRH coil shall be available on the lead circuit only or on both refrigerant circuits. Units with HGRH will have variable speed low ambient head pressure control. Cycling or modulating HGRH shall be available.

2. Energy Recovery:

 a. The factory-installed enthalpy wheel shall be certified to meet the requirements of AHRI Standard 1060 and shall be AHRI listed.

 b. The enthalpy wheel shall be constructed of corrugated synthetic fibrous media with a desiccant intimately bound and uniformly and permanently dispersed throughout the matrix structure of the media.

 c. The desiccant material shall be molecular sieve, 4 angstrom or smaller.

 d. The rotor shall be constructed of alternating layers of flat and corrugated media.

 e. Wheel construction shall be fluted or formed honeycomb geometry so as to eliminate internal wheel bypass.

 f. The wheel frames shall be evenly spaced steel spokes with a galvanized steel outer band and rigid center hub.

 g. The wheel seals shall be full contact nylon brush type.

 h. The wheel shall slide out of the cabinet side for service.

 i. Wheel cassettes shall be constructed of galvanized steel. Cassettes shall have integral purge section.

 j. The wheel bearings shall be inboard mounted permanently sealed roller bearings or externally flanged bearings.

 k. The wheel shall be driven by a fractional horsepower AC motor via multilink drive belts.

 l. Energy wheel defrost control and air bypass shall be available.

3. Gas Heating:
a. Gas heat shall be induced-draft combustion type with energy saving direct spark ignition systems and redundant main gas valves.

b. The heat exchanger shall be of the tubular section type constructed of a minimum of 20-gage 409 stainless steel.

c. Burners shall be of the in-shot type constructed of aluminum coated steel.

d. All gas piping shall enter the unit cabinet at a single location.

4. Induced-Draft Fans:

a. Shall be direct-driven, single inlet, forward-curved centrifugal type.

b. Shall be statically and dynamically balanced.

c. Shall be made from steel with a corrosion-resistant finish.

d. High-corrosion areas such as flue gas collection and exhaust areas shall be lined with corrosion resistant material.

e. Gas heat control shall be staged (2 or 4 stages) or optional modulating control with 5:1 or 10:1 minimum effective turn-down.

5. Electric Heat:

a. Electric resistance heaters shall be factory-installed, nichrome element type, open wire coils with 0.375-in. inside diameter, insulated with ceramic bushings, and include operating and safety controls. Coil ends shall be staked and welded to terminal screw slots.

b. Factory-installed electric heat shall have staged heat control (1, 2, or 4 stages) or SCR (silicon controlled rectifier) control providing infinite capacity adjustment.

6. Hot Water Heat:

Unit shall have a 2-row hot water coil, aluminum fin construction, installed downstream of the evaporator coil. Coil connection stubs will be located inside the unit cabinet.

7. Liquid Subcooling Coil:

The unit can be equipped with a factory-installed liquid subcooling coil circuit.

8. Convenience Outlet:

Shall be factory-installed and externally mounted with a 115-v. 15 amp female GFI receptacle with hinged cover. The outlet shall be factory wired from a transformer powered by the load side of the disconnect and shall include a 15A breaker.

9. Non-Fused Disconnect Switch:

Shall be factory-installed, internally mounted rotary or externally mounted blade type disconnect that is UL registered. Non-fused switch shall provide unit power shutoff and shall be accessible from outside the unit. The switch shall provide power off lockout capability.

10. 4-Inch Filters:

Optional filter section shall be supplied with 4-in. thick MERV-8, 11, or 14 pleated media filters.

11. Commissioning User Interface:

The commissioning display unit shall be Equipment Touch™, field assistant, or the Equipment Touch app.

12. Roof Curb with Sleeper Rail:
Curb shall be formed of 14-gage galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.

13. Exhaust Air Smoke Detector:
A factory-installed smoke detector shall be mounted in the unit exhaust air intake.

14. Harsh Environment Coating:
Unit shall be equipped with a factory-applied “Harsh Environment Protection” designed to combat the corrosive effects of industrial and commercial atmospheric conditions including: salt air, salt water, acid rain, chlorine and chlorides, hydrochloric, nitric, hydrofluoric, sulfuric and uric acid fumes, hydrogen sulfide gas, lye, sulfur dioxide, methane gas, hydrocarbons, chlorinated solvents and aromatic solvents. The Harsh Environment Protection shall include the following features, where applicable, to provide extra protection against corrosive atmospheric conditions:

a. Vinyl-coated condenser fan guards.
b. Non-corroding condenser fan motor mounts.
c. Totally enclosed, single-speed, three-phase condenser fan motors.
d. Coated, refrigerant-to-air condenser with corrosion-resistant coil coating, composed of aluminum-impregnated polyurethane, rated for 10,000 hour salt spray.
e. Coated, refrigerant-to-air evaporator with corrosion-resistant coil-coating, composed of aluminum-impregnated polyurethane, rated for 10,000 hour salt spray.
f. Coated, refrigerant-to-air hot gas reheat coil with corrosion-resistant coil coating, composed of polyurethane, rated for 10,000 hour salt spray.
g. Coated, refrigerant-to-air subcooling coil with corrosion-resistant coil coating, composed of aluminum impregnated polyurethane, rated for 10,000 hour salt spray.
h. All interior (un-insulated) cabinet panels coated with corrosion-resistant cabinet coating, composed of polyurethane, rated for 10,000 hour salt spray.
i. All exterior surfaces of the cabinet coated with corrosion-resistant cabinet coating, composed of polyurethane, rated for 10,000 hour salt spray.
j. All compressors, accumulators, factory-installed receivers, control device covers and refrigerant piping coated with corrosion-resistant cabinet coating, composed of polyurethane, rated for 10,000 hour salt spray. (Excludes dampers and blower fan blades.)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Examine roof curbs and equipment supports for suitable conditions where units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION, GENERAL

A. Roof Curb: Install on roof structure or concrete base, level and secure, in accordance with NRCA's "The NRCA Roofing Manual: Membrane Roof Systems", AHRI Guideline B. Install units on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

B. Unit Support: Install unit level on structural curbs. Coordinate roof penetrations and flashing with roof construction. Secure units to structural support with anchor bolts. Coordinate sizes and locations of curbs with actual equipment provided.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

D. Install filter-gauge, static-pressure taps upstream and downstream of filters. Mount filter gauges on outside of filter housing or filter plenum in accessible position. Provide filter gauges on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

E. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

F. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.

G. Comply with requirements for gas-fired furnace installation in NFPA 54.

H. Install separate devices furnished by manufacturer and not factory installed.

I. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

3.3 PIPING CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to units, allow space for service and maintenance.

C. Connect piping to units mounted on vibration isolators with flexible connectors.

D. Refrigerant Piping: Comply with applicable requirements in Section 232300 "Refrigerant Piping." Install shutoff valve and union or flange at each supply and return connection.

E. Gas Piping: Provide AGA-approved flexible connectors.

1. Connect gas piping to furnace, full size of gas train inlet, and connect with union, pressure regulator, and shutoff valve with sufficient clearance for burner removal and service.
2. Install AGA-approved flexible connectors.

F. Duct Connections:
1. Comply with requirements in Section 233113 "Metal Ducts."
2. Drawings indicate the general arrangement of ducts.
3. Connect ducts to units with flexible duct connectors. Comply with requirements for flexible duct connectors in Section 233300 "Air Duct Accessories."

3.4 ELECTRICAL CONNECTIONS

A. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
B. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
C. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.
D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.5 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.
B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks in accordance with manufacturer's written instructions.
 2. Inspect units for visible damage to furnace combustion chamber.
 3. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 a. Measure gas pressure at manifold.
 b. Measure combustion-air temperature at inlet to combustion chamber.
 c. Measure flue-gas temperature at furnace discharge.
 e. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
 4. Verify operation of remote panel, including pilot-light operation and failure modes. Inspect the following:
 a. High-limit heat exchanger.
 b. Alarms.
5. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.
6. Start refrigeration system when outdoor-air temperature is within normal operating limits, and measure and record the following:
 a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 c. Condenser coil entering-air dry-bulb temperature.
 d. Condenser coil leaving-air dry-bulb temperature.
7. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.
8. Inspect casing insulation for integrity, moisture content, and adhesion.
9. Verify that clearances have been provided for servicing.
10. Verify that controls are connected and operable.
11. Verify that filters are installed.
12. Clean coils and inspect for construction debris.
13. Clean furnace flue and inspect for construction debris.
15. Purge gas line.
16. Inspect and adjust vibration isolators and seismic restraints.
17. Verify bearing lubrication.
18. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.
19. Adjust fan belts to proper alignment and tension.
20. Start unit.
21. Inspect and record performance of interlocks and protective devices, including response to smoke detectors by fan controls and fire alarm.
22. Operate unit for run-in period.
23. Calibrate controls.
25. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
26. Verify operational sequence of controls.
27. Measure and record the following airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Relief-air flow.
 c. Outdoor-air flow.

B. After startup, change filters, verify bearing lubrication, and adjust belt tension.

C. Remove and replace components that do not properly operate, and repeat startup procedures as specified above.

D. Prepare written report of the results of startup services.

3.7 ADJUSTING

A. Adjust initial temperature and humidity set points.
B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 CLEANING

A. After completing system installation; testing, adjusting, and balancing dedicated outdoor-air unit and air-distribution systems; and completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, casings, dampers, coils, and filter housings, and install new, clean filters.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
2. Charge refrigerant coils with refrigerant and test for leaks.
3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train. Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION
SECTION 238127 - VRV HEAT PUMP SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. The system shall consist of an exposed ceiling mounted evaporator exclusively matched to outdoor model, air-cooled, variable speed, inverter driven compressor using R-410A refrigerant. The outdoor unit is a horizontal discharge, variable speed, single fan unit using a single-phase power supply. The system shall have a self diagnostic function, 3-minute time delay mechanism and have a factory pre-charge of R-410A adequate for 33 feet of total length. The system shall have automatic restart capability after a power failure has occurred and a low voltage cut-off feature to prevent stalling during power supply issues.

1.3 QUALITY ASSURANCE

A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL), in accordance with ANSI/UL 1995 – Heating and Cooling Equipment and bear the Listed Mark.

B. All wiring shall be in accordance with the National Electric Code (NEC).

C. Each combination shall be rated in accordance with Air Conditioning Refrigeration Institute’s (ARI) Standard 210/240 and bear the ARI label.

D. The system will be produced in an ISO 9001 and ISO 14001 facility, which are standards set by the International Standard Organization (ISO). The system shall be factory tested for safety and function.

E. The outdoor unit will be factory charged for a length of 33 feet of refrigerant with R-410A refrigerant.

F. A holding charge of dry nitrogen shall be provided in the evaporator.

G. System efficiency shall meet or exceed 24.5 SEER and 12.5 HSPF

1.4 DELIVERY, STORAGE AND HANDLING

A. Unit shall be stored and handled according to the manufacturer’s recommendations.
1.5 WARRANTY

A. Limited Warranty: Products shall be free from defects in material or workmanship. This warranty applies to parts only and is limited in duration to five (5) years from the earlier to occur of (a) the date of original installation, whether or not actual use begins on that date, or (b) 18 months from the date of shipment by the manufacturer. Customer must present proof of the original date of receipt and of installation of the Product in order to establish the effective date of this warranty. Otherwise the effective date will be deemed to be the date of manufacture plus sixty (60) days. Repaired or replacement parts are warranted for the balance of the warranty period applicable to the original part following the date on which the repaired or replacement part is provided to the Customer.

B. Extended Warranty: For its compressors only, the manufacturer shall provide the above warranty (which is applicable to parts only) for a 7-year period. This extended warranty for compressors is limited in duration to seven (7) years from the earlier to occur of (a) the date of original installation, whether or not actual use begins on that date, or (b) 18 months from the date of shipment by the manufacturer, and applies to the compressor and compressor parts only. The effective date of this extended warranty shall be established as above.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS:

A. The system performance shall be in accordance with ARI 210/240 test conditions as shown in the performance table below.

1. The cooling performance is based on 80°F DB/67°F WB for the indoor unit and 95°F DB/75°F WB for the outdoor unit and 25 feet of piping.
2. The heating performance is based on 70°F DB/60°F WB for the indoor unit and 47°F DB/43°F WB for the outdoor unit and 25 feet of piping.

B. The operating range in cooling will be 50°F DB ~ 115°F DB, and 0°F DB ~ 115°F DB when used with an optional wind baffle. The system will stop functioning below -0.4°F DB.

C. The operating range in heating will be 5°F DB ~ 77°F DB, and 0°F DB ~ 77°F DB when used with an optional wind baffle.

2.2 MANUFACTURERS

A. Mitsubishi

B. Johnson Controls

C. Daikin

2.3 INDOOR UNIT

A. General: The indoor unit shall be factory assembled and pre-wired with all necessary electronic and refrigerant controls. Both liquid and suction lines must be individually insulated between the outdoor and indoor units.
B. Unit Cabinet:
 1. The indoor unit shall have a white, “flat screen” finish.
 2. Cabinet shall be exposed and capable of being supported by building structure.

C. Fan:
 1. The evaporator fan shall be an assembly consisting of a direct-driven fan by a single motor.
 2. The fan shall be statically and dynamically balanced and operate on a motor with permanent lubricated bearings.
 3. An auto-swing louver for adjustable air flow (both vertically and horizontally) is standard via the wireless remote control furnished with each system.
 4. The indoor fan shall offer a choice of five speeds, plus quiet and auto settings.

D. Filter: The return air filter provided will be a mildew proof, removable and washable filter. Optional photo catalytic, air purifying filters are available.

E. Coil:
 1. The evaporator coil shall be a nonferrous, aluminum fin on copper tube heat exchanger.
 2. All tube joints shall be brazed with silver alloy or phoscopper.
 3. All coils will be factory pressure tested.
 4. A condensate pan shall be provided under the coil with a drain connection.

F. Control:
 1. The unit shall have a backlit, wireless remote infra-red controller capable to operate the system. It shall have Cooling Operation, Heating Operation, Automatic Operation, Dry Operation and Fan Only Operation.
 2. The infrared remote controller shall consist of an On/Off Power switch, Mode Selector, Outdoor Quiet Operation (for outdoor unit), Fan Setting, Swing Louver, On/Off Timer Setting, Temperature Adjustment, °C or °F Temperature Display, “Intelligent Eye” sensor, and Powerful Operation.
 a. On/Off switch powers the system on or off.
 b. Mode selector shall operate the system in auto, cool, heat, fan or dry operation
 c. Outdoor quiet operation shall lower the sound level of the outdoor unit by slowing the inverter driven fan speed.
 d. Fan setting shall provide five fan speeds, plus quiet and auto settings.
 e. Swing louver shall adjust the airflow (horizontal and vertical) blades.
 f. On/Off timer is used for automatically switching the unit on or off.
 g. Temperature adjustment allows for the increase or decrease of the desired temperature.
 h. Intelligent eye provides an infrared sensor which detects movement and adjusts the temperature by 3.6°F up or down depending on operating mode.
 i. Powerful operation allows quick cool down or heating up in the desired space to achieve maximum desired temperature in the shortest allowable time period.
 3. The infrared remote control shall perform Fault Diagnostic functions which may be system related, indoor unit or outdoor unit related depending on the fault code.
4. Temperature range on the remote control shall be 64°F to 90°F in cooling mode and 50°F to 86°F in heating mode.
5. The indoor unit microprocessor has the capability to receive and process commands via return air temperature and indoor coil temperature sensors enabled by commands from the remote control.

G. Sound: Indoor unit sound levels shall not exceed the values as indicated on the mechanical schedules.

2.4 OUTDOOR UNIT

A. General: The outdoor unit shall be specifically matched to the corresponding indoor unit size. The outdoor unit shall be complete factory assembled and pre-wired with all necessary electronic and refrigerant controls.

B. Unit Cabinet: The outdoor unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed mild steel panels coated with a baked enamel finish.

C. Fan:
 1. The fan shall be a direct drive, propeller type fan.
 2. The motor shall be inverter drive, permanently lubricated type bearings, inherent.
 3. The fan shall be capable of operating in “silent operation” which lowers the outdoor fan speed in either cool, heat or auto modes.
 4. A fan guard is provided on the outdoor unit to prevent contact with fan operation.
 5. Airflow shall be horizontal discharge.

D. Coil:
 1. The outdoor coil shall be nonferrous construction with corrugated fin tube.
 2. The fins are to be covered with an anti-corrosion acrylic resin and hydrophilic film type E1.
 3. Refrigerant flow from the condenser will be controlled via a metering device.

E. Compressor:
 1. The compressor shall be an inverter-driven compressor.
 2. The outdoor unit shall have an accumulator, four-way reversing valve.
 3. The compressor shall have an internal thermal overload.
 4. The outdoor unit can operate with a maximum vertical height difference of 49 feet and overall maximum length of 66 feet without any oil traps or additional components.

F. Electrical:
 1. The outdoor shall be controlled by a microprocessor located in the outdoor and indoor units via commands from the infrared remote controller.
 2. Dedicated EEV’s shall be provided for capacity control during part load of the indoor unit.
PART 3 - EXECUTION

3.1 INSTALLATION REQUIREMENTS

A. The system shall be installed by a manufacturer’s factory trained contractor/dealer.

3.2 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.

END OF SECTION 238127
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Common electrical installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Section 083113 "Access Doors and Frames."
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

1.6 WARRANTY

A. Subcontractors shall provide a One (1) Year Labor & Material Warranty that all materials and equipment furnished shall be new and of good quality, free from faults and defects and in conformance with the Contract Documents. Any defects due to faulty workmanship or materials which appear during the first year shall be corrected by the subcontractor at no additional cost. The Warranty will be the responsibility of the subcontractor for a period of one (1) year from the date of Substantial Completion for that particular building area as the construction phases are completed.

B. For all major pieces of equipment, the Warranty will commence after the equipment has been put into permanent operating mode, equipment and components have been commissioned and accepted by the Commissioning Agent, and the Operating & Maintenance Manuals have been submitted and approved.

C. The subcontractor shall provide the cost of providing routine maintenance services as documented by manufacturer’s operating and maintenance literature. Subcontractor shall be responsible for the manufacturer’s recommended maintenance procedures for a period of one (1) year from the time the Warranty commences or until completion of the entire construction project, whichever is later.

D. Submit written warranties covering work specified in Division 26.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and one (1) or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following into the Work include, but are not limited to, the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM and/or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Plastic, Carbon steel, Stainless steel. Include two (2) for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating, Stainless steel of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

2.3 GROUT
A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, non-staining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS
A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide ½-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants".

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Section 078413 "Penetration Firestopping."

K. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

L. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Section 078413 "Penetration Firestopping."

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Qualification Data: For testing agency.

C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

 1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.
1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Alcan Products Corporation; Alcan Cable Division
2. American Insulated Wire Corp.; a Leviton Company
3. General Cable Corporation
4. Senator Wire & Cable Company
5. Southwire Company

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

D. Multi-Conductor Cable: Comply with NEMA WC 70 for armored cable, Type AC, metal-clad cable, Type MC, mineral-insulated, and metal-sheathed cable, Type MI with ground wire.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC
4. 3M; Electrical Products Division
5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Plastic, Carbon steel, Stainless steel. Include two (2) for each sealing element.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper for all feeders. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTI-CONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

C. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway and metal-clad cable, Type MC.

D. Class 1 Control Circuits: Type THHN-THWN, in raceway.

E. Class 2 Control Circuits: Type THHN-THWN, in raceway Power-limited cable, concealed in building finishes, Power-limited tray cable, in cable tray.
3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide ¼-inch annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Section 079200 "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Section 078413 "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

3.6 SLEEVE-SEAL INSTALLATION

A. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and conductors feeding the following critical equipment and services for compliance with requirements.

3. Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice eleven (11) months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

C. Test Reports: Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Sections include the following:
 1. Section 260548 "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times (5x) the applied force.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel slotted support systems.
2. Nonmetallic slotted support systems.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:

1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Nonmetallic slotted channel systems. Include Product Data for components.
4. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA 4, factory-fabricated components for field assembly.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allied Tube & Conduit
 b. Cooper B-Line, Inc.; a division of Cooper Industries
 c. ERICO International Corporation
 d. GS Metals Corp.
 e. Thomas & Betts Corporation
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

5. Channel Dimensions: Selected for applicable load criteria.
B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch-diameter holes at a maximum of 8 inches o.c., in at least one (1) surface.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit
 b. Cooper B-Line, Inc.; a division of Cooper Industries
 c. Fabco Plastics Wholesale Limited
 d. Seasafe, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened Portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated and stainless steel, for use in hardened Portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1) Cooper B-Line, Inc.; a division of Cooper Industries
2) Empire Tool and Manufacturing Co., Inc.
3) Hilti Inc.
4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
5) MKT Fastening, LLC

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be ¼ inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least twenty-five percent (25%) in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps single-bolt conduit clamps single-bolt conduit clamps using spring friction action for retention in support channel.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1½-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.
3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1, with lock washers and nuts, Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69, Spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1.
3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

1.3 DEFINITIONS
 A. EMT: Electrical metallic tubing.
 B. ENT: Electrical nonmetallic tubing.
 C. EPDM: Ethylene-propylene-diene terpolymer rubber.
 D. FMC: Flexible metal conduit.
 E. IMC: Intermediate metal conduit.
 F. LFMC: Liquidtight flexible metal conduit.
 G. LFNC: Liquidtight flexible nonmetallic conduit.
 H. NBR: Acrylonitrile-butadiene rubber.
 I. RNC: Rigid nonmetallic conduit.
 J. MC: Metal Clad cable.

1.4 SUBMITTALS
 A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 1. Custom enclosures and cabinets.
 C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Structural members in the paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

D. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Qualification Data: For professional engineer and testing agency.

F. Source quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Allied Tube & Conduit; a Tyco International Ltd. Co.
4. Anamet Electrical, Inc.; Anaconda Metal Hose
5. Electri-Flex Co.
6. Manhattan/CDT/Cole-Flex
7. Maverick Tube Corporation
8. O-Z Gedney; a unit of General Signal
9. Wheatland Tube Company
B. Rigid Steel Conduit: ANSI C80.1.

C. Aluminum Rigid Conduit: ANSI C80.5.

D. IMC: ANSI C80.6.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit and IMC.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

F. EMT: ANSI C80.3.

G. FMC: Zinc-coated steel or aluminum.

H. LFMC: Flexible steel conduit with PVC jacket.

I. MC: Metal Clad cable.

J. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: Steel or die-cast and set-screw or compression type.
 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.

K. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFC Cable Systems, Inc.
2. Anamet Electrical, Inc.; Anaconda Metal Hose
3. Arneo Corporation
4. CANTEX Inc.
5. CertainTeed Corp.; Pipe & Plastics Group
7. ElecSYS, Inc.
8. Electri-Flex Co.
9. Lamson & Sessions; Carlon Electrical Products
10. Manhattan/CDT/Cole-Flex
11. RACO; a Hubbell Company
12. Thomas & Betts Corporation

B. ENT: NEMA TC 13.
2.3 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Arnco Corporation
2. Endot Industries Inc.
3. IPEX Inc.
4. Lamson & Sessions; Carlon Electrical Products

B. Description: Comply with UL 2024; flexible type, approved for plenum, riser, general-use installation.

2.4 METAL WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper B-Line, Inc.
2. Hoffman
3. Square D; Schneider Electric

B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 3R, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type, Screw-cover type, Flanged-and-gasketed type, or as indicated.

E. Finish: Manufacturer's standard enamel finish.

2.5 NONMETALLIC WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Hoffman
2. Lamson & Sessions; Carlon Electrical Products

B. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with
captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets.

C. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.

D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.6 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Thomas & Betts Corporation
 b. Walker Systems, Inc.; Legrand
 c. Wiremold Company (The); Legrand

2.7 BOXES, ENCLOSURES, AND CABINETS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric
3. Erickson Electrical Equipment Company
4. Hoffman
5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division
6. O-Z/Gedney; a unit of General Signal
7. RACO; a Hubbell Company
8. Robroy Industries, Inc.; Enclosure Division
9. Scott Fetzer Co.; Adalet Division
10. Spring City Electrical Manufacturing Company
11. Thomas & Betts Corporation
12. Walker Systems, Inc.; Legrand
13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, cast feralloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

G. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

2.8 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

2.9 SLEEVE SEALS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Stainless steel. Include two (2) for each sealing element.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.
PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Comply with the following indoor applications, unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT, ENT, or RNC.
2. Exposed, Not Subject to Severe Physical Damage: EMT, RNC identified for such use.
3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT, ENT, or RNC, Type EPC-40-PVC.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: Rigid steel conduit.
7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway, EMT.
8. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: Riser-type, optical fiber/communications cable raceway, EMT.
9. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: General-use, optical fiber/communications cable raceway, EMT.
10. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel nonmetallic in damp or wet locations.

B. Minimum Raceway Size: ¾-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.

D. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

E. Do not install aluminum conduits in contact with concrete.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Section 260529 "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

F. Install no more than the equivalent of three (3) 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

I. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

J. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

K. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 1. ¾-Inch Trade Size and Smaller: Install raceways in maximum lengths of 50 feet.
 2. 1-Inch Trade Size and Larger: Install raceways in maximum lengths of 75 feet.
 3. Install with a maximum of two (2) 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

L. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

M. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet.
 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
d. Attics: 135 deg F (75 deg C) temperature change.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change.

3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.

N. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semi-recessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

O. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

3.3 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.
H. Size pipe sleeves to provide ¼-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Section 079200 "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Section 078413 "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.

M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

3.4 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Section 078413 "Penetration Firestopping."

3.6 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Isolation pads.
 2. Spring isolators.
 3. Restrained spring isolators.
 4. Channel support systems.
 5. Restraint cables.
 6. Hanger rod stiffeners.
 7. Anchorage bushings and washers.

B. Related Sections include the following:
 1. Section 260529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS
C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other electrical Sections for equipment mounted outdoors.

2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.

3. Field-fabricated supports.

4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control test reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing
are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

E. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
3. California Dynamics Corporation
4. Isolation Technology, Inc.
5. Kinetics Noise Control
6. Mason Industries
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation

B. Pads: Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene.

C. Spring Isolators: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
2. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
3. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
4. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to ¼-inch thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

D. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to ¼-inch thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Restraint: Seismic or limit-stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
4. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
5. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
6. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2.2 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Amber/Booth Company, Inc.
 2. California Dynamics Corporation
 3. Cooper B-Line, Inc.; a division of Cooper Industries
 4. Hilti Inc.
 5. Loos & Co.; Seismic Earthquake Division
 6. Mason Industries
 7. TOLCO Incorporated; a brand of NIBCO INC.
 8. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four (4) times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two (2) clamping bolts for cable engagement.

E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods.

F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight (8) times diameter.

J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment and Hanger Restraints:
1. Install restrained isolators on electrical equipment.
2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven (7) days advance notice.
4. Test at least four (4) of each type and size of installed anchors and fasteners selected by Architect.
5. Test to ninety percent (90%) of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.
9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after isolated equipment is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 4. Warning labels and signs.
 5. Instruction signs.
 7. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

G. Write-On Tags: Polyester tag, 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

D. Write-On Tags: Polyester tag, 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

E. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

E. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

F. Write-On Tags: Polyester tag, 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.5 FLOOR MARKING TAPE

A. 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

B. Furnish and install tape at location in accordance with NEC 110.26 for all electrical distribution equipment.

2.6 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. ¼-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 2. ¼-inch grommets in corners for mounting.
 3. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.7 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 1. Engraved legend with black letters on white face.
2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.8 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
5. Color: Black.

2.10 DATA RECEPTACLES

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. It should read “DATA ONLY”. Minimum letter height shall be 3/8 inch.

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.11 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

1. Power.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.

 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.

 b. Colors for 208/120-V Circuits:

 1) Phase A: Black.

 2) Phase B: Red.

 3) Phase C: Blue.

 c. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two (2) turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

E. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.

F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.

2. Identify system voltage with black letters on an orange background.
3. Apply to exterior of door, cover, or other access.
4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

I. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer and load shedding.

K. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Adhesive film label. Unless otherwise indicated, provide a single line of text with ½-inch-high letters on 1½-inch-high label; where two (2) lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label 4 inches high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment to Be Labeled:
IDENTIFICATION FOR ELECTRICAL SYSTEMS

a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive and engraved laminated acrylic or melamine label.
b. Enclosures and electrical cabinets.
c. Access doors and panels for concealed electrical items.
d. Contactors.
e. Remote-controlled switches, dimmer modules, and control devices.
f. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following lighting control devices:
 1. Indoor occupancy sensors.
 B. Related Sections include the following:

1.3 DEFINITIONS
 A. LED: Light-emitting diode.
 B. PIR: Passive infrared.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 1. Interconnection diagrams showing field-installed wiring.
 C. Field quality-control test reports.
 D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION
 A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies.
PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable one (1) by the following:

1. Hubbell Lighting
3. Lithonia Lighting; Acuity Lighting Group, Inc.
4. Novitas, Inc.
5. RAB Lighting, Inc.
6. Sensor Switch, Inc.
7. TORK
8. Watt Stopper (The)

B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit.

1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
4. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a ½-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
6. Bypass Switch: Override the on function in case of sensor failure.
7. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; keep lighting off when selected lighting level is present.

C. PIR Type: Ceiling mounting; detect occupancy by sensing a combination of heat and movement in area of coverage.

1. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
3. Detection Coverage (Corridor): Detect occupancy within 90 feet when mounted on a 10-foot-high ceiling.
D. Ultrasonic Type: Ceiling mounting; detect occupancy by sensing a change in pattern of reflected ultrasonic energy in area of coverage.

1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch-high ceiling.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch-high ceiling.
5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot-high ceiling in a corridor not wider than 14 feet.

E. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

2.2 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multi-conductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multi-conductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Install and aim sensors in locations to achieve not less than ninety percent (90%) coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
3.2 CONTACTOR INSTALLATION
 A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-
 borne vibration, unless contactors are installed in an enclosure with factory-installed vibration
 isolators.

3.3 WIRING INSTALLATION
 A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and
 Cables." Minimum conduit size shall be ½ inch.
 B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and non-power-
 limited conductors according to conductor manufacturer's written instructions.
 C. Size conductors according to lighting control device manufacturer's written instructions, unless
 otherwise indicated.
 D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in
 junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION
 A. Identify components and power and control wiring according to Section 260553 "Identification
 for Electrical Systems."
 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each
 sensor.
 B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL
 A. Perform the following field tests and inspections and prepare test reports:
 1. After installing time switches and sensors, and after electrical circuitry has been
 energized, adjust and test for compliance with requirements.
 2. Operational Test: Verify operation of each lighting control device, and adjust time
 delays.
 B. Lighting control devices that fail tests and inspections are defective work.

3.6 ADJUSTING
 A. Occupancy Adjustments: When requested within twelve (12) months of date of Substantial
 Completion, provide on-site assistance in adjusting sensors to suit occupied conditions. Provide
 up to two (2) visits to Project during other-than-normal occupancy hours for this purpose.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 260923
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.
B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.

 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.

C. Qualification Data: For qualified testing agency.

D. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

F. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

G. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407 and NEMA PB 1.

1.8 PROJECT CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect and Construction Manager Owner no fewer than two (2) days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Architect's and Construction Manager's written permission.
3. Comply with NFPA 70E.

1.9 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five (5) years from date of Substantial Completion.

1.11 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two (2) spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two (2) spares for each panelboard.
3. Fuses for Fused Switches: Equal to ten percent (10%) of quantity installed for each size and type, but no fewer than three (3) of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to ten percent (10%) of quantity installed for each size and type, but no fewer than three (3) of each size and type.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Flush- and surface-mounted cabinets.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

6. Finishes:
PANELBOARDS

a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
b. Back Boxes: Same finish as panels and trim.
c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

C. Incoming Mains Location: Top and bottom.

D. Phase, Neutral, and Ground Buses:
 1. Material: Hard-drawn copper, ninety-eight percent (98%) conductivity.
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 4. Extra-Capacity Neutral Bus: Neutral bus rated two hundred percent (200%) of phase bus and UL listed as suitable for nonlinear loads.
 5. Split Bus: Vertical buses divided into individual vertical sections.

E. Conductor Connectors: Suitable for use with conductor material and sizes.
 1. Material: Hard-drawn copper, ninety-eight percent (98%) conductivity.
 2. Main and Neutral Lugs: Compression type.
 3. Ground Lugs and Bus-Configured Terminators: Compression type.
 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 7. Extra-Capacity Neutral Lugs: Rated two hundred percent (200%) of phase lugs mounted on extra-capacity neutral bus.

F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one (1) or more main service disconnecting and overcurrent protective devices.

G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

H. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.

2.2 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically and/or mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.

 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.3 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407 and/or NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install panelboards and accessories according to NECA 407 and/or NEMA PB 1.1.

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

C. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

D. Mount top of trim 90 inches above finished floor unless otherwise indicated.

E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

F. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

G. Install filler plates in unused spaces.

H. Stub four (4) 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four (4) 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.

I. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

J. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Acceptance Testing Preparation:
1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard eleven (11) months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Load Balancing: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, measure load balancing and make circuit changes.
 1. Measure as directed during period of normal system loading.
 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 4. Tolerance: Difference exceeding twenty percent (20%) between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.
END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Wall-box motion sensors.
 4. Wall-switch and exterior occupancy sensors.
 5. Communications outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Samples: One (1) for each type of device and wall plate specified, in each color specified.
D. Field quality-control test reports.
E. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:

1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper)
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell)
3. Leviton Mfg. Company Inc. (Leviton)
4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour)

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; 5351 (single), 5352 (duplex)
 b. Hubbell; HBL5351 (single), CR5352 (duplex)
 c. Leviton; 5891 (single), 5352 (duplex)
 d. Pass & Seymour; 5381 (single), 5352 (duplex)

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; GF20
 b. Pass & Seymour; 2084

2.4 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; 2221 (single pole), 2222 (two-pole), 2223 (three-way), 2224 (four-way).
 b. Hubbell; CS1221 (single pole), CS1222 (two-pole), CS1223 (three-way), CS1224 (four-way).
 c. Leviton; 1221-2 (single pole), 1222-2 (two-pole), 1223-2 (three-way), 1224-2 (four-way).
 d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two-pole), 20AC3 (three-way), 20AC4 (four-way).

2.5 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.

1. Continuously adjustable rotary knob, 5 A.
2. Three-speed adjustable slider, 1.5 A.

2.6 OCCUPANCY SENSORS

A. Wall-Switch Sensors:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; 6111 for 120 V, 6117 for 277 V
 b. Hubbell; WS1277
 c. Leviton; ODS 10-ID
 d. Pass & Seymour; WS3000
 e. Watt Stopper (The); WS-200

2. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

B. Wall-Switch Sensors:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hubbell; AT120 for 120 V, AT277 for 277 V
 b. Leviton; ODS 15-ID

2. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

C. Long-Range Wall-Switch Sensors:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hubbell; ATP1600WRP
b. Leviton; **ODWWV-IRW**
c. Pass & Seymour; **WA1001**
d. Watt Stopper (The); **CX-100**

2. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, with a minimum coverage area of 1200 sq. ft.

D. Long-Range Wall-Switch Sensors:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hubbell; **ATD1600WRP**
 b. Leviton; **ODW12-MRW**
 c. Watt Stopper (The); **DT-200**

2. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft.

E. Wide-Range Wall-Switch Sensors:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hubbell; **ATP120HBRP**
 b. Leviton; **ODWHB-IRW**
 c. Pass & Seymour; **HS1001**
 d. Watt Stopper (The); **CX-100-3**

2. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft.

2.7 COMMUNICATIONS OUTLETS

A. Telephone Outlet:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; **3560-6**
 b. Leviton; **40649**

2. Description: Single RJ-45 jack for terminating 100-ohm, balanced, four-pair UTP; TIA/EIA-568-B.1; complying with Category 5e. Comply with UL 1863.

2.8 WALL PLATES

A. Single and combination types to match corresponding wiring devices.

1. Plate-Securing Screws: Stainless, tamper resistant with trident pan head matching current building standard.
3. Material for Unfinished Spaces: Brushed stainless for flush box installations, raised galvanized for surface box installations.
4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet locations while in use.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, thermoplastic with lockable cover.

2.9 MULTI-OUTLET ASSEMBLIES
A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Hubbell Incorporated; Wiring Device-Kellems
 2. Wiremold Company (The)
B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
C. Raceway Material: Metal, with manufacturer's standard finish.
D. Wire: No. 12 AWG.

2.10 FINISHES
A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 1. Wiring Devices Connected to Normal Power System: Ivory and/or as selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.
B. Coordination with Other Trades:
 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.
C. Conductors:
1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailes.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtailes that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to ¾ of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailes for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
10. Install GFCI devices in all wet locations.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles up and/or down, and on horizontally mounted receptacles to the right and/or left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

3.2 IDENTIFICATION
A. Comply with Section 260553 "Identification for Electrical Systems."
1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL
A. Perform tests and inspections and prepare test reports.
1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

END OF SECTION 262726
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Non-fusible switches.
 3. Molded Case Circuit Breakers
 4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.

B. NO: Normally open.

C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

A. Product Data: For each type of enclosed switch, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.
B. Shop Drawings: For enclosed switches. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

C. Qualification Data: For qualified testing agency.

D. Seismic Qualification Certificates: For enclosed switches, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

F. Manufacturer's field service report.

G. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect and Construction Manager no fewer than seven (7) days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Architect and Construction Manager written permission.
4. Comply with NFPA 70E.

1.8 COORDINATION

A. Coordinate layout and installation of switches, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to ten percent (10%) of quantity installed for each size and type, but no fewer than three (3) of each size and type.
2. Fuse Pullers: Two (2) for each size and type.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
4. Square D; a brand of Schneider Electric
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

B. Type HD, Heavy Duty, Single Throw, 600-V ac and 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac and 240-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Double Throw, 600-V ac and 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

E. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 5. Auxiliary Contact Kit: Two (2) NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 7. Lugs: Mechanical and/or Compression type, suitable for number, size, and conductor material.
 8. Service-Rated Switches: Labeled for use as service equipment.

2.2 NON-FUSIBLE SWITCHES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric

B. Type HD, Heavy Duty, Single Throw, 600-V ac and 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac and 240-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.
D. Type HD, Heavy Duty, Double Throw, 600-V ac and 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

E. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Auxiliary Contact Kit: Two (2) NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 5. Hookstick Handle: Allows use of a hookstick to operate the handle.
 6. Lugs: Mechanical and/or Compression type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I²t response.

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical and/or Compression type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Circuit-breaker-mounted and Universal-mounted communication module with functions and features compatible with power monitoring and control system.
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at thirty-five to seventy-five percent (35-75%) of rated voltage without intentional time delay.
 8. Auxiliary Contacts: Two (2) SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 9. Alarm Switch: One (1) NC contact that operates only when circuit breaker has tripped.
 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 11. Zone-Selective Interlocking: Integral with electronic and/or ground-fault trip unit; for interlocking ground-fault protection function.
 12. Electrical Operator: Provide remote control for on, off, and reset operations.

2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 3. Kitchen and/or Wash-Down Areas: NEMA 250, Type 4X.
 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

a. Initial Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker eleven (11) months after date of Substantial Completion.
c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed switches will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified

END OF SECTION 262816
SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged engine-generator sets for emergency power supply with the following features:

1. Diesel fuel.
2. Unit-mounted cooling system.
3. Unit-mounted control and monitoring.
4. Performance requirements for sensitive loads.
5. Outdoor level 1 sound attenuated enclosure.

B. Related Sections include the following:

1. Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:

1. Thermal damage curve for generator.
2. Time-current characteristic curves for generator protective device.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Dimensioned outline plan and elevation drawings of engine-generator set and other components specified.
2. Design Calculations: Signed and sealed by a qualified professional engineer. Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

3. Vibration Isolation Base Details: Signed and sealed by a qualified professional engineer. Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include base weights.

1.5 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that engine-generator set, batteries, battery racks, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For installer manufacturer and testing agency.

C. Source quality-control test reports.

1. Certified summary of prototype-unit test report.
2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
6. Report of exhaust emissions showing compliance with applicable regulations.

D. Field quality-control test reports.

E. Warranty: Special warranty specified in this Section.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

1. Maintenance Proximity: Not more than four hours' normal travel time from Installer's place of business to Project site.
2. Engineering Responsibility: Preparation of data for vibration isolators and seismic restraints of engine skid mounts, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.

B. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASME B15.1.

E. Comply with NFPA 37.

F. Comply with NFPA 70.

G. Comply with NFPA 99.

H. Comply with NFPA 110 requirements for Level 1 emergency power supply system.

I. Comply with UL 2200.
J. Engine Exhaust Emissions: Comply with applicable state and local government requirements.

K. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify owner no fewer than two days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without owner's written permission.

B. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:

1. Ambient Temperature: Minus 15 to plus 40 deg C.
2. Relative Humidity: 0 to 95 percent.
3. Altitude: Sea level to 1000 feet.

1.10 COORDINATION

A. Coordinate size and location of concrete bases for package engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate size and location of roof curbs, equipment supports, and roof penetrations for remote radiators. These items are specified in Division 07 Section "Roof Accessories."

1.11 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion not at certification of gear including parts and labor for the entire 5 year period.

1.12 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include
quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the products indicated on drawings or a comparable product by one of the following:
 2. Caterpillar
 3. Cummins
 4. Kohler

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.

C. Capacities and Characteristics:
 1. Power Output Ratings: Nominal ratings as indicated
 2. Output Connections: Three-phase, four wire.
 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

D. Generator-Set Performance:
 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.

6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.

7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.

8. Start Time: Comply with NFPA 110, Type 10 (maximum 10 second), system requirements.

E. Generator-Set Performance for Sensitive Loads:

1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.
 a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.

2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.

3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.

4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.

5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.

6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.

7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.

8. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.

9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.
 a. Provide permanent magnet excitation for power source to voltage regulator.

10. Start Time: Comply with NFPA 110, Type 10, system requirements.
2.3 ENGINE

A. Fuel: Diesel.

B. Rated Engine Speed: 3600 rpm.

C. Lubrication System: The following items are mounted on engine or skid:

1. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
2. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

D. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.

E. Governor: Adjustable isochronous, with speed sensing.

F. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.

1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and non-collapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

G. Muffler/Silencer: Internally mounted, factory installed, Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.

1. Minimum sound attenuation of 25 dB at 500 Hz.
2. Sound level measured at a distance of 23 feet from exhaust discharge after installation is complete shall be 75 dBA or less.
3. Muffler must be installed within the enclosure. External Mufflers will not be accepted.

H. Starting System: 24V electric, with negative ground.
ENGINE GENERATORS

1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
3. Cranking Cycle: As required by NFPA 110 for system level specified
4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least three times without recharging.
5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
 a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.
 c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.4 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts generator set. The off position of same switch initiates
generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

C. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.

D. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common wall-mounted control and monitoring panel.

E. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 1 system, and the following:

1. AC voltmeter.
2. AC ammeter.
3. AC frequency meter.
4. DC voltmeter (alternator battery charging).
5. Engine-coolant temperature gage.
6. Engine lubricating-oil pressure gage.
7. Running-time meter.
9. Generator-voltage adjusting rheostat.
10. Generator overload.

F. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

G. Connection to Data Link: A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication is reserved for connections for data-link transmission of indications to remote data terminals.

H. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.

1. Overcrank shutdown.
2. Coolant low-temperature alarm.
3. Control switch not in auto position.
4. Battery-charger malfunction alarm.
5. Battery low-voltage alarm.

I. Common Remote Audible Alarm: Signal the occurrence of any events listed below without differentiating between event types. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset.

1. Engine high-temperature shutdown.
2. Lube-oil, low-pressure shutdown.
3. Overspeed shutdown.
5. Engine high-temperature prealarm.
6. Lube-oil, low-pressure prealarm.
7. Low coolant level.

J. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.

K. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.5 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; complying with NEMA AB 1 and UL 489.
 1. Tripping Characteristic: Designed specifically for generator protection.
 2. Trip Rating: Matched to generator rating.
 3. Mounting: Adjacent to or integrated with control and monitoring panel.

B. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other generator-set protective devices, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from load circuits. Protector shall perform the following functions:
 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other generator-set malfunction alarms.
 2. Under single or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.
 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the generator set.
 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.

C. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground-fault. Integrate ground-fault alarm indication with other generator-set alarm indications.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Enclosure: Drip-proof.

G. Instrument Transformers: Mounted within generator enclosure.

H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE –SOUND ATTENUATED

A. Description: Vandal-resistant, sound attenuated weatherproof steel housing, wind resistant up to 180 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

B. Description: Prefabricated or pre-engineered enclosure with the following features:
 2. Structural Design and Anchorage: Comply with ASCE 7 for wind loads.
 3. Louvers: Equipped with bird screen and filter arranged to permit air circulation when engine is not running while excluding exterior dust, birds, and rodents.
 5. Ventilation: Louvers equipped with bird screen and filter arranged to permit air circulation while excluding exterior dust, birds, and rodents.
 6. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine-generator-set components.
 7. Sound level shall not exceed 75dBA @ 23ft (7M).
 8. Muffler Location: Within enclosure, external mufflers will not be accepted

C. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.

D. Convenience Outlets: Factory wired GFCI. Arrange for external electrical connection.

2.8 MOTORS

A. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

B. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.9 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

B. Project-Specific Equipment Tests: Before shipment, factory test engine-generator set and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:

1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.

2. Full load run.

3. Maximum power.

4. Voltage regulation.

5. Transient and steady-state governing.

7. Safety shutdown.

8. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.

9. Report factory test results within 10 days of completion of test.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.

B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.

B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

C. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 IDENTIFICATION

A. Identify system components according to Division 23 Section "Identification for HVAC Piping and Equipment" and Division 26 Section "Identification for Electrical Systems."
3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection (except those indicated to be optional) for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test. Contractor shall provide load bank for testing.
3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.
4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
7. Exhaust Emissions Test: Comply with applicable government test criteria.
8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
9. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.
10. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line and compare measured levels with required values.
D. Coordinate tests with tests for transfer switches and run them concurrently.

E. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.

F. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

G. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

H. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

I. Remove and replace malfunctioning units and retest as specified above.

J. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

K. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

L. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each power wiring termination and each bus connection. Remove all access panels so terminations and connections are accessible to portable scanner.

M. Contractor shall be responsible for all fuel used in during testing. Owner will provide initial tank fill. Contractor will then perform all testing and refill the tank upon acceptance of the test results.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 263213
SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes transfer switches rated 600 V and less, including the following:

1. Automatic transfer switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.

1. Single-Line Diagram: Show connections between transfer switch, bypass/isolation switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer and testing agency.

B. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data,” include the following:

1. Features and operating sequences, both automatic and manual.
2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than 8 hours from time of notification.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

C. Source Limitations: Obtain automatic transfer switches through one (1) source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NEMA ICS 1.

F. Comply with NFPA 70.

G. Comply with NFPA 99.

H. Comply with NFPA 110.

I. Comply with UL 1008 unless requirements of these Specifications are stricter.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:
1. Notify owner no fewer than two (2) days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without owner’s written permission.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Contactor Transfer Switches:
 b. Emerson; ASCO Power Technologies, LP
 c. Caterpillar; Engine Div.
 d. Onan/Cummins Power Generation; Industrial Business Group
 e. Kohler Power Systems; Generator Division
 f. Russelectric, Inc.
 g. GE Zenith Controls

2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding thirty percent (30%) of switch ampere rating, unless otherwise indicated.

B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.

1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.

C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus two percent (+/-2%) or better over an operating temperature range of minus 20 to plus 70 deg C.

D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

E. Electrical Operation: Accomplish by a non-fused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions.
F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.

1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
2. Switch Action: Double throw; mechanically held in both directions.
3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.

G. Neutral Terminal: Solid and fully rated, unless otherwise indicated.

H. Oversize Neutral: Ampacity and switch rating of neutral path through units indicated for oversize neutral shall be double the nominal rating of circuit in which switch is installed.

I. Heater: Equip switches exposed to outdoor temperatures and humidity, and other units indicated, with an internal heater. Provide thermostat within enclosure to control heater.

J. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device.

K. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, either by color-code or by numbered or lettered wire and cable tape markers at terminations. Color-coding and wire and cable tape markers are specified in Section 260553 "Identification for Electrical Systems."

1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.

L. Enclosures: General-purpose NEMA 250, Type 1 complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.3 AUTOMATIC TRANSFER SWITCHES

A. Comply with Level 1 equipment according to NFPA 110.

B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.

C. Manual Switch Operation: Under load, with door closed and with either or both sources energized. Transfer time is same as for electrical operation. Control circuit automatically disconnects from electrical operator during manual operation.

E. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds.

F. Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.

G. Transfer Switches Based on Molded-Case-Switch Components: Comply with NEMA AB 1, UL 489, and UL 869A.

H. In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two (2) sources are synchronized in phase. Relay compares phase relationship and frequency difference between normal and emergency sources and initiates transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer is initiated only if both sources are within 2 Hz of nominal frequency and seventy percent (70%) or more of nominal voltage.

I. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated. Relay contacts handling motor-control circuit inrush and seal currents are rated for actual currents to be encountered.

J. Automatic Transfer-Switch Features:

1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from eighty-five to one hundred percent (85-100%) of nominal, and dropout voltage is adjustable from seventy-five to ninety-eight percent (75-98%) of pickup value. Factory set for pickup at ninety percent (90%) and dropout at eighty-five percent (85%).

2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from 0 to 6 seconds, and factory set for 1 second.

3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from eighty-five to one hundred percent (85-100%) of nominal. Factory set for pickup at ninety percent (90%). Pickup frequency shall be adjustable from ninety to one hundred percent (90-100%) of nominal. Factory set for pickup at ninety-five percent (95%).

4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored. Provide auxiliary contact for coordination with Building elevator.

5. Test Switch: Simulate normal-source failure.

6. Switch-Position Pilot Lights: Indicate source to which load is connected.

 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."

8. Unassigned Auxiliary Contacts: Two (2) normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.

9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

10. Engine Starting Contacts: One (1) isolated and normally closed, and one (1) isolated and normally open; rated 10 A at 32-V dc minimum.

11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.

12. Engine Shutdown Contacts: Time delay adjustable from 0 to 5 minutes, and factory set 5 five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.

13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from seven to thirty (7-30) days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:

 a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 b. Push-button programming control with digital display of settings.
 c. Integral battery operation of time switch when normal control power is not available.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Section 260548 "Vibration and Seismic Controls for Electrical Systems."

B. Floor-Mounting Switch: Anchor to floor by bolting.

 1. Concrete Bases: 4 inches high, reinforced, with chamfered edges. Extend base no more than 4 inches in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Section 260529 "Hangers and Supports for Electrical Systems."

C. Identify components according to Section 260553 "Identification for Electrical Systems."

D. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
3.2 CONNECTIONS

A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary, to accommodate required wiring.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.

2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.

a. Check for electrical continuity of circuits and for short circuits.

b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.

c. Verify that manual transfer warnings are properly placed.

d. Perform manual transfer operation.

5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.

a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.

b. Simulate loss of phase-to-ground voltage for each phase of normal source.

c. Verify time-delay settings.

d. Verify pickup and dropout voltages by data readout or inspection of control settings.

e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.

f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1-pole deviating by more than fifty percent (50%) from other poles.
g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.

 a. Verify grounding connections and locations and ratings of sensors.

B. Testing Agency's Tests and Inspections:

1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.
4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1-pole deviating by more than fifty percent (50%) from other poles.
 g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.

5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 a. Verify grounding connections and locations and ratings of sensors.

C. Coordinate tests with tests of generator and run them concurrently.
D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

E. Remove and replace malfunctioning units and retest as specified above.

F. Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch eleven (11) months after date of Substantial Completion.
2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Section 017900 "Demonstration and Training."

B. Coordinate this training with that for generator equipment.

END OF SECTION 263600
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. LED: Light-emitting diode.

F. Lumen: Measured output of lamp and luminaire, or both.

G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture.
type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project IES LM-79 and IES LM-80.

a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.

2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire housing supply at submittal stage a paint chip of the fixture color as specified on the fixture schedule for approval.

D. For luminaires and lamps refer to Product Schedule: Shipping carton/box designation to be clearly marked with same designations as indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Lighting luminaires.

2. Suspended ceiling components.

3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.

4. Structural members to which equipment and or luminaires will be attached.

5. Initial access modules for acoustical tile, including size and locations.

6. Items penetrating finished ceiling, including the following:

 a. Other luminaires.

 b. Air outlets and inlets.

 c. Speakers.

 d. Sprinklers.

 e. Access panels.

 f. Ceiling-mounted projectors.

7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of luminaire.

F. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and/or manufacturers' model numbers.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps (Arrays) + driver(s): One (1) spare for every twenty-five (25) of each type and rating installed. Furnish at least one (1) of each type.
2. Diffusers and Lenses: One (1) for every ten (10) of each type and rating installed. Furnish at least one (1) of each type.
3. Globes and Guards: One (1) for every ten (10) of each type and rating installed. Furnish at least one (1) of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

B. Provide luminaires from a single manufacturer for each luminaire type.

C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

D. Mockups: For interior lighting luminaires in room or module mockups, complete with power and control connections.

1. Obtain Architect's approval of luminaires in mockups before starting installations.
2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. Recessed Fixtures: Comply with NEMA LE 4.

E. Bulb shape complying with ANSI C79.1.

F. Lamp base complying with ANSI C81.61 (where applicable).

G. CRI of minimum 80. CCT of 4000K.

H. Rated lamp life of 50,000 hours.

I. Lamps dimmable from one hundred to zero percent (100-0%) of maximum light output.

J. Internal driver.
K. Nominal Operating Voltage: 120-277 VAC.
 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

L. Housings:
 1. Extruded-aluminum or aluminum housing and heat sink.
 2. Finish approval by architect.

M. Manufacturer – Base of Design
 1. See Lighting Fixture Schedule on Drawings.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, chevrons, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. Lamps for AC Operation: LEDs, fifty thousand (50,000) hours minimum rated lamp life.
 2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type capable of ninety (90) minute operation.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to eighty percent (80%) of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

C. Specified Signs for Accessible Exit shall meet power and illumination requirements for exit signs. These shall be furnished with universal symbol of accessibility (wheelchair symbol) having a minimum height of 6 inches.

D. Refer to lighting fixture schedule on drawings for specification of the following features:
 1. Number of Faces: One (1) or two (2).
 2. Input voltage.
3. Universal wheelchair symbol meeting the requirements of IBC 1011.1.2.

2.4 EMERGENCY LIGHTING UNITS

A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.

1. Battery: Sealed, maintenance-free, lead-acid type.
2. Charger: Fully automatic, solid-state type with sealed transfer relay.
3. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to eighty percent (80%) of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
6. Integral Time-Delay Relay: Holds unit on for fixed interval of fifteen (15) minutes when power is restored after an outage.
7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.5 MATERIALS

A. Metal Parts:

1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:

1. Acrylic Diffusers: One hundred percent (100%) virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
2. Glass: Annealed crystal glass unless otherwise indicated.
3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:

1. Extruded-aluminum or aluminum housing and heat sink.
2. Powder-coat finish.
E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.6 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.7 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: ½-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of one hundred twenty-five percent (125%) of luminaire weight and vertical force of four hundred percent (400%) of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls or bracing detail if shown on drawings.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two (2) 5/32-inch diameter aircraft cable supports adjustable to 120 inches in length.
 2. Pendant mount requirements per fixture schedule model number.
 3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one (1) point and rod or wire support for suspension for each unit length of luminaire chassis, including one (1) at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within twelve (12) months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two (2) visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color rendering index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaire.
 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project IES LM-80.
LED EXTERIOR LIGHTING

a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.

b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

6. Wiring diagrams for power, control, and signal wiring.

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire and for each color and texture indicated with factory-applied finish.

D. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

E. Delegated-Design Submittal: For luminaire supports.

1. Include design calculations for luminaire supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Luminaires.
2. Structural members to which luminaires will be attached.
3. Building features.
4. Vertical and horizontal information.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of the following:

1. Luminaire.
2. Photoelectric relay.

E. Product Test Reports: For each luminaire, for tests performed by a qualified testing agency.

F. Source quality-control reports.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires to include in operation and maintenance manuals.

1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.

2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: Ten (1) for every one hundred (100) of each type and rating installed. Furnish at least one (1) of each type.

2. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: One (1) for every one hundred (100) of each type and rating installed. Furnish at least one (1) of each type.

3. Diffusers and Lenses: One (1) for every one hundred (100) of each type and rating installed. Furnish at least one (1) of each type.

4. Globes and Guards: One (1) for every twenty (20) of each type and rating installed. Furnish at least one (1) of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

F. Mockups: For exterior luminaires, complete with power and control connections.

1. Obtain Architect's approval of luminaires in mockups before starting installations.
2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed work.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.10 FIELD CONDITIONS
A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.
B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.11 WARRANTY
A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures, including luminaire support components.
 b. Faulty operation of luminaires and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: Two (2) years from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 LUMINAIRE REQUIREMENTS
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. UL Compliance: Comply with UL 1598 and listed for wet location.

E. Lamp base complying with IEC 60061-1.

F. Bulb shape complying with ANSI C79.1.

G. CRI of 80, CCT of 4000 K.

H. L70 lamp life of 50,000 hours.

I. Lamps dimmable from one hundred to zero percent (100-5%) of maximum light output.

J. Internal driver.

K. Nominal Operating Voltage: 120 V ac.

L. In-line Fusing: On the primary for each luminaire.

M. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.

N. Source Limitations: Obtain luminaires from single source from a single manufacturer.

O. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.3 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.

C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

D. Diffusers and Globes:

1. Acrylic Diffusers: One hundred percent (100%) virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

2. Glass: Annealed crystal glass unless otherwise indicated.

3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:

1. White Surfaces: Eighty-five percent (85%).
2. Specular Surfaces: Eighty-three percent (83%).
3. Diffusing Specular Surfaces: Seventy-five percent (75%).

G. Housings:

1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
2. Provide filter/breather for enclosed luminaires.

H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
 c. CCT and CRI for all luminaires.

2.4 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
2. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
 a. Color: Dark bronze.

D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish
surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.

2. Exterior Surfaces: Manufacturer's standard finish consisting of one (1) or more coats of primer and two (2) finish coats of high-gloss, high-build polyurethane enamel.

 a. Color: As selected from manufacturer's standard catalog of colors.

2.5 LUMINAIRE SUPPORT COMPONENTS

 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

 B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

 C. Examine walls, roofs and overhang ceilings for suitable conditions where luminaires will be installed.

 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 GENERAL INSTALLATION REQUIREMENTS

 A. Comply with NECA 1.

 B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

 C. Install lamps in each luminaire.

 D. Fasten luminaire to structural support.

 E. Supports:

 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Support luminaires without causing deflection of finished surface.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of one hundred percent (100%) of luminaire weight and a vertical force of four hundred percent (400%) of luminaire weight.

 G. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.
H. Coordinate layout and installation of luminaires with other construction.

I. Adjust luminaires that require field adjustment or aiming.

J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.3 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch thick, pipe-wrapping plastic tape applied with a fifty percent (50%) overlap.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Verify operation of photoelectric controls.

C. Illumination Tests:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.6 DEMONSTRATION

A. Owner's maintenance personnel to adjust, operate, and maintain luminaires.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within twelve (12) months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit
occupied conditions. Make up to two (2) visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265600
SECTION 271100 - COMMUNICATION EQUIPMENT ROOMS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Drawings
 1. Division 271300 Section "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
 2. Division 271500 Section "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.

1.02 SUMMARY

A. Description
 1. The scope of work required as part of this project shall include (1) new Telecommunication Room. This area shall include floor mounted 2-post & 4-post racks, server cabinets, ladder racking and wall mounted devices as indicated within the drawing details.

B. Section Includes:
 1. Telecommunications Mounting Devices.
 2. Backer boards.
 3. Telecommunications Equipment racks and cabinets.
 4. Telecommunications service entrance pathways.
 5. Grounding and bonding.

1.03 DEFINITIONS

A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.

B. BICSI: Building Industry Consulting Service International

C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel not exceeding 6 inches in width.

D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).

E. LAN: Local Area Network.

F. RCDD: Registered Communications Distribution Designer.

G. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of a bottom without ventilation openings within integral or separate longitudinal side rails.
H. **Trough or Ventilated Cable Tray:** A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

I. **“Project Manager”** shall mean the Owner’s appointed representative.

J. **As Necessary** shall mean work which is required for completed construction, but is not necessarily shown or described in the Contract Documents.

K. **“As Required”** shall mean work which is required for completed construction and is shown on the drawings or described in the project specification.

L. **“Install”** shall mean to set in place complete with all mounting facilities and connections as required ready for normal use of service.

M. **“Substantial Completion”** shall mean that the project is sufficiently complete to be utilized for its intended use as stated in the body of this written specification.

N. **“Conduit”** shall include all fittings, sleeves, connections, hangers and other accessories related to such conduit.

O. **“Surface Metal Raceway”** shall include all fittings, sleeves, connections, hangers and other accessories related to such raceway.

P. **“Concealed”** shall mean hidden from sight, as in chases, furred spaces, shafts, fixed ceiling or embedded in construction.

Q. **“Exposed”,** shall mean not “concealed” as defined above.

R. **“Governmental”** shall mean all municipal, state and federal government agencies.

S. The words “**Furnish**, “**Supply”** and “**Provide”** shall mean purchase, deliver to the job site, protect and provide interim storage and install in accordance with manufacturer’s specifications.

T. Words **“Approved Equal”** shall mean any product which in the opinion of the Technology Consultant is equal in quality, arrangement, appearance, and performance to the product specified.

U. **“Cabling”** shall mean cable assembly, raceway, conductors, fittings and any other necessary accessories to make a complete wiring system.

V. **“Product”** shall mean any item of equipment, material, fixture, apparatus, appliance or accessory installed under this Division.

W. Words in the singular shall also mean and include the plural, wherever the context so indicates, and words in the plural shall mean the singular, wherever the context so indicates.

X. **“Contractor”** refers to the bidding/installation Contractor responsible for furnishing and installation of all work indicated within this specification.

East Lyme Public Safety Building Renovations – Niantic
271100-2
1.04 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Floor-mounted equipment racks and cabinets and cable pathways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.05 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: As-built drawings for communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

D. Seismic Qualification Certificates: For floor-mounted racks, cabinets, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.06 QUALITY ASSURANCE

A. Installation of products shall be performed in accordance with the Manufacturer's suggested Installation procedures.

B. Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD/NTS and/or Commercial Installer, Level 2.
2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician and/or Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

3. Field Inspector: Currently registered by BICSI as RCDD and/or Commercial Installer, Level 2 to perform the on-site inspection.

C. Telecommunications Pathways and Spaces shall comply with TIA-569-C.

D. Grounding shall comply with ANSI-J-STD-607-A.

1.07 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install equipment racks, cabinets, frames or cable trays until spaces are enclosed, built-out and weather-tight, wet work in spaces is complete and dry, and work above ceilings is complete.

1.08 COORDINATION

A. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier/Service Providers.

1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.

2. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of the Voice equipment, LAN equipment, Security Equipment, and all other systems that share space within the Telecommunication Equipment rooms.

B. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

PART 2 - PRODUCTS

2.01 PATHWAYS

A. General Requirements: Comply with TIA-569-C.

B. Riser and distribution cables leaving the room to building TRs should be via cable tray, four-inch (4") conduits or sleeved cores.

C. The exact number of conduits required or size of the cable wireway should be determined based upon the amount of fiber and copper cable that must be supported in each closet and each computer or communications room.

D. Additional conduits or sleeved cores must be included in the design to provide for future growth.
E. All conduits/coring should be kept six inches (6”) or less from walls whenever construction permits.

F. Cable Support: Cable support brackets shall be designed to prevent degradation of cable performance and pinch points that could damage cable. Cable tie slots fasten cable ties to brackets.
 1. Comply with NFPA 70 and UL 2043 for fire-resistant and low-smoke-producing characteristics.
 2. Support brackets with cable tie slots for fastening cable ties to brackets.
 3. Lacing bars, spools, J-hooks, and D-rings.
 4. Straps and other devices.

G. Conduit and Boxes: are not within part of this section and shall be described within other sections of this bid document.

2.02 BACKBOARDS

A. Backboards shall be furnished and installed as part of this specification and located on a minimum of 3 walls of the MER and TR rooms.

B. Backboard sizes: 3/4 by 48 by 96 inches.

C. Plywood shall be fire-retardant treated with (2) coats of black fire retardant paint.

D. Plywood shall comply with requirements for plywood backing panels specified in Division 06 Section "Rough Carpentry."

2.03 EQUIPMENT FRAMES

A. The desired products are specified within the drawing documents. If an alternate is submitted, the alternate must conform with all characteristics of the specified product that is within the drawing documents.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 1. Great Lakes
 2. Chatsworth Products, Inc
 3. Middle Atlantic
 4. Hubbell

C. General Frame Requirements:
 1. Distribution Frames: Freestanding, 4-post, modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 3. Finish: Manufacturer's standard, baked-polyester powder coat.

D. Floor-Mounted Racks: Modular-type, steel construction.
1. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
2. Baked-polyester powder coat finish.

E. Cable Management for Equipment Frames:
 1. Metal, with integral wire retaining fingers.
 2. Baked-polyester powder coat finish.
 3. Vertical cable management panels shall have front and rear channels, with covers.
 4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

PART 3 - EXECUTION

3.01 ENTRANCE FACILITIES

 A. Contact telecommunication service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.

 B. Install underground pathways complying with recommendations in TIA-569-C.

 C. Install underground entrance pathway complying with Division 26 Section "Raceway and Boxes for Electrical Systems "INSTALLATION”.

3.02 INSTALLATION

 A. Comply with NECA 1.

 B. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A-7.

 C. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3.03 FIRESTOPPING

 A. Comply with requirements in Division 07 Section "Penetration Firestopping."Comply with TIA-569-C.

 B. All conduits etc., passing through fire rated floors, walls and partitions, shall have the space between the raceways, sleeves and all penetrations filled with a reusable fire stopping material such as Firestop Putty, Adhesive Firestop Sealant or Firestop Compound as manufactured by STI or approved equal.

3.04 GROUNDING

 A. Comply with ANSI-J-STD-607-A.

 B. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems." for grounding conductors and connectors.
C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. The grounding system must be intentional, visually verifiable, and adequately sized to handle expected currents safely. The grounding system shall be designed and installed in accordance with the NECA/BICSI 607-2011 Standard for Bonding and Grounding Planning for commercial buildings.

E. Telecommunications Grounding Busbar
 1. Telecommunications Grounding Busbars or TGBs are located in Telecommunications Rooms (TR) to provide grounding for racks, enclosures, and equipment in these spaces.
 2. The length of this bar is determined by the amount of connections that will be made to it, but the minimum thickness is 1/4 inch and the minimum width is two inches.
 3. TGBs shall be electrotin plated for reduced contact resistance.
 4. The TGB shall be mounted using minimum 2-inch insulated standoffs.
 5. When there is an electrical panel present in these rooms, it shall be bonded to the TGB by a licensed/certified electrical contractor.
 6. All metal racks, enclosures, equipment and cable pathways entering these spaces shall be bonded to the TGB using minimum #6 AWG wire and crimp or weld-on lugs.
 7. All exposed/accessible building steel within these spaces shall be bonded to the TGB using minimum #6 AWG wire and crimp or weld-on lugs.
 8. TGBs shall be assigned a unique identification and permanently labeled.

F. Rack Grounding
 1. Electrical continuity throughout each rack or cabinet is required to minimize safety risks. The racks shall be assembled using paint-piercing grounding washers (Panduit Part no. RGW, or ConnSCU-approved substitute) and antioxidant (per the recommendations of the manufacturer). An electrostatic discharge port kit (Panduit RGESD, or ConnSCU-approved substitute) shall be placed on the rack (on the right side when facing the rack) at 40 inches above the floor. All bonding connections to the rack shall be made with thread-forming screws (Panduit Part no. RGTS, or ConnSCU-approved substitute), or the threads must be cleaned of all paint or residue (per the NEC).
 2. In locations with multiple racks, the rack shall be connected to the common bonding network with a #6 AWG conductor and a copper compression HTAP. In locations with single racks, a #6 AWG conductor to the busbar is sufficient. The common bonding network is a 2 AWG continuous conductor placed below or above the racks. Refer to NECA/BICSI 607-2011 for design recommendations.

G. Rack Compression Fitting
 1. Lugs and HTAPs must be manufactured of tin plated copper and fastened via irreversible compression (crimped). Lugs shall have spacing to fit Panduit GB series predrilled busbars and a window to allow for inspection of the crimp. HTAPs shall be contained in clear covers that allow inspection of the die marks to ensure that the proper die was used.
 2. Approved lugs:
 a. Panduit LCC or LCCX series
 b. Burndy YAZ series
c. CPI
d. Electric Motion Company CCL Series

3. Approved HTAPS:

a. Panduit HTWC series
b. Burndy YH series (when used with clear covers) or a ConnSCU-approved substitute.

H. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

1. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3.05 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements in Division 26 Section "Identification for Electrical Systems." Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

B. Backboard and Equipment Racks

1. Backboards and Equipment Racks shall be labeled by the Contractor identifying the Telecommunication Room. Additionally, Equipment Racks shall have an alpha character after the room number unique to that particular communications closet. For example, TR1-A would be the first rack in TR1.
2. Character height shall be 1-inch (minimum).

C. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion of TIA/EIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2, Class 3, or Class 4 level of administration including optional identification requirements of this standard.

D. Labels shall be preprinted or computer-printed type.

END OF SECTION 271100
SECTION 271300 - COMMUNICATIONS BACKBONE CABLING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 B. Related Sections:
 1. Division 271100 Section "Communications Equipment Room Fittings".

1.02 SUMMARY
 A. Section Includes:
 1. Pathways.
 2. UTP cable.
 4. Single mode optical fiber cabling, 24 strand, armored optical fiber cabling.
 5. Cable connecting hardware, patch panels, and cross-connects.
 7. Testing procedures.

1.03 DEFINITIONS
 B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
 C. EMI: Electromagnetic interference.
 D. IDC: Insulation displacement connector.
 E. LAN: Local area network.
 F. RCDD: Registered Communications Distribution Designer.
 G. UTP: Unshielded twisted pair.

1.04 BACKBONE CABLING DESCRIPTION
 A. Backbone cabling system shall provide interconnections between Tele-communications equipment rooms, main terminal spaces and entrance facility rooms for the voice/data cabling systems.
B. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patching or jumpers used for backbone-to-backbone cross-connection to service provider equipment.

C. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.05 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA-568-C.2 and TIA-568-C.3, when tested according to test procedures of this standard.

1.06 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For coaxial cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
2. Cabling administration drawings and printouts.
3. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
4. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to side of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance Data: For splices and connectors to include in maintenance manuals.

G. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.07 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings and field testing program development by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: An NRTL.

1. Testing Agency’s Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Telecommunications Pathways and Spaces: Comply with TIA-569-C.

1.08 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.
3. Test each pair of UTP cable for open and short circuits.

1.09 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining
ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.10 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

PART 2 - PRODUCTS

2.01 PATHWAYS

A. General Requirements: Comply with TIA-569-C.

B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. Support brackets with cable tie slots for fastening cable ties to brackets.
2. Lacing bars, spools, J-hooks, and D-rings.
3. Straps and other devices.

C. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.

1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.

2.02 UTP CABLE

A. Description: Voice Backbone Cabling.

B. Cable shall be 100-ohm, 100-pair UTP, formed into 25-pair binder groups, plenum rated cable.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA-568-C.2 for performance specifications.

C. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include and are limited to the following:

1. Berk-Tek
2. Superior Essex
3. Belden

2.03 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include and are limited to the following:

1. Leviton
2. Hubbell Premise Wiring
3. Belden
B. General Requirements for Cable Connecting Hardware: Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

D. 100 Pair 110 Style CAT 6 19” rack mounted patch panels to allow for cross-connection from voice origination (PBX) to workstations via CAT 6 patch cords.

E. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

 1. Number of Terminals per Field: One for each conductor in assigned cables.

F. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.

 1. Number of Jacks per Field: One for each four-pair UTP cable indicated, plus spares and blank positions adequate to suit specified expansion criteria.

G. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

2.04 OPTICAL FIBER CABLE

A. Description: Data Backbone Cabling.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. Berk-Tek
 2. Superior Essex
 3. Belden

C. Description: Multimode, OM3, 50/125, 24-fiber, nonconductive, tight buffer, armored optical, plenum rated, fiber cable.

 1. Comply with ICEA S-83-596 for mechanical properties.
 2. Comply with TIA-568-C.3 for performance specifications.
 5. Minimum Modal Bandwidth, Conform to TIA-492-AAAC: 1500 MHz-km at 850 nm; 500 MHz-km at 1300
D. Description: Singlemode, 24-fiber, nonconductive, tight buffer, armored optical, plenum rated, fiber cable.

1) Comply with ICEA S-83-596 for mechanical properties.
2) Comply with TIA-568-C.3 for performance specifications.
3) Comply with TIA-492-CAABxx for detailed specifications.
4) Maximum Attenuation: 1.0 dB/km at 1340 nm; 1.0 dB/km at 1550 nm.

E. Jacket:

1. Jacket Color; Singlemode: Aqua, Multimode: Orange
2. Armored fiber jacket required. Inter-locking armor shall be made of aluminum.
3. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
4. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.05 OPTICAL FIBER CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Leviton
2. Hubbell Premise Wiring
3. Legrand- Ortronics
4. Belen

B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.

1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

C. Cable Connecting Hardware:

2. Quick-connect, simplex and duplex, Type LC connectors. Insertion loss not more than 0.75 dB.
3. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.06 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including Etching, label stocks, laminating adhesives, and inks used by label printers.

B. Labeling of all cable is described within the drawing documents.

2.07 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test cables on reels according to TIA-568-C.2.

C. Factory test UTP cables according to TIA-568-C.2.

D. Factory test multimode optical fiber cables according to TIA-526-14-A and TIA-568-C.3.

E. Cable will be considered defective if it does not pass tests and inspections.

F. Each Fiber Optic Termination Panel shall be clearly labeled indicating (1) the destination(s) of the cable(s) and (2) fiber number of each fiber position. The cable identifiers are to be secured to (1) the side and (2) the front cover of the panel enclosure.

G. Prepare test and inspection reports.

PART 3 - EXECUTION

3.01 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.02 WIRING METHODS

A. Wiring Method: Install cables in raceways and J-hooks except where cable trays are required in Drawings. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in all areas.
 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

D. Pre-terminated fiber optic cabling will be accepted. Manufacture shall be approved upon product submission.

3.03 INSTALLATION OF PATHWAYS

A. Cable Trays: Comply with NEMA VE 2 and TIA-569-C.

B. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.

C. Comply with TIA-569-C for pull-box sizing and length of conduit and number of bends between pull points.
D. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

E. Install manufactured conduit sweeps and long-radius elbows whenever possible.

F. Pathway Installation in Communications Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.04 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 10. In the communications equipment room, install a 10-foot long service loop on each end of cable.
 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than ½ inch from the point of termination to maintain cable geometry.
D. Optical Fiber Cable Installation:
 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

E. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Group connecting hardware for cables into separate logical fields.

G. Separation from EMI Sources:
 1. Comply with BICSI TDM and TIA-569-C recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.
COMMUNICATIONS BACKBONE CABLING

3.05 FIRESTOPPING

A. Comply with requirements in Division 07 Section "Penetration Firestopping". Comply with TIA-569-C.

B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.06 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with ANSI-J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.07 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

 1. Administration Class: 2.
 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

B. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Clearly label all Data Patch Panels via etching, as indicating the Telecommunication Room Number, The Data Patch Panel letter designation and the Data Port Number on the Data Patch Panel Ports 1 through 48. Each Telecommunication Room shall start with Data Patch Panel ‘A’ and continue through the Alphabet.

D. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion about TIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 level of administration including optional identification requirements of this standard.

E. Comply with requirements in Division 27 Section "Communications Horizontal Cabling" for cable and asset management software.

F. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with
rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

G. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

H. Cable and Wire Identification:

1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
6. All fiber optic backbone and copper (inter-building, riser and tie) cables shall be identified AT BOTH ENDS with a designation that identifies where the opposite end of the same cable terminates (e.g. Equipment Room or Telecommunications Room I.D.). In addition, labeling of all fiber optic cables shall include the number of fibers in the cable.
7. Each fiber optic termination panel shall be clearly labeled indicating the destination of the cable(s) and the fiber number of each fiber position. The cable identifiers are to be secured to (1) the side and (2) the front cover of the panel enclosure.

I. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA-606-B, for the following:

1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.08 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Visually inspect UTP and optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with
color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.2.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Optical Fiber Cable Tests:

 a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.3. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

 b. Link End-to-End Attenuation Tests:

 1) Multimode backbone link measurements: Test at 850 and 1300 nm in 1 direction according to TIA-526-14-A, Method B, One Reference Jumper.

 a) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA-568-C.3.

C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 271300
SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. Coaxial cable.
 3. Multiuser telecommunications outlet assemblies.
 4. Cable connecting hardware, patch panels, and cross-connects.
 5. Telecommunications outlet/Connectors.
 6. Cabling system identification products.
 7. Cable management system.

B. Related Requirements:
 1. Section 280513 "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

B. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.

C. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

D. EMI: Electromagnetic interference.

E. IDC: Insulation displacement connector.

F. LAN: Local area network.

G. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/Connectors.

H. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.

I. RCDD: Registered Communications Distribution Designer.
J. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For coaxial cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 3. Cabling administration drawings and printouts.
 4. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Source quality-control reports.

C. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For splices and connectors to include in maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 HORIZONTAL CABLING DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.

 1. TIA/EIA-568-B.1 requires that a minimum of two (2) telecommunications outlet/connectors be installed for each work area.
 2. Horizontal cabling shall contain no more than one (1) transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 3. Bridged taps and splices shall not be installed in the horizontal cabling.
 4. Splitters shall not be installed as part of the optical fiber cabling.

B. A work area is approximately 100 sq. ft., and includes the components that extend from the telecommunications outlet/connectors to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment or in the horizontal cross-connect.
2.2 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 BACKBOARDS

A. Backboards: Plywood, ¾ by 48 by 96 inches. Comply with requirements in Section 061000 "Rough Carpentry" for plywood backing panels.

2.4 UTP CABLE

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. Belden Inc.
2. Berk-Tek; a Nexans company
3. CommScope, Inc.
4. Mohawk; a division of Belden Networking, Inc.
5. Superior Essex Inc.
6. 3M Communication Markets Division
7. Tyco Electronics Corporation; AMP Products

B. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA/EIA-568-B.1 for performance specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:

 a. Communications, General Purpose: Type CM or CMG.
 b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 d. Communications, Limited Purpose: Type CMX.

2.5 UTP CABLE HARDWARE

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
1. Belden Inc.
2. Hubbell Premise Wiring
3. Leviton Commercial Networks Division
4. Molex Premise Networks; a division of Molex, Inc.
5. Panduit Corp.
6. Siemon Co. (The)
7. Tyco Electronics Corporation; AMP Products

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus twenty-five percent (25%) spare. Integral with connector bodies, including plugs and jacks where indicated.

D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

1. Number of Terminals per Field: One (1) for each conductor in assigned cables.

E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.

1. Number of Jacks per Field: One (1) for each four-pair UTP cable indicated.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

G. Patch Cords: Factory-made, four-pair cables in 36-inch lengths; terminated with eight-position modular plug at each end.

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

2.6 COAXIAL CABLE

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. Alpha Wire Company
2. Belden Inc.
3. Coleman Cable, Inc.
4. CommScope, Inc.

B. Cable Characteristics: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz. All cable shall be plenum rated.
COMMUNICATIONS HORIZONTAL CABLING

C. RG-6/U: NFPA 70, Type CATV or CM.
 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 2. Double shielded with 100 percent aluminum-foil shield and sixty percent (60%) aluminum braid.
 3. Jacketed with black PVC or PE.
 4. Suitable for indoor installations.

D. NFPA and UL compliance listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 1. CATV Cable: Type CATV.
 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 3. CATV Riser Rated: Type CATVR, complying with UL 1666.
 4. CATV Limited Rating: Type CATVX.

2.7 COAXIAL CABLE HARDWARE

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 1. Emerson Network Power Connectivity Solutions
 2. Leviton Commercial Networks Division
 3. Siemon Co. (The)

B. Coaxial-Cable Connectors: Type BNC, 75 ohms.

2.8 TELECOMMUNICATIONS OUTLET/CONNECTORS

B. Workstation Outlets: Multi-port-connector assemblies mounted in single faceplate.
 1. Faceplate: Brushed stainless to match Section 262726 "Wiring Devices."
 2. For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.
 a. Flush mounting jacks, positioning the cord at a 45-degree angle.
 3. Legend: Machine printed, in the field, using adhesive-tape label or Snap-in, clear-label covers and machine-printed paper inserts.

2.9 GROUNDING

A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.

B. Comply with J-STD-607-A.
2.10 IDENTIFICATION PRODUCTS
 A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
 B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

2.11 SOURCE QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to evaluate cables.
 B. Factory test UTP cables on reels according to TIA/EIA-568-B.1.
 C. Factory test UTP cables according to TIA/EIA-568-B.2.
 D. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
 E. Cable will be considered defective if it does not pass tests and inspections.
 F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES
 A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS
 A. Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal pathways and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
 C. Wiring within Enclosures:
 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 2. Install lacing bars and distribution spools.
 3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.3 INSTALLATION OF CABLES
 A. Comply with NECA 1.
B. General Requirements for Cabling:

2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Install 110-style IDC termination hardware unless otherwise indicated.
4. MUTOA shall not be used as a cross-connect point.
5. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for UTP at least 49 feet from communications equipment room.
6. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
8. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
12. In the communications equipment room, install a 10-foot long service loop on each end of cable.
13. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:

2. Do not untwist UTP cables more than ½ inch from the point of termination to maintain cable geometry.

D. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

E. Group connecting hardware for cables into separate logical fields.
F. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2½ inches.
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRESTOPPING

A. Comply with TIA-569-B, Annex A, "Firestopping."
B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
B. Comply with J-STD-607-A.
C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.

B. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect as-built conditions.

C. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

D. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration.

E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

F. Cable and Wire Identification:

1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.

2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.

3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.

4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.

 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.

 b. Label each unit and field within distribution racks and frames.

5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
6. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.

G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.

1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels
3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

5. UTP Performance Tests:
 a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:

 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Power sum near-end crosstalk (PSNEXT) loss.
 6) Equal-level far-end crosstalk (ELFEXT).
 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 8) Return loss.
 9) Propagation delay.
 10) Delay skew.

6. Final Verification Tests: Perform verification tests for UTP systems after the complete communications cabling and workstation outlet/connectors are installed.
a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

B. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

C. End-to-end cabling will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 271500
SECTION 272100 - NETWORK, SERVER, EQUIPMENT

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Network Active Electronics
 B. Servers

1.2 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.3 SUMMARY
 A. The devices and installation described in this section shall be procured and installed as a phased approach and shall match the construction phasing of this project. All phasing is described within the phasing schedule.
 B. All of the pre-existing switches MUST remain in place for temporary purposes throughout the phasing plan and then returned to the Owner subsequent to cut-over.
 C. The bidding contractor shall not deliver or install any wireless APs associated with a phase that has not been completed. All wireless APs for future phases shall be coordinated and ordered by the Contractor several weeks before the anticipated installation. If the Contractor chooses to procure the wireless APs associated with later phases, it will be the responsibility of the Contractor to store and insure these devices.
 D. Section includes the Local Area Active Electronics for the data infrastructure, Wireless Access Points and UPS’s.
 E. These active electronics shall support the data infrastructure, wireless devices, video surveillance system and the district wide voice system.
 F. Wireless access points shall be installed throughout the facility as indicated on the drawings.
 G. All Category 6 copper patch cords and 50/125um multi-mode fiber patch cords are required to be furnished and installed as part of this section.
 H. The installation integrator awarded this section shall be responsible for the following:
 1. Network Switches: Procure, deliver to specified Data Rooms, install into racks, and startup test. All switches will be configured by the Owner.
 2. Servers: Procure, deliver, install to specified Data Room, configure and test. The Owner will transfer information for all configuration required.
I. Configuration of LAN switches – Active Electronics, as related to the Voice, Data, Wireless access points and Security systems – Including all associated VLANs and IP addressing shall be performed by the Owner.

J. The bidding integrator must include all man-hours associated with system configuration, engineering and installation of every component in this section.

1.4 APPLICABLE STANDARDS

A. All of the work within the scope of this bid shall be performed in accordance with the applicable state, county and city laws and ordinances. The bidder shall be able to obtain all permits and licenses as required in addition to being a licensed contractor. All materials, supplies and equipment being furnished shall be installed in accordance with the latest version of the applicable standards of:

1. OSHA
2. Uniform Building Code
3. Americans with Disabilities Act (ADA)
4. Components of the system shall be of the type approved by Safety and Regulatory Agencies including:
 a. Underwriters' Laboratories (UL), Inc.
 c. Agency approvals and UL Listing declare the system's design, components, and installation shall meet the highest standards.
 d. System installation shall comply with UL 681 and UL 611.

5. The equipment shall comply with Part 68 of the FCC Telephone Requirements Rules.
6. All circuits and equipment shall be installed and protected according to the National Electric Code and any applicable local requirements.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions and data on features, performance, electrical characteristics, ratings, and finishes, installation instructions, and other pertinent information as applicable for each product or material specified.

B. Samples of manufacturer’s standard and extended warranties.

C. Equipment List: Include every piece of equipment by model number, manufacturer, serial number, location, and date of original installation.

D. System layout diagram indicating components to be furnished in each closet shall be provided.

E. Operation and Maintenance Data: For devices listed within this specification.

 1. Lists of spare parts and replacement components recommended to be stored at the site for ready access.
1.6 QUALITY ASSURANCE

A. Single Source Responsibility: Obtain all materials from one (1) source from a single approved manufacturer for each product required within this specification.

B. Awarded integrator must be a HP certified reseller and installer with five (5) years experience with similar sized projects. No exceptions will be granted.

C. All devices procured and delivered, as part of this specification shall be new from the manufacturer. Refurbished devices will not be accepted for this project. The technology consultant will verify all devices prior to delivery and installation of all devices described within this specification.

1.7 DELIVERY, STORAGE AND HANDLING

A. Take care in handling products in accordance with manufacturer’s instructions.

B. Store indoors in original undamaged packaging, in a well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity. Store products upright in secure, protected area. Verify with manufacturer that site conditions are acceptable before receiving material.

C. Environmental Conditions: Capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Interior, Controlled Environment: System components installed in temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 36 to 122 deg F (2 to 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity.

1.8 WARRANTY

A. Standard Manufacturer Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of any device and equipment related to operation, and equipment that fail in materials or workmanship within specified warranty period.

PART 2 - PRODUCTS

2.1 ACTIVE ELECTRONICS & WIRELESS ACCESS POINTS

A. The selected manufacturer for major components specified in this section shall be HP/Aruba – USA. Equal products from CISCO will be considered as a substitution.

B. These network active electronic devices shall be installed into 19-inch equipment, 4-post racks as indicated on the drawings and in other sections.

C. All active Electronics are to be procured, delivered and installed as indicated under this portion of the specification. All associated configuration within the VLAN shall be performed by the Owner.

D. Servers shall be procured and installed into the MDF as per direction of the Owner.
E. All associated devices and/or configuration and/or licensing required to obtain a fully functional system shall be included as part the integrator’s Bid submittal.

2.2 NETWORK ELECTRONIC EQUIPMENT – BOM

A. Actual quantities of all devices must be verified with the Electrical drawings.

B. Network Switches: HP Aruba, Part #JL001A, 5412R 92GT PoE+/4SFP+ v3 ZL2 with additional modules for capacity indicated on the Drawings. Each closet shall have one 10G backbone switch. Remaining equipment can be 1G. Accessory components shall include:
 1. HP Part #H1NC1E 3 year, 24x7 service & warranty agreement.
 2. HP Part #U4832E HPE Networks Start-up service.
 3. HP Part #J9829A 1100W, PoE+ ZL2 power supplies with 208V, 20A cord. (Note that power supply for IDF A004 shall be 120V)
 4. HP Part #J9151A 10G SPF + LC LR fiber transceiver module with 3 meter SFP to SFP fiber patch cable.
 5. CAT 6 patch cables for each switch port.

2.3 SERVERS

A. Server shall be HP Part #868704-B21, ProLiant DL380 Gen10 24SFF configure-to-order model with the following minimum accessories. All accessories shall be factory integrated.
 1. HP Part #826846-L21 processor with optional B21 second processor. Each shall be Gen10 Intel Xeon Silver Class, 2.1 GHz.
 2. 8GB Single-Rank Smart Memory Kit.
 3. Total 6TB HDD with SAS 12G Enterprise 10K SFF SC, 3-year warranty, digitally signed firmware HDD.
 4. HP Part #875241-B21 96 watt smart storage battery.
 5. P408i-A SR Gen10, 12G SAS Smart Array modular controller.
 6. 10Gb, 4-port adaptor 536FLR-T.
 7. Bladesystem c-Class Trancievers, 10Gb SFP + SR.
 8. Customer defined RAID software setting service.

2.4 PATCH CORDS

A. All Category 6 rated copper and fiber optic patch cords are to be procured, delivered and installed as indicated under this portion of the specification.

B. Copper patch cord lengths shall assume 3, 5 and 10 feet long. The lengths shall accommodate the distances from the switches to the patch panels.
 1. Each Ethernet port on every switch shall receive a category 6 rated patch cord.

C. Fiber patch cords lengths shall assume 15 feet long with SC connectors on one (1) end and the required connector on opposite end to match the HP SFP devices on the HP equipment.
 1. Each SFP port on every switch shall receive an SC to SC fiber optic patch cord.
 2. Fiber patch cords must comply with OM3 standards.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine data room conditions, ceiling and wall surfaces to assure they are in compliance with requirements and other conditions affecting installation and operation of all devices within this specification.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SYSTEM INSTALLATION

A. The contractor awarded this section is responsible for the Warranty and Support on all HP Items is required.

B. Wireless Installer awarded this section shall be responsible for the following:

1. Physical installation; Ceiling and wall and rack mounting of wireless equipment. To include all mounting devices required.
2. Physical installation of access points.
3. Firmware updates and warranty registration as required.
4. SSID and security configuration is required.
5. Configuration of both 5Ghz and 2.4 Ghz AP groups is required.
6. 2.4Ghz and 5Ghz configurations must be tested and APs must be balanced to provide maximum throughput and coverage.
7. Configure firewall per customer specifications as required.
8. LAG/LACP configuration for 20GbE connection to network.
10. Documentation and Visio drawing of AP locations.
11. Heat map and RF plan is required after completion of installation of the APs to ensure coverage. All inadequate coverage should be brought to the immediate attention of the owner and technology consultant.
12. The installer must ensure a solution that maximizes throughput without channel information. In the AC configuration, this may mean using a combination of 20 Mhz, 40Mhz, and 80Mhz channel width to create a balanced RF plan. The installer must also produce a detailed RF map showing channel separation and heat maps.
13. Backup copies of configuration files on USB flash drive shall be furnished to the owner.

C. Comply with all manufacturers recommendations and best practices.

D. The Contractor awarded this section shall deliver and unpack all devices specified within this document and dispose of all trash.

E. All APs shall include category 6 rated patch cords at the AP and connected to the Ethernet cabling infrastructure specified in other sections.

F. All device locations must be coordinated and verified by the owner prior to actual installation.

G. All devices within this specification must be installed per the manufacturers recommended insulation specifications.
H. All cabling shall be properly dressed in a neat fashion that is acceptable to the Owner. This shall include Velcro and nylon ty-wraps secured to the furniture so that all cables are properly supported, protected from damage in an aesthetically pleasing fashion.

I. All configuration(s) required to obtain a fully functional system shall be included within this portion of work.

3.3 SYSTEM STARTUP

A. The Contractor shall not apply power to the system until after:

1. System and components have been installed and inspected in accordance with the manufacturer's installation instructions.
2. A visual inspection of the system components has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
3. All system grounding and transient protection systems have been verified as properly installed and connected, as indicated.
4. Power supplies to be connected to the system and equipment have been verified as the correct voltage, phasing, and frequency as indicated.

B. Satisfaction of the above requirements shall not relieve the contractor of responsibility for incorrect installations, defective equipment items, or collateral damage as a result of Contractor work/equipment.

3.4 FIELD QUALITY CONTROL

A. Verify that accessories required for each unit have been properly installed, level and secured.
B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
1. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.
2. Pretesting: Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements.
3. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation.

3.5 CLEANING

A. Remove rubbish and debris. Installation contractor is not allowed to use the onsite dumpster and is responsible to discard their own debris off site.
B. Clean installed items using methods and materials recommended in writing by manufacturer.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections:
 1. Section 271100 “Communication Equipment Rooms”
 2. Section 281300 “Access Control”
 3. Section 281600 "Intrusion Detection"

1.2 SUMMARY

A. Section Includes:
 1. Coaxial cabling.
 2. RS-485 cabling.
 3. Control-voltage cabling.
 5. Identification products.

B. The awarded installation contractor of this section shall furnish and install all the cabling indicated within the technology drawings associated with the Intrusion detection system, video surveillance system and the access control devices associated with the secured doors.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. IDC: Insulation displacement connector.

C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

D. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).

E. RCDD: Registered Communications Distribution Designer.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of electronic safety and security cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Installation data for UTP and optical-fiber cables as specified in TIA 569-C-1.
 2. For coaxial cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 2. Cabling administration drawings and printouts.
 3. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
 4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

B. Source quality-control reports.

C. Field quality-control reports.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test each pair of UTP cable for open and short circuits.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency. All cable shall be plenum rated.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 COAXIAL CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Alpha Wire
 2. AMP NETCONNECT; a TE Connectivity Ltd. company
 3. Belden Inc.
 4. ComScore, Inc.
 5. Superior Essex Inc.
 6. West Penn Wire

B. General Coaxial-Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data-transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 db maximum from 7 to 806 MHz.

C. RG-6/U (Plenum Rated): NFPA 70, Type CMP.
 1. No. 18 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 2. Double shielded with one hundred percent (100%) aluminum-foil shield and sixty percent (60%) aluminum braid.
 3. Jacketed with PE.

D. NFPA and UL Compliance: Coaxial cables shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70, Article 820 "Radio and Television Equipment" and Article 830 "Community Antenna Television and Radio Distribution Systems." Types are as follows:
 1. CATV Plenum Rated: Type CATVP, complying with NFPA 262.

2.3 COAXIAL-CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. AMP NETCONNECT; a TE Connectivity Ltd. company
 2. Emerson Network Power Connectivity Solutions
3. Leviton Manufacturing Co., Inc.
4. Siemon Co. (The)
5. West Penn Wire

B. Coaxial-Cable Connectors:
 1. Type BNC, 75 ohms, crimp on style.
 2. Type F compression style for RG-6/U cables.

2.4 RS-485 CABLE
A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Allied Wire & Cable Inc.
 2. Belden Inc.
 3. General Cable Technologies Corporation
 4. West Penn Wire
 5. Southwire Company

B. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, two (2) pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.
 4. Fluorinated ethylene propylene jacket.

2.5 CONTROL-VOLTAGE CABLE
A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Allied Wire & Cable Inc.
 2. Belden Inc.
 3. General Cable Technologies Corporation
 4. Genesis Cable Products; Honeywell International, Inc.
 5. Southwire Company

B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One (1) pair, twisted, No. 16 AWG, stranded (19x29) and No. 18 AWG, stranded (19x30) tinned copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with NFPA 262.
2.6 CONTROL-CIRCUIT CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Allied Wire & Cable Inc.
2. Belden Inc.
3. General Cable Technologies Corporation
4. Genesis Cable Products; Honeywell International, Inc.
5. Southwire Company

B. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in pathway.

C. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in pathway.

D. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF in pathway, complying with UL 83.

2.7 IDENTIFICATION PRODUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Brady Corporation
2. HellermannTyton
3. Kroy LLC
4. Panduit Corp.

B. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Comply with requirements in Section 260553 "Identification for Electrical Systems." All cable shall be labeled at both ends.

2.8 CABLE MANAGEMENT SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Brady Worldwide Inc.
2. Chatsworth Products, Inc.
3. iTRACS Corporation
4. Telsoft Solutions
5. Total Wire Software Company, Inc.

B. Description: Computer-based cable management system, with integrated database and graphic capabilities.
C. Document physical characteristics by recording the network, TIA details, and connections between equipment and cable.

D. Information shall be presented in database view, schematic plans, or technical drawings.
 1. Microsoft Visio Professional or AutoCAD drawing software shall be used as drawing and schematic plans software.

E. System shall interface with the following testing and recording devices:
 1. Direct upload tests from circuit-testing instrument into the personal computer.
 2. Direct download circuit labeling into labeling printer.

2.9 SOURCE QUALITY CONTROL

A. Factory test UTP and optical-fiber cables on reels according to TIA-568-C.1.

B. Factory test UTP cables according to TIA-568-C.2.

C. Factory test multimode optical fiber cables according to TIA-526.14-B and TIA-568-C.3.

D. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results. Structural Return Loss shall be less than 20 db.

E. Cable will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements in Section 260529 “Hangers and Supports for Electrical Systems” for installation of supports and cables.

3.2 WIRING METHOD

A. Install wiring in metal pathways and wireways.
 1. Minimum conduit size shall be ¾-inch. Control and data-transmission wiring shall not share conduits with other building wiring systems.
 2. Comply with requirements in Section 280528 “Pathways for Electronic Safety and Security”.

B. Install cable, concealed in accessible ceilings, walls, and floors when possible.

C. Wiring on Racks and within Enclosures:
1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer’s limitation on bending radii, but not less than radii specified in BICSI ITSIM’s “Cabling Termination Practices” chapter. Cable ties shall not be excessively tightened such that the transmission characteristics of the cable are altered.
2. Install lacing bars and distribution spools.
3. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer.
4. Install conductors parallel with or at right angles to sides and back of enclosure.
5. Connect conductors associated with intrusion system that are terminated, spliced, or interrupted in any enclosure onto terminal blocks.
6. Mark each terminal according to system's wiring diagrams.
7. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1 and NFPA 70.
B. Conductors: Size according to system manufacturer's written instructions unless otherwise indicated.
C. Do not install conductors and cables that are wet, moisture damaged, or moth damaged.
D. Install UTP, optical-fiber, and coaxial cables and connecting materials after spaces are complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
E. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels. Leave a minimum of 6 inches of slack at outlet terminations and coil loosely into box after termination on outlet fitting.
 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 5. Maintain minimum cable bending radius during installation and termination of cables.
 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 7. Cold-Weather Installation: Bring cable to room temperature before derailing. Heat lamps shall not be used for heating.
 8. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions. Do not exceed manufacturer's rated cable-pulling tension.
 9. Riser Cable: Riser cable support intervals shall be in accordance with manufacturer's recommendations.
 10. Comply with Section 280544 "Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling."

East Lyme Public Safety Building Renovations – Niantic
280513-7
F. UTP Cable Installation: Install using techniques, practices, and methods that are consistent with Category 6 rating of components and that ensure Category 6 performance of completed and linked signal paths, end to end.

2. Install 110-style IDC termination hardware unless otherwise indicated.
3. Do not untwist UTP cables more than ½-inch from point of termination to maintain cable geometry.

G. Coaxial-Cable Installation:

1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches.
3. Install indoor cables in pathway.

H. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunication spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wire way or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart. Cable supports shall be fastened to structural members or floor slabs in accordance with Section 260529 "Hangers and Supports for Electrical Systems."
3. Cable shall not be run in contact with pipes, ducts, or other potentially damaging items. Cables shall not be run through structural members or use structural members, pipes, ducts, or equipment as a support.
4. Open-cable installation is only allowed above accessible ceilings, within communications closets and where fished to recess in existing stud walls.

I. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA-569-C recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communication cables or cables in nonmetallic pathways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communication cables in grounded metallic pathways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2½ inches.
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
4. Separation between cables in grounded metallic pathways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or hp and Larger: A minimum of 48 inches.

3.4 POWER AND CONTROL-CIRCUIT CONDUCTORS

A. 120-V Power Wiring: Install according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables" unless otherwise indicated.

B. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.5 CONNECTIONS

A. Comply with requirements in Section 282300 “Video Surveillance and Audio – Equipment Programming” for connecting, terminating, and identifying wires and cables.

3.6 FIRESTOPPING

A. Comply with requirements in Section 078413 “Penetration Firestopping”.

B. Comply with TIA-569-C, “Firestopping” Annex A.

C. Comply with BICSI TDMM, "Fire stopping Systems" Article.

3.7 GROUNDING

A. For communication wiring, comply with J-STD-607-A and with BICSI TDMM's "Grounding, Bonding, and Electrical Protection" chapter.

B. For low-voltage wiring and cabling, comply with requirements in Section 280526 "Grounding and Bonding for Electronic Safety and Security."

3.8 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Visually inspect UTP and optical-fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations to confirm color coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.
2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.

a. Test instruments shall comply with or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Coaxial-Cable Tests:

a. Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements.

b. Replace malfunctioning or damaged items.

c. Retest until satisfactory performance and conditions are achieved.

d. Use an agile receiver and signal strength meter or spectrum analyzer for testing.

e. CCTV Sources: Connect receiver to the output of each CCTV signal source or the distribution amplifier associated with it.

f. Test Schedule: Schedule tests after pretesting has successfully been completed and system has been in normal functional operation for at least fourteen (14) days. Provide a minimum of ten (10) days' notice of test schedule.

g. Operational Tests: Perform tests of operational system to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.

h. Distribution System Acceptance Tests:

1) Field-Strength Instrument: Rated for minus 40-db mV measuring sensitivity and a frequency range of 54 to 812 MHz, minimum. Provide documentation of recent calibration against recognized standards.

2) Signal Level and Picture Quality: Use a field-strength meter or spectrum analyzer, as well as a standard television receiver, to measure signal levels and check picture quality at all user-interface outlets.

 a) Test the signal strength in db mV at 55 and 750 MHz.

 b) Minimum acceptable signal level is zero db mV (1000 mV).

 c) Maximum acceptable signal level over the entire bandwidth is 15 db mV.

 d) Television receiver shall show no evidence of cross-channel intermodulation, ghost images, or beat interference.
CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

i. Signal-to-Noise-Ratio Test: Use a field-strength meter to make a sequence of measurements at the output of the last distribution amplifier or of another agreed-on location in system. With system operating at normal levels, tune meter to the picture carrier frequency of each of the designated channels in turn, and record the level. With signal removed and input to corresponding headend amplifier terminated at 75 ohms, measure the level of noise at same tuning settings. With meter correction factor added to last readings, differences from first set shall not be less than 45 db.

j. Qualitative and Quantitative Performance Tests: Demonstrate reception quality of color-television program transmissions at each user interface from each designated channel and source. Quality shall be equal or superior to that obtained with performance checks specified below, using a standard, commercial, cable-ready, color-television receiver. Level and quality of signal at each outlet and from each service and source shall comply with the following Specifications when tested according to 47 604-12 76:

1) RF video-carrier level.
2) Relative video-carrier level.
3) Carrier-level stability, during 60-minute and 24-hour periods.
4) Broadband frequency response.
5) Channel frequency response.
6) Carrier-to-noise ratio.
7) RF visual signal-to-noise ratio.
8) Antenna combiner insertion loss.
9) Signal power splitter loss.
10) Cable connector attenuation.

C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

D. End-to-end cabling will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 280513
SECTION 280526 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Grounding conductors.
 2. Grounding connectors.

1.3 DEFINITIONS

A. Signal Ground: The ground reference point designated by manufacturer of the system that is considered to have zero voltage.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Allied Tube & Conduit; a part of Atkore International
 2. Harger Lightning & Grounding.
 3. Panduit Corp.

B. Comply with UL 486A-486B.

C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.

D. Bare Copper Conductors:
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.

2.2 CONNECTORS

A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

B. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Burndy; Part of Hubbell Electrical Systems
 2. Chatsworth Products, Inc.
 3. Harger Lightning & Grounding
 4. Panduit Corp.

C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
 1. Electroplated tinned copper, C and H shaped.

D. Busbar Connectors: Cast silicon bronze, solderless compression or exothermic-type mechanical connector; with a long barrel and two (2) holes spaced on 5/8- or 1-inch centers for a two-bolt connection to the busbar.

E. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with IEEE 1100, "Recommended Practice for Power and Grounding Electronic Equipment."
 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
 2. Bond shields and drain conductors to ground at only one point in each circuit.

B. Signal Ground:
 1. For each system, establish the signal ground and label that location as such.
 2. Bond the signal ground to the alternating-current (ac) power system service by connecting to one (1) of the following listed locations, using insulated No. 6 AWG, stranded, Type THHN wire:
 a. Grounding bar in an electrical power panelboard if located in the same room or space as the signal ground.
 b. Telecommunications grounding busbar.
C. Comply with NECA 1.

3.2 APPLICATION

A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Grounding and Bonding Conductors:
 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times (8x) the diameter of the conductor. No one (1) bend may exceed 90 degrees.
 2. Install without splices.
 3. Support at not more than 36-inch intervals.

3.3 CONNECTIONS

A. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

B. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 1. Use crimping tool and the die specific to the connector.
 2. Pretwist the conductor.
 3. Apply an antioxidant compound to all bolted and compression connections.

C. Shielded Cable: Bond the shield of shielded cable to the signal ground. Comply with TIA/EIA-568-B.1 and TIA/EIA-568-B.2 when grounding screened, balanced, twisted-pair cables.

D. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 280526
SECTION 280528 - PATHWAYS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits, tubing, and fittings.
2. Surface pathways.

B. Related Requirements:

1. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface pathways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Allied Tube & Conduit; a part of Atkore International
2. O-Z/Gedney; a brand of Emerson Industrial Automation
3. Republic Conduit
4. Thomas & Betts Corporation; A Member of the ABB Group
5. Western Tube and Conduit Corporation
6. Wheatland Tube Company

B. General Requirements for Metal Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1; zinc-coated steel.

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
2. Fittings for EMT:

a. Material: Steel or die cast.

b. Type: Setscrew or compression.

3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 467, rated for environmental conditions where installed, and including flexible external bonding jumper.
4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 SURFACE PATHWAYS

A. General Requirements for Surface Pathways:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

B. Surface Metal Pathways: Galvanized steel with snap-on covers complying with UL 5. Prime coated, ready for field painting.
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. MonoSystems, Inc.
 b. Niedax Inc.
 c. Panduit Corp.
 d. Wiremold/Legrand

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. EGS/Appleton Electric
 2. Erickson Electrical Equipment Company
 3. Spring City Electrical Manufacturing Company
 4. Thomas & Betts Corporation; A Member of the ABB Group

B. General Requirements for Boxes, Enclosures, and Cabinets:
 1. Comply with TIA-569-B.
 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

H. Device Box Dimensions: 4-inches square by 2-1/8 inches deep.

I. Gangable boxes are allowed.

J. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 12 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC.
3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Pathway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric-Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, communications-cable pathway.
8. Pathways for Concealed General Purpose Distribution of Optical-Fiber or Communications Cable: Plenum-type, communications-cable pathway.
9. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Pathway Size: ¾-inch trade size. Minimum size for optical-fiber cables is 1 inch.

D. Pathway Fittings: Compatible with pathways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface pathways only where indicated on Drawings.
3.2 INSTALLATION

A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

B. Keep pathways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

C. Complete pathway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three (3) 90-degree bends in any conduit run except for communications wiring conduits for which only two (2) 90-degree bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Pathways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot intervals.
 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange pathways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for pathways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.
M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

N. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus ¼ turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to conduit assembly to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

Q. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.

R. Surface Pathways:

1. Install surface pathway for surface electrical outlet boxes only where indicated on Drawings.
2. Install surface pathway with a minimum 2-inch radius control at bend points.
3. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two (2) supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

S. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:

1. ¾-Inch Trade Size and Smaller: Install pathways in maximum lengths of 50 feet.
2. 1-Inch Trade Size and Larger: Install pathways in maximum lengths of 75 feet.
3. Install with a maximum of two (2) 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

T. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.

U. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service pathway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.
W. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet.

2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Flexible Conduit Connections: Comply with NEMA RV 3. Use maximum of 72 inches of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 280544 "Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 280528
SECTION 280544 - SLEEVES AND SLEEVE SEALS FOR ELECTRONIC SAFETY AND SECURITY PATHWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
 2. Grout.
 3. Silicone sealants.

B. Related Requirements:

 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

 1. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. Sleeves for Rectangular Openings:

 2. Minimum Metal Thickness:

 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 GROUT

A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.3 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based, liquid elastomers that, when mixed, expand and cure in place to produce a flexible, non-shrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:

 a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."

 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide ¼-inch annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

END OF SECTION 280544
SECTION 281300 - ACCESS CONTROL

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Access Control System, including software.

B. Proximity Devices (Card Readers): HID

C. Motion Detectors Request to Exit Devices (REX) (RTE).

D. Door Contacts.

E. Intercom/Door release with Video.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections

1. Section 271100 “Communication Equipment Rooms”
2. Section 281600 “Intrusion Detection”.
3. Section 282300 “Video Surveillance”

1.3 SUMMARY

A. Section includes a network controlled; access control system consisting of Proximity Readers, REX’s and Door contacts, with associated installation and configuration of the equipment.

B. Section also includes an intercom – door release with video surveillance camera.

C. The awarded contractor of this section shall furnish and install a network access controlled system into this facility using electronic security devices. This integrated access control system shall incorporate a series of proximity card access readers, door contacts, REX motion detectors and all associated monitoring and recording software, hardware, configuration, testing and training.

D. This Access Control System described within this specification shall be fully integrated with the video surveillance, intrusion detection, intercom door release and fire alarm systems. Complete interface of these systems, including user access and browser interface of the network managed system to this platform is the responsibility of the bidding contractor of this section.

1. Installation and configuration of the system software shall be furnished and installed for this integration.

E. All installation, peripheral devices, required licensing and configurations are required as part of this specification to establish a coherent, functional system as described within this bid package.
F. Security control and network cabling to/from the equipment rooms to the controlled doors, as described within the documents shall be furnished and installed by the Contractor awarded this section.

G. Any and all additional interconnection cabling required for a functional system shall be furnished and installed by the Contractor awarded this portion of work.

H. Final terminations to all devices are required by the by the Contractor awarded this portion of work.

I. The electric strikes and power devices for these strikes are furnished and installed by division 8; All connectivity and configuration of these devices to a “fail-secure” state is required by the awarded Contractor of this portion of work.

J. The Integrator awarded this portion of work shall provide and install a complete integrated security system and all associated, terminations, supporting devices, configuration of system, testing and training in accordance with this Bid Manual.

K. This specification is used to identify the requirements for an integrated access control system. The operator workstation(s) shall be used for database programming and storage of historical events and as a user interface with the Video Surveillance System.

L. This system shall be integrated with the building’s fire alarm system for proper activation of “fail-secure” locking mechanisms.

M. All interconnections required to the fire alarm system shall be terminated by the fire alarm installers and shall be coordinated with the contractor awarded this portion of work.

1.4 DEFINITIONS

A. ACS: Access Control System

B. CSA: Client Software Application

C. DGM: Dynamic Graphical Maps

D. DVS: Digital Video Server

E. ALPR: License Plate Recognition

F. SKD: Software Development Kit

G. SMA: Software Maintenance Agreement

H. SSM: Server Software Module

I. UI: User Interface

J. USP: Unified Security Platform

K. UWC: Unified Web Client
L. VMS: Video Management System
M. IP: Internet protocol.
N. LAN: Local area network.
O. WAN: Wide area network.
P. AS NECESSARY: Shall mean work which is required for completed construction, but is not necessarily shown or described in the Contract Documents.
Q. AS REQUIRED: Shall mean work which is required for completed construction, but is not necessarily shown or described in the Contract Documents.
R. SUBSTANTIAL COMPLETION: Shall mean that the project is sufficiently complete to be utilized for its intended use as stated in the body of this written specification.
S. CONTRACTOR/INTEGRATOR: Refers to the bidding/installation Contractor responsible for furnishing and installation of all work indicated within this specification.

1.5 PERFORMANCE REQUIREMENTS
A. Environmental Conditions – System(s) shall withstand the environmental conditions without mechanical or electrical failure, damage or degradation of its operating capacity.

1.6 SUBMITTALS
A. Product Data: Submit manufacturer's product specification sheets for every product to be used in this system within two (2) weeks of award of project. Product specification sheets must have the product being utilized and its part or model number visibly indicated. Product data shall include dimensions and data on features, performance, electrical characteristics, ratings, and finishes.
B. Equipment and System Operation Description – Include the method of operation and supervision of each component and type of circuit. Show the sequence of operation for manually and automatically initiated system(s) or equipment inputs. Description must cover this specific project.
C. Operation and Maintenance Data – For the intrusion/detection access control system, shall include the emergency, operation and maintenance manuals and shall include the Central-Station control unit hardware and software data.
D. Include an itemized bill of materials and a detailed description of the proposed system(s) within the bid response. Any appendices are only intended to assist the contractor to formulate a bid. Quantities are estimated and should be verified by contractor.
E. A copy of the Contractors Certified Installers Certificate MUST be supplied within the bid response.
F. Shop Drawings: For access control system shall be provided within two (2) weeks of system substantial completion acceptance. Include plans, elevations, sections, details, and attachments to other work.
1. Functional Block Diagram: Show single-line interconnections between components for signal transmission and control. Show cable types and sizes utilized.

G. In the event that the installation contractor does not furnish or does not supply sufficient documentation, the owner has the right to engage a separate contractor to attain any or all required documentation. All costs related with this event shall result in a back charge to the installation vendor via a change order.

H. Warranty: Sample of special warranty.

1.7 QUALIFICATIONS
A. The system programmer shall be an S2 certified partner.
B. The system programmer shall submit proof of certifications.

1.8 QUALITY ASSURANCE
A. Installer Qualifications – Installer must be a certified, factory trained, accredited and licensed installer for the manufacturers described within these security specifications and drawings.
B. Installer Qualifications – A qualified manufacturer shall maintain a service center capable to provide training, parts and emergency maintenance repairs for the overall systems described within these security specifications and drawings. This response time must not exceed twelve (12) hour period.
C. Electronic data exchange between video surveillance system with an access-control system shall comply with SIA TVAC.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
E. Comply with NECA 1.
F. Comply with NFPA 70.

1.9 PROJECT CONDITIONS
A. Environmental Conditions: Capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Interior, Controlled Environment: System components installed in temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 36 to 122 deg F (2 to 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity, noncondensing. Use NEMA 250, Type 1 enclosures.

2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 0 to 122 deg F (minus 18 to plus 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity, noncondensing. Use NEMA 250, Type 3R enclosures.
3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient temperatures of minus 30 to plus 122 deg F (minus 34 to plus 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity, condensing. Rate for continuous operation when exposed to rain as specified in NEMA 250, winds up to 85 mph and snow cover up to 24 inches thick. Use sufficiently rated NEMA 250 enclosures.

4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.

5. Corrosive Environment: System components subject to corrosive fumes, vapors, and wind-driven salt spray in coastal zones. Use sufficiently rated NEMA 250 enclosures.

6. Security Environment: Camera housing for use in high-risk areas where surveillance equipment may be subject to physical violence.

1.10 WARRANTY

A. The Integrator guarantees the Systems to be installed under this specification to be free from any defects in workmanship and materials for a period of one (1) year from the date of final completion/acceptance of the project by the Owner as evidenced by the date of final payment for the work. The Contractor shall promptly and at their own expense remedy any defects in the work and pay for any damage to other work resulting thereof, which shall appear during the period of time covered by this guarantee. Neither the final certificate of payment nor any provisions in this Agreement shall constitute an acceptance of work not done in accordance with this specification, or relieve the Contractor of liability with respect to any expressed warranties or guarantees or responsibility for faulty materials or workmanship.

1. The product shall perform in all material respects in accordance with the accompanying user manual, and the media on which the Software Product resides will be free from defects in materials and workmanship under normal use. Software defects are covered through Service Releases and Cumulative Updates which are available for a period of (1) year from the date of the software purchase.

B. The 5 year extended Software Maintenance Agreement warranty shall be purchased as part of this project. This shall include:

1. Access to phone support and online chat for technical assistance
2. Online case management
3. Online system availability monitor
4. Access to major and minor release upgrades
5. 24/7 pager support and dedicated support specialist

C. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of equipment related to the Access Control System, and control-station equipment that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three (5) years from date of Substantial Completion.

D. The Integrator shall provide all services required to maintain the system in an operational state as specified by the manufacturer for a period of one (1) year after acceptance.
E. Service response shall be within twenty-four (24) hours of the initial request for service and shall be provided twenty-four (24) hours per day, seven (7) days per week and three hundred sixty-five (365) days per year.

F. Contractor shall include, as part of this warranty, a program for maintenance for each integrated system.

1. Provide details of coverage, preventive maintenance schedules, exclusions and service rates for all billable time and travel charges.
2. Maintenance shall include two (2) semi-annual inspections and tests to verify the intended operation of the security system(s). System testing shall include but not be limited to the testing of all devices, fault modes and batteries. A detailed test report indicating these results and any corrective measures shall be furnished to the Owner.

G. The Contractor shall provide software and firmware upgrades as required and available to the Owner during these maintenance and warranty periods.

H. Submit manufacturer's standard warranties.

1.11 SYSTEM CONFIGURATIONS:

A. All system configuration(s) shall be included to attain a fully functional system and shall be within the Scope of work of the awarded contractor of this Bid Manual. All licenses for the following configurations shall be included as part of this project. This configuration shall include but not be limited to the following:

1. Configuration of all controlled doors and devices.
2. Configuration of LAN switches – Active Electronics as required.
 a. The LAN switches shall be procured under a separate section.
 b. The security contractor awarded this section shall configure these LAN switches after they are installed into the data rooms.
4. Configuration of system platform shall allow for Web access into the Access Control and Video Surveillance systems.
5. Seamless Unification with VMS is required as part of this project:
 a. Through the USP, the ACS shall support integration with an IP Video Surveillance System or MVS. Integration with an IP video surveillance system shall permit the user to view live and recorded video.
 b. Users shall be able to associate one or more video cameras to the following entity types: doors, elevator, and hardware zone (input points) and more.
 c. The Monitoring UI shall present a true Unified Security Interface for access control and video surveillance. Advanced live video viewing and playback of archived video shall be available through the Monitoring UI.
 d. It shall be possible to view video associated with access control events when viewing a report.
6. Configuration of the User Interface with input from the owner is required as part of this project:
a. General

1) The Configuration UI application shall allow the administrator or users with appropriate privileges to change the system configuration. The Configuration UI shall provide decentralized configuration and administration of the USP system from anywhere on the IP network.

2) The configuration of all embedded ACS, VMS, and ALPR systems shall be accessible via the Configuration UI.

3) The Configuration UI shall have a home page with single-click access to various tasks.

4) The Configuration UI shall include a variety of tools such as troubleshooting utilities, import tools, and a unit discover tool, amongst many more.

5) The Configuration UI shall include a static reporting interface to:

 a) View historical events based on entity activity. The user shall be able to perform such actions as printing a report and troubleshooting a specific access event from the reporting view.

 b) View audit trails that show a history of user/administrator changes to an entity.

 c) Common entities such as users, schedules, alarms and many more, can be reused by all embedded systems (ACS, VMS, and ALPR).

7. Configuring the Monitoring UI to fulfill the role of a Unified Security Interface capable to monitor Video, Access Control Events, and Alarms, as well as view live and recorded video is required as part of this project.

8. Configuration of up to FIFTEEN (15) simultaneous clients shall be provided as part of this project.

9. Configuration of the Unified Web Client shall be provided as part of this project.

10. Configuration of SIP Intercom Devices shall be provided as part of this project.

11. Configuration of the Smart Phone and Tablet App shall be required as part of this project.

 a. The contractor shall configure this app on FIVE (5) devices, as directed by the owner.

12. Configuration of this system to function as the Unified Security Platform shall be required as part of this project. Functionalities of this configuration include but are not limited to:

 a. Configuration of embedded systems, such as ACS & VMS systems.
 b. Live event monitoring
 c. Live video monitoring and playback of archived video
 d. Alarm management
 e. Reporting, including custom report templates and incident reports
 f. Intrusion device panel integration (live monitoring, reporting, and arming/disarming).
 g. SIP intercom device integration for bi-directional communication.
 h. Dynamic Graphical Map Viewing

 1) Creation and integration of a Graphical Map of the facility and its included security and alarm locations shall be provided as part of this project. The
DGM shall provide the ability to display all native entities of the UPS including:

a) Cameras
b) Doors
c) Camera Sequences
d) Areas
e) Intrusion Areas
f) Intrusion Zones
g) Digital Inputs
h) Digital Outputs
i) Intercoms
j) Alarms
k) Lockdown Buttons
l) Duress Buttons
m) Macros

13. Configuration of the Directory Roles shall be provided as part of this project.

 a. The Directory Roll shall manage the central database that contains all the system information and component configuration of the USP.
 b. The Directory Roll shall authenticate users and give access to the USP based on predefined user access rights or privileges, and security partition settings.
 c. The Directory Roll shall support configuration/management of following components common to the ACS & VMS sub-systems:

 1) Security Partitions, users and user groups.
 2) Areas.
 3) Zones, input/output (IO) linking rules, and custom output behavior.
 4) Alarms. Schedules, and scheduled tasks.
 5) Custom events.
 6) Macros or custom scripts.

d. The Directory Roll shall support the configuration/management of the following components specific to VMS:

 1) Video servers and their peripherals (e.g. audio, IOs, and serial ports).
 2) Camera sequences.
 3) Recording and archiving schedules.

e. The Directory Roll shall support the configuration/management of the following components specific to the ACS:

 1) Door controllers, and input and output (IO) modules.
 2) Doors, Elevators, and Access rules.
 3) Cardholders and cardholder groups, credentials, and badge templates.

14. The following Rolls shall be configured as part of this project:

 a. The Video Archiver Roll shall be responsible for managing cameras and encoders under its control and archiving
b. The Media Router Roll shall be responsible for routing video and audio streams across local and wide area networks from the source (e.g. DVS) to the destination (e.g. CSA).

c. The Access Manager Roll shall be responsible for synchronizing access control hardware units under its control, such as door controllers and IO modules. This role shall also be responsible for validating and logging all access activities and events when the door controllers and IO modules are online.

d. The Zone Manager Roll shall be responsible for managing all software zones (collection of inputs) and logging associated zone events. Zones shall consist of inputs from both access control and video devices.

e. The Health Monitoring Roll shall be responsible for monitoring and logging health events and warnings from the various client applications, roles, and services that are part of the USP. This role shall also be responsible for logging events within the Windows Event Log and for generating reports on health statistics and health history.

f. The Federation Roll shall be responsible for creating a large virtual system consisting of hundreds or thousands of independent and remote ACS and/or VMS systems

g. The Global Cardholder Synchronizer Roll shall be responsible for synchronizing cardholder and credential data between the local site and a central site. Synchronization between remote sites shall also be supported.

h. The Communication Management Roll shall be responsible for registering the SIP communication endpoints and for managing the call routing.

i. The Intrusion Manager Roll shall be responsible for managing third party intrusion devices such as alarm panels and perimeter detection devices. This role shall be responsible for logging all intrusion events in a database.

15. Unification of USP Video and Access Control is required as part of this project. This shall include:

a. The Monitoring UI shall present a true Unified Security Interface for live monitoring and reporting of the ACS and VMS. Advanced live video viewing and playback of archived video shall be available through the Monitoring UI.

b. The Configuration UI shall present a true Unified Security Interface for the configuration and management of the ACS and VMS.

c. The user shall be able to associate one or more video cameras to the following entity types: areas, doors, elevators, zones, alarms, intrusion panels, and more.

d. It shall be possible to view video associated to access control events when viewing a report.

e. It shall be possible to view video associated to intrusion panel events when viewing a report.

16. The USP shall be configured to include the following Alarm Management Functionality:

a. Create and modify user-defined alarms. An unrestricted number of user-defined alarms shall be supported.

b. Assign a time schedule or a coverage period to an alarm. An alarm shall be triggered only if it is a valid alarm for the current time period.

c. Set the priority level of an alarm and its reactivation threshold.

d. Define whether to display live or recorded video, still frames or a mix once the alarm is triggered.
e. Provide the ability to display live and recorded video within the same video tile using picture-in-picture (PiP) mode.
f. Provide the ability to group alarms by source and by type.
g. Define the time period after which the alarm is automatically acknowledged.
h. Define the recipients of an alarm. Alarm notifications shall be routed to one or more recipients. Recipients shall be assigned a priority level that prioritizes the order of receipt of an alarm.
i. Define the alarm broadcast mode. Alarm notifications shall be sent using either a sequential or an all-at-once broadcast mode.
j. Specify whether an incident report is mandatory during acknowledgment.

17. The USP shall be configured to support Threat Levels including:

a. The USP shall support Threat Levels to dynamically change the system behavior to respond to critical events.
b. Threat Levels shall be activated and deactivated by the CSA operator with the right privilege.
c. Threat Levels shall be set on an area or on the entire system.
d. Threat Levels shall affect the system behavior by executing any action available in the USP such as: trigger output, start recording, block camera, override recording quality, arm zone, set a door in maintenance mode, and more.
e. The following specific actions shall be available with Threat Level:

 1) Set minimum security clearance to restrict or permit access to cardholders on specific areas on top of the restrictions imposed by the access rules.
 2) Set minimum user level to automatically log out user from the USP.
 3) Set reader mode to change how the doors are accessed (e.g. card and PIN, or card or PIN).

f. A visible notification shall be displayed in all operator CSA when a Threat Level is activated.

18. Panic/Duress buttons must be configured to Owner requirements. Minimally, these buttons will have to interface with the Access Control System, Intrusion Detection System, and Video Surveillance System.

a. Panic/Duress buttons shall cause the strobes located in the principle and vice principle offices to activate. Coordinate configuration and functionality with Security Consultant and Owner.

19. Lock-down buttons must be configured to Owner requirements. Minimally, these buttons will have to interface with the Access Control System, Intrusion Detection System, and Video Surveillance System.

a. Lock Down buttons shall automatically release fire-alarm hold open doors.
b. Lock Down buttons shall cause the strobes located on the exterior of the school to activate. Coordinate configuration and functionality with Security Consultant and Owner.

20. Configuration of Door Release Buttons is required as part of this project.
PART 2 - PRODUCTS

2.1 ACCESS CONTROL NETWORK MANAGED SYSTEM

A. The ACS shall be an enterprise class IP access control software solution. It shall be fully embedded within a Unified Security Platform (USP). The USP shall allow the seamless unification of the ACS with an IP video management system (VMS).

B. The ACS shall be highly scalable to support configurations consisting of thousands of doors with facilities spanning multiple geographic areas.

C. The ACS shall support an unrestricted number of logs and historical transactions (events and alarms) with the maximum allowed being limited by the amount of hard disk space available.

D. The ACS shall support a variety of access control functionalities, including but not limited to:

1. Controller (Unit) management, door management, elevator management, and area management.
2. Cardholder and cardholder group management, credential management, and access rule management.
3. Badge printing and template creation.
4. Visitor Management.
5. People counting, area presence tracking, and mustering.
6. Offering a framework for third party hardware integration such as card and signature scanner.

E. Manufacturer:

1. S2 NetBox Extreme to match Town standard. No exceptions will be taken.

F. Certification

1. The ACS shall be certified
 a. UL-294
 b. ULC-S319
 c. EN-60839-11-1

2.2 ACCESS CONTROL PROXIMITY CARD READER MODULE:

A. HID ThinLine II 5395 except where mullion mounting is required use MiniProx 5365.

2.3 RTE SENSOR

A. Kantech or equivalent and compliant with the S2 System.

2.4 POWER SUPPLY – LOW VOLTAGE FOR RTE

A. Integrator shall furnish and install a remote Power Supply within the data rooms.

B. These power supplies shall support the RTE (REX) devices.
2.5 DOOR CONTACTS
 A. GE or equivalent and compliant with the S2 System. Use recess mount wherever possible.

2.6 PANIC DURESS BUTTON
 A. The selected model shall be:
 1. Sentrol UL Rated #3050. Include bi-color latching LED and single pole, double throw contacts.
 2. Panic/Duress buttons must be configured to Owner requirements. Minimally, these

2.7 DOOR RELEASE BUTTONS
 A. The selected model shall be:
 1. Dortronics #H276-HD29
 2. The door release button shall be labeled “ASSOCIATED DOOR # Push to Release”
 3. The door release button shall be mounted to FSR #DSKB_385 Single Gang Table Box.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Device Locations
 1. All device locations are to be field verified with the Owner prior to start of project. Architectural drawings are for approximation purposes only. Additional charges will not be allowed for outlet installation in areas not reviewed or approved by the Owner.

 B. Examine pathway elements intended for cables. Check raceways and other elements for compliance with space allocations, installation tolerance, hazards to camera installation, and other conditions affecting installation.

 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WIRING
 A. Control and low-voltage s has been provided and installed by others and is referenced within the Drawings. This cabling has been roughed in and is within the junction boxes adjacent to each door requiring access controls. Final terminations to all devices are required by the bidding integrator of this section.

 B. Final connections at both the device end and data closet and including any additional cable necessary for these connections is required as part of this bid.

3.3 INSTALLATION
 A. Install all devices and infrared illuminators level and plumb.
B. Install power supplies and other auxiliary components at control stations unless otherwise indicated.

C. Identify system components, wiring, cabling, and terminals according to ANSI/EIA/TIA standards.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:
 1. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnected wires and terminals are identified.
 2. Pretesting: Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements.
 3. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least fourteen (14) days. Provide a minimum of ten (10) days notice of test schedule.
 4. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.

C. Access Control System shall be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within twelve (12) months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two (2) visits to Project during other-than-normal occupancy hours for this purpose. Tasks shall include, but are not limited to, the following:
 1. Check cable connections.
 2. Check proper operation of access control devices.
 3. Provide a written report of adjustments and recommendations.

3.6 CLEANING

A. Remove rubbish and debris: Installation contractor is not allowed you use the onsite dumpster and is responsible to discard their own debris off site.

B. Clean installed items using methods and materials recommended in writing by manufacturer.

3.7 DEMONSTRATION – TRAINING

A. Bidding contractor shall engage a factory-authorized service representative to train the Owner's maintenance personnel to adjust, operate, and maintain Access Control system.
B. Refer to section 017900 for additional instructions for security system demonstration requirements.

END OF SECTION 281300
SECTION 281600 - INTRUSION DETECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections

1. Section 271100 “Communication Equipment Rooms”
2. Section 280500 “Security Conductor and Cables”
3. Section 281300 “Access Control”
4. Section 282300 “Video Surveillance”

1.2 SUMMARY

A. Section Includes:

1. Control Panel
2. Motion Sensors
3. Door Contacts
4. Intrusion detection devices
5. Duress/Panic buttons

B. These specifications contain the functional and operational requirements for an integrated intrusion alarm system employing motion detection devices and door contacts as the primary means of intrusion detection for selected interior protection. This procurement shall include all the equipment required at various facilities as shown on the Drawings.

C. Responsibility for the integrated security systems and equipment is specified in the following sections and shall be coordinated with the finish door hardware and Fire Alarm sections.

D. The intrusion system is intended to provide protection of selected facilities against intrusion and for the detecting or discouraging of burglary or vandalism during the hours the facilities are unoccupied and report signal to the Central Station.

E. General: Provide and install an integrated security system and all devices, terminations, associated supporting devices, configuration of system, testing and training in accordance with this Bid package to provide a complete and functional system.

F. All cabling shall be furnished and installed by the Contractor awarded this section. All cabling required to provide a complete and functional system shall be furnished and installed by the Contractor awarded this section.

G. The proposed system shall interface with the existing intrusion detection system during the construction phase.
H. This specification is used to identify the requirements for integrated Burglar entry systems encompassing door contacts and motion detectors.

I. Responsibility for the integrated security systems and equipment is specified in the following sections and shall be coordinated with the Finish Hardware and Fire Alarm sections of the Phase I Construction.

J. It is the intent of these specifications to procure a fully acceptable, effective and reliable integrated security system. Refer to the Drawings for division of responsibility. These specifications recognize the importance of complete system operation and are not limited to specifying of equipment only. The following are also required from the selected bidder:

1. Proven experience in the security business.
2. Prompt delivery and professional installation including service of equipment as specified.
3. Bidder must provide, for objective evaluation, references, which clearly state and show the effectiveness of proposed equipment and services.
4. Used products will not be acceptable. Manufacturer must satisfactorily demonstrate that he has supplied and will continue to supply products to avoid the obsolescence of equipment installed in the building.
5. All equipment shall be fully guaranteed for twelve (12) months. This guarantee shall become effective from the day of installation completion. When in normal operation, if the equipment is found to be below the manufacturer’s specification, repair and replacement of equipment shall be provided. Repairs shall be started within twenty-four (24) hours and completed without delay. Installation contractor shall either stock spares or be capable of obtaining all required replacement parts within twenty-four (24) hours.
6. Extended warranty terms shall be provided by the installing security system integrator at the time of bid.

1.3 SYSTEM DESCRIPTION

A. The system shall be a Burglary/Access Control/CCTV Switching System that includes the following capabilities:

1. Listed for UL Commercial Burglary VISTA-128BPT - 1 Detection and Alarm
2. Supports up to 128 zones.
3. Supports up to eight (8) separate partitions.
4. Supports up to 150 users.
5. Provides integrated security, access control, and CCTV switching capability.
6. Provides supervision of peripheral devices.
7. Supports up to 96 optional relay outputs.
8. Supports long-range radio (LRR) communication.
9. Provides scheduling capability to allow for automated operations.
10. Supports up to eight (8) alphanumeric paging devices.
11. Supports panel linking.
12. Supports alarm reporting via Internet.
13. Interfaces with automation software.
14. Capable of being installed using existing wiring.
1.4 APPLICABLE STANDARDS

A. All of the work within the scope of this bid shall be performed in accordance with the applicable state, county and city laws and ordinances. The bidder shall be able to obtain all permits and licenses as required in addition to being a licensed contractor. All materials, supplies and equipment being furnished shall be installed in accordance with the latest version of the applicable standards of:

1. OSHA
2. Uniform Building Code
3. Americans with Disabilities Act (ADA)
4. Components of the system shall be of the type approved by Safety and Regulatory Agencies including:
 a. Underwriters' Laboratories (UL), Inc.
 c. Agency approvals and UL Listing declare the system's design, components, and installation shall meet the highest standards.
 d. System installation shall comply with UL 681 and UL 611.

5. Alarm detection systems intended for UL certified fire alarm reporting shall meet the requirements of UL Standard 985, NFPA Standard 72 Chapter 2.
6. The equipment shall comply with Part 68 of the FCC Telephone Requirements Rules.
7. All circuits and equipment shall be installed and protected according to the National Electric Code and any applicable local requirements.

1.5 DEFINITIONS

A. LCD: Liquid-crystal display.
B. LED: Light-emitting diode.
C. PIR: Passive infrared.
D. RFI: Radio-frequency interference.
E. Protected or Protection Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.

1.6 SUBMITTALS

A. Product Data: Components for sensing, detecting, systems integration, and control, including dimensions and data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: Detail assemblies of standard components that are custom assembled for specific application on this Project.

1. Functional Block Diagram: Show single-line interconnections between components including interconnections between components specified in this Section and those
furnished under other Sections. Indicate methods used to achieve systems integration. Indicate control, signal, and data communication paths and identify programmable logic controllers, networks, and control interface devices and media to be used. Describe characteristics of network and other data communication lines.

2. Raceway Riser Diagrams: Detail raceway runs required for intrusion detection and for systems integration. Include designation of devices connected by raceway, raceway type, and size, and type and size of wire and cable fill for each raceway run.

3. Device Address List: Coordinate with final system programming.

4. System Wiring Diagrams: Include system diagrams unique to Project. Show connections for all devices, components, and auxiliary equipment. Include diagrams for equipment and for system with all terminals and interconnections identified.

5. Sensor detection patterns and adjustment ranges.

C. Equipment and System Operation Description: Include method of operation and supervision of each component and each type of circuit. Show sequence of operations for manually and automatically initiated system or equipment inputs. Description must cover this specific Project; manufacturer's standard descriptions for generic systems are not acceptable.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For intrusion detection system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Data for each type of product, including features and operating sequences, both automatic and manual.

2. Central-station control-unit hardware and software data.

F. Warranty: Special warranty specified in this Section.

G. In the event that the installation contractor does not furnish or does not supply sufficient documentation, the owner has the right to engage a separate contractor to attain any or all required documentation. All costs related with this event shall result in a back charge to the installation vendor via a change order.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:

1. An employer of workers, at least one of whom is a technician certified by the National Burglar & Fire Alarm Association.

2. Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

3. A copy of the Contractors Certified Installers Certificate shall be furnished with bid response.

B. Intrusion Detection Systems Integrator Qualifications: An experienced intrusion detection equipment supplier and/or Installer who has completed systems integration work for installations similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. FMG Compliance: FMG-approved and -labeled intrusion detection devices and equipment.

E. Comply with NFPA 70.

F. Electrical Power
 1. Normal System Power Supply: 120V, 60Hz, through a locked disconnect device and an isolation transformer in a central-station control unit. Central-station control unit shall supply power to all components connected to it unless otherwise indicated.
 2. Power Continuity for Central-Station Control Units: Batteries in power supplies of the central-station control unit and individual system components shall maintain continuous system operation during outages of both the normal and backup ac system supply.
 a. Batteries: Rechargeable, valve-regulated, recombinant, sealed, lead-acid type with nominal ten (10) year life expectancy. Capacity adequate to operate portion of system served, including audible trouble signal devices for up to four (4) hours and audible and visual alarm devices under alarm condition for an additional ten (10) minutes.
 b. Battery Charger: Solid-state fully automatic, variable-charging-rate type. Charger shall recharge fully discharged battery within twenty-four (24) hours.

B. Annunciation: Indicate a change in system condition and switching of system or component to backup power.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer and Installer agree to repair or replace components of intrusion detection devices and equipment that fails in materials or workmanship within specified warranty period.

 1. Warranty Period: Five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Approved Manufacturer:

 1. The systems specified is based on the following manufacturer which is standardized within the town district:
 2. Manufacturer: Honeywell Vista 128BPT
 a. Control panel must be sized to accommodate an additional 30% headroom.
 3. System performance
a. Control Panel - The control panel shall be an eight (8)-partition, UL commercial burglary control panel that supports up to 128 zones using basic hardwired, polling loop, and wireless zones. It shall also provide supervision of the bell output, RF receivers, and relay modules. In addition, the control shall provide the ability to schedule time-driven events, and allow certain operations to be automated by pressing a single button. The system shall be capable of interfacing with an ECP long range radio (LRR) unit that can send Contact ID messages, and alphanumeric paging devices. The control shall provide integrated access control and CCTV-switching capability.

1) Basic Hardwired Zones - The control shall provide nine (9) style-B hardwire zones with the following characteristics:

 a) EOLR supervision (optional for zones 2-8): Shall support N.O. or N.C. sensors (EOLR supervision required for UL installations).
 b) Individually assignable to one of eight (8) partitions.
 c) Supports up to 16 two-wire smoke detectors on one selected zone.
 d) Supports four-wire smoke or heat detectors on any zone (power to four-wire smoke detectors must be supervised with an EOL device).
 e) Supports up to 50 two-wire latching glass break detectors on one selected zone.

b. Expansion Zones

1) Polling Loop Expansion – The control shall support up to 119 additional hardwire zones using a built-in two-wire polling (multiplex) loop interface. The polling loop shall provide power and data to remote point modules, and constantly monitor the status of all zones on the loop. Maximum current draw shall not exceed 128 mA. The polling loop zones shall have the following characteristics:

 a) Interface with RPM (Remote Point Module) devices that provide Class B, Style Y (e.g., 4208U/4208SN) or a combination of Class B, Style Y, and Class A, Style Z (e.g., 4208SNF) zones.
 b) Individually assignable to one of eight (8) partitions.
 c) Supervised by the control panel.
 d) A 12,000 ft (3658 m) wire run capability without using shielded cable.
 e) Each RPM (Remote Point Module) enclosure shall be tamper protected.

c. Partitions – The control shall provide the ability to operate eight (8) separate areas, each functioning as if it had its own control. Partitioning features shall include:

1) A Common Lobby partition (1-8), which can be programmed to perform the following functions:

 a) Arms automatically when the last partition that shares the common lobby is armed.
b) Disarms when the first partition that shares the common lobby is disarmed.

2) A Master partition (9), used strictly to assign keypads for the purpose of viewing the status of all eight (8) partitions at the same time (master keypads).
3) Assignable by zone.
4) Assignable by keypad.
5) Assignable by relay to one or all eight (8) partitions.
6) Ability to display fire and/or burglary and panic and/or trouble conditions at all other partitions’ keypads (selectable option).
7) Certain system options selectable by partition, such as entry/exit delay and subscriber account number.

d. User Codes – The control shall accommodate 150 user codes, all of which can operate any or all partitions. Certain characteristics must be assignable to each user code, as follows:

1) Authority level (Master, Manager, or several other Operator levels). Each User Code (other than the installer code) shall be capable of being assigned the same or a different level of authority for each partition that it will operate.
2) Opening/Closing central station reporting option.
3) Specific partitions that the code can operate.
4) Global arming capability (ability to arm all partitions the code has access to in one command).
5) Use of an RF (button) to arm and disarm the system (RF key must first be enrolled into the system).

e. Peripheral Devices – The control shall support up to 30 addressable ECP devices, which can be any combination of keypads, RF receivers, relay modules, annunciator modules, and interactive phone modules. Peripheral devices have the following characteristics: a. Each device set to an individual address according to the device’s instructions.

1) Each device set to an individual address according to the device’s instructions.
2) Each device enabled in system programming.
3) Each device’s address shall be supervisable (via a programming option).

f. Keypad/Annunciator – The control shall accommodate up to 16 keypads or six (6) touch-screen (i.e., advanced user interface) keypads. The keypads shall be capable of the following:

1) Performing all system arming functions.
2) Being assigned to any partition.
3) Providing four programmable single-button function keys, which can be used for:
a) Panic Functions – activated by wired and wireless keypads; reported separately by partition.

b) Keypad Macros – 32 keypad macro commands per system (each macro is a series of keypad commands). Assignable to the A, B, C, and D keys by partition.

g. Vista Interactive Phone Module – The control shall support the ADEMCO 4285/4286 VIP Modules, which permit access to the security system in order to perform the following functions:

1) Obtain system status information. Arm and disarm the security system. Control relays.
2) Arm and disarm the security system.
3) Control relays.

h. LED Annunciator – The control shall support the ADEMCO FSA-8 and FSA-24 annunciators, which are capable of:

1) Visually identifying a zone or point that is in alarm or trouble.
2) Programmable for system silence/reset.
3) Up to 96 LEDs may be used in one system.
4) A total of four (4) FSA-24 or 12 FSA-8 annunciators may be used in one system.
5) An optional keyswitch, FSAKSM module, shall be available for UL listed Silence and Reset capability.

i. Voltage Triggers – The system shall provide voltage triggers, which change state for different conditions. Used with LRR (Long Range Radio) equipment or other devices such as a remote keypad sounder, keyswitch ARMED and READY LEDs, or a printer to print the system's event log.

j. Event Log – The System shall maintain a log of different event types (enabled in programming). The event log shall provide the following characteristics:

1) Stores up to 512 events.
2) Viewable at the keypad or through the use of Compass software.
3) Printable on a serial printer using a 4100SM Module including zone alpha descriptors.
4)Stores PassPoint access control events.
5) Sends printed events to up to eight alpha numeric pagers.

k. Scheduling - Provides the following scheduling capabilities:

1) Open/close schedules (for control of arming/disarming and reporting).
2) Holiday schedules (allows different time windows for open/close schedules).
3) Timed events (for activation of relays, auto-bypassing and un-bypassing, auto-arming and disarming, etc.).
4) Access schedules (for limiting system access to users by time)
5) End User Output Programming Mode (provides 20 timers for relay control).
6) The system shall automatically adjust for daylight savings time.
1. Communication Features - Supports the following formats and features for the primary and secondary central station receivers:

1) Formats
 a) ADEMCO Low Speed (Standard or Expanded).
 b) Sescoa/Radionics.
 c) ADEMCO Express.
 d) ADEMCO High Speed.
 e) ADEMCO Contact ID.

2) Backup reporting – The system shall support backup reporting via the following:
 a) Secondary phone number.
 b) ECP long range radio (LRR) interface.
 c) Option to select long range radio (LRR) or dialup as the primary reporting method (dynamic signaling feature).

3) Internet reporting – The system shall be capable of communicating with the central station via the internet using Alarmnet-i. It shall provide the user with the ability to control the system via a browser interface (i.e., AOL, Netscape, Internet Explorer). All packet data transmitted to the monitoring station shall be encrypted with a minimum of 1024 bits of encryption.

m. Audio Alarm Verification Option - Provides a programmable Audio Alarm Verification (AAV) option that can be used in conjunction with an output relay to permit voice dialog between an operator at the central station and a person at the premises.

n. Cross-Zoning Capability - Helps prevent false alarms by preventing a zone from going into alarm unless its cross-zone is also faulted within 5 minutes.

o. Pager Interface – The Control Panel shall be capable of sending event information to an alphanumeric pager via a VA-8201 pager interface device.

p. Exit Error False Alarm Prevention Feature – The System shall be capable of differentiating between an actual alarm and an alarm caused by leaving an entry/exit door open. If not subsequently disarmed, the control panel shall:
 1) Bypass the faulted E/E zone(s) and/or interior zones and arm the system.
 2) Generate an Exit Error report by user and by zone so the central station knows it was an exit alarm and who caused it.

q. Built-in User's Manual and Descriptor Review - For end-user convenience, the control panel shall contain a built-in User’s Manual. It shall include the following capabilities:
 1) By depressing any of the function keys on the keypad for five (5) seconds, a brief explanation of that function shall scroll across the alphanumeric display.
2) By depressing the READY key for five (5) seconds, all programmed zone descriptors shall be displayed (one at a time). This feature shall provide a check for installers and ensure all descriptors have been entered properly.

r. Programming - The Control shall be capable of being programmed locally or remotely using the ADEMCO Compass Downloader and shall be capable of:

1) Uploading and downloading all programming information at 300 baud.
2) Uploading and displaying firmware revision levels from the control.

s. Panel Linking - The Control shall be capable of being networked together with up to eight other controls and being operated by any keypad within the system. It shall provide the ability for users to:

1) Control multiple zones, partitions, and/or buildings from a central location.
2) Check status, arm and disarm any partition from any keypad in the system.
3) Globally arm or disarm partitions based upon user authority.

t. Automation Software - The Control shall be capable of interfacing with automation software via an RS232 input on a single partition.

2.2 COMMUNICATION DEVICE

A. HONEYWELL #GSMV4G or equivalent Digital Cellular Communicator for VISTA Control Panels

B. Features

1. Multi-GSM platform compatibility — 2G, 3G and 4G
2. Automatic selection of the best available GSM network
3. 4G capable using HSPA+ protocol
4. Full Contact ID or ADEMCO® High-Speed Reporting Contact ID reporting using ECP mode with compatible Honeywell control panels or combined with optional dialer capture for non-ECP capable control panels.
5. 256-bit AES Encryption Advanced encryption standard used for secure communications.
6. Upload/Download Available with select Honeywell control panels. Requires Compass version 1.5.8.54a or higher.
7. Integration Quick and easy installation of GSM for VISTA® and LYNX controls.
8. Dynamic Signaling with Certain Honeywell Control Panels Provides management of control panel dialer and digital cellular communicator. Programmable priority and delays determine signal path.
9. Diagnostic LEDs Provide signal strength and status indications.
10. QOS Quality of Service diagnostics via AlarmNet supply vital information including when a message was received, battery voltage, input voltage, signal strength and message path.
12. Intelligent Supervision Any message generated serves as a supervision message per optional 24 hour or 30 day intervals. This feature effectively limits required messages to be sent.

13. Remote Services Capability* Optional Honeywell Total Connect™ Remote Services value-added web-based or SMS system control as well as e-mail notification of system events.

14. Two-way Voice Transport GSM voice channel capable to allow two-way voice session in conjunction with an audio verification system (GSMX4G/iGSMV4G/GSMV4G/VISTA-GSM4G).

2.3 DOOR CONTACTS

A. Compatible with Honeywell.

B. Flush-Mounted Switched: Unobtrusive and flush with surface of door and window frame.

2.4 MICROWAVE-PIR DUAL TECHNOLOGY MOTION SENSORS

A. HONEYWELL #IS2500SN or equivalent

1. Description: Sensors detect intrusion by monitoring infrared wavelengths emitted from a human body within the protected zone(s) and by being insensitive to the general thermal variations.

2. Wall-Mounting Unit Maximum Detection Range: One hundred twenty-five percent (125%) of indicated distance for an individual unit and shall not be less than 50 feet.

2.5 MOTION SENSOR – 360 DEGREE CEILING MOUNT

A. HONEYWELL #DT6360STC or Equivalent

2.6 GLASS BREAK SENSOR

A. HONEYWELL #FG1625SN or equivalent

2.7 ALARM KEYPAD CONSOLE & VANDAL PROOF STOPPER

A. HONEYWELL #6160 Console

B. STI #STI-6560 Plexiglas, vandal proof housing stopper

2.8 ENCLOSURE

A. The Control Panel shall be enclosed in a metal cabinet, suitable for wall mounting. The dimensions shall not exceed 14.5 inches (36.8 cm) in height, 12.5 inches (31.8 cm) in width or 3 inches (7.6 cm) in depth.
2.9 ELECTRICAL POWER REQUIREMENTS

A. System Power – The Fire and Burglary Alarm System shall operate using standard 120 volts AC, 50/60 Hz power.

1. Control Primary Power – Transformer power shall be 16.5 VAC, 40VA.
2. Backup Battery – A rechargeable 12 VDC, gel type, lead acid backup battery shall be provided. The battery shall be rated between 7 and 34-ampere hours (AH).
3. Alarm Power – Alarm power shall be 12 VDC, 1.7 amps for each bell output
4. Auxiliary Standby Power – Standby power shall be 12 VDC, 750 mA maximum.
5. Fusing – The battery input, auxiliary, and bell outputs shall be protected using PTC circuit breakers. All outputs shall be power limited.

2.10 DURESS/PANIC BUTTONS

1. Refer to access control specification.

2.11 SUBSTITUTIONS

A. Substitution of any item shall only be permitted when the Owner waives the specification(s) of a particular product(s) in writing, allowing a substitute item to be bid. It shall be the responsibility of the Contractor requesting the substitution the substitution that the proposed item is equivalent in each and every way to the originally specified product stated within this bid specification and drawing package and that it is in the best interest of the Owner to use the proposed substitute.

PART 3 - EXECUTION

3.1 COMMISSIONING OF SYSTEMS AND EQUIPMENT

A. Engage a factory-authorized service representative or technician who is familiar with this project to participate and assist, if necessary, in the functional performance testing of the equipment included in this Division with the Commissioning Agent.

3.2 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of intrusion detection.

1. Examine roughing-in for embedded and built-in anchors to verify actual locations of intrusion detection connections before intrusion detection installation.
2. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of intrusion detection.

B. Inspect built-in and cast-in anchor installations, before installing intrusion detection, to verify that anchor installations comply with requirements. Prepare inspection reports.

1. Remove and replace anchors where inspections indicate that they do not comply with requirements. Re-inspect after repairs or replacements are made.
2. Perform additional inspections to determine compliance of replaced or additional anchor installations. Prepare inspection reports.

C. For material whose orientation is critical for its performance as a ballistic barrier, verify installation orientation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 SYSTEM INSTALLATION

A. The System shall be installed and tested in accordance with the Manufacturer’s Installation instructions. The following conditions are applicable:

B. In order to ensure a complete, functional System, for bidding purposes, where information is not available from the Owner upon request, the worst case condition shall be assumed.

C. Interfaces shall be coordinated with the Security Consultant, where appropriate.

D. All necessary backboxes, pullboxes, connectors, supports, conduit, cable, and wire shall be furnished and installed to provide a complete and reliable System installation.

E. All conduit, cable, and wire shall be installed parallel and square with building lines. Conduit fill shall not exceed forty percent (40%). All wires shall be gathered, labeled and tied to create an orderly installation.

F. Comply with UL 681.

3.4 WIRING INSTALLATION

A. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system’s wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

B. Wires and Cables:

1. Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.

C. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

D. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.
3.5 GROUNDING

A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

B. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding. Provide 5-ohm ground. Measure, record, and report ground resistance.

C. Install grounding electrodes of type, size, location, and quantity indicated.

3.6 FIELD QUALITY CONTROL

A. Pretesting: After installation, align, adjust, and balance system and perform complete pretesting to determine compliance of system with requirements in the Contract Documents. Correct deficiencies observed in pretesting. Replace malfunctioning or damaged items with new ones and retest until satisfactory performance and conditions are achieved. Prepare forms for systematic recording of acceptance test results.

1. Report of Pretesting: After pretesting is complete, provide a letter certifying that installation is complete and fully operable; include names and titles of witnesses to preliminary tests.

B. Perform the following field tests and inspections and prepare reports:

1. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified.

2. Operational Tests: Schedule tests after pretesting has been successfully completed. Test all modes of system operation and intrusion detection at each detection device. Test for detection of intrusion and for false alarms in each protected zone. Test for false alarms by simulating activities outside indicated detection patterns.

3. Electrical Tests: Comply with NFPA 72, Section A-7. Minimum required tests are as follows:

 a. Verify the absence of unwanted voltages between circuit conductors and ground.
 b. Test all conductors for short circuits using an insulation-testing device.
 c. With each circuit pair, short circuit at the far end of circuit and measure circuit resistance with an ohmmeter. Record circuit resistance of each circuit on Record Drawings.
 d. Verify that each controller is in normal condition as detailed in manufacturer's operation and maintenance manual.
 e. Verify that transient surge-protection devices are installed according to manufacturer's written instructions.
 f. Test each initiating and indicating device for alarm operation and proper response at central-station control unit.
C. Report of Tests and Inspections: Prepare a written record of tests, inspections, and detailed test results in the form of a test log.

D. Tag all equipment, stations, and other components for which tests have been satisfactorily completed.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within twelve (12) months of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three (3) visits to Project during other than normal occupancy hours for this purpose. Visits for this purpose shall be in addition to any required by warranty.

3.8 DEMONSTRATION – TRAINING

A. Bidding contractor shall engage a factory-authorized service representative to train the Owner's maintenance personnel to adjust, operate, and maintain Intrusion Detection system.

B. Refer to section 017900 for additional instructions for security system demonstration requirements.

END OF SECTION 281600
SECTION 282300 - VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Video Surveillance Cameras
B. Video Surveillance Management Software
C. Network Video Server
D. Network Storage Device
E. Monitors

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections:
 1. Section 271100 “Communication Equipment Rooms”
 2. Section 271500 “Communications Horizontal Cabling”
 3. Section 281300 “Access Control”
 4. Section 281600 “Intrusion Detection”

1.3 SUMMARY

A. This Video surveillance system described within this specification shall be fully integrated with the monitoring and access control systems. The access control system shall be compatible with the specified Honeywell intrusion and S2 access control systems. Complete interface, including user access and browser interface to this platform is the responsibility of the bidding contractor of this section.

B. All installation of each product specified within this document, peripheral devices, required licensing and configurations are required as part of this specification to establish a coherent, functional system as described within this bid package.

C. Data Cabling: Category 6 Plenum rated cabling shall be installed per divisions 27 and 28.

D. System Functionality Overview:
 1. System shall provide high-quality delivery and processing of IP-based video and control data using standard Ethernet-based networks.
 2. System shall have seamless integration of all video surveillance and control functions.
3. Graphical user interface software shall manage all IP-based video matrix switching and camera control functions and recording and archive/retrieval management. IP system shall also be capable of integrating into larger system environments.

4. System design shall include all necessary compression software for high-performance, dual-stream, Motion JPEG and H.264 video.

5. All camera signals shall be compressed to H.264, encoded, and delivered onto the network for processing and control by the IP video-management software.

6. Camera system units shall be ruggedly built and designed for extreme adverse environments, complying with NEMA Type environmental standards.

7. The Camera’s recorded images shall include masking of the unwanted areas within each camera view to minimize storage space. These recorded images shall be defined with the Owner and Security Consultant.

8. Configuration of the Video Server to utilize two (2) Ethernet connections and Network Interface cards; one (1) for incoming video and recording and one (1) to send recorded video to the storage device.

9. Video management software shall be configured for the following.
 a. Recorded Video Compression Rate: H.264
 b. Frame Recorded Per Second: Twelve (12).
 c. Resolution should be set at the highest obtainable from each camera specified.
 d. Stored data shall be saved for thirty (30) calendar days.
 e. Interior cameras shall record eighteen (18) hours per day.
 f. Exterior cameras shall record twenty-four (24) hours per day.
 g. Each camera “Field of View” shall be set up with the assistance of the Owner and/or the Security consultant.

E. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor’s entry connection to components.

1.4 SYSTEM CONFIGURATIONS – OVERVIEW

A. This entire video surveillance system must be integrated with the pre-existing Town video surveillance system and shall be capable of viewing every camera within this project plus the existing monitored cameras (approximately 80).

B. All system configuration(s) shall be included to attain a fully functional system and shall be within the Scope of work of the awarded Contractor of this section. This configuration shall include but not be limited to the following:

1. Configuration of all cameras to be managed via the Video Management software.
2. Configuration of Video Surveillance Server to view/record/access all cameras.
3. Configuration of video storage devices with the server.
5. Configuration of LAN switches – Active Electronics, as related to the systems specified within this document. Including VLANS and IP addressing shall be as indicated by the Owner.
 a. The LAN switches shall be procured under other sections of the specifications.
b. The security contractor awarded this section shall configure these LAN switches after they are installed into the data rooms.

6. Configuration of the managed software to:

a. Allow complete interface between all platforms
b. Allow video system access and view all video surveillance cameras.
c. Allow access and controlled network management system with Web and Internet access of the Video Surveillance system.

1.5 DEFINITIONS

A. ACS: Access Control System
B. CSA: Client Software Application
C. DGM: Dynamic Graphical Maps
D. DVS: Digital Video Server
E. ALPR: License Plate Recognition
F. SDK: Software Development Kit
G. SMA: Software Maintenance Agreement
H. SSM: Server Software Module
I. UI: User Interface
J. USP: Unified Security Platform
K. USW: Unified Web Client
L. VMS: Video Management System
M. AGC: Automatic gain control.
N. BNC: Bayonet Neill-Concelman – type of connector.
O. B/W: Black and white.
P. CCD: Charge-coupled device.
Q. FTP: File transfer protocol.
R. IP: Internet protocol.
S. LAN: Local area network.
T. WAN: Wide area network.
U. H.264: Standard for Video Compression
V. M-JPEG: Motion JPEG
W. NTSC: National Television System Committee.
X. PC: Personal computer.
Y. PTZ: Pan-Tilt-Zoom.
Z. RAID: Redundant array of independent disks.
AA. TCP: Transmission control protocol – connects hosts on the Internet.
BB. UPS: Uninterruptible power supply.
CC. AS NECESSARY: Shall mean work which is required for completed construction, but is not necessarily shown or described in the Contract Documents.
DD. AS REQUIRED: Shall mean work which is required for completed construction, but is not necessarily shown or described in the Contract Documents.
EE. SUBSTANTIAL COMPLETION: Shall mean that the project is sufficiently complete to be utilized for its intended use as stated in the body of this written specification.
FF. CONTRACTOR/INTEGRATOR: Refers to the bidding/installation Contractor responsible for furnishing and installation of all work indicated within this specification.

1.6 SUBMITTALS
A. Product Data: For each type of product indicated. Include dimensions and data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For video surveillance. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Functional Block Diagram: Show single-line interconnections between components for signal transmission and control. Show cable types and sizes.
 3. Dimensioned plan and elevations of equipment racks, control panels, and consoles. Show access and workspace requirements.
 4. Wiring Diagrams: For power, signal, and control wiring.
C. Equipment List: Include every piece of equipment by model number, manufacturer, serial number, location, and date of original installation. Add pretesting record of each piece of equipment, listing name of person testing, date of test, set points of adjustments, name and
description of the view of preset positions, description of alarms, and description of unit output responses to an alarm.

D. Field quality-control reports.

E. Operation and Maintenance Data: For cameras, power supplies, infrared illuminators, monitors, digital video recorders, video switches, and control-station components to include in emergency, operation, and maintenance manuals. Refer to Section 017823 “Operation and Maintenance Data” for additional operation and maintenance requirements.

F. Warranty: Sample of special warranty.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NECA 1.

C. Comply with NFPA 70.

D. Electronic data exchange between video surveillance system with the S2 access-control system shall comply with SIA TVAC.

1.8 PROJECT CONDITIONS

A. Environmental Conditions: Capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Interior, Controlled Environment: System components installed in temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 36 to 122 deg F (2 to 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity, noncondensing. Use NEMA 250, Type 1 enclosures.

2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 0 to 122 deg F (minus 18 to plus 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity, noncondensing. Use NEMA 250, Type 3R enclosures.

3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient temperatures of minus 30 to plus 122 deg F (minus 34 to plus 50 deg C) dry bulb and twenty to ninety percent (20-90%) relative humidity, condensing. Rate for continuous operation when exposed to rain as specified in NEMA 250, winds up to 85 mph and snow cover up to 24 inches thick. Use sufficiently rated NEMA 250 enclosures.

4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.

5. Corrosive Environment: System components subject to corrosive fumes, vapors, and wind-driven salt spray in coastal zones. Use sufficiently rated NEMA 250 enclosures.
6. Security Environment: Camera housing for use in high-risk areas where surveillance equipment may be subject to physical violence.

1.9 BIDDING CONTRACTOR QUALIFICATIONS

A. The system programmer shall have attended manufacturer training and obtained certification for the submitted system.

B. The system programmer shall be a certified partner with a minimum of five (5) years’ experience installing and servicing systems of similar scope and complexity and evidence that is completed at least three (3) projects of similar design and is currently engaged in the installation and maintenance of systems herein described.

C. The system programmer shall submit proof of certifications.

1.10 WARRANTY

A. The Integrator guarantees the Systems to be installed under this specification to be free from any defects in workmanship and materials for a period of one (1) year from the date of final completion/acceptance of the project by the Owner as evidenced by the date of final payment for the work. The Contractor shall promptly and at their own expense remedy any defects in the work and pay for any damage to other work resulting thereof, which shall appear during the period of time covered by this guarantee. Neither the final certificate of payment nor any provisions in this Agreement shall constitute an acceptance of work not done in accordance with this specification, or relieve the Contractor of liability with respect to any expressed warranties or guarantees or responsibility for faulty materials or workmanship.

1. The product shall perform in all material respects in accordance with the accompanying user manual, and the media on which the Software Product resides will be free from defects in materials and workmanship under normal use. Software defects are covered through Service Releases and Cumulative Updates which are available for a period of (1) year from the date of the software purchase.

B. The 5 year extended Software Maintenance Agreement warranty shall be purchased as part of this project. This shall include:

1. Access to phone support and online chat for technical assistance
2. Online case management
3. Online system availability monitor
4. Access to major and minor release upgrades
5. 24/7 pager support and dedicated support specialist

C. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of equipment related to the Video Surveillance System, and control-station equipment that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three (3) years from date of Substantial Completion.

D. The Integrator shall provide all services required to maintain the system in an operational state as specified by the manufacturer for a period of one (1) year after acceptance.
E. Service response shall be within twenty-four (24) hours of the initial request for service and shall be provided twenty-four (24) hours per day, seven (7) days per week and three hundred sixty-five (365) days per year.

F. Contractor shall include, as part of this warranty, a program for maintenance for each integrated system.
 1. Provide details of coverage, preventive maintenance schedules, exclusions and service rates for all billable time and travel charges.
 2. Maintenance shall include two (2) semi-annual inspections and tests to verify the intended operation of the security system(s). System testing shall include but not be limited to the testing of all devices, fault modes and batteries. A detailed test report indicating these results and any corrective measures shall be furnished to the Owner.

G. The Contractor shall provide software and firmware upgrades as required and available to the Owner during the maintenance and warranty period.

H. Submit manufacturer's standard warranties.

1.11 SYSTEM CONFIGURATIONS:

A. All system configuration(s) shall be included to attain a fully functional system and shall be within the Scope of work of the awarded contractor of this Bid package. All licenses for the following configurations shall be included as part of this project. The following configurations must be coordinated with the Access Control System / Unified Security Platform as described in Specification 281300. This configuration shall include but not be limited to the following:

1. Configuration of all cameras shall be managed from the Unified Security Platform from the Video Management software.
2. Configuration of LAN switches – Active Electronics as required.
4. Configuration of platform shall allow for Web access into the Access Control and Video Surveillance systems.
5. Seamless Unification of VMS with the ACS is required as part of this project.
6. Configuration of this system to function as the Unified Security Platform shall be required as part of this project. Functionalities of this configuration include but are not limited to:

 a. Configuration of embedded systems, such as ACS & VMS systems.
 b. Live event monitoring
 c. Live video monitoring and playback of archived video
 d. Alarm management
 e. Reporting, including custom report templates and incident reports
 f. Feature for global monitoring, reporting, and alarm management for multiple remote and independent ACS and/or VMS systems spread across multiple facilities and geographic areas.
 g. Intrusion device panel integration (live monitoring, reporting, and arming/disarming).
 h. SIP intercom device integration for bi-directional communication.
 i. Dynamic Graphical Map Viewing
1) Creation and integration of a Graphical Map of the facility and it’s included security and alarm locations shall be provided as part of this project. The DGM shall provide the ability to display all native entities of the UPS including:
 a) Cameras
 b) Doors
 c) Camera Sequences
 d) Areas
 e) Intrusion Areas
 f) Intrusion Zones
 g) Digital Inputs
 h) Digital Outputs
 i) Intercoms
 j) Alarms
 k) Lockdown Buttons
 l) Duress Buttons
 m) Macros

7. Unification of USP Video and Access Control is required as part of this project. This shall include:
 a. The Monitoring UI shall present a true Unified Security Interface for live monitoring and reporting of the ACS and VMS. Advanced live video viewing and playback of archived video shall be available through the Monitoring UI.
 b. The Configuration UI shall present a true Unified Security Interface for the configuration and management of the ACS and VMS.
 c. The user shall be able to associate one or more video cameras to the following entity types: areas, doors, elevators, zones, alarms, intrusion panels, and more.
 d. It shall be possible to view video associated to access control events when viewing a report.
 e. It shall be possible to view video associated to intrusion panel events when viewing a report.

PART 2 - PRODUCTS

2.1 CAMERAS

A. Manufacturer: The selected manufacturer shall be Panasonic Security Systems. Subject to compliance with the indicated camera requirements, any submitted alternate must be a certified camera of Video Management Software and meet the specifications within this document. Subject to compliance with the indicated camera requirements, the following manufacturers are approved alternates:

1. SONY Electronics Inc.
2. IQinVision
3. Axis Communications
B. All associated devices and/or licensing required to obtain a fully functional system, as mandated by this bid specification, shall be included as part this bid specification.

C. Licensing

1. All required licensing shall be included as part of this specification.
2. All required licensing for the specified functionality shall be included as part of this project.
3. All licensing to fully integrate the VMS to the ACS as required in Specification 281300 shall be included as part of this project.

D. Camera Locations:

1. All camera locations must be field verified with the Owner prior to start of project. Electrical drawings are for approximation purposes only. Additional charges will not be allowed for installation in areas not reviewed or approved by the Owner.

E. General Requirements:

1. All equipment and materials used shall be standard components that are regularly manufactured and used in the manufacturer’s system.
2. All systems and components shall have been thoroughly tested and proven in actual use in the presence of the Owner or Security Consultant.
3. All systems and components shall be provided with the availability of a toll-free (U.S.), 24-hour technical assistance program (TAP) from the manufacturer. The TAP shall allow for immediate technical assistance for either the dealer/installer or the end user at no charge for as long as the product is installed.
4. All systems and components shall be provided with a one-day turnaround repair express and 24-hour parts replacement. The repair and parts express shall be guaranteed by the manufacturer on warranty and non-warranty items.

F. Camera Certifications:

1. CE, Class B.
2. FCC, Class B.
3. UL/cUL Listed.
4. C-Tick.

G. Camera Warranty

1. Three (3) years, parts and labor.

H. Interior Fixed Color Camera – 5 Megapixel

1. Panasonic #WV-S2550L, Network H.265, HD vandal-resistant, fixed mini-dome, 5 Megapixel camera.
2. Camera Specifications:
 a. True Day/Night, 3–9 mm MFZ lens with mechanical IR cut filter.
 b. 30 fps progressive scan.
 c. Resolution: 2650 x 1440.
d. Video motion detection.
e. ONVIF Profile S support.
f. Dual digital video streams, independently configurable, H.264 and/or H.264/MJPEG
g. Remote firmware update.
h. Supports both dynamic and static IP addresses.
i. Date/time stamp embedded into video stream.
j. Multiple browser support.
k. Single model for surface mount and recessed ceiling applications, 4S adapter plate also supplied.
l. Advanced IP locator software.
m. PoE IEEE 802.3af power input.
n. Supports input and output alarm contacts.
o. Supports bidirectional audio.

I. Detention Area Interior Fixed Color Camera – Corner Mount

1. Axis #Q8414-LVS, Network H.264, HD corner mount, fixed anti-ligature, 5 Megapixel camera has been selected.
2. Camera Specifications:
 a. True Day/Night, 2.5–6 mm F1.2 lens with removable IR cut filter.
 b. 30/25 fps progressive scan.
 c. Resolution: 1280 x 960.
 d. Video motion detection.
 e. ONVIF Profile S support.
 g. Supports both dynamic and static IP addresses.
 h. Date/time stamp embedded into video stream.
 i. Up to 8x digital zoom.
 j. Advanced IP locator software.
 k. PoE IEEE 802.3af power input.
 l. Input (×1) and output (×1) alarm contacts.
 m. Bidirectional audio communication.
 n. IK10 impact resistant.

J. Exterior Fixed Color Camera – 5 Megapixel

1. Panasonic #WV-S2550L, Network H.265, HD vandal-resistant, fixed mini-dome, 5 Megapixel camera.
2. Camera Specifications:
 a. True Day/Night, 3–9 mm MFZ lens with mechanical IR cut filter.
 b. 30 fps progressive scan.
 c. Resolution: 2650 x 1440.
 d. Video motion detection.
 e. ONVIF Profile S support.
 f. Dual digital video streams, independently configurable, H.264 and/or H.264/MJPEG
 g. Remote firmware update.
h. Supports both dynamic and static IP addresses.
i. Date/time stamp embedded into video stream.
j. Multiple browser support.
k. Single model for surface mount and recessed ceiling applications, 4S adapter plate also supplied.
l. Advanced IP locator software.
m. PoE IEEE 802.3af power input.
n. Supports input and output alarm contacts.
o. Supports bidirectional audio.
p. Furnish with wall, corner or ceiling mount based on final camera location.

2.2 VIDEO SURVEILLANCE MANAGEMENT PLATFORM

A. The selected manufacturer shall be Milestone. Other manufacturers will not be considered as the district has standardized on this manufacturer.

B. The selected Management platform shall be Milestone XPROTECT VMS.

C. Servers/Storage

1. The following server and video storage size is only a recommendation. The server must accommodate the cameras quantities, types, manufacturer and system configurations described above.

2. The Archive Server shall be:

 a. Milestone Husky X8.
 b. This server shall be sized using the camera quantities and calculations within this section and shown on the drawings.

2.3 WORK STATION

A. The manufacturer shall be DELL.

1. #OPTIPLEX 3040 MICRO

 a. Intel Core i3-6100T Processor
 b. Windows 10
 c. 8G DDR3
 d. 2.5” 128GB SATA Class 10 Solid State Drive
 e. 22” monitor
 f. 3 Year Hardware Service w/ Onsite Service After Remote Diagnosis

B. All patch cables to data drop and monitor (HDMI) are required as part of this project.

C. Configuration to view VMS and ACCESS CONTROL system is required as part of this project. Contractor must coordinate creation of custom screens with Owner and Security Consultant.

PART 3 - EXECUTION
3.1 EXAMINATION

A. Examine pathway and mounting surfaces intended for the cameras. Check structure and other elements for compliance with space allocations, installation tolerance, hazards to camera installation, and other conditions affecting installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIDEO SURVEILLANCE SYSTEM INSTALLATION

A. Install cameras level and plumb.

B. Install cameras with 84-inch minimum clear space below cameras and their mountings. Change type of mounting to achieve required clearance.

C. Set pan unit and pan-and-tilt unit stops to suit final camera position and to obtain the field of view required for camera. Connect all controls and alarms, and adjust.

D. Install power supplies and other auxiliary components within the Telecommunication Room unless otherwise indicated.

E. Install tamper switches on components indicated to receive tamper switches, arranged to detect unauthorized entry into system-component enclosures and mounted in self-protected, inconspicuous positions.

F. Identify system components, wiring, cabling, and terminals according to industry standards.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.

2. Pretesting: Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements. Conduct tests at varying lighting levels, including day and night scenes as applicable. Prepare video-surveillance equipment for acceptance and operational testing as follows:

 a. Prepare equipment list described in "Submittals" Article.
 b. Verify operation of auto-iris lenses.
 c. Set back-focus of fixed focal length lenses. At focus set to infinity, simulate nighttime lighting conditions by using a dark glass filter of a density that produces a clear image. Adjust until image is in focus with and without the filter.
 d. Set back-focus of zoom lenses. At focus set to infinity, simulate nighttime lighting conditions by using a dark glass filter of a density that produces a clear image. Additionally, set zoom to full wide angle and aim camera at an object 50 to 75 feet
away. Adjust until image is in focus from full wide angle to full telephoto, with the filter in place.

e. Set and name all preset positions; consult Owner's personnel.
f. Set sensitivity of motion detection.
g. Connect and verify responses to alarms.
h. Verify operation of control-station equipment.

3. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least fourteen (14) days. Provide a minimum of ten (10) days notice of test schedule.

4. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.

C. Video surveillance system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Occupancy Adjustments: When requested within twelve (12) months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two (2) visits to this Project location during other-than-normal occupancy hours for this purpose. Tasks shall include, but are not limited to, the following:

1. Check cable connections.
2. Check proper operation of cameras and lenses. Verify operation of auto-iris lenses and adjust back-focus as needed.
3. Adjust all preset positions; consult Owner's personnel.
4. Recommend changes to cameras, lenses, and associated equipment to improve Owner's use of video surveillance system.
5. Provide a written report of adjustments and recommendations.

3.5 CLEANING

A. Clean installed items using methods and materials recommended in writing by manufacturer.

B. Clean video-surveillance-system components, including camera-housing windows, lenses, and monitor screens before installation and prior to final acceptance.

C. Remove rubbish and debris: Installation contractor is not allowed you use the onsite dumpster and is responsible to discard their own debris off site.

3.6 SERVICE LEVEL AGREEMENTS (SLA’S)

A. The bidding contractor shall include pricing for a three (3) year SLA as part of the base bid and shall include the following procedures:

1. Windows upgrades/patches shall be installed and updated two times (2x) per year to the Video management Server and Network Storage Devices and the S2 devices.
2. Firmware updates shall be performed two times (2x) per year to all of the cameras.
 a. This shall be a flash upgrade to all cameras on the tree via the S2 which resides on the Server(s). These upgrades will improve integration between the cameras and the S2 Management software.

3. Physical Maintenance shall be performed two times (2x) per year on all of the cameras within this specification and shall minimally include:
 a. Correct lens adjustments.
 b. Verify heating elements.
 c. Lens and enclosure cleaning.
 d. Secure screws.

3.7 DEMONSTRATION – TRAINING

 A. Bidding contractor shall engage a factory-authorized service representative to train the Owner's maintenance personnel to adjust, operate, and maintain Video Surveillance system.

 B. Refer to section 017900 for additional instructions for security system demonstration requirements.

END OF SECTION 282300
SECTION 31 1100 - CLEARING AND GRUBBING

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes

1. Cutting of trees and other vegetation.
2. Clearing of miscellaneous vegetation.
4. Disposal of all waste materials.

B. Contractor shall coordinate work between all Subcontractors, sections, and trades required for the proper completion of the work.

C. Contractor is responsible for all health and safety.

1.2 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

B. State of Connecticut Department of Transportation (ConnDOT)

C. Code of Federal Regulations (CFR)

1. 29 CFR 1926, Safety and Health Regulations for Construction

1.3 DEFINITIONS

A. Clearing: Clearing shall consist in the felling, cutting up, and satisfactory disposal of trees and other vegetation designated for removal in accordance with these specifications.

B. Drainage Course: Layer supporting basement grade used to minimize capillary flow of pore water.

C. Grubbing: Grubbing shall consist of the removal of roots 1 ½ inch and larger, organic matter and debris, and stumps having a diameter of three inches or larger, to a depth of at least 18 inches below the surface and or subgrade; whichever is lower, and the disposal thereof.
1.4 SAFETY REQUIREMENTS
 A. Contractor shall conduct all clearing and grubbing activities in conformance with applicable regulations, including those relating to barriers, warning signs, excavation safety, sheeting, shoring, and stabilization.
 B. Contractor shall provide and maintain barricades, warning signs, signs, lights, etc., required for the protection of personnel, materials and property. Temporary barricades, etc. shall conform all applicable codes and regulations, and shall be lighted at night with lanterns, flares and reflectorized paint as required for safety. Adapt barricades, signs, lights, etc. to evolving site conditions throughout the progress of the work.
 C. Provide other safety devices as required, including adaptation of such safety devices to changing site conditions, to prevent unauthorized entry to construction areas. Provide warning signs and other temporary construction safety devices necessary for proper completion of the work in compliance with applicable safety regulations.

1.5 QUALITY ASSURANCE
 A. Use adequate numbers of skilled workmen who are trained, experienced, and as required licensed, in the necessary crafts and who are completely familiar with the specified requirements and methods required for proper performance of the work in this Section. Use equipment of adequate size, capacity and quantity to accomplish the work of this Section in a timely manner.

PART 2 PRODUCTS – NOT USED

PART 3 EXECUTION

3.1 PREPARATION
 A. Secure the work area and take precautions for preventing injuries to persons or damage to property in or about the work. Protect structures, utilities, sidewalks, pavements and other facilities or sensitive areas from damage by clearing and grubbing operations.
 B. Establish all required erosion and sedimentation controls prior to initiating work.

3.2 CLEARING AND GRUBBING
 A. Clear, grub, remove, and dispose of all vegetation and debris within the limits of construction, as designated on the plans or as required by Engineer. Contractor shall remove only those trees and shrubs absolutely necessary to allow for the construction. The work shall also include the preservation and protection of all vegetation designated to remain.
 B. A preconstruction meeting shall be held with Engineer, Owner, local authorities, property owner(s) and other appropriate personnel, if required, prior to any clearing.
 C. The area within the limits of construction or as designated shall be cleared and grubbed of all trees, stumps, roots, brush, undergrowth, hedges, heavy growth of grasses or weeds, debris and rubbish of any nature which, in the opinion of Engineer, is unsuitable for foundation material. Nonperishable items that will be a minimum of five (5) feet below the finish elevation of the earthwork or slope of the embankment may be left in place.
D. Contractor shall provide barricades, fences, coverings, or other types of protection necessary to prevent damage to existing improvements, not indicated to be removed, and improvements on adjoining property. All improvements damaged by this work shall be restored to their original condition or to a condition acceptable to the owner or other parties or authorities having jurisdiction.

E. Protection of Trees and Vegetation: Contractor shall protect existing trees and other vegetation indicated on the Drawings to remain in place against cutting, breaking, or skinning of roots, skimming and bruising of bark, smothering of trees by stockpiling construction materials or excavated materials within drip line, excess foot or vehicular traffic, or parking of vehicles within drip line. Provide temporary fences or barricades as required to protect trees and vegetation to be left standing at no additional cost.

F. Trees and shrubs that are to remain within the construction limits will be indicated on the Drawings or conspicuously marked on the Project Site. Unless otherwise noted, trees within the construction limits shall become the property of the Contractor and shall be removed from the site.

G. Carefully and cleanly cut roots and branches of trees indicated to remain where the roots and branches obstruct construction of utilities or other subsurface improvements. Contractor shall provide protection for roots and branches over 1 ½ inches diameter that are cut during construction operations. Temporarily cover all exposed roots with wet burlap to prevent roots from drying out. Provide earth cover as soon as possible.

H. Damaged trees and vegetation designated to remain shall be repaired or replaced at Contractor’s expense in a manner acceptable to Engineer if they are damaged by construction operations. Repair tree damage as directed by a qualified tree surgeon.

I. Trees and vegetation designated to remain shall be repaired or replaced at Contractor’s expense in a manner acceptable to Engineer if they are damaged by construction operations. Repair tree damage as directed by a qualified arborist.

J. All brush, tree tops, stumps, and debris shall be hauled away and disposed of in accordance with all applicable laws and regulations. Contractor shall clean up debris resulting from clearing operations continuously with the progress of the work and remove promptly all salvageable material that becomes his property and is not to be reused in construction. Sale of material on the site is prohibited. Debris from the site shall be removed in such a manner as to prevent spillage. Keep pavement and area adjacent to site clean and free from mud, dirt, dust, and debris at all times.

K. The method of stripping, clearing and grubbing the site shall be at the discretion of the Contractor. However, all stumps, roots and other debris protruding through the ground surface or in excavated areas shall be completely removed to a minimum depth of 18 inches below surface and/or subgrade whichever is lower and disposed of off the site by the Contractor, at his expense.

L. Marginal Areas: In marginal areas, with Engineer’s permission, remove trees where the following conditions exist.

1. Root Cutting: When clearing up to the "clearing limits,” the Contractor shall also remove any tree which is deemed marginal such that when the roots are cut and the tree could be rendered unstable by the affects of high winds and in danger of toppling into either the right-of-way or onto private property.
2. Slender Bending Trees: Where young, tall, thin trees are left unsupported by the clearing operation, and are likely to bend over into the right-of-way, Contractor, during the clearing operation, shall selectively remove those trees which are located outside and adjacent to the clearing limits and any right-of-way or easement as well. During the course of construction and during the one-year warranty period, the Contractor shall remove such young trees that overhang into the right-of-way or cleared area.

M. Stripping of Topsoil: Remove the existing topsoil to a depth of 6 inches or to the depth encountered from all areas in which excavation will occur. The topsoil shall be stored in stockpiles, separate from the excavated material, if the topsoil is to be respread. Otherwise material shall be disposed of off-site at Contractor’s expense.

3.3 DISPOSAL

A. Contractor shall consolidate and clean-up debris resulting from clearing and grubbing operations continuously with the progress of the work.

B. All brush, treetops, stumps, and debris resulting from clearing and grubbing operations shall be hauled away and disposed of in accordance with all applicable laws and regulations. Any materials salvaged by Contractor from clearing and grubbing operations shall be promptly removed from the Project Site.

C. Contractor will be responsible for obtaining all applicable permits and paying all fees for the disposal of excess material.

D. Sale of material on the Project Site is prohibited.

E. Burning of material is prohibited.

END OF SECTION
SECTION 312310 - EARTHWORK

PART 1 GENERAL

1.1 SUMMARY

A. Section includes:
 1. Preparation and grading subgrades for slabs-on-grade, walks, pavements, and landscaping.
 2. Excavating and backfilling for structures.
 3. Excavation and backfilling for underground utilities and associated appurtenances.

B. Contractor shall coordinate work between all Subcontractors, sections, and trades required for the proper completion of the work.

C. Contractor is responsible for all health and safety.

1.2 GENERAL

A. Contractor is advised that lines and grades, as shown on the Drawings, are subject to change. Although it is intended to adhere to what is shown on Drawings, Engineer reserves the right to make changes in lines and grades of utilities or other subsurface construction when such changes may be necessary or advantageous.

B. In open trenching on public roadways, Contractor shall be governed by the conditions, restrictions and regulations made by the local or state authority as applicable. All such regulations shall be in addition to those set down in the Specifications.

1.3 EXCAVATION CLASSIFICATIONS

A. Excavation - Excavation shall be unclassified and no consideration will be given to the nature of the materials. Excavation shall comprise and include the satisfactory removal and disposal of all materials encountered regardless of the nature of the materials and shall be understood to include but not limited to earth, fill, boulders, foundations, pavements, curbs, piping, cobbles, stones, footings, bricks, concrete, previously abandoned drainage structures and utility structures abandoned and not removed by the utility and debris.

B. Common Excavation - Excavation of all materials that can be excavated, moved, loaded, transported, and unloaded using heavy equipment or that can be excavated and dumped into place or loaded onto hauling equipment by excavation equipment (shovel, bucket, backhoe, dragline, or clam shell) or moved with dozer-type equipment, appropriate to the material type, character, and nature of the materials. The presence of isolated boulders or rock fragments larger than 1 cubic yard is not in itself sufficient cause to change the classification of the surrounding material. All Common Excavation shall be included in the Base Bid.

C. Rock Excavation - Rock Excavation as defined herein. The excavation and removal of isolated boulders or rock fragments larger than 1 cubic yard encountered in materials otherwise conforming to the definition of Common Excavation shall be classified as rock excavation. The presence of isolated boulders or rock fragments larger than 1 cubic yard is not in itself sufficient cause to change the classification of the surrounding material.
1.4 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

B. State of Connecticut Department of Transportation (ConnDOT)

C. Code of Federal Regulations (CFR)
 1. 29 CFR 1926, Safety and Health Regulations for Construction

D. American Concrete Institute (ACI)
 1. ACI 229R-99 - Controlled Low-Strength Materials (CLSM).

E. American Association of State Highway and Transportation Officials (AASHTO)
 1. AASHTO Method T 90 - Determining the Plastic Limit and Plasticity Index of Soils.
 2. AASHTO T104 - Standard Method of Test for Soundess of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate.
 3. AASHTO Method T146 - Standard Method of Test for Wet Preparation of Disturbed Soil Samples for Test.

F. ASTM International (ASTM).
 2. ASTM D1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
 3. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³(2,700 kN-m/m³)).
 4. ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).
 5. ASTM D2922 - Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).
 7. ASTM D6938 - Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).

1.5 DEFINITIONS

A. Backfill: Soil material or flowable concrete used to fill an excavation.
B. Bedding Course: Layer placed over the excavated sub-grade in a trench before laying pipe.

C. Benching: A method of limiting cave-in potential by excavating the sides of an excavation to form one or a series of horizontal levels or steps, usually with vertical or near-vertical surfaces between levels.

D. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.

E. Clearing: Clearing shall consist in the felling, cutting up, and satisfactory disposal of trees and other vegetation designated for removal in accordance with these specifications.

F. Drainage Course: Layer supporting basement grade used to minimize capillary flow of pore water.

G. Earth Retention Systems: Any structural system, such as sheeting and bracing or cofferdams, designed to retain in-situ soils in place and prevent the collapse of the sides of an excavation in order to protect employees and adjacent structures.

H. Excavation: Any man-made cut, cavity, trench, or depression in an earth surface, formed by earth removal.
 1. Additional Excavation: Excavation beyond required dimensions or below subgrade elevations that is requested and/or directed by Engineer. Additional Excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 2. Bulk Excavation: Excavations more than 10 feet in width and pits more than 30 feet in either length or width.
 3. Unauthorized Excavation: Excavation below the elevations specified on the plans, beyond the limits indicated on the plans, or where no dimensions are indicated, beyond depths, elevations, and dimensions reasonably necessary for construction of the work without the request and/or direction of the Engineer. Unauthorized excavation, as well as any remedial work directed by Engineer, or if applicable Geotechnical Engineer, shall be without additional compensation.

I. Fill: Soil materials used to raise existing grades.

J. Finished Grade: The proposed final elevations shown on the Drawings or called for in the Specifications.

K. Geotechnical Engineer: A qualified and licensed entity designated for the project as the authority on the assessment, design, and oversight of soil and/or rock conditions and construction affected by such conditions.

L. Geotechnical Testing Agency: An independent testing agency employed by Owner, or by Contractor is called-for, and qualified according to ASTM E 329 to conduct soil materials and rock-definition testing, as documented according to ASTM D 3740 and ASTM E 548.

M. Grubbing: Grubbing shall consist of the removal of roots 1½ inch and larger, organic matter and debris, and stumps having a diameter of three inches or larger, to a depth of at least 18 inches below the surface and or subgrade; whichever is lower, and the disposal thereof.
N. Protective System: A method of protecting employees from cave-ins, from material that could fall or roll from an excavation face or into an excavation, or from the collapse of adjacent structures. Protective systems include earth retention systems, sloping and benching systems, shield systems, and other systems that provide the necessary protection.

O. Regular Excavation: Removal and disposal of any and all material above subgrade elevation, except solid rock and undercut excavation, located within the limits of construction.

P. Rock: Solid ledges, bedded deposits, unstratified masses and conglomerations of material so firmly cemented as to possess the characteristics of solid rock which cannot be removed without systematic drilling or hoe ramming. All boulders containing a volume of more than one (1) cubic yard shall be considered rock.

Q. Rock Excavation: Removal and satisfactory disposal of Rock, which, in the opinion of Engineer, cannot be excavated except by drilling, wedging, jack hammering or hoe ramming or the excavation of boulders or rock fragments containing a volume of more than one (1) cubic yard. The presence of isolated boulders or rock fragments larger than 1 cubic yard is not in itself sufficient cause to change the classification of the surrounding material.

R. Licensed Professional Engineer: A person who is licensed as a professional engineer in the state where the work is to be performed. However, a professional engineer, registered in any state is deemed to be a "registered professional engineer" within the meaning of this standard when approving designs for "manufactured protective systems" or "tabulated data" to be used in interstate commerce.

S. Satisfactory Materials: Earth material that meets the classification, use, and/or gradation requirements herein that does not contain limestone, shale, clay, ash, slag, friable material, organic or vegetative materials, topsoil, wood, trash, broken concrete, masonry rubble, trash, refuse, or frozen materials.

T. Shield System: A structure that is designed to withstand the forces imposed on it by a cave-in and thereby protects employees within the structure. Shields can be permanent structures or can be designed to be portable and moved along as work progresses. Additionally, shields can be either pre-manufactured or job-built in accordance with 29 CFR 1926.652(c)(3) or (c)(4). Shields used in trenches are usually referred to as "trench boxes" or "trench shields."

U. Sloping: A method of protecting employees from cave-ins by excavating to form sides of an excavation that are inclined away from the excavation so as to prevent cave-ins. The angle of incline required to prevent a cave-in varies with differences in such factors as the soil type, environmental conditions of exposure, and application of surcharge loads.

V. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

W. Sub-grade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below drainage fill.

X. Surplus Material: Excavated acceptable material that cannot be utilized elsewhere on the site as backfill or embankment fill, or as otherwise directed by the Engineer.
Y. Temporary Dewatering System: A system to lower and control water to maintain stable, undisturbed subgrades at the lowest excavation levels. Dewatering shall be provided for all pipelines, structures and for all other miscellaneous excavations.

Z. Testing Laboratory: A qualified entity engaged to perform specific laboratory tests.

AA. Testing Agency: A qualified entity engaged to collect samples, perform specific in-field tests, and/or inspections. The Testing Laboratory may provide the services of the Testing Agency.

BB. Trench: A narrow excavation (in relation to its length) made below the surface of the ground. In general, the depth is greater than the width, but the width of a trench (measured at the bottom) is not greater than 15 feet.

CC. Unacceptable Material: Soil material that contains organic silt, peat, vegetation, wood or roots, stones or rock fragments over six (6) inches in diameter or exceeding 40 percent by weight of the backfill material, porous biodegradable matter, loose or soft fill, construction debris, or refuse, or material which cannot be compacted to the specified or indicated density.

1.6 SUBMITTALS

A. Site Characterization of Off-Site Borrow Sources: The following information shall be submitted to Engineer for review at least two weeks prior to use of an off-site borrow source:

1. Location and name of the borrow source site.
2. Owner and contact information for the borrow source site.
3. Present and past usage of the source site and materials.
4. Any previously existing report(s) associated with an assessment of the source site as relates to the presence of oils, hazardous materials, or other organic and non-organic constituents which may be considered contaminants.
5. Location within the site from which the material will be obtained.

B. Chemical Testing Data: For each type/classification of earth material proposed and each source of earth material proposed: Submit a letter signed by an authorized representative of material supplier stating that such proposed material is free of oils, hazardous materials, or other organic and non-organic constituents which may be considered contaminants.

C. Material Testing Data: Provide results for all proposed bedding, fill, aggregates, and backfill. Submit complete laboratory reports.

1. Gradation analysis.
2. Soil classification and Moisture-Dry Density Curve.
3. Loss on Abrasion.
4. Soundness.

D. Product Data

1. Plastic warning tape.

1.7 SAFETY

A. Contractor shall conduct all excavation activities in conformance with applicable regulations, including those relating to warning signs, excavation safety, sheeting, shoring, and stabilization.

B. Contractor shall provide and maintain barricades, signs, lights, etc., required for the protection of personnel, materials and property. Temporary barricades, etc. shall conform all applicable codes and regulations, and shall be lighted at night with lanterns, flares and reflectorized paint as required for safety. Adapt barricades, signs, lights, etc. to evolving site conditions throughout the progress of the work.

C. Provide other safety devices as required, including adaptation of such safety devices to changing site conditions, to prevent unauthorized entry to construction areas and open excavations. Provide warning signs and other temporary construction safety devices necessary for proper completion of the work in compliance with applicable safety regulations.

D. Contractor shall properly design and furnish all labor, materials, equipment, and tools necessary to construct permanent or temporary excavation support systems, including, but not necessarily limited to, sheet piling, trench shields, trench boxes, timber trench shoring, pneumatic/hydraulic shoring, steel sheeting or sheeting using other materials, sloping, and benching.

E. Any time an excavation is to remain open, at a minimum, provide full enclosure with safety barriers and fencing, warning signs, and additional safety control measures as appropriate for the condition.

1.8 QUALITY ASSURANCE

A. Use adequate numbers of skilled workmen who are trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and methods required for proper performance of the work in this Section. Use equipment of adequate size, capacity and quantity to accomplish the work of this Section in a timely manner.

B. Utility Mark-out

1. Prior to commencing work, comply with utility mark-out requirements of the Call-Before-You-Dig System (1-800-922-4455).

2. Verify the location of all subsurface utilities marked through the Call-Before-You-Dig System.

3. Not all subsurface facilities or structures will be identified through the Call-Before-You-Dig System. Confirm the location of other subsurface utilities and other subsurface facilities or structures prior to commencing work. Field-mark utilities as required.

C. Codes and Standards: Perform the work of this Section in accordance with all applicable codes, standards, and the requirements of authorities having jurisdiction.

D. Engineer reserves the right to perform all in-field testing specified in this Section and reserves the right to determine the suitability of all materials to be used for fills and reject any fill not meeting the specifications.

E. Field Density testing and subgrade observation shall be performed by the designated entity.
F. Weather Limitations:
 1. Material excavated when frozen or when air temperature is less than 32 degrees Fahrenheit (32 F) shall not be used as fill or backfill until material completely thaws.
 2. Material excavated during inclement weather shall not be used as fill or backfill until after material drains and dries sufficiently for proper compaction.

1.9 TESTING

A. The Owner will retain a testing entity to perform sampling and testing of the work under this Section during construction. The testing entity’s presence does not constitute supervision or direction of Contractor’s work. Neither the presence of the testing entity nor any observations and testing performed by him, nor any notice or failure to give notice shall excuse Contractor from conformance with these Specifications or from defects discovered in his work. Contractor shall remain responsible for all pre-construction sampling and testing.

B. Borrow and Fill: Contractor shall provide testing as defined below.
 1. Gradation analysis for each type of borrow and on-site fill materials by ASTM D422.
 2. Soil classification (ASTM D2487) and Moisture-Dry Density Curve (Proctor Test-Modified) by ASTM D1557 for all proposed fill and backfill materials at the frequency specified below:
 a. For suitable soil materials removed during Trench Excavation, perform one test for every 1,000 cubic yards of similar soil type. Similarity of soil types will be as determined by the Engineer.
 b. For borrow materials, perform tests from each proposed source, at a rate of one test for every 1,000 cubic yards of soil type. Similarity of soil types will be as determined by the Engineer.

C. Compaction Testing: Owner will conduct compaction testing (i.e. ASTM D2922 and ASTM D3017 or ASTM D1556) at the frequency indicated below.
 1. Trench: 1 test per lift, every 1,000 square feet or 200 feet of trench.
 2. Embankment: 1 test per lift, every 1,000 square feet.
 3. Additional compaction testing may be required when there is evidence of a change in the quality of moisture control or the effectiveness of compaction.
 4. If testing indicates that compacted subgrade, backfill, or fill are below specified density, additional compaction and/or replacement of material shall be provided at no expense to Owner.

D. Chemical Testing: Prior to delivery of any earth material to the Project Site, Contractor shall conduct chemical testing to demonstrate that such material is free of oils, hazardous materials, or other organic and non-organic constituents which may be considered contaminants.
1.10 EXCAVATED MATERIAL

A. Placement

1. Excavated material shall be so placed as not to interfere with travel or movement on existing streets, driveways, sidewalks or other areas designated to remain undisturbed. Excavated material shall not be deposited on private property without the written consent of the property owner(s) and approval of Engineer.

2. No excavated material shall be stored on top of installed pipe or other construction. Contractor shall consider surcharge loads when stockpiling excavated material adjacent to trenches, and take any measure required to prevent cave-in, including but not limited to, trench support systems and/or stockpiling excavated material remote from trench.

B. Suitable excavated material may be used for Common Fill or Backfill on other parts of the Work, if specifically approved by Engineer.

C. Material excavated from private property shall belong to the property Owner, or his representative, and shall be disposed of by the Contractor, as required by said Owner or his representative. If the Contractor fails to promptly remove such surplus material, Engineer may have the same done and charge the cost thereof as money paid to the Contractor.

D. Contractor shall be responsible for the proper disposal of all unsuitable excavated materials. Engineer shall determine what is suitable or unsuitable material where questions arise. Generally, unsuitable material shall include, but not be limited to, pavement (bituminous and concrete), large boulders, pipe, conduit and metal.

E. Contractor shall submit to Engineer, for approval, the location(s) to be utilized during the Contract period for waste material disposal. This approval must occur before any export of waste material from the project site. Any change in the disposal site during construction shall be submitted for approval.

1.11 SHEETING, SHORING AND BRACING

A. Provide earth retention systems as required by federal, state and local regulations. Shoring and bracing of trenches and other excavations shall be in accordance with the latest OSHA Standards and Interpretations, and to all other applicable codes, rules and regulations of federal, state and local authorities.

1.12 DRAINAGE

A. At all times during construction, Contractor shall temporarily provide, place and maintain ample means and devices with which to remove promptly, and dispose of properly, all water entering trenches and other excavations, or water that may flow along or across the site of the Work, and keep said excavations dry until the structures, pipes, and appurtenances to be built therein have been completed to such extent that they will not be damaged. At the conclusion of the work, Contractor shall remove such temporary means and devices.

B. All groundwater which may be found in the trenches and foundation excavations, and any water which may get into them from any cause whatsoever, shall be pumped or bailed out, so that the trench shall be dry during pipe laying and backfilling and during the placement of concrete.
C. All water pumped or drained from the Work shall be managed in accordance with applicable discharge permits, without undue interference with other work or damage to pavements, other surfaces, or property.

1.13 COORDINATION

A. Prior to commencing earthwork operations, meet with representatives of governing authorities, Engineer, testing entity, and other pertinent entities.

1. Review earthwork procedures and responsibilities including Contractor's schedule of operations, scheduling observation and testing procedures and requirements.

2. Notify participants at least three (3) working days prior to convening conference. Record discussions and agreements and furnish copies to each participant.

3. Contractor shall at all times so conduct his work as to insure the least possible inconvenience to the general public and the residents in the vicinity of the work. Fire hydrants on or adjacent to the work shall be kept accessible to firefighting equipment at all times. Temporary provisions shall be made by Contractor to ensure the proper functioning of all gutters, sewer inlets, drainage ditches, and irrigation ditches, which shall not be obstructed except as approved by Engineer.

B. Benchmark/Monument Protection: Protect and maintain benchmarks, monuments or other established reference points and property corners. If disturbed or destroyed, replace at no cost to Owner.

C. Provide five (5) days advance notice to Engineer and testing entity for any proposed earthwork operation requiring observation and/or testing.

PART 2 PRODUCTS

2.1 SOIL MATERIALS

A. All materials used in the work of this Section shall be Satisfactory Material, and any material that does not meet this classification shall be considered an Unsatisfactory Material and shall not be used.

B. Unsatisfactory Soils: Soil materials not meeting the requirements for Satisfactory Soils.

1. Unsatisfactory soils also include satisfactory soils not maintained within two (2) percent of optimum moisture content at time of compaction.

2.2 COMMON FILL/ORDINARY BORROW

A. Earth materials classified by ASTM D 2487 as GW, GP, GM, GP-GM, GW-GM, GP-GC, SW, SP, and SM that are free of clay.

B. Common Fill material is subject to the approval of Engineer and may be either material removed from excavations or borrow from off site. It shall have physical properties such that it can be readily spread and after it has been placed and properly compacted, it will form a dense, stable fill.

C. Common Fill shall be graded as follows:
2.3 COMMON FILL/ORDINARY BORROW

A. Satisfactory Material that is well-graded meeting ASTM D 2487 classification group GW, GP, GM, SW, SP, and SM. No particle shall exceed 6-inches in size and no greater than 10% by weight of the material shall pass the No. 100 sieve and no greater than 5% by weight of the material shall pass the No. 200 sieve.

B. Common Fill is subject to the approval of Engineer and may be either material removed from on-site excavations or borrow pits or imported from off-site, approved sources. It shall have physical properties such that it can be readily spread and after it has been placed and properly compacted, it will form a dense, stable fill.

2.4 GRANULAR FILL

A. Broken or crushed stone, gravel, or a mixture thereof.

B. Broken or crushed stone

1. The product resulting from the artificial crushing of rocks, boulders or large cobblestones, substantially all faces of which have resulted from the crushing operation. Broken or crushed stone shall consist of sound, tough, durable stone, reasonably free from soft, thin, elongated, laminated, friable, micaceous or disintegrated pieces.

C. Bank or crushed gravel

1. Sound, tough, durable particles of crushed or uncrushed gravel, free from soft, thin, elongated or laminated pieces and vegetable or other deleterious substances. Crushed gravel shall be the manufactured product resulting from the deliberate mechanical crushing of gravel with at least 50% of the gravel retained on the No. 4 sieve having at least one fractured face.

D. Granular Fill shall be graded as follows:

Gradation of Granular Fill (ConnDOT Grading “A”)

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ½”</td>
<td>100</td>
</tr>
</tbody>
</table>

1. Less than twenty (20) percent of material by weight passing the No. 4 sieve shall pass the No. 200 sieve.

2. Common Fill shall not be used at locations where use of select fill is indicated.
2.5 SCREENED GRAVEL AND CRUSHED STONE

A. Screened gravel, well graded in size from 3/8 inch to 3/4 inch. The gravel shall consist of clean, hard, and durable particles or fragments. Crushed rock of suitable size and grading may be used instead of screened gravel.

B. Screened Gravel shall be graded as follows:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>100</td>
</tr>
<tr>
<td>3/4”</td>
<td>90-100</td>
</tr>
<tr>
<td>1/2”</td>
<td>20-55</td>
</tr>
<tr>
<td>3/8”</td>
<td>0-15</td>
</tr>
<tr>
<td>No. 4</td>
<td>0-5</td>
</tr>
</tbody>
</table>

2.6 PROCESSED AGGREGATE BASE

A. Coarse aggregates and fine aggregates shall be combined and mixed by approved methods so that the resulting material shall conform to the following gradation:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2”</td>
<td>100</td>
</tr>
<tr>
<td>2”</td>
<td>95-100</td>
</tr>
<tr>
<td>3/4”</td>
<td>50-75</td>
</tr>
<tr>
<td>1/4”</td>
<td>25-45</td>
</tr>
<tr>
<td>No. 40</td>
<td>5-20</td>
</tr>
<tr>
<td>No. 100</td>
<td>2-12</td>
</tr>
</tbody>
</table>

B. Coarse Aggregate: Either gravel, broken stone or a combination thereof. When tested by means of the Los Angeles Machine, using AASHTO Method T 96, the coarse aggregate shall not have a loss of more than 50%.

1. If gravel is used for the coarse aggregate, it shall consist of sound, tough, durable particles of crushed or uncrushed gravel or a mixture thereof, free from soft, thin, elongated or laminated pieces, lumps of clay, loam and vegetable or other deleterious substances.
2. If broken stone is used for the coarse aggregate, it shall consist of sound, tough, durable fragments of rock of uniform quality throughout. It shall be free from soft disintegrated pieces, mud, dirt, organic or other injurious material.

3. Soundness for Gravel and Broken Stone: When tested by magnesium sulfate solution for soundness using AASHTO Method T 104, the coarse aggregate shall show a loss of not more than 15% at the end of 5 cycles.

C. Fine Aggregate: Natural sand, stone sand, screenings or any combination thereof. The fine aggregate shall be limited to material 95% of which passes a No. 4 (4.75-mm) sieve having square openings and not more than 8% of which passes a No. 200 (75-μm) sieve. The material shall be free from clay, loam and deleterious materials.

1. Plasticity: When natural sand is used, the fine aggregate shall conform to the following:
 a. When the fraction of the dry sample passing the No. 100 mesh sieve is 4% or less by weight (mass), no plastic limit test will be made.
 b. When the fraction of the dry sample passing the No. 100 mesh sieve is greater than 4% and not greater than 8% by weight (mass), that fraction shall not have sufficient plasticity to permit the performing of the plastic limit test using AASHTO Method T 90.
 c. When the fraction of the dry sample passing the No. 100 mesh sieve is greater than 8% by weight (mass), the sample will be washed; and the additional material passing the No. 100 mesh sieve shall be determined by AASHTO Method T 146, except that the No. 100 mesh sieve will be substituted for the No. 40 mesh sieve where the latter is specified in AASHTO Method T 146. The combined materials that passed the No. 100 mesh sieve shall not have sufficient plasticity to permit the performing of the plastic limit test using AASHTO Method T 90.

2. Plasticity: When screenings or any combination of screenings and natural sand or any combination of stone sand and natural sand are used, the following requirements shall apply:
 a. When the fraction of the dry sample passing the No. 100 mesh sieve is 6% or less by weight (mass), no plastic limit test will be made.
 b. When the fraction of the dry sample passing the No. 100 mesh sieve is greater than 6% and not greater than 10% by mass, that fraction shall not have sufficient plasticity to permit the performing of the plastic limit test, using AASHTO Method T 90.
 c. When the fraction of the dry sample passing the No. 100 mesh sieve is greater than 10% by weight (mass), the sample shall be washed; and additional material passing the No. 100 mesh sieve shall be determined by AASHTO Method T 146, except that the No. 100 mesh sieve shall be substituted for the No. 40 mesh sieve where the latter is specified in AASHTO Method T 146. The combined materials that have passed the No. 100 mesh sieve shall not have sufficient plasticity to permit the performing of the plastic limit test using AASHTO Method T 90.
2.7 BEDDING

A. Slabs on grade

1. Granular Fill unless otherwise indicated.

B. Utilities

1. Unless otherwise indicated, bedding shall consist of screened gravel, maximum size 3/4 inches and minimum size 3/8 inches.

2. When clay, wet, soft or silty soil conditions prevail, 3/4-inch crushed stone shall be used for bedding of pipe.

2.8 SAND

A. Sand shall consist of clean, hard, durable, uncoated particles of quartz or other rock. It shall not contain more than 3% of material finer than a #200 sieve.

B. Organic Impurities: Fine aggregate subjected to the colorimetric test shall not produce a color darker than Gardner Color Standard No. 11, using AASHTO T 21. If the fine aggregate fails to meet this requirement, the provisions of AASHTO M 6, Section 5.2, will govern.

C. Sand shall be uniformly graded as follows:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>10-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>2-10</td>
</tr>
</tbody>
</table>

D. The above gradation represents the extreme limits which shall determine suitability for use from all sources of supply. The gradation from any one source shall be reasonably uniform and not subject to the extreme percentages of gradation specified above. For the purpose of determining the degree of uniformity, a fineness modulus determination will be made upon representative samples from any source. Fine aggregate from any one source having a variation in fineness modulus greater than 0.20 either way from the fineness modulus of the representative sample will be rejected.
2.9 FLOWABLE CONCRETE FILL/BACKFILL (FLOWFILL)

A. Cementitious material, ACI 229R, comprised of cement, aggregates, fly ash, water, and admixtures, capable of being poured or pumped, self-leveling, self-curing to specified strengths.

B. Excavatable flowfill: Concrete strength shall be liquid enough to flow, be self-leveling and excavatable by hand methods. Unless otherwise specified, excavatable flowfill shall have a minimum 28 day compressive strength of 30 psi, and shall not exceed 100 psi.

C. Non-excavatable flowable: Concrete strength shall be liquid enough to flow and be self-leveling and excavatable by machine equipment. Unless otherwise specified, non-excavatable flowfill shall have a minimum 28-day compressive strength of 125 psi, and shall not exceed 200 psi.

2.10 DETECTABLE WARNING TAPE

A. Acid and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, minimum 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:

1. Red: Electric power lines, electric power conduits and other electric power facilities.

2. Yellow: Gas, oil petroleum products, steam, compressed air, compressed gas and all other hazardous materials.

4. Orange: Communication lines or cables, including but not limited to telephone, fire signals, cable television, and electronic controls.

5. Green: Storm drainage and sanitary sewer systems, including force mains and other non-hazardous materials.

PART 3 EXECUTION

3.1 PREPARATION

A. Notify “Call-Before-You-Dig” to request a utility mark-out for the Project Site prior to any earth disturbance. Provide written confirmation to Engineer that such mark-out has been completed.

B. Verify site conditions before proceeding with demolition work. Field check the accuracy of the Drawings and inspect structures, utilities, and other site features prior to start of work and notify Engineer in writing, of any discrepancies or hazardous conditions.

C. Take precautions for preventing injuries to persons or damage to property in or about the work. Protect structures, utilities, sidewalks, pavements and other improvements from damage caused by settlement, lateral movement, undermining, washout and other hazards created by earthwork operations.

D. Protect sub-grades and foundation soils against freezing temperatures or frost. Provide protective insulating materials as necessary.
E. Provide erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

F. When excavations are to be made in paved surfaces, the pavement shall be removed so as to provide a clean uniform edge with a minimum disturbance of remaining pavement. Saw cutting the pavement to provide a clean, uniform edge shall unless otherwise indicated.

G. If pavement is removed in large pieces, it shall not be mixed with other excavated material, but shall be disposed of away from the site of the Work before the remainder of the excavation is made.

3.2 CLEARING AND GRUBBING

A. Clear, grub, remove, and dispose of all vegetation and debris within the limits of construction, as designated on the plans or as required by Engineer. Contractor shall remove only those trees and shrubs absolutely necessary to allow for the construction. The work shall also include the preservation from injury of defacement of all vegetation or object designated to remain.

B. Refer to Section 31 1100 – Clearing and Grubbing.

3.3 PROTECTION OF EXISTING FEATURES

A. General

1. Protect all existing improvements from damage unless those improvements are specifically designated for permanent removal, relocation, or temporary removal and replacement.

2. As excavation approaches underground structures, digging by machinery shall be discontinued and the excavation shall be done by means of hand tools.

3. Pavements: On paved surfaces to remain, do not use or operate tractors, bulldozers, or other power operated equipment, the treads or wheels of which are so shaped as to cut or otherwise damage such surfaces. All surfaces, which have been damaged by Contractor's operations, shall be restored to a condition at least equal to that in which they were found immediately prior to the beginning of operations. Suitable materials and methods shall be used for such restoration.

B. Utilities

1. Existing utilities remaining in service, including those remaining in service until after relocation, and relocated utilities shall be protected from damage. Before excavating near any existing utilities, notify the utility owner, coordinate protective work and comply with the utility owners' requirements. Coordinate with respective utility owners/operators as required.

2. Safeguard and protect from damage or movement any existing services, utilities, and utility structures uncovered or encountered which are to remain in service.

3. All utility services shall be supported by suitable means so that the services shall not fail when tamping and settling occurs.

4. Where known utilities are encountered, notify Engineer and document location and type of utility before proceeding with work in such area.
5. When uncharted or incorrectly charted piping or utilities are encountered during excavation, stop work and notify Engineer immediately. Cooperate with the utility owners in maintaining their utilities in operation prior to resuming work.

C. Retaining Structures: Provide bracing, shoring, sheeting, sheet piling, underpinning or other retaining structures necessary to guard against any movement or settlement of existing or new construction, utility systems, paving, or other improvements. Assume responsibility for the strength and adequacy of retaining structures, and for the safety and support of construction, utilities or paving, and for any movement, settlement or damage thereto. Retain the services of a licensed engineer as required to design bracing, shoring, sheeting, sheet piling, underpinning or other retaining structures.

D. Replacement and Relocation

1. In case of damage, Contractor shall notify the appropriate party so that proper steps may be taken to repair any and all damage done. When the Owner does not wish to make the repairs themselves, all damage shall be repaired by Contractor, or, if not promptly done by him, Engineer may have the repairs made at the expense of Contractor.

2. If certain existing structures are encountered that in the opinion of Engineer require temporary or permanent relocation or removal, Engineer may order in writing that Contractor undertake all or part of such work or to assist the Owner in performing such work. For such occurrences, Contractor shall be compensated as applicable, as extra work.

3. In removing existing structures, Contractor shall use care to avoid damage to the material, and Engineer shall include for payment only those new materials, which, in his judgment, are necessary to replace those unavoidably damaged.

4. The structures to which the provisions of the preceding two paragraphs shall apply include structures which (1) are not indicated on the Drawings or otherwise provided for, (2) encroach upon or are encountered near and substantially parallel to the edge of the excavation, and (3) in the opinion of Engineer will impede progress to such an extent that satisfactory construction cannot proceed until they have been changed in location, removed (to be later restored), or replaced. (See Item 3.19, "Sub Surface Obstructions" also).

3.4 DEWATERING

A. Comply with all applicable permit requirements.

B. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrade and from flooding Project site and surrounding area.

C. Protect sub-grades from softening, undermining, washout and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

2. Install de-watering system to keep subgrades dry and convey ground water away from excavations.
3.5 EXCAVATION

A. Dust Control: During the progress of the Work, Contractor shall conduct his operations and maintain the area of his activities in order to minimize the creation and dispersion of dust. Refer to Section 01 5714- Temporary Dust Control.

B. Excavate to the exact elevations shown on the plans, or as directed by Engineer. Where no dimensions are indicated, make excavations in such manner, and to such depths, elevations, and dimensions, that will give suitable room for construction of the work indicated on the Drawings. As applicable for utility installations, comply with trench limits shown on the Drawings.

C. Furnish and place all sheeting, bracing, and supports, and render the bottom of the excavation firm and dry, and in all respects, acceptable for construction of the work.

D. If Contractor excavates below the elevations specified on the plans, beyond the limits indicated on the plans, or where no dimensions are indicated, beyond depths, elevations, and dimensions reasonably necessary for construction of the work, Contractor shall bring the excavation back to the proper elevation and/or dimension by backfilling with Suitable Material that is approved by Engineer in accordance with the backfilling provisions specified herein. Engineer, or if applicable Geotechnical Engineer, shall have sole authority in determining the specific composition of such Suitable Material.

1. Any increase in cost resulting from Unauthorized Excavation, including but not necessarily limited to backfilling, haul-off, increasing the size of footings or foundations, testing, schedule impact, or administrative impact shall be at Contractor’s sole expense.

E. If utilities are to be laid in new embankments, or other new fill areas which are more than 12 inches deep below the invert of the pipe, the fill material shall be placed and properly compacted to final grade or to a height of at least 3 feet above the top elevation of the pipe, whichever is the lesser, before laying pipe. Particular care shall be taken to ensure maximum consolidation of material under the pipe location. The pipe trench shall then be excavated as though in undisturbed material.

3.6 TRENCH EXCAVATION

A. In general, trenches shall be excavated to such depth as will provide a cover depth as indicated on the Drawings from finished grade to the top of the pipe barrel. Deeper trenches shall be provided where necessary on account of the conformation of the ground and to permit the alignment of the pipe without undue deflection of joints.

B. Trenches shall be excavated by hand or machinery to the width and depth indicated on the Drawings and specified herein. Depth shall account for thickness of the pipe and thickness of bedding. All loose materials shall be removed from the bottom of the trench so that the bottom of the trench will be in an undisturbed condition.

C. If in the opinion of Engineer, the material at or below the depth to which excavation for structures and pipes would normally be carried is unsuitable for foundation, it shall be removed to such widths and depths as directed and replaced with suitable material.

D. Trench widths shall be 3 feet greater than the nominal inside diameter of pipe for such diameters of 36 inches or less. For diameters greater than 36 inches, the width shall be 4 feet greater than nominal inside diameter. Trench excavation for manholes, catch basins, drop inlets, etc. shall
be two (2) feet outside the neat lines of the foundations. These limits may be adjusted for field conditions at the direction of Engineer.

E. Bedding for pipe and utility structures will be as detailed on the Drawings.

3.7 FILL AND BACKFILL

A. Fill: Contractor shall remove loam and topsoil, loose vegetable matter, stumps, large roots, etc., from areas upon which embankments will be built or material will be placed as fill to adjust subgrade prior to final grading. The subgrade shall be prepared by forking, furrowing, or plowing such that the first layer of the new material placed thereon, will be well bonded to it.

B. Backfill: Common Fill material may be used as backfill when indicated on the Drawings or when authorized by Engineer (or as applicable Geotechnical Engineer) if Contractor can achieve required minimum dry density after compaction. Backfilling shall be done as promptly as is consistent with non-injury to pipe or structures, but no backfilling shall be done before Engineer (or as applicable Geotechnical Engineer) gives permission.

C. Frozen material shall not be placed in any fill or backfill, nor shall any fill or backfill be placed upon frozen material. Previously frozen material shall be removed, or shall be otherwise treated as required, before new fill or backfill is placed.

D. After the subgrade has been prepared, fill material shall be placed thereon and built up in successive layers not exceeding twelve (12) inches before compaction until it has reached the required elevation.

1. When gravel fill or other material is used for foundation of structures, it shall be spread in layers of uniform thickness not exceeding six (6) inches before compaction.

E. Upon completion of filling and backfilling, all surplus material shall be removed and surfaces to remain which are affected in any way by the work restored to the condition in which they were before ground was broken. All surplus materials shall become the property of Contractor. If Contractor fails to promptly remove such surplus materials, Engineer may have the same done and charge all associated costs to Contractor, including deduction from payments due.

3.8 BACKFILLING UTILITIES

A. As soon as practical after utility has been placed into bedding and joints properly made, backfilling shall begin, and shall continue without delay.

B. Placement of bedding over pipe prior to placement of backfill shall be as indicated on the Drawings. Hand-place bedding at the sides of the pipe and to the limits indicated on the Drawings over the pipe. Bedding placed over pipe shall be in 6-inch layers, leveled along the length and width of the trench and thoroughly compacted with approved tampers.

C. Install warning tape as indicated on the Drawings unless otherwise specified by the utility owner/operator.

3.9 BACKFILLING AT STRUCTURES

A. No backfill shall be deposited against concrete until the concrete has obtained sufficient strength to withstand the earth pressure placed upon it and in no case less than seven days, nor before carrying out and satisfactorily completing the tests for watertight structures specified elsewhere.
B. Prior to placing backfill, subgrade shall be thoroughly compacted. Soft or loose material evident during compaction shall be removed and replaced with Granular Fill.

C. Fill placed around arches, rigid frames, box culverts and piers shall be deposited on both sides of the structure to approximately the same elevation at the same time. Each layer of backfill shall be spread to a thickness not exceeding 6 inches deep after compaction and shall be thoroughly compacted by the use of power rollers or other motorized vehicular equipment, by tamping with mechanical rammers or vibrators, or by pneumatic tampers. Any equipment not principally manufactured for compaction purposes or which is not in proper working order in all respects shall not be used within the area described above.

D. Bring backfill to sub-grade elevations. Slope backfill at exterior of building to drain water away from building.

3.10 COMPACATION

A. Each layer of fill or backfill material shall be compacted by the use of compaction equipment consisting of rollers, compactors or a combination thereof. Earth-moving and other equipment not specifically manufactured for compaction purposes will not be considered as compaction equipment. At such points as cannot be reached by mobile mechanical equipment, or where such equipment is not permitted, the materials shall be thoroughly compacted by the use of suitable power-driven tampers.

B. Previously placed or new materials shall be moistened by sprinkling, if required, to ensure proper bond and compaction. No compacting shall be done when the material is too wet, from either rain or application of water, to compact it properly. At such times the work shall be suspended until the previously placed and new materials have dried out sufficiently to permit proper compaction, or such other precautions shall be taken as may be necessary to obtain proper compaction.

C. Special attention shall be given to compaction in places close to walls where motorized vehicular compaction equipment cannot reach. Within 3 feet of the back face of walls and within a greater distance at angle points of walls, each layer of backfill shall be compacted by mechanical rammers, vibrators or pneumatic tampers.

D. Each layer of fill or backfill shall be compacted at optimum moisture content. No subsequent layer shall be placed until the specified compaction is obtained for the previous layer.

E. Compaction Density: Compaction density shall be expressed as a percentage of maximum dry density at optimum moisture content according to ASTM D 1557 Method C. Density indicated is minimum required.

1. Under structures, building slabs, and steps: 95 %
2. At building foundations: 95 %
3. Utilities, below pipe centerline: 95%
4. Utilities below unpaved surface, above pipe centerline: 92%
5. Utilities below paved surface, above pipe centerline: 95%
6. Embankments: 92%
7. Landscaped areas: 90%.

END OF SECTION
SECTION 32 1216 - BITUMINOUS CONCRETE PAVEMENT

PART 1 GENERAL

1.1 SUMMARY

A. Section includes:
 1. Bituminous concrete paving for parking areas.

1.2 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

 1. 29 CFR 1926, Safety and Health Regulations for Construction.

C. State of Connecticut Department of Transportation (ConnDOT).
 1. Standard Specifications for Roads, Bridges and Incidental Construction, Form 817, and any supplements.

D. American Association of State High and Transportation Officials (AASHTO).
 2. AASHTO M 82, Cutback Asphalt (Medium-Curing Type).
 5. AASHTO R-26 - Standard Recommended Practice for Certifying Suppliers of Performance-Graded Asphalt Binders.
 6. AASHTO R-29 - Standard Practice for Grading or Verifying the Performance Grade of an Asphalt Binder.
 7. AASHTO T-27 - Sieve Analysis of Fine and Course Aggregates.
 8. AASHTO T-84 - Specific Gravity and Absorption of Fine Aggregates.
 11. AASHTO T 104 Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate.

E. American Society for Testing and Materials (ASTM)

1.3 SPECIFICATIONS

 A. All work performed under this Section shall conform to the Standard Specifications for Roads, Bridges and Incidental Construction, Form 816, 2004, Supplemental Section 4.06 – Bituminous Concrete (Revised 3/17/14). This Specification is hereby incorporated into this Section by reference.

1.4 TESTING

 A. Owner will retain a testing entity to perform observation and testing of the work under this Section. The testing entity’s presence does not constitute supervision or direction of Contractor’s work. Neither the presence of the testing entity nor any observations and testing performed by him, nor any notice or failure to give notice shall excuse Contractor from conformance with these Specifications or from defects discovered in his work.

PART 2 PRODUCTS

2.1 GENERAL

 A. All work performed under this Section shall conform to the Standard Specifications for Roads, Bridges and Incidental Construction, Form 817.

PART 3 EXECUTION

3.1 GENERAL

 A. Contractor shall install all pavements as specified in the location and to the grades as shown on the Drawings and/or approved by Engineer. Materials, methods of construction, and type and thickness of pavement courses shall be as shown on the Details of the Drawings and as specified herein.

 B. Owner and its representatives shall have access to all parts of the Work under construction at all times.

3.2 SPECIFICATIONS

 A. Execute the work of this Section in accordance with the Standard Specifications for Roads, Bridges and Incidental Construction, Form 817.

END OF SECTION
SECTION 32 1623 - CURBING

PART 1 GENERAL

1.1 SUMMARY

A. Section includes:
 2. Bituminous concrete lip curb.

B. Work shall also include all associated items and operations necessary and required to complete the installations, including, but not limited to, surface preparation, finishing and cleanup.

C. Contractor shall coordinate work between all Subcontractors, sections, and trades required for the proper completion of the work.

D. Contractor is responsible for all health and safety.

1.2 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

B. United States Code of Federal Regulations (CFR)
 1. 29 CFR 1926, Safety and Health Regulations for Construction.

C. State of Connecticut Department of Transportation (ConnDOT)

D. ASTM International (ASTM).
 5. ASTM C207 – Standard Specification for Hydrated Lime for Masonry Purposes

12. American Concrete Institute (ACI)

13. ACI 304 – Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete.

E. American Association of State High and Transportation Officials (AASHTO)

4. AASHTO M 213 – Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type).

7. AASHTO T11 – Standard Method of Test for Materials Finer Than 75-um (No. 200) Sieve in Mineral Aggregates by Washing.

8. AASHTO T21 – Standard Method of Test for Organic Impurities in Fine Aggregate for Concrete.

1.3 SUBMITTALS

A. Submit Shop Drawings, manufacturer’s literature, material certificates or other data indicating compliance with these Specifications.

1.4 DELIVERY, STORAGE AND HANDLING

A. Curbing shall be protected against staining, chipping, and other damage. Cracked, badly chipped, or stained units will be rejected and shall not be employed in the Work.

PART 2 PRODUCTS

2.1 CAST-IN-PLACE CONCRETE CURB

A. Concrete and reinforcement for cast-in-place concrete curbs shall be as specified in Section 03 3200 – Site-Cast-in-Place Concrete.

2.2 BITUMINOUS CONCRETE LIP CURBING
A. Bituminous concrete for curbing shall be as specified in Section 32 1216 – Bituminous Pavement.

2.3 CEMENT MORTAR

A. Mortar shall be composed of one part Portland Cement, ASTM C150, and two parts, by volume, of surface dry fine aggregate. Hydrated lime, ASTM C207, in an amount not to exceed 4 pounds of lime to each bag of Portland Cement, may be added at the option of Engineer. Cement and hydrated lime shall conform to the following requirements:

1. Portland cement: Types I, II or IS.
 a. Cement having a temperature exceeding 160°F (71°C) at the time of delivery to the mixer shall not be used in the concrete.
 b. Types I, II, and III portland cement shall conform to the requirements of AASHTO M 85.
 c. Type IS, Portland blast-furnace slag cement and Type IP, portland-pozzolan cement shall conform to the requirements of AASHTO M 240. The use of other approved cementitious material as a partial replacement for Type IS or Type IP cement will not be permitted.
 d. Type I and Type III portland cement shall be used only when required or expressly permitted by Contract or Engineer.

3. Fine aggregate: Fine aggregate shall be sand consisting of clean, hard, durable, uncoated particles of quartz or other rock, free from lumps of clay, soft or flaky material, loam, organic or other injurious material. In no case shall sand containing lumps of frozen material be used.
 a. Fine aggregate shall contain not more than 3% of material finer than a No. 200 (75 μm) sieve, using AASHTO T 11.
 b. Organic Impurities: Fine aggregate subjected to the colorimetric test shall not produce a color darker than Gardner Color Standard No. 11, using AASHTO T 21. If the fine aggregate fails to meet this requirement, the provisions of AASHTO M 6, Section 5.2, will govern.
 c. Gradation: For laying stone or precast units, fine aggregate shall be uniformly graded from coarse to fine and shall meet the following gradation requirements:

<table>
<thead>
<tr>
<th>Aggregate Gradation (Cement Mortar for Laying Stone or Precast Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve</td>
</tr>
<tr>
<td>3/8"</td>
</tr>
<tr>
<td>No. 4</td>
</tr>
<tr>
<td>No. 8</td>
</tr>
<tr>
<td>No. 16</td>
</tr>
<tr>
<td>No. 30</td>
</tr>
<tr>
<td>No. 50</td>
</tr>
</tbody>
</table>
d. Gradation: For pointing stone or precast units, fine aggregate shall be uniformly graded from coarse to fine and shall meet the following gradation requirements:

 Aggregate Gradation (Cement Mortar for Pointing Stone or Precast Units)

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 8</td>
<td>100</td>
</tr>
<tr>
<td>No. 50</td>
<td>10–40</td>
</tr>
<tr>
<td>No. 100</td>
<td>0–10</td>
</tr>
</tbody>
</table>

2.4 JOINT FILLER

A. Preformed expansion joint filler or wood joint filler as indicated on the plans.

B. Preformed expansion joint filler shall be the bituminous cellular type and shall conform to the requirements of AASHTO M213.

C. Boards for wood joint filler shall be planed on two sides and shall be either redwood, cypress or white pine. Redwood and cypress boards shall be of sound heartwood. White pine boards shall be of sound sapwood.

1. Occasional small, sound knots and medium surface checks will be permitted provided the board is free of any defects that will impair its usefulness for the purpose intended. The joint filler may be composed of more than one length of board in the length of the joint, but no board of a length less than 6 feet may be used; and the separate boards shall be held securely to form a straight joint. Boards composed of pieces that are jointed and glued shall be considered as one board.

2. Dimensions shall be as specified or shown on the plans; and tolerances of plus $\frac{1}{16}$-inch thickness, plus $\frac{1}{8}$-inch depth and plus $\frac{1}{4}$-inch length will be permitted.

3. All wood joint filler boards shall be given a preservative treatment by brushing with a creosote oil conforming to AASHTO M133. After treatment, the boards shall be stacked in piles, each layer separated from the next by spacers at least $\frac{1}{4}$ inch thick; and the boards shall not be used until 24 hours after treatment.

2.5 TRANSITION SECTIONS

A. Horizontal transition sections shall be provided at all locations where curb sections change (i.e., vertical to sloped). Vertical transition sections shall also be provided for precast curb sections at handicapped ramps to create a smooth transition with a doweled joint. Vertical transition sections for stone curb shall be made as shown on the Drawings.

PART 3 EXECUTION

3.1 GENERAL

A. Trenching, excavation, backfilling, and compaction shall be completed in accordance with Section 31 2310 – Earthwork, except as modified within this Section.
B. Cement Mortar Bedding, if required, shall be placed as indicated in details in accordance with Section 03 3200 – Site Cast-In-Place Concrete.

3.2 CAST-IN-PLACE CONCRETE CURB

A. General Requirements: Concrete curb shall be constructed of concrete and shall be cast-in-place on the prepared subbase in accordance with the dimensions and details line and grade shown on the Drawings. Curbing shall be constructed using conventional forms and in segments separated by construction joints and expansion joints as specified herein. This item shall consist of concrete curbing constructed or as ordered and in conformity with these specifications.

B. Forms: Forms shall be metal or acceptable planed and matched lumber, straight and free from warp or other irregularities that will adversely affect the installation. Forms shall conform to the curb cross-section shown on the Drawings and shall be carefully set to line and grade and thoroughly braced and secured in place so that there will be no displacement during placement of the concrete. All forms shall be thoroughly cleaned prior to reuse.

C. Placing of Concrete: Prior to placement of the concrete, the subgrade shall be moistened and the contact surfaces of the forms shall be given a light coating of oil that will not discolor the concrete. Concrete shall then be placed in the form as near to its final position as practicable, struck off with a template, spaded to prevent “rock-pockets” or “honey combing” adjacent to the forms and finished to a smooth even surface. The concrete may be compacted by mechanical vibrators if approved by Engineer. Placing by slip form methods shall be approved by Engineer.

D. Expansion Joints: Vertical expansion joints shall be located approximately every seventy-five (75) feet and shall be so arranged that they shall match expansion joints in any adjacent concrete pavements and sidewalks. Unless directed otherwise, expansion joints shall also be installed at the PC and PT of all radius curb. Expansion joints shall be constructed vertical, plumb, and at right angles to the face of the curb.

1. Prior to concreting, all exposed surfaces of the wood filler shall be given a light brush coating of form oil.

2. They shall be one-half (½) inch in width and formed with premolded bituminous joint filler cut to conform to the cross-section of the curb/curb gutter.

E. Construction Joints: Vertical construction joints shall be located approximately every fifteen (15) feet being equally spaced between expansion joints. The length of these curb/curb gutter segments may be varied slightly for closures but in no case shall they be less than eight (8) feet. Construction joints shall be vertical, plumb and at right angles to the face of the curb and shall be formed by approved method that will provide complete separation of the curb segments during the placing of the concrete. If curb is formed by slip form methods, the joints shall be sawed as soon as practicable after the concrete has set to preclude raveling during the sawing and before any shrinkage cracking occurs in the concrete.

F. Finishing: Forms shall be left in place for twenty-four (24) hours or until the concrete has sufficiently hardened as determined by Engineer so that they can be removed without injury to the curb. Upon removal of the forms, the exposed faces of the curb/curb gutter shall be immediately rubbed to a uniform surface. Rubbing shall be performed by experienced and competent concrete finishers. No plastering will be permitted.
3.3 BITUMINOUS CONCRETE LIP CURB

A. General Requirements

1. Bituminous curbing shall be constructed by the use of an approved self-propelled extruding curb machine equipped with a material hopper, distributing screw and curb forming device capable of placing the bituminous mixture to the required lines, grades and proper curb cross-section. Prior to the placement of any curb, Contractor shall submit a detail of the cross-section of the curb mold that he proposes to use to Engineer for approval.

B. Surface Preparation

1. When curbing is to be placed on existing bituminous pavements, concrete pavements or newly laid bituminous pavements which have been in place more than twenty-four (24) hours, the surface on which the curb is to be placed shall be swept and cleaned, thoroughly dried, and immediately prior to placement of the curb, the surface to be occupied by the curb shall be given an application of tack coat material.

2. Prevent spread of tack coat material beyond the area to be occupied by the curb.

3. Recently placed bituminous concrete pavement, which have been placed less than twenty-four (24) hours prior to placement of the curb need only be thoroughly swept and cleaned.

C. Placing and Compaction

1. The hot bituminous mixture shall be placed in the hopper of the curb paver without segregation and extruded through the mold form to provide the proper compaction and surface texture.

2. The curb paver shall be properly supported and weighted during operation along the edge of the pavement and shall be guided along string or chalk lines to maintain the proper alignment and level of the completed curb.

3. Any portions of the completed curb, which are not satisfactorily compacted, or show signs of sagging, cracking, or distortion, or do not conform to the required lines, grades or cross-section for any reason, and which cannot be satisfactorily repaired during construction, shall be removed and replaced at no additional cost to the Owner.

D. Joints

1. Bituminous curb construction shall be a continuous operation in one direction only, to eliminate joints. Excessive joints will be cause for rejection of entire length of installation.

2. When the placing of the curb is discontinued for a length of time that permits the mixture to become chilled, the curb shall be cut in a true vertical plane and the exposed end painted with a thin uniform coat of hot asphalt cement just prior to placing the fresh curb mixture against the previously constructed curb to insure a continuous bond. Joints that are not smooth and uniform, exhibit distortion, or are patched will be rejected.

END OF SECTION
SECTION 32 1723 - PAVEMENT MARKINGS

PART 1 GENERAL

1.1 SUMMARY

A. Section includes:

1. Painted pavement markings, including but not limited to parking stalls, lane arrows, legends and painting of paved islands or medians.

B. Contractor shall coordinate work between all Subcontractors, sections, and trades required for the proper completion of the work.

C. Contractor is responsible for all health and safety.

1.2 SUBMITTALS

A. Submit material specifications and shop drawings for all materials furnished under this Section.

B. Submit material certificates signed by the material producer and Contractor, certifying that materials comply with these Specifications.

1.3 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

B. State of Connecticut Department of Transportation (ConnDOT)

C. Code of Federal Regulations (CFR)

1. 29 CFR 1926, Safety and Health Regulations for Construction

D. ASTM International (ASTM)

3. ASTM D476 - Standard Classification for Dry Pigmentary Titanium Dioxide Products.

E. American Association of State High and Transportation Officials (AASHTO)

F. American Concrete Institute
 1. ACI 503R - Use of Epoxy Compounds with Concrete.

G. United States General Services Administration, Federal Specifications.

H. United States General Services Administration, Federal Standards.

1.4 QUALITY ASSURANCE

A. Use adequate numbers of skilled workmen who are trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and methods required for proper performance of the work in this Section. Use equipment of adequate size, capacity and quantity to accomplish the work of this Section in a timely manner.

B. Contractor shall furnish one technical expert, who shall be fully knowledgeable about all equipment operations and application techniques, to oversee the work of this Section.
PART 2 PRODUCTS

2.1 WATERBORNE PAVEMENT MARKING PAINT

A. General

1. White and yellow fast-drying waterborne pavement marking paint, low VOC, ready-mixed, one component, 100 percent acrylic, Federal Specification TT-P-1952D.

2. Paint shall be capable of being applied with paint striping equipment at ambient temperatures.

3. Weight per gallon shall not be less than 12.5 pounds/gallon when tested in accordance with ASTM D 1475.

B. Manufacture

1. Paint shall be formulated and manufactured from first-grade raw materials and shall be free from defects and imperfections that might adversely affect the serviceability of the finished product. The materials shall not exhibit settling or jellying after storage in the sealed containers as received that will affect the performance of the products. The paint shall provide the proper anchorage, refraction and reflection for the finished glass spheres when applied as specified.

C. Composition

1. Composition of the paint shall be at the discretion of the manufacturer, provided that the finished product meets the requirements of any applicable Federal, State or Local regulations for products of this type and the requirements as follows:

 a. Paint shall not contain more than 0.06% lead.

 b. Total nonvolatile shall not be less than 70% by weight (mass).

 c. Pigment shall be 45-55% by weight (mass).

 d. Resin solids shall be composed of 100% acrylic emulsion polymer.

 e. Volatile organic compounds shall not exceed 150 grams/liter, excluding water.

 f. Closed-cup flash point shall not be less than 100°F (38°C), and weight per gallon shall not be less than 12.5 pounds/gallon when tested in accordance with ASTM D 1475.

D. Viscosity

1. Consistency of the paint shall not be less than 80, nor more than 90 Kreb units when tested in accordance with ASTM D562. The paint shall have good spraying characteristics when the material is heated to application temperature of 130°F to 145°F.

E. Flexibility

1. Paint shall not show cracking or flaking when subjected to the TT-P-1952D flexibility test in which the panels used shall be tin plates that are 3 inches x 5 inches in area and 35 - 31
U.S. Gauge in thickness. The tin panels shall be lightly buffed with steel wool and thoroughly cleaned with solvent before being used for tests.

F. Dry Opacity

1. Both white and yellow paints shall have a minimum contrast ratio of 0.96. Contract ratio shall be determined by applying a wet film thickness of 0.005 inches (127 microns) to a standard hiding power chart. After drying, the black and white reflectance values shall be determined using a suitable reflectometer and the contrast ratio determined.

G. Bleeding

1. Paints shall have a minimum bleeding ratio of 0.97 when tested in accordance with FS TT-P-1952D.

H. Abrasion Resistance

1. No less than 210 liters of sand shall be required to remove paint film when tested in accordance with TT-P-1952D.

I. Color

2. White: No darker or yellower than FS 595, No. 17778, latest issue, when the material is placed in a type EH weatherometer for a period of 500 hours and weathered according to ASTM G153.
3. Color determination shall be made without beads, after a minimum of 24 hours. If not a visual match, the diffuse day color of the paint shall conform to the CIE Chromaticity coordinate limits as follows:

| Paint CIE Chromaticity Coordinate Limits |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| | x | Y | x | Y | x | Y | x | Y | Brightness |
| White | 0.305 | 0.295 | 0.360 | 0.360 | 0.388 | 0.377 | 0.280 | 0.310 | 84.0 Min |
| Yellow | 0.485 | 0.455 | 0.506 | 0.452 | 0.484 | 0.428 | 0.477 | 0.438 | 50.0 Min |

4. Paint shall not discolor in sunlight and shall maintain colorfastness throughout its life, approximately two years.

J. Glass Bead Adhesion

1. Paint with glass beads conforming to M.07.30, applied at the rate of 6.0 pounds/gallon of paint, shall require not less than 150 liters of sand to remove paint film and glass beads.

K. Scrub Resistance

1. Paint shall pass 300 cycles minimum when tested in accordance with ASTM D2486.
PAVEMENT MARKINGS

L. Drying time

1. Reflectorized line shall dry to no pick up in 15 minutes or less as tested by ASTM D711 when applied at the ratio provided for specified glass spheres to paint (the paint at 15+ 1 mil (381 millimeters + 25 millimeters) wet film thickness equivalent to 100-115 square foot/gallon and the glass spheres at the equivalent rate of 6.0 pounds/gallon.

2.2 HOT-APPLIED WATERBORNE PAVEMENT MARKING PAINT

A. General

1. White and yellow fast-drying waterborne pavement marking paint, low VOC, ready-mixed, one component, 100 percent acrylic, Federal Specification TT-P-1952D.

2. Paint shall be capable of being applied with paint striping equipment at an application temperature of 130°F to 145°F.

B. Manufacture

1. Paint shall be formulated and manufactured from first-grade raw materials and shall be free from defects and imperfections that might adversely affect the serviceability of the finished product. The materials shall not exhibit settling or jellying after storage in the sealed containers as received that will affect the performance of the products. The paint shall provide the proper anchorage, refraction and reflection for the finished glass spheres when applied as specified.

C. Composition

1. Composition of the paint shall be at the discretion of the manufacturer, provided that the finished product meets the requirements of any applicable Federal, State or Local regulations for products of this type and the requirements as follows:

 a. Paint shall not contain more than 0.06% lead.

 b. Total nonvolatile shall not be less than 76% by weight (mass).

 c. Pigment shall be 58-63% by weight (mass).

 d. Resin solids shall be composed of 100% acrylic emulsion polymer.

 e. Volatile organic compounds shall not exceed 150 grams/liter, excluding water.

 f. Closed-cup flash point shall not be less than 100°F, and weight per gallon shall not be less than 12.5 pounds/gallon when tested in accordance with ASTM D 1475.

D. Viscosity

1. Consistency of the paint shall not be less than 80, nor more than 90 Kreb units when tested in accordance with ASTM D562. The paint shall have good spraying characteristics when the material is heated to application temperature of 130°F to 145°F.
E. Flexibility

1. Paint shall not show cracking or flaking when subjected to the TT-P-1952D flexibility test in which the panels used shall be tin plates that are 3 inches x 5 inches (76 millimeters x 127 millimeters) in area and 35 - 31 U.S. Gauge in thickness. The tin panels shall be lightly buffed with steel wool and thoroughly cleaned with solvent before being used for tests.

F. Dry Opacity

1. Both white and yellow paints shall have a minimum contrast ratio of 0.96. Contrast ratio shall be determined by applying a wet film thickness of 0.005 inches (127 microns) to a standard hiding power chart. After drying, the black and white reflectance values shall be determined using a suitable reflectometer and the contrast ratio determined.

G. Bleeding

1. Paints shall have a minimum bleeding ratio of 0.97 when tested in accordance with FS TT-P-1952D.

H. Abrasion Resistance

1. No less than 210 liters of sand shall be required to remove paint film when tested in accordance with TT-P-1952D.

I. Color

2. White: No darker or yellower than FS 595, No. 17778, latest issue, when the material is placed in a type EH weatherometer for a period of 500 hours and weathered according to ASTM G153.

3. If not a visual match, the diffuse day color of the paint shall conform to the CIE Chromaticity coordinate limits as follows:

<table>
<thead>
<tr>
<th>Paint CIE Chromaticity Coordinate Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Yellow</td>
</tr>
</tbody>
</table>

4. Paint shall not discolor in sunlight and shall maintain colorfastness throughout its life, approximately two years. Color determination shall be made without beads, after a minimum of 24 hours.

J. Glass Bead Adhesion

1. Paint with glass beads shall require not less than 150 liters of sand to remove paint film and glass beads.
K. Scrub Resistance

1. Paint shall pass 300 cycles minimum when tested in accordance with ASTM D2486.

L. Drying time

1. Reflecterized line shall dry to no pick up in 120 seconds or less when applied at the ratio provided for specified glass spheres to paint (the paint at 15+ 1 mil (381 millimeters + 25 millimeters) wet film thickness equivalent to 100-115 square foot/gallon (2.45-2.82 square meters/liter) and the glass spheres at the equivalent rate of 6.0 pounds/gallon (0.72 kilograms/liter). The paint shall be applied with equipment so as to have the paint at a temperature of 130°F to 145°F (54°C to 63°C) at the spray gun.

2.3 GLASS BEADS

A. Beads shall be transparent, clean, colorless glass, smooth and spherically shaped, free of milkiness, pits, or excessive air bubbles.

B. Quality Assurance Control

1. Beads shall be segregated into maximum lots of 2,500 pounds (1125 kilograms) and lot numbers shall be stamped onto each lot. Each lot shall be tested for gradation, rounds and embedment coating.

C. Gradation - The glass spheres shall meet the following gradation requirements:

Glass sphere gradation (ConnDOT Grading “A”)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (850 um)</td>
<td>100</td>
</tr>
<tr>
<td>30 (600 um)</td>
<td>80-95</td>
</tr>
<tr>
<td>50 (300 um)</td>
<td>9-42</td>
</tr>
<tr>
<td>80 (180 um)</td>
<td>0-10</td>
</tr>
</tbody>
</table>

Glass sphere gradation (ConnDOT Grading “B”)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (2.0 mm)</td>
<td>0</td>
</tr>
</tbody>
</table>
D. Roundness: Glass beads shall have a minimum of 80% rounds per screen for two highest sieve quantities and no more than 3% angular particles per screen for Grading “B”. The remaining sieve fractions shall typically be no less than 75% rounds.

E. Refractive Index: Glass beads shall have a refractive index of 1.50 to 1.52.

PART 3 EXECUTION

3.1 GENERAL

A. Pavement markings shall be applied in accordance with the details shown on the plans and the control points established by the Contractor and approved by the Engineer.

B. No paint shall be applied to new bituminous pavement until the top course has cured at least one week minimum.

C. Pavement areas to be painted shall be dry and sufficiently cleaned of sand and road debris so as to provide an acceptable bond between the paint and the pavement.

D. All painting shall be performed in a neat and workmanlike manner. The lines shall be sharp and clear with no feathered edging or fogging and precautions shall be taken to prevent tracking by tires of the striping equipment. Paint shall be applied as shown on the Drawings with no unsightly deviations.

E. Contractor shall protect the buildings, walks, pavement, curbing, trees, shrubs, mulch, etc. from over-spray of paint and damage by his operations.

F. Operations shall be conducted only when the road surface temperature is at least 40°F or as allowed by Engineer. They shall be discontinued during periods of rain, and shall not continue until Engineer determines that the pavement surface is dry enough to achieve adhesion.

G. After application, paint shall be protected from crossing vehicles using traffic cones or other acceptable method for a time at least equivalent to the drying or curing time of the paint.

H. The material shall be applied to the pavement by equipment used specifically for the application of pavement markings and shall be of a standard commercial manufacturer.
I. Contractor shall provide survey control for layout of pavement markings by utilizing his own surveyor or hiring a registered land surveyor. The cost of this survey control shall be included in other items of work.

3.2 WATERBORNE PAVEMENT MARKINGS

A. Painted legend, arrows, and markings includes paint installed with a hand striping machine such as: stop bars, crosswalks, parking stalls, lane arrows, legends, markings within gore areas, and painting of paved islands or medians.

B. Painted pavement markings and hot applied painted pavement markings include paint installed with a truck-mounted painting machine such as center lines, lane lines and shoulder lines.

C. Waterborne Paint, Ambient Temperature
 1. Apply paint at a rate of 100 to 115 square feet per gallon, with glass beads applied at a rate of 6 pounds per gallon of paint for painted pavement markings and painted legend, arrows, and markings

D. Waterborne Paint, Hot-Applied
 1. Hot-applied paint shall be applied at a temperature of 130°F to 145°F at the spray gun.
 2. Apply paint at a rate of 8 pounds per gallon of paint for hot-applied painted pavement markings.

END OF SECTION
SECTION 32 3113 - CHAIN LINK FENCES AND GATES

PART 1 GENERAL

1.1 SUMMARY

A. Section includes
 1. Furnishing and installing woven wire fencing systems of the type and height specified and supported by metal posts erected where indicated on the Drawings and as specified herein, including fence and gates.

B. Contractor shall coordinate work between all Subcontractors, sections, and trades required for the proper completion of the work.

C. Contractor is responsible for all health and safety.

1.2 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

 1. 29 CFR 1926, Safety and Health Regulations for Construction.

C. ASTM International (ASTM).
 1. ASTM A90 – Standard Test Method for Weight (Mass) of Coating on Iron or Steel Articles with Zinc or Zinc Alloy.
 6. ASTM A428 – Standard Test Method for Weight (Mass) of Coating on Aluminum-Coated Iron or Steel Articles.

16. ASTM F668 – Specification for Polymer Coated Chain Link Fence Fabric.

22. ASTM F1664 – Standard Specification for Poly(Vinyl Chloride) (PVC) and Other Conforming Organic Polymer-Coated Steel Tension Wire Used with Chain-Link Fence.

D. Chain Link Fence Manufacturer’s Institute

1.3 SYSTEM DESCRIPTION

A. Chain Link Fence:

1. Fence Height: Varies, refer to the Drawings.

3. Mesh Gage: 9, measured prior to application of any coating.

4. Gates: Height of gates shall match that of fence. Type and size of gates shall be as shown on the Drawings.

5. Top and bottom rails between posts unless otherwise indicated.

1.4 SUBMITTALS

A. Shop drawings showing the plan layout, spacing of components, post foundation dimensions, hardware anchorage, gates and a schedule of components.
B. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates.
 1. Fence and gate posts, rails, and fittings.
 3. Accessories: Privacy slats.
 4. Gates, locking mechanisms and hardware.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.

D. Samples for Initial Selection: For components with factory-applied color finishes.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified factory-authorized service representative.
B. Product Certificates: For each type of chain-link fence system and gate, from manufacturer.
C. Product Test Reports: For framing strength, ASTM F1043.
D. Field quality-control reports.
E. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
 1. Polymer finishes.
 2. Gate hardware.

1.7 QUALITY ASSURANCE
A. Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for proper performance of the work of this Section.
B. Supply material in accordance with Chain Link Fence Manufacturer’s Institute Product Manual and this Specification.
C. Perform installation in accordance with ASTM F567.
D. Maintain all facilities installed under this Section in proper and safe condition throughout the progress of the work.
1.8 PROJECT CONDITIONS
 A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to existing improvements and/or proposed construction. Verify dimensions by field measurements. Notify Engineer of any dimensional discrepancies prior to proceeding with the work. Coordinate with Engineer regarding any adjustment or modification.

1.9 DELIVERY, STORAGE AND HANDLING
 A. Deliver fence fabric and accessories in packed cartons or firmly tied rolls.
 B. Packages shall be labeled with the manufacturer’s name.
 C. Store fence fabric and accessories in a secure and dry place.

1.10 WARRANTY
 A. Special Warranty: Manufacturer’s standard form in which Installer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 b. Deterioration of coatings beyond normal weathering.
 B. Warranty Period: Five years from date of Substantial Completion.

PART 2 PRODUCTS

2.1 GENERAL
 A. All posts and rails shall be straight, true to section and of sufficient length for proper installation.
 B. Unless otherwise specified, hardware and accessories shall conform to the requirements of ASTM F626 and ASTM A123 or ASTM A153 as applicable for zinc-coating.

2.2 POSTS AND RAILS
 A. Extruded steel tube, ASTM F1083 or rolled/welded tube, ASTM F1043, minimal yield strength 50,000 pounds per square inch (psi), hot dipped galvanized.
 1. Extruded steel tube: Average zinc coating of 2.0 ounces per square foot (oz/ft²) interior/exterior, ASTM F1083.
 2. Rolled/welded tube: External zinc coating 1.0 oz/ft² with a clear polymeric overcoat, Type D interior 90% zinc-rich coating having a minimum thickness of 0.30 mils.
B. Post size per Table 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Fence Height</th>
<th>Outside Diameter, Inches</th>
<th>F1083 Schedule 40 weight lb/ft</th>
<th>F1043-IC WT-40 weight lb/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Posts</td>
<td>up to 8 ft.</td>
<td>2.375</td>
<td>3.65</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>8 to 12 ft.</td>
<td>2.875</td>
<td>5.79</td>
<td>4.64</td>
</tr>
<tr>
<td>Terminal Posts</td>
<td>up to 8 ft.</td>
<td>2.875</td>
<td>5.79</td>
<td>4.64</td>
</tr>
<tr>
<td></td>
<td>8 to 12 ft.</td>
<td>4.000</td>
<td>9.11</td>
<td>6.56</td>
</tr>
<tr>
<td>Rails</td>
<td></td>
<td>1.660</td>
<td>2.27</td>
<td>1.84</td>
</tr>
</tbody>
</table>

C. Truss rod shall be ⅜-inch zinc-coated steel with adjustable turnbuckles or truss tightener.

2.3 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:

1. Fabric Height: As indicated on Drawings.
3. Selvage: Knuckled at both selvages (KK).
4. Wire Fabric
 a. Zinc-Coated Steel Fabric, 9-gauge, ASTM A817, hot-dip galvanized, ASTM A392 Class 2 – 2.0 oz/ft², coated after weaving (GAW).
 1) Coat selvage ends of fabric that is metallic coated before the weaving process with manufacturer’s standard clear protective coating.
 b. Polymer-Coated Steel Fabric: ASTM F668, 9-gauge core wire, 0.3 oz/ft² zinc-coated with Class 2b (thermally fused and bonded) PVC coating.
 1) Color: Black, ASTM F934.

2.4 TENSION WIRE

A. Match coating type to that of the chain link fabric.

1. Metallic-coated steel wire: Marcelled (spiraled or crimped), 7 gage, (0.177 inches) diameter, ASTM A824, zinc-coated, ASTM A817 Class 5 – 2.0 oz/ft².
2. Polymer-coated steel wire: Marcelled (spiraled or crimped) 7 gage, (0.177 inches) diameter (before coating), ASTM F1664.
2.5 HARDWARE AND FITTINGS

A. Tension and Brace Bands: Galvanized pressed steel complying with ASTM F626, minimum steel thickness of 12 gauge (0.105 in.), minimum width of ¾ in. and minimum zinc coating of 1.20 oz/ft². Secure bands with ⁵⁄₁₆ in. hot-dip galvanized steel carriage bolts.

B. Terminal Post Caps, Line Post Loop Caps, Rail and Brace Ends, Boulevard Clamps, and Rail Sleeves: In compliance to ASTM F626, pressed steel galvanized after fabrication having a minimum zinc coating of 1.20 oz/ft².

1. Rail sleeves shall not be less than 6 inches long.

C. Truss Rod Assembly: In compliance with ASTM F626, ¼ in. diameter steel truss rod with a pressed steel tightener, minimum zinc coating of 1.2 oz/ft², assembly capable of withstanding a tension of 2,000 lbs.

D. Tension Bars: In compliance with ASTM F626. Galvanized steel one-piece length 2 in. less than the fabric height, minimum cross section of ⁵⁄₁₆ in. by ¾ in. and minimum zinc coating of 1.2 oz./ft².

E. Miscellaneous hardware, including but not limited to nuts, bolts, washers, clips, bands, rail ends, brackets, and straps shall be provided as required, hot-dip galvanized steel, ASTM F626.

F. Brace bands shall be formed from flat or beveled steel and shall have a minimum thickness after galvanizing of 0.108 inches and a minimum width of ¾ inch.

G. Polymer-Coated Fittings: ASTM F626, PVC or polyolefin coating, minimum thickness 0.006 in., fused and adhered to the zinc-coated fittings. Color to match fence system.

2.6 TIE WIRE AND HOG RINGS

A. Tie Wire and Hog Rings: Galvanized minimum zinc coating 1.20 oz/ft², 9-gauge (0.148 in) steel wire, ASTM F626.

B. Polymer coated materials shall match the coating, class and color to that of the chain link fabric.

2.7 FASTENERS

A. All fasteners shall be hot-dip galvanized, ASTM F2329.

B. Bolts: Steel, ASTM A307, Grade A min, Hex.

C. Nuts: Steel, ASTM A563, Grade A min, Hex.

D. Washers: Steel, round, ASTM F844.

E. Polymer Coated Color Fittings: In compliance with ASTM F626, PVC or polyolefin coating minimum thickness 0.006 in. fused and adhered to the zinc-coated fittings. Color to match fence system.

2.8 GATES

A. Gate Construction: ASTM F900. Corners welded or assembled with special malleable or pressed-steel fittings and rivets or bolts to provide rigid connections.
B. Pipe and Tubing: Zinc-Coated Steel: Comply with ASTM F1043 and ASTM F1083; protective coating and finish to match fence framing.

C. Posts (Hing Posts): Round tubular steel.
 1. Up to 4-foot fencing: 2\(\frac{7}{8}\)-inch OD Pipe.
 2. Over 4-foot to 6-foot fencing: 4-inch OD Pipe.

D. Frames and Bracing: Round tubular steel.
 1. Framing:
 a. 2.375 inch OD Pipe
 b. Gate Leaves: Configured with intermediate members and diagonal truss rods or tubular members as necessary to provide rigid construction, free from sag or twist. When width of gate leaf exceeds 10 feet, install mid-distance vertical tubing of the same size and weight as frame members. When either horizontal or vertical bracing is not required, provide truss rods as cross-bracing to prevent sag or twist.
 c. Horizontal bid bracing shall be used on all gates.

E. Wire Fencing Fabric: Fabric shall match that of fence, attached securely to frame at intervals not exceeding 15 inches.

F. Hardware:
 1. Latches, hinges, stops, keepers and other hardware items shall be furnished as required for proper operation. These elements may not be shown on the Drawings, but shall be supplied and installed as required for a complete gate system.
 2. Hinges: 360-degree inward and outward swing. Set screw shall be installed drilled into the steel post to lock each hinge to the gate post and prevent rotation. No-lift-off type. Box type hinges are not acceptable.
 3. Latches: permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
 4. Double gates and single gates with leaf width 4 feet and greater shall be equipped with a minimum \(\frac{1}{2}\)" drop bar and gate hold-backs.
 5. Latches, hinges, stops, keepers and other hardware items shall be furnished as required for proper operation.

2.9 PRIVACY SLATS (IF APPLICABLE)

A. Material: PVC, UV-light stabilized, flame resistant, four ply, not less than 0.023 inch (0.58 mm) thick; sized to fit mesh specified for direction indicated.

B. Material: Redwood, \(\frac{5}{16}\) inch (7.9 mm) thick, sized to fit mesh specified for direction indicated.

C. Color: As selected by Owner.
2.10 CONCRETE
 A. Concrete shall conform to ASTM C94; or pre-packaged concrete mix, ASTM C387. Minimum 28-day compressive strength of 3,500 psi. No air entrainment.

2.11 GROUT AND ANCHORING CEMENT
 A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, non-staining, noncorrosive, nongaseous grout complying with ASTM C1107. Provide grout, recommended in writing by manufacturer, for exterior applications.
 B. Erosion-Resistant Anchoring Cement: Factory-packaged, non-shrink, non-staining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

PART 3 EXECUTION
3.1 GENERAL
 A. Install fence with properly trained crew as shown on the drawings in accordance with ASTM F567.
 B. Install all nuts for tension bands and hardware bolts on the side of the fence opposite the fabric.
 C. The temporary chain link fence shall be removed at the conclusion of the work.

3.2 EXAMINATION
 A. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 PREPARATION
 A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.4 INSTALLATION, GENERAL
 A. Install chain-link fencing to comply with ASTM F567 and more stringent requirements indicated.
 1. Install fencing on established boundary lines inside property line.
3.5 CHAIN-LINK FENCE INSTALLATION

A. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

B. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.
 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 2. Concrete post footings shall have a plan diameter 12 inches greater than the post diameter. Holes shall be clean and free of loose soil and debris. Concrete shall be placed continuously in one operation and tamped or vibrated for consolidation. Tops of the concrete footings shall be crowned to shed water.
 3. Gate post/footings shall be installed a minimum of 42 inches below grade.
 4. All corner, end posts, and gate posts shall be braced.
 a. Brace each gate and corner post to adjacent line post with horizontal center brace rail and diagonal truss rods. Install brace rail one bay from end and gate posts.
 b. Corner and terminal posts are to be braced horizontally and diagonally. The braces are to extend over one adjacent panel. Changes in line of 30 degrees or more shall be considered as corners.
 c. Braces and truss rods shall be securely fastened to posts with appropriate hardware.
 d. Pull posts with two braces shall be provided for all heights where changes in horizontal or vertical alignment of ten (10) degrees or more occur.
 5. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Concealed Concrete: Top 3 inches below grade as indicated on Drawings to allow covering with surface material.
 b. Posts Set into Concrete in Sleeves: Use steel pipe sleeves preset and anchored into concrete for installing posts. After posts have been inserted into sleeves, fill annular space between post and sleeve with non-shrink, nonmetallic grout, mixed and placed to comply with anchoring material manufacturer’s written instructions, and finished sloped to drain water away from post.
 c. Posts Set into Voids in Concrete: Form or core drill holes not less than 5 inches deep and ¾ inch larger than OD of post. Clean holes of loose material, insert posts, and fill annular space between post and concrete with non-shrink, nonmetallic grout, mixed and placed to comply with anchoring material manufacturer’s written instructions, and finished sloped to drain water away from post.
 C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more.
 D. Line Posts: Space line posts uniformly as indicated on the Drawings. Unless indicated otherwise, spacing shall be 8 feet on-center.
E. Post Bracing and Intermediate Rails: Install according to ASTM F567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.

1. horizontal braces at midheight of fabric 72 inches or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.

F. Tension Wire: Install according to ASTM F567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch-diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches on-center. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:

1. Extended along top and bottom of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches (152 mm) of bottom of fabric and tie to each post with not less than same diameter and type of wire.

G. Top Rail: Install according to ASTM F567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

H. Intermediate and Bottom Rails: Install and secure to posts with fittings.

I. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 1 inch between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

J. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches on-center.

K. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F626. Bend ends of wire to minimize hazard to individuals and clothing.

1. Maximum Spacing: Tie fabric to line posts at 12 inches on-center and to braces at 24 inches on-center.

L. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side.

M. Privacy Slats: Install slats in direction indicated, securely locked in place.

1. Diagonally, for privacy factor of 80 to 85.

N. Fabric:

1. Do not install fabric until concrete post footings have cured seven (7) days. Provide fabric of the height specified. Install fabric on the public side of the fence, with bottom no greater than 2 inches above the ground surface. Fabric shall be pulled taut to prevent sagging and
provide a uniform smooth appearance. Fasten fabric to line posts at intervals not exceeding 15 inches with ties as specified.

2. Install tension wire in one continuous length between pull posts, weaved through fence fabric at top. Tension wire shall be applied to provide a wire without visible sag between posts. Fasten fabric to tension wire at intervals not exceeding 24 inches with ties or hog rings as specified.

3. Where it is not practicable to conform the fence to general contour of the ground, as at ditches, channels, etc., the opening beneath the fence shall be enclosed with chain link fabric and sufficiently braced to preclude access, but not to restrict the flow of water.

3.6 GATE INSTALLATION

A. Install gates according to manufacturer’s written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

B. Provide galvanized steel walk-through chain link fence gate at the locations and dimensions shown on the Drawings. Do not install gates until concrete post footings have cured seven (7) days.

C. Gates shall be installed plumb, level, and secure, with full opening without interference. Hardware shall be installed and adjusted for smooth operation and lubricated where necessary.

D. Provide concrete center drop to footing depth and suitable drop rod sleeve at center of double gate openings.

3.7 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1,500 feet except as follows:

B. Fences within 100 feet of buildings, structures, walkways, and roadways: Ground at maximum intervals of 750 feet.

1. Gates and Other Fence Openings: Ground fence on each side of opening.

2. Bond metal gates to gate posts.

3. Coordinate subparagraph below with Drawings in projects where intentional discontinuities are provided in metal fencing conductivity to localize lightning effects to the vicinity of strikes. See Evaluations.

4. Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.

C. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

D. Plans and details on Electrical Drawings and requirements in Division 26 Sections may revise or illustrate application of requirement below or may require grounding that exceeds minimum.
requirements in IEEE C2. Fences enclosing electrical substations are often bonded to a station grounding mat.

E. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

F. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location, including the following:

1. Make grounding connections to each barbed wire strand with wire-to-wire connectors designed for this purpose.

2. Make grounding connections to each barbed tape coil with connectors designed for this purpose.

G. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

H. Connections: Make connections to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.

2. Make connections with clean, bare metal at points of contact.

5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

I. Bonding to Lightning Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor complying with NFPA 780.

3.8 FIELD QUALITY CONTROL

A. Grounding-Resistance Testing: Engage a qualified testing agency to perform tests and inspections.

1. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance no fewer than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.

2. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify Architect promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
3. Report: Prepare test reports certified by a testing agency of grounding resistance at each test location. Include observations of weather and other phenomena that may affect test results.

3.9 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Lubricate hardware and other moving parts.

END OF SECTION
SECTION 32 3300 - BOLLARDS

PART 1 GENERAL

1.1 SUMMARY

A. Section includes:
 1. Installation of traffic control bollards

B. Contractor shall coordinate work between all Subcontractors, sections, and trades required for the proper completion of the work.

C. Contractor is responsible for all health and safety.

1.2 REFERENCES

A. Reference herein to any technical society, organization, group or regulation are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under this Section shall conform to the latest edition as applicable.

B. ASTM International (ASTM).
 2. ASTM A500—Standard Specification for Cold-Formed Welded and Seamless Carbon Tubing in Rounds and Shapes.

C. State of Connecticut
 1. State Building Code, including all Amendments, Supplements, and Errata.

 1. 29 CFR 1926, Safety and Health Regulations for Construction.

E. United States General Services Administration, Federal Standards.

1.3 PERFORMANCE REQUIREMENTS

A. Bollard installs as a single unit with specified dimensions and is secured in the ground.

1.4 SUBMITTALS

A. Submit Shop Drawings, manufacturer’s literature, material certificates or other data indicating compliance with these Specifications.
B. Submit testing data for concrete as required by Section 03 3200—Site Cast-in-Place Concrete.

1.5 DELIVERY, STORAGE AND HANDLING

A. Supply: Bollard units of all types must be supplied by a single manufacturer having the resources to provide consistent quality in appearance and physical properties.

B. Materials shall be wrapped for shipment and storage, delivered to the jobsite in manufacturer’s original packaging.

C. Store units to avoid damage from moisture, abrasion, and other construction activities.

PART 2 PRODUCTS

2.1 STEEL BOLLARDS

A. New single bit cast steel tube as shown on the Drawings, free from surface blemishes and defects where exposed to view in the finished installation.

B. Steel Tube: ASTM A500, dimensions as indicated on the Drawings.

C. Painting and Cleaning: After fabrication of units, all tool marks and surface imperfections shall be removed and exposed faces of all welded joints dressed smooth. Coat with a standard rust-inhibitive primer.

D. Primed (Standard): Apply standard rust inhibitive primer per manufacturer standard application instructions.

2.2 CONCRETE

A. Concrete shall be as specified in Section 03 3200—Site-Cast-in-Place Concrete.

2.3 PRIMER

A. Waterborne primer, acrylic or modified acrylic, suitable for use on exterior metal surfaces.

B. Drying time. The dry-to-touch time shall be a maximum of one hour, and the dry-to-recoat time shall be a maximum of 4 hours when tested in accordance with ASTM D1640.

2.4 PAINT

A. Waterborne paint, acrylic or modified acrylic, suitable for use on exterior metal surfaces

B. Color: FS 13591 (yellow).

C. Drying time. The dry-to-touch time shall be a maximum of one hour, and the dry-to-recoat time shall be a maximum of 4 hours when tested in accordance with ASTM D1640.

2.5 JOINT FILLER

A. One-part, cold-applied silicone that cures to a durable, flexible, low modulus silicone rubber joint seal, ASTM D5893.
PART 3 EXECUTION

3.1 INSTALLATION

A. Install bollards at the locations indicated on the Drawings.

B. Install bollards level and true to the specific depths and exposures as indicated on the Drawings.

C. Provide temporary bracing as required to maintain desired installation until concrete has cured.

D. Protect newly-installed bollards from damage or movement.

3.2 PAINTING

A. Primer: If not factory primed, apply primer in accordance with manufacturer’s guidelines. Apply primer at temperatures between 50°F and 100°F and a relative humidity no higher than 85 percent.

B. Paint: Apply paint of the color selected in accordance with manufacturer’s guidelines. Apply paint at temperatures between 50°F and 100°F and a relative humidity no higher than 85 percent. Protect freshly-painted surfaces from damage.

END OF SECTION
SECTION 32 9100

PART 1 - GENERAL

1.1 SUMMARY

A. The scope of work includes all labor, materials, tools, supplies, equipment, facilities, transportation and services necessary for, and incidental to performing all operations in connection with furnishing, delivery, and installation of Planting Soil and/or the modification of existing site soil for use as Planting Soil, complete as shown on the drawings and as specified herein.

1. Supplying and placing Planting Soil and soil amendments
2. Modifying existing stockpiled topsoil suitable for Planting Soil
3. Fine grade Planting Soil
4. Clean up and disposal of all excess and surplus material.

B. The contractor is responsible for all health and safety.

1.2 DEFINITIONS

A. Amendment: material added to soil to produce approved Planting Soil. Amendments are classified as general soil amendments, fertilizers, biological, and pH amendments.

B. Biological Amendment: Amendments such as Mycorrhizal additives, compost tea or other products intended to change the soil biology.

C. Compacted soil: soil where the density of the soil is greater that the threshold for root limiting, and further defined in this specification.

D. Compost: well decomposed stable organic material as defined by the US Composting Council and further defined in this specification.

E. Drainage: The rate at which soil water moves through the soil transitioning the soil from saturated condition to field capacity. Most often expressed as saturated hydraulic conductivity (Ksat; units are inches per hour).

F. Duff Layer: The surface layer of native topsoil that is composed of mostly decayed leaves, twigs, and detritus.

G. Existing Soil: Mineral soil existing at the locations of proposed planting after the majority of the construction within and around the planting site is completed and just prior to the start of work to prepare the planting area for soil modification and/or planting, and further defined in this specification.

H. Fertilizer: amendment used for the purpose of adjusting soil nutrient composition and balance.
I. Fine grading: The final grading of the soil to achieve exact contours and positive drainage, often accomplished by hand rakes or drag rakes other suitable devices, and further defined in this specification, and further defined in this specification.

J. Finished grade: surface or elevation of Planting Soil after final grading and 12 months of settlement of the soil, and further defined in this specification.

K. Installed soil: Planting soil and existing site soil that is spread and or graded to form a planting soil, and further defined in this specification.

L. Owner’s Representative: The person or entity, appointed by the Owner to represent their interest in the review and approval of the work and to serve as the contracting authority with the Contractor. The Owner’s Representative may appoint other persons to review and approve any aspects of the work.

M. Manufactured Soil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.

N. Planting Area: Areas to be planted.

O. Planting Soil: Standardized soil; existing, native surface topsoil; existing, in-place surface soil; imported soil; or manufactured soil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.

P. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

Q. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

R. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.

S. Scarify: Loosening and roughening the surface of soil and sub soil prior to adding additional soil on top, and further defined in this specification.

T. Soil Fracturing: Deep loosening the soil to the depths specified by using a backhoe, and further defined in this specification.

U. Undisturbed soil: Soils with the original A horizon intact that have not been graded or compacted. Soils that have been farmed, subjected to fire or logged but not graded, and natural forested land will be considered as undisturbed.

1.3 SUBMITTALS

A. Product data and certificates: For each type of manufactured product, submit data and certificates that the product meets the specification requirements, signed by the product manufacturer, and complying with the following:
B. Submit manufacturers or supplier’s product data and literature certified analysis for standard products and bulk materials, complying with testing requirements and referenced standards and specific requested testing.

C. For each Compost product submit the following analysis as specified on the project drawings by a recognized laboratory:

D. For Coarse Sand product submit the following analysis by a recognized laboratory:

1. pH
2. Particle Size distribution (percent passing) the following sieve sizes: 3/8 inch, No. 4, No. 8, No. 16, No. 30, No. 50, No. 100, No. 200

E. Samples: Submit samples of each product and material, where required by Part 2 of the specification, to the Owner’s Representative for approval. Label samples to indicate product, characteristics, and locations in the work. Samples will be reviewed for appearance only.

1. Submit samples a minimum of 8 weeks prior to the anticipated date of the start of soil installation.
2. Samples of all Soils shall be submitted at the same time as the particle size and physical analysis of that material.

F. Soil Tests for existing in-place or stripped and stockpiled topsoil, existing site soil to be modified as planting soil.

1. Topsoil, existing site soil and Planting Soil testing: Submit soil test analysis report for each sample of Topsoil, existing site soil and Planting Soil from an approved soil-testing laboratory and where indicated in Part 2 of the specification as follows:

 a. Submit Soil, Compost, and Coarse Sand for testing at least 8 weeks before scheduled installation of Planting Soil Mixes. Submit Planting Soil Mix test no more than 2 weeks after the approval of the Topsoil, Compost and Coarse Sand. Do not submit to the testing laboratory, Planting Soil Mixes, for testing until all Topsoil, Compost and Coarse Sand have been approved.
 b. If tests fail to meet the specifications, obtain other sources of material, retest and resubmit until accepted by the Owner’s Representative.
 c. All soil testing will be at the expense of the Contractor.
 d. Provide a mechanical gradation (sieve analysis) and USDA soil texture analysis. Soil testing of Planting Soil Mixes shall also include USDA gradation (percentage) of gravel, coarse sand, medium sand, and fine sand in addition to silt and clay.
 e. Provide test results for the following soil properties:

 1) pH
 2) Percent organic content
 3) Mineral levels by parts per million including: nitrogen, phosphorus, potassium, magnesium, manganese, iron, zinc, copper, boron, aluminum, lead and calcium. Nutrient test shall include the testing laboratory recommendations for supplemental additions to the soil for optimum growth of the plantings specified.
 4) Soluble salt by electrical conductivity of a 1:2 soil water sample measured in Milliohm per cm.
PLANTING SOIL

5) Cation Exchange Capacity (CEC).

G. Provide a particle size analysis (% dry weight) and USDA soil texture analysis. Soil testing of submitted Planting Soil shall also include USDA gradation (percentage) of gravel, coarse sand, medium sand, and fine sand in addition to silt and clay.

H. Qualification Data: For qualified Installer. Include list of similar projects completed by Installer demonstrating Installer's capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of owners' contact persons.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: The installer shall be a firm having at least 5 years of experience of a scope similar to that required for the work, including the preparation, mixing and installation of soil mixes to support planting.

1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.

2. Experience: Five years' experience in landscape installation of size and scope similar to this project.

3. Installer's field supervisor shall have a minimum of five years experience as a field supervisor installing soil, shall be trained and proficient in the use of field surveying equipment to establish grades and can communicate in English with the Owner's Representative.

4. The installer’s crew shall be experienced in the installation of Planting Soil, plantings, and irrigation (where applicable) and interpretation of planting plans, soil installation plans, and irrigation plans (where applicable).

B. Soil-Testing Laboratory Qualifications: An independent or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed. Geotechnical engineering testing labs shall not be used.

1. All testing shall be performed by the same soil lab that performed the original soil testing.

2. Testing results shall be within 10% plus or minus of the values measured in the approved Planting Soil Mixes.

3. Any Planting Soil that fails to meet the above criteria, if requested by the Owner’s Representative, shall be removed and new soil installed.

 a. Based upon the test results, laboratory recommendations for soil treatments and soil amendments to be incorporated. Laboratory recommendations in weight per 1000 sq. ft. or volume per cu. yd. for nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.

C. Density Tests: In-place density testing is required in all areas. Placed planting soils must be inspected for compaction level by the soil scientist or by the following: ASTM D1556 Density of Soil and Rock In Place Using Sand Cone Method, ASTM D6398-10 Nuclear Methods or ASTM D2167-08 Rubber Balloon method. ASTM D698 Test Method for Laboratory Compaction.
Characteristics of Soil Using Standard Effort. In-place density tests shall be carried out at a rate of one test per 1,000 square feet for each type of material placed.

1. Acceptable Compaction: Good rooting anticipated, but increasing settlement expected as compaction is reduced and/or in soil with a high organic matter content.
 a. Standard Proctor Method – 75-85%; soil below 75% is unstable and will settle excessively.

2. Root limiting Compaction: Root growth is limited with fewer, shorter and slower growing roots.
 a. Standard Proctor Method – above approximately 85%.

3. Excessive Compaction: Roots not likely to grow but can penetrate soil when soil is above field capacity.
 a. Standard Proctor Method – Above 90%.

D. Work to be done shall be coordinated with all other trades on site. Work includes furnishing all labor, materials, equipment and services required to complete all planting indicated on the drawings, as specified in this section.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect soil and soil stockpiles, including the stockpiles at the soil blender’s yard, from wind, rain and washing that can erode soil or separate fines and coarse material, and contamination by chemicals, dust and debris that may be detrimental to plants or soil drainage. Cover stockpiles with plastic sheeting or fabric at the end of each workday.

B. Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws if applicable.

C. Bulk Materials:
 1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
 2. Provide erosion-control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 3. Accompany each delivery of bulk fertilizers, lime, and soil amendments with appropriate certificates.

1.6 PROJECT CONDITIONS

A. It is the responsibility of the Contractor to be aware of all surface and subsurface conditions, and to notify the Owner’s Representative, in writing, of any circumstances that would negatively
impact the health of plantings. Do not proceed with work until unsatisfactory conditions have been corrected.

B. Weather Limitations: Proceed with soil installation only when existing and forecasted weather conditions permit soil installation to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions and requirements.

C. Do not mix, deliver, place or grade soils when frozen or with moisture above field capacity.

PART 2 - PRODUCTS

2.1 COMPOST

A. Organic Matter for amending planting soils shall be a stable, humus-like material produced from the aerobic decomposition and curing of Leaf Yard Waste Compost, composted for a minimum of one year (12 months). The leaf yard waste compost shall be free of debris such as plastics, metal, concrete or other debris. The leaf yard waste compost shall be free of stones larger than 3/8", larger branches and roots. Wood chips over 1" in length or diameter shall be removed by screening. The compost shall be a dark brown to black color and be capable of supporting plant growth with appropriate management practices in conjunction with addition of fertilizer and other amendments as applicable, with no visible free water or dust, with no unpleasant odor, and meeting the following criteria as reported by laboratory tests.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>As recommended by soil testing laboratory</td>
</tr>
<tr>
<td>Soluble Salt</td>
<td><2.5 mmhos/cm(dS/m)</td>
</tr>
<tr>
<td>Moisture</td>
<td>30-60%</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>20% Minimum (Dry Weight)</td>
</tr>
<tr>
<td>Particle Size</td>
<td>100% passing 1/2 inch screen</td>
</tr>
<tr>
<td></td>
<td>Max. 3% passing 0.002mm</td>
</tr>
<tr>
<td>Stability</td>
<td>>80% relative to positive control</td>
</tr>
<tr>
<td>Maturity</td>
<td>>80% (>6 on Solvita Scale)</td>
</tr>
<tr>
<td>Biological Contaminants</td>
<td>Meet or exceed US EPA Class A, CFR 503.32(a) levels</td>
</tr>
</tbody>
</table>
2.2 COURSE SAND

A. Clean, washed, sand, free of toxic materials

B. Coarse concrete sand, ASTM C-33 Fine Aggregate, with a Fines Modulus Index of 2.8 and 3.2.

C. Coarse Sands shall be clean, sharp, uniformly graded medium to Coarse Sands free of limestone, shale and slate particles. Manufactured Coarse Sand shall not be permitted.

D. pH shall be lower than 7.5.

E. Provide Coarse Sand with the following particle size distribution:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>10-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>0-8</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-5</td>
</tr>
</tbody>
</table>

F. The ratio of the particle size for 70 percent passing (D70) to the particle size for 20 percent passing (D20) shall be 3.0 or less.

2.3 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C 602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:

1. Class: T, with a minimum of 99 percent passing through No. 8 sieve and a minimum of 75 percent passing through No. 60 sieve.

2. Class: O, with a minimum of 95 percent passing through No. 8 sieve and a minimum of 55 percent passing through No. 60 sieve.

3. Provide lime in form of ground dolomitic limestone or calcitic limestone depending on recommendations from soil analysis.

B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent sulfur, with a minimum of 99 percent passing through No. 6 sieve and a maximum of 10 percent passing through No. 40 sieve.
C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

D. Aluminum Sulfate: Commercial grade, unadulterated.

E. Perlite: Horticultural perlite, soil amendment grade.

F. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 sieve.

G. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.

H. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.4 FERTILIZERS

A. Bonemeal: Commercial, raw or steamed, finely ground; a minimum of 1 percent nitrogen and 10 percent phosphoric acid.

B. Superphosphate: Commercial, phosphate mixture, soluble; a minimum of 20 percent available phosphoric acid.

C. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
 1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

D. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

E. Planting Tablets: Tightly compressed chip type, long-lasting, slow-release, commercial-grade planting fertilizer in tablet form. Tablets shall break down with soil bacteria, converting nutrients into a form that can be absorbed by plant roots.
 1. Size: 5-gram tablets.
 2. Nutrient Composition: 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

F. Chelated Iron: Commercial-grade FeEDDHA for dicots and woody plants, and commercial-grade FeDTPA for ornamental grasses and monocots.
2.5 PLANTING SOIL

A. General definition: Mixes of Existing Soil or Imported Soil, Coarse Sand, and Compost to make a new soil that meets the project goals for the indicated planting area. These may be mixed off site or onsite, and will vary in Mix components and proportions as indicated.

B. Tree & Shrub Planting Soil: As Specified on the Drawings

C. Lawn Soil: As specified on the drawings.

2.6 MISCELLANEOUS PRODUCTS

A. Mycorrhizal Fungi: Dry, granular inoculant containing at least 5300 spores per lb of vesicular-arbuscular mycorrhizal fungi and 95 million spores per lb of ectomycorrhizal fungi, 33 percent hydrogel, and a maximum of 5.5 percent inert material.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Prior to installation of Planting Soil, examine site to confirm that existing conditions are satisfactory for the work of this section to proceed.

1. Confirm that the subgrade is at the proper elevation and compacted as required.
2. Confirm that all surface areas to be filled with Planting Soil are free of construction debris, refuse, compressible or biodegradable materials, stones greater than 2 inches diameter, soil crusting films of silt or clay that reduces or stops drainage from the Planting Soil into the subsoil; and/or standing water. Remove unsuitable material from the site.
3. Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
4. Suspend soil spreading, grading, and tilling operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
5. Uniformly moisten excessively dry soil that is not workable and which is too dusty.
6. Confirm that utility work has been completed per the drawings.

B. If unsatisfactory conditions are encountered, notify the Owner’s Representative immediately to determine corrective action before proceeding.

C. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
E. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by the Landscape Architect and replace with new planting soil.

3.2 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities and turf areas and existing plants from damage caused by planting operations.

B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

C. Confirm that the subgrade is at the proper elevation and compacted as required. Subgrade elevations shall slope approximately parallel to the finished grade and/or toward the subsurface drain lines as shown on the drawings.

D. In areas where Planting Soil is to be spread, confirm subgrade has been scarified.

E. The Contractor shall coordinate with all other work that may impact the completion of the work.

3.3 SOIL MOISTURE

A. Volumetric soil moisture level, in both the Planting Soil and the root balls of all plants, prior to, during and after planting shall be above permanent wilt point and below field capacity for each type of soil texture within the following ranges.

<table>
<thead>
<tr>
<th>Soil texture</th>
<th>Permanent wilting point</th>
<th>Field capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, Loamy sand, Sandy loam</td>
<td>5-8%</td>
<td>12-18%</td>
</tr>
<tr>
<td>Loam, Sandy clay, Sandy clay</td>
<td>14-25%</td>
<td>27-36%</td>
</tr>
<tr>
<td>Clay loam, Silt loam</td>
<td>11-22%</td>
<td>31-36%</td>
</tr>
<tr>
<td>Silty clay, Silty clay loam</td>
<td>22-27%</td>
<td>38-41%</td>
</tr>
</tbody>
</table>

B. The Contractor shall confirm the soil moisture levels with a moisture meter (Digital Soil Moisture Meter, DSMM500 by General Specialty Tools and Instruments, or approved equivalent). If moisture is found to be too low, the planting holes shall be filled with water and allowed to drain before starting any planting operations. If the moisture is too high, suspend planting operations until the soil moisture drains to below field capacity.

3.4 MIXING OF PLANTING SOIL

A. Soil blends shall be produced with equipment that blends together each component in a thorough and uniform manner. This may be accomplished by a minimum of three handling events on a hard surfaced area with earth moving equipment or by alternately passing soil components through a screener.
3.5 PLANTING SOIL INSTALLATION

A. All equipment utilized to install or grade Planting Soils shall be wide track or balloon tire machines rated with a ground pressure of 4 psi or less. All grading and soil delivery equipment shall have buckets equipped with 6 inch long teeth to scarify any soil that becomes compacted.

B. In areas of soil installation above existing subsoil, scarify the subgrade material prior to installing Planting Soil.
 1. Scarify the subsoil of the subgrade to a depth of twelve inches with the teeth of the back hoe or loader bucket, tiller or other suitable device.
 2. Immediately install the Planting Soil. Protect the loosened area from traffic. DO NOT allow the loosened subgrade to become compacted.
 3. In the event that the loosened area becomes overly compacted, loosen the area again prior to installing the Planting Soil.

C. Install the Planting Soil in six inch lifts to the required depths. Apply compacting forces to each lift as required to attain the required compaction. Scarify the top of each lift prior to adding more Planting Soil by dragging the teeth of a loader bucket or backhoe across the soil surface to roughen the surface.

D. Phase work such that equipment to deliver or grade soil does not have to operate over previously installed Planting Soil. Work in rows of lifts the width of the extension of the bucket on the loader. Install all lifts in one row before proceeding to the next. Work out from the furthest part of each bed from the soil delivery point to the edge of the each bed area.

E. Where possible place large trees first and fill Planting Soil around the root ball.

F. Installing soil with soil or mulch blowers or soil slingers shall not be permitted.

G. Where travel over installed soil is unavoidable, limit paths of traffic to reduce the impact of compaction in Planting Soil. Each time equipment passes over the installed soil it shall reverse out of the area along the same path with the teeth of the bucket dropped to scarify the soil. Comply with the paragraph “Compaction Reduction” in the event that soil becomes over compacted.

H. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

I. Before planting, obtain Landscape Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

J. Application of Mycorrhizal Fungi: As recommended by manufacturer.

3.6 COMPACTION REQUIREMENTS OF INSTALLED PLANTING SOIL

A. Installed Planting Soil Mix and re-spread existing soil shall have a soil density through the required depth of the installed layers of soil and comply with the following:
B. Planting Soil compaction shall be tested at each lift.

C. Maintain moisture conditions within the Planting Soil during installation or modification to allow for satisfactory compaction. Suspend operations if the Planting Soil becomes wet. Apply water if the soil is overly dry.

D. Provide adequate equipment to achieve consistent and uniform compaction of the Planting Soils. Use the smallest equipment that can reasonably perform the task of spreading and compaction.

E. Do not pass motorized equipment over previously installed and compacted soil except as authorized below.

 1. Light weight equipment such as trenching machines or motorized wheel barrows is permitted to pass over finished soil work.
 2. If work after the installation and compaction of soil compacts the soil to levels greater than the above requirements, follow the requirements of the paragraph "Over Compaction Reduction" below.

F. Following the installation of each soil and prior to fine grading, apply chemical additives as recommended by the soil test, and appropriate to the soil and specific plants to be installed.

3.7 OVER COMPACATION REDUCTION

 A. Any soil that becomes compacted to a density greater than the specified density shall be dug up and reinstalled. This requirement includes compaction caused by other sub-contractors after the Planting Soil is installed and approved.

 B. Surface rototilling shall not be considered adequate to reduce over compaction at levels 6 inches or greater below finished grade.

3.8 FINISH GRADING

 A. Grade the finish surface of all planted areas to meet the grades shown on the drawings, allowing the finished grades to remain higher than the grades on the grading plan, as defined in paragraph Planting Soil Installation, to anticipate settlement over the first year.

 B. Utilize hand equipment, small garden tractors with rakes, or small garden tractors with buckets with teeth for fine grading to keep surface rough without further compaction. Do not use the flat bottom of a loader bucket to fine grade, as it will cause the finished grade to become overly smooth and or slightly compressed.

 C. Provide for positive drainage from all areas toward the existing inlets, drainage structures and or the edges of planting beds. Adjust grades as directed to reflect actual constructed field conditions of paving, wall and inlet elevations. Notify the Owner’s Representative in the event that conditions make it impossible to achieve positive drainage.

 D. Provide smooth, rounded transitions between slopes of different gradients and direction. Modify the grade so that the finish grade before adding mulch and after settlement is one or two inches below all paving surfaces or as directed by the drawings.
E. Fill all dips and remove any bumps in the overall plane of the slope. The tolerance for dips and bumps in shrub and ground cover planting areas shall be a 2 inch deviation from the plane in 10 feet. The tolerance for dips and bumps in lawn areas shall be a 1 inch deviation from the plane in 10 feet.

3.9 CLEANUP AND PROTECTION

A. During installation, keep the site free of trash, pavements reasonably clean and work area in an orderly condition at the end of each day. Remove trash and debris in containers from the site no less than once a week.

B. Once installation is complete, wash all soil from pavements and other structures. Ensure that mulch is confined to planting beds and that all tags and flagging tape are removed from the site. The Owner’s Representative seals are to remain on the trees and removed at the end of the warranty period.

C. The Contractor shall protect installed and/or modified Planting Soil from damage including contamination and over compaction due to other soil installation, planting operations, and operations by other Contractors or trespassers. Maintain protection during installation until acceptance. Utilize fencing and matting as required or directed to protect the finished soil work. Treat, repair or replace damaged Planting Soil immediately.

D. Make all repairs to grades, ruts, and damage to the work or other work at the site.

3.10 DISPOSAL

1. Remove surplus soil and waste material including excess subsoil, unsuitable soil, trash, and debris and legally dispose of them off Owner's property.

END OF SECTION
SECTION 32 9200

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Provide all labor, materials, equipment, services, and perform all operations necessary to complete the work of this section as indicated within the drawings and specified herein which shall include, but is not limited to, the following:

1. Supplying planting soil.
2. Supplying root zone mix.
3. Preparation and spreading of stockpiled topsoil (if available).
4. Fine grading.
5. Fertilizers and additives as necessary.
7. Sodding.
8. Erosion Control Matting.
9. Maintenance including watering.

B. Contractor is responsible for all health and safety.

1.2 QUALITY ASSURANCE

A. The Contractor must be a member in good standing of the Associated Landscape Contractors of America.

B. The Contractor must show previous evidence of having successfully installed and maintained landscape projects of similar scope to the subject project with regard to quantities of seeding involved, complexity and a minimum of five (5) years’ experience on projects similar to this one. The Owner’s Representative shall have the right to review the qualifications and references of the Contractor for approval to work on this project.

C. Source Quality Control:

1. Analysis and standards: Package standard products with manufacturers certified analysis. For other materials, provide analysis by recognized laboratory made in accordance with methods established by the Association of Official Agriculture Chemists, wherever applicable.

D. Within 30 days after award of Contract and before any seeding materials are delivered to the job site, submit to the Owner a complete list of all seeding and other items proposed to be installed. At least 10 days prior to shipment delivery of materials, the Contractor shall submit to the Owner a one (1) cubic foot representative sample, certifications, certified test results for materials as specified below. The Contractor shall provide a listing of the addresses (locations) identifying the origin of the soil to be delivered. If the origin is from multiple locations, test
results must be provided for each source as well as the blended final product and all locations shall be provided at the time of submission of required information specified above. No material shall be ordered or delivered until the required submittals have been submitted and approved by the Owner. Delivered materials shall closely match the approved samples. Approval shall not constitute final acceptance. The Owner reserves the right to reject, on or after delivery, any material that does not meet these specifications.

E. Existing Topsoil from Stockpile may be used providing it can be made to comply with the specifications for screened loam. The Contractor shall provide representative samples for testing and approval. Two (2) test samples of shall be taken and analyzed from each potential loam borrow pit and two each shall be taken and analyzed of existing topsoil stockpiled on site. Site of sample shall comply with testing lab requirements. Contractor shall deliver samples to testing laboratory, have testing report sent directly to the Owner’s Representative and pay all costs. Report shall be submitted at least one (1) month before any loaming is to be done.

1. Mechanical and chemical analysis shall be by a public extension service agency or a certified private testing laboratory in accordance with the current “Standards” of the Association of Official Agriculture Chemists and acceptable to the Civil Engineer.

2. Soil test report shall include a mechanical sieve analysis with soil classification. Organic content shall be reported. Chemical analysis shall include pH (1:1 soil-water ratio), buffer pH, Soluble Salts (1:2 soil-water ratio), Nitrate Nitrogen, Ammonium Nitrogen, Phosphorus, Potassium, Calcium, Aluminum, Magnesium, Manganese, Ferric Iron and Sulfate.

3. Test report shall clearly recommend appropriate additives including limestone and fertilizer requirements.

1.3 SUBMITTALS

A. Submit the following:

1. Sod—If specified on Drawings, statement of composition percentages of purity and germination of each variety.

2. Seed Mixes - If specified on Drawings, statement of composition percentages of purity and germination of each variety.

3. Provide watering and fertilizing schedule to Civil Engineer for approval.

1.4 PROJECT CONDITIONS

A. All areas to be seeded shall be inspected by the Contractor before starting work and any defects, such as incorrect grading, etc., shall be reported to the Engineer or Civil Engineer prior to beginning this work. The commencement of work by the Contractor shall indicate his acceptance of the areas to be seeded, and he shall assume full responsibility for the work of this Section.

1.5 REFERENCES

A. The work shall conform to the codes and standards of the following agencies, publications as further cited herein:

C. ASTM: ASTM International (ASTM), 1916 Race Street, Philadelphia, Pennsylvania, 19103, USA as Published in “Compilation of ASTM Standards in Building Codes”.

E. NAA: National Arborist Association, 3537 Stratford Road, Wantagh, New York, 11793, USA, as published in “Standards for Pruning Shade Trees...”, 1979, or latest edition (for pruning standards).

F. USDA: United States Department of Agriculture, 1941 Yearbook, “Climate and Man” (for average last frost date at locality).

1.6 QUALITY CONTROL/QUALIFICATIONS

A. Provide affidavits from manufacturers major suppliers where required by these Specifications.

B. Fine grading and installation of seed and sod shall be done under the supervision of a qualified foreman acceptable to the Civil Engineer.

1.7 DELIVERY, STORAGE AND HANDLING

A. Deliver all items to the site in their original containers with all labels intact and legible at time of Owner’s inspection.

B. Immediately remove from the site all seeding materials, which are not true to name, and all materials, which do not comply with the provisions of this Section of these Specifications.

C. Use all means necessary to protect seeding materials before, during, and after installation and to protect the installed work and materials of all other trades.

D. Packaged Materials: Deliver packaged materials in containers showing weight, analysis, and name of manufacturer. Protect materials from deterioration during delivery, and while stored at site.

PART 2 PRODUCTS

2.1 SEED

A. Lawn Areas

1. Seed mixture shall be fresh, clean, new crop seed. Grass shall be of the previous year’s crop and in no case shall weed seed content exceed 1% by weight. The seed shall be furnished and delivered in the proportion specified below in new, clean, sealed and properly labeled containers. All seed shall comply with State and Federal seed laws. Submit manufacturers Certificate of Compliance. Seed that has become wet, moldy or otherwise damaged will not be acceptable.

 a. Manufacturer: As noted on Drawings.

2. Seed mixture to be applied at the following rate: As noted on Drawings.
2.2 SOD (IF SPECIFIED)

A. After the preparation of the areas to be sodded has been approved by the Civil Engineer, the Contractor shall sod the areas as specified herein. The Contractor shall sod with nursery-grown sod composed of seed as shown on plans.

B. Submit blend percentages and names to Civil Engineer for approval. The sod shall be grown by a recognized turf farm which meets the approval of the Civil Engineer. The approved farm must, in turn, certify in writing that they are the Contractor’s selected supplier.

C. Sod shall be furnished in either of the following dimensions:

1. In rectangular sod strips measuring twelve (12) inches or sixteen (16) inches in width and from four (4) feet or six (6) feet in length, stored in rolls with the grass top side inverted so that the topsoil side is to the exterior. Note: These smaller strips will only be acceptable for filling in smaller areas if needed.

D. All sod furnished shall be living sod containing at least seventy percent (70%) of thickly matted grasses as specified, and free from noxious weeds.

E. Any sod with growth of more than two (2) inches in height shall be mowed to a height of from one and one-half (1½%) to two (2) inches not more than five (5) days prior to harvesting. The sod shall be machine cut at a uniform soil thickness of from one-half (½) to three-quarter (¼) inches, excluding top growth and thatch at time of cutting. The maximum allowable deviation from the widths and lengths specified shall be five percent (5%). No broken pads or torn and uneven ends shall be accepted. Standard size sections of sod shall be strong enough to support their own weight and retain their size and shape when suspended vertically with a firm grasp on the upper eighteen percent (18%) of the section. Sod shall not be harvested when its moisture content (excessively wet or dry) may adversely affect its survival.

F. Sod shall be harvested, delivered and installed within a period of thirty-six (36) hours. Sod not installed within this time period shall be inspected by the Civil Engineer and shall not be installed prior to his approval. Any sod not approved by the Civil Engineer shall be removed from the site by the Contractor and a fresh sod supply shall be furnished at no extra cost to the Owner.

2.3 EROSION CONTROL MATTING

A. Shall be on all slopes 2:1 and greater in slope.

B. Jute mesh shall be a uniform, open, plain weave cloth of undyed and unbleached single jute yarn. The yarn shall be of a loosely twisted construction and it shall not vary in thickness more than one-half its normal diameter. Jute mesh shall be furnished in rolled strips and shall meet the following requirements:

Width—48 inches, plus or minus one inch
78 warp—ends per width of cloth (minimum)
41 weft—ends per yard (minimum)
Weight shall average 1.22 pounds per linear yard with a tolerance of plus or minus 5%.

C. Staples shall be U-shaped and shall be approximately six inches long and one inch wide. Machine made staples shall be of No. 11 gauge or heavier steel wire. Handmade staples shall be made from 12-inch lengths of No. 9 gauge or heavier steel wire.
PART 3 EXECUTION

3.1 FINE GRADING AND LOAMING

A. After the areas to planted have been brought to rough grade, and immediately prior to and spreading the soil material, the subgrade shall be loosened by disk or rototilling to a depth of at least three inches to permit bonding of the loam to the subsoil. Remove all stones greater than one (1) inch in diameter and all debris or rubbish. Such material shall be removed from the site, at no additional cost to the Owner.

B. Provide a minimum depth of planting soil as noted on the plans in all areas indicated for seeding and all areas disturbed by excavation and construction operations.

C. Screened loam borrow or screened topsoil from stockpile shall be placed and spread over approved areas to a depth sufficiently greater than the specified depth so that after natural settlement and light rolling, the completed work will conform to the lines, grades, and elevations indicated. Supply additional specified soil, after testing and approval as may be needed, to give the specified depths and finished grades under the Contract without additional cost to the Owner.

D. Disturbed areas outside the limit of seeding shall be spread with six (6) inches of screened loam or screened topsoil to the finished grade as specified herein above.

E. No subsoil or loam shall be handled in any way if it is in a wet or frozen condition.

F. Sufficient grade stakes be set for checking the finished grades. Stakes must be set in the bottom of swales and at top of slopes. Grades shall be established which are accurate to one tenth of a foot either way. Connect contours and spot elevations with an even slope.

G. After loam has been spread, it shall be carefully prepared by scarifying or harrowing and hand raking. All large stiff clods, lumps, brush, glass, roots, stumps, litter and other foreign matter, and stones over one inch in diameter shall be removed from the loam. Loam shall also be free of smaller stones in excessive quantities as determined by the Owner’s Representative.

H. The whole surface shall then be rolled with a hand roller weighing not more than 100 pounds per foot of width. During the rolling, all depressions caused by settlements or rolling shall be filled with additional loam and the surface shall be regraded and rolled until it presents a smooth and even finish to the required grade.

I. Contractor shall obtain Owner’s Representatives written approval of fine grading and bed preparation before doing any seeding or sodding.

3.2 SEEDING

A. All areas indicated on the plan shall be loamed and seeded only after written approval of the Owner’s Representative of bed preparation. All disturbed areas outside the limit of seeding shall be seeded.

B. Immediately before seeding, the ground shall be restored, as necessary, to a loose friable condition by dicing or other approved method to a depth of not less than 2″. The surface shall be cleared of all debris and of all stones 1” or more in diameter.

C. Seeding shall be done only during the period from April 1 to May 30 or August 15 to October 15. The actual planting of seed shall be done, however, only during periods within this season which are normal for such work as determined by weather conditions and by accepted practice.
in this locality. At his option, and on his responsibility, the Contractor may plant seed under unseasonable conditions at no increased cost to the Owner.

D. Seeding of lawns shall be done only by experienced workmen under the supervision of a qualified foreman.

E. Soil additives shall be spread and thoroughly incorporated into the layer of planting soil by harrowing or other methods approved by the Owner’s Representative. Incorporate Soil additives as specified by the soil testing results.

F. Seed only when the bed is in a friable condition, not muddy or hard.

G. Seed all areas to be seeded with specified grass seed, sowing evenly with an approved mechanical seeder at the rate specified on the Drawings. Sow half the seed in one direction and at right angles to the first seeding. Spread seed when soil is moist. Cultipacker, or approved similar equipment, may be used to cover the seed and to firm the seedbed in one operation. In areas inaccessible to cultipacker, the seeded ground shall be lightly raked and rolled in two directions with a water ballast roller. Extreme care shall be taken during seeding and raking to insure that no change shall occur in the finished grades and that the seed is not raked from one spot to another. Hydroseeding is an acceptable manner of seeding, providing the Contractor certifies in writing that the hydro-seed fertilizer mix is as herein specified and applied at the equivalent rate as specified on the drawings.

H. If covering and rolling is not properly accomplished by the seeding machine, the seed shall be lightly raked into the ground, after which the ground shall be rolled with a five hundred pound roller and thoroughly and evenly watered with a fine spray to penetrate the soil to a depth of at least two (2) inches.

I. Promptly after seeding, wet the seedbed thoroughly, keeping all areas moist throughout the germination period.

J. Mulch shall be placed immediately after seeding. Straw or salt marsh hay that has been thoroughly fluffed shall be spread evenly and uniformly at the rate of two to three tons per acre. Lumps and thick mulch materials shall be thinned. All mulch anchor stakes, strings and matting shall be removed before final acceptance of lawns. In addition, following mulching, all slopes of 3:1 or greater shall be covered with jute, biodegradable tobacco netting or approved equal. Securely stapled in place.

K. Hydroseed mix: All work shall be installed using an approved spraying machine specifically used for this purpose. Amounts of fertilizer used shall be as the testing agency recommendations prescribe and as directed by the Owner’s Representative. The Contractor shall submit to the Owner’s Representative for approval prior to the start of any seeding work, a certified statement as to the number of pounds and types of fertilizer, amounts and types of grass seed and processed fiber per one hundred (100) gallons of water.

1. Hydromulch shall be Terra-Sorb GB or approved equal
 a. Add Terra-Sorb to the hydroseed tank at the rate of sixty (60) pounds per acre.

3.3 SODDING

A. SOD BASE PREPARATION
1. Personnel for lawn work shall be familiar with sodding and lawn construction and be under the constant supervision of a qualified foreman.

2. After acceptance of sub-base as prepared, the Contractor shall do whatever additional grading is necessary to bring the sub-base to a true smooth slope parallel to the finished grade for all areas to be sodded.

3. The top four (4) inches of the sub-base immediately prior to being covered with topsoil shall be raked or otherwise loosened and shall be free from stones, rock, and other foreign material three (3) inches or greater in dimensions.

4. There shall be sufficient grade stakes as determined by the Civil Engineer to insure correct line and grade of sub-base and of finished grade.

5. Sub-base shall be inspected and approved by the Civil Engineer before placing of topsoil.

6. Soil shall be placed and spread over approved areas to a depth sufficiently greater than necessary for the required thickness so that after natural settlement and light rolling, the completed work will conform to the lines, grades and elevations indicated. Supply additional loam, after testing and approval as may be needed to give the specified depths and finished grades under the contract without additional cost to the Owner.

7. After soil has been spread, it shall be carefully prepared by scarifying or harrowing and band raking. All large still clods, lumps, brush, roots, stumps, litter and other foreign matter, and stones over one (1) inch in diameter shall be removed from the topsoil and also be free of smaller stones in excessive quantities as determined by the Civil Engineer.

B. SODDING

1. After the preparation of the areas to be sodded has been reviewed by the Civil Engineer, the Contractor shall sod the areas as specified herein.

2. In accordance with the rectangular sod strips measuring twelve (12) inches or sixteen (16) inches in width and from four (4) feet to six (6) feet in length the following provisions shall apply:
 a. All sod shall be placed with close joints and no overlapping by whatever method is chosen. Sod shall be laid in strips, edge to edge, with the lateral joints staggered. All minor or unavoidable openings in the sod shall be closed with sod plugs. However, sod laid with joints determined by the Civil Engineer to be too large shall be lifted and re-laid to the Civil Engineer’s satisfaction at no extra cost to the Owner. On slope areas exceeding twenty-five percent (25%) gradient, the Contractor shall secure sod by pegging each strip five (5) feet on center.

3. In accordance with the “Big Roll” method of furnishing and installing sod, the following provisions shall apply:
 a. Only sod harvested with a “Big Roll” (Sod-O-Matic) harvester as supplied by the approved turf supplier or equal shall be permitted.
 b. Sod so harvested shall be stored, delivered and unloaded while rolled on the manufacturer’s specially made tubes which permit the rolling and storage of three (3)
sixteen (16) inch wide sod strips, a maximum of fifty (50) feet in length and stored side by side.

c. Planting soil shall not be moist at the time of installation; however, it shall contain sufficient moisture so as not to be powdery or dusty, both as determined by the supplier’s representative.

d. The sod shall be uniformly distributed over the prepared soil bed and pulled tightly against the edges of previously laid sections by laborers with garden rakes so as to insure tight joints and to prevent drying of the sod at the joints.

e. All sod shall be placed with close joints with no overlapping by whatever method is chosen. The overlapping of existing lawn with new sod along limit of work lines shall not be permitted. All new work shall abut existing lawn to match existing grades along a cut and prepared edge. Sod shall be laid in strips, edge to edge, with the lateral joints staggered. All minor or unavoidable openings in the sod shall be closed with sod plugs or with topsoil. However, sod laid with joints determined by the Civil Engineer to be too large shall be lifted and re-laid in accordance with these specifications at no extra cost to the Owner. On slope areas exceeding a twenty-five percent (25%) gradient, the Contractor shall secure sod by pegging each strip five (5) feet on center.

f. The sod must be watered on the same working day on which it is installed. If necessary, the Contractor shall provide special crews after normal working hours to accomplish such watering at no extra cost to the Owner. After this initial watering, the Contractor shall be required to provide or install and maintain a system of temporary pipe, sprinklers and service connections which are adequate to water the sod weekly with the equivalent of one (1) inch rainfall. During the first week of the sod installation, watering shall be accomplished daily with a sufficient quantity of water to penetrate through the sod and into the sub-base. If the sod is watered by normal rainfall or if weather conditions dictate, the Contractor may, at his discretion, eliminate or increase watering during a given week. However, such action by the Contractor shall in no way waive the Contractor’s responsibility for the growth and health of the grass until final acceptance of the sodding.

g. If, in the opinion of the Civil Engineer, rolling of the sod is required to properly joint the sod to the bed after the sod is laid and twenty-four (24) to forty-eight (48) hours after initial watering, the Contractor shall roll the required area with a roller which weighs from seventy-five (75) to one hundred (100) pounds per square foot of roller width at no extra cost to the Owner.

h. The completed sodded surface shall be true to finish grades shown and even and firm at all points.

3.4 EROSION CONTROL MATTING

A. Jute mesh shall be placed within 48 hours after finish grading or topsoiling of an area is completed. If seeding is specified, within 24 hours after seeding of an area is completed. The jute mesh shall be placed in a manner that will minimize disturbance of the underlying soil. All equipment and application processes shall be approved by the Civil Engineer prior to use.

B. The surface shall be smoothed and all gullies and potholes backfilled prior to applying jute mesh. All rocks or clods larger than two inches in size and all sticks and other foreign material
that will prevent contact of the jute mesh with the surface shall be removed. If the surface is extremely dry, the Engineer may require watering prior to placement.

C. Jute mesh shall be placed uniformly, in contact with the underlying soil, at the locations shown on the Drawings or directed by the Civil Engineer. The top edge of each strip shall be anchored by placing a tight fold of mesh vertically in a six inch deep slot or trench in the soil and tamping and stapling in place. Edges of adjacent strips shall be lapped six inches with a row of staples at a maximum interval of three feet in the lapped area. Bottom edges shall be lapped 12 inches over the next lower strip, if applicable, or buried as specified for top edges.

D. Check slots shall consist of separate four foot strips of jute mesh placed at right angles to the direction of water flow immediately prior to placing the general covering of jute mesh. Check slots shall be anchored by burying the top edge of the strip as described above.

E. Check slots shall be spaced so that one check slot, or junction slot of the jute mesh occurs every 75 feet on gradients of less than 4% and every 50 feet on gradients of more than four percent. On slope drains, a check slot or an end slot shall occur every 25 feet unless otherwise specified.

F. Edges of jute mesh shall be buried around the edges of catch basins and other structures.

G. Jute mesh shall be held in place by wire staples driven vertically into the soil. The mesh shall be fastened at intervals not more than three feet apart in three rows for each strip of mesh, with one row along each edge and one row alternately spaced in the middle. All ends of the mesh and check slots shall be fastened at six inch intervals across their width.

H. The Contractor shall maintain the areas covered by jute mesh until final acceptance of the project. Prior to final acceptance, any damaged areas shall be reshaped as necessary, reseeded, if applicable; and the jute mesh satisfactorily repaired or replaced.

3.5 MAINTENANCE FOR SEEDED AREAS

A. Maintenance shall begin immediately after any area is seeded and shall continue until final acceptance, but in no case, less than the following period.

1. Sixty (60) days after substantial completion of seeding.

 a. Maintenance may continue until the next growing season if in the opinion of the Owner’s Representative the season enters a winter dormancy and no maintenance should continue.

 b. Seeded lawns shall be maintained until all areas have a close stand of grass which has received a minimum of three mowings, has no bare spots greater than two inches in diameter, and at least 90% of the grass established shall be permanent grass species.

B. Maintenance shall include reseeding, mowing, watering, weeding and fertilizing.

C. Watering of Seeded Areas:

1. First Week: The Contractor shall provide all labor and arrange for all watering necessary to establish an acceptable lawn. In the absence of an adequate rainfall, watering shall be performed daily or as often as necessary during the first week and in sufficient quantities to maintain moist soil to a depth of at least two inches.
2. Second and Subsequent Weeks: Water seeded areas as necessary to supplement natural rain to the equivalent of one (1) inch rainfall per week. The Contractor shall water the lawn as required to maintain adequate moisture, in the upper two inches of soil, necessary for the promotion of deep root growth.

3. Watering shall be done in a manner, which will provide uniform coverage, prevent erosion due to application of excessive quantities over small areas, and prevent damage to the finished surface by the watering equipment. The Contractor shall furnish sufficient watering equipment to apply one complete coverage to the seeded areas in an eight (8) hour period.

D. Protection:

1. Seeded areas shall be protected by stakes and caution tape or snowfence as directed by the Civil Engineer. Wire shall not be used.

2. Barriers must be raised immediately after seeding and shall be maintained until acceptance.

E. Reseeding: After the grass in seeded areas has appeared, all areas and parts of areas which, in the opinion of the Owner’s Representative, fail to show a uniform stand of grass, for any reason whatsoever, shall be reseeded and such areas and parts of areas shall be seeded repeatedly until all areas are covered with a satisfactory growth of grass. Reseeding together with necessary grading, fertilizing, and trimming shall be done at the expense of the Contractor.

F. Mowing:

1. At the time of the first cutting, there shall be a uniform stand between 3” and 3½” high, and mower blades shall be set between 2½” and 3” high.

2. Mowing shall include removal of clippings.

G. Fertilizing: A second application of fertilizer, as specified herein, shall be applied after one (1) season of growth of a minimum of two (2) months duration, but only during the months of April, May, August or September. Fertilizer shall be applied at the rate of thirty (30) pounds per one thousand (1,000) square feet.

H. Liming: If more than one initial application of limestone is required by the soils analysis to bring the pH of the stockpiled topsoil/loam borrow to a specified range, the Contractor shall be responsible for all additional required lime applications.

3.6 MAINTENANCE FOR SODDED AREAS

A. Maintenance shall begin immediately after sod is installed and shall continue in accordance with the following:

1. Sod shall be maintained until final acceptance of the project or a minimum of eight weeks, whichever is longer.

2. In the event that lawn operations are completed too late in the fall for adequate growth of grass, maintenance shall continue into the following spring growing season at least eight weeks.

3. Water sodded areas as necessary to supplement natural rain to the equivalent of one (1) inch rainfall per week and as follows:
a. Lawns shall be watered in a satisfactory manner during and immediately after installation and not less than twice per week, until acceptance.

b. Suitable water for planting and maintenance of lawns shall be provided by the General Contractor.

c. The Contractor shall furnish his own hose and hose connections from the outlets where water is furnished. Provide all necessary watering equipment.

d. Adjust approved schedule to fit weather and soil conditions.

e. Mow grass as required. Remove grass clippings.

f. Apply specified fertilizer over entire lawn area after six (6) weeks at rate of fifteen (15) pounds per one thousand (1,000) square feet.

g. Eliminate weeds by methods approved by the Civil Engineer; pre-emergent and post-emergent herbicides, EPA approved, are preferred.

h. Repair bare spots and/or damage resulting from erosion, gullies, washouts, or other causes by filling with topsoil, tamping, re-fertilizing and re-sodding by the Contractor at his expense, if such damage occurs prior to acceptance. Sod shall be of same seed mixture as specified. If not weed-free, spraying shall be required.

4. At no time after the placement of the root-zone-mix or sod shall heavy equipment or vehicles not intended for the express purpose of turf maintenance be driven over the turf establishment area. If this occurs, sod shall be removed from the entire compacted area, the root-zone-mix shall be scarified, compacted to the specified compaction level, and sod shall be replaced as outlined in this section of the specifications at no cost to the owner.

3.7 CLEANUP AND PROTECTION

A. During seeding work, keep pavements clean and work area in an orderly condition.

B. Protect seeding work and materials from damage due to landscape operations, operations by other Contractors or trades, and trespassers.

1. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

3.8 ACCEPTANCE

A. The Owner shall inspect all work for Acceptance upon written request of the Contractor. The request shall be received at least 10 calendar days before the anticipated date of inspection. Upon completion and re-inspection of all repairs or renewals necessary in the judgment of the Owner, he shall certify in writing to the Contractor as to the Acceptance of the work.

3.9 ACCEPTANCE IN PART

A. The work may be accepted in parts when it is deemed to be in the Owner’s best interest to do so and when approval is given to the Contractor in writing to complete the work in parts. Acceptance and use of such areas by the Owner shall not waive any other provisions of this Contract.
3.10 CLEANUP

A. When any of this work is done while buildings are occupied, pavements shall be kept clear at all times, broom cleaned to prevent tracking dirt into buildings.

B. After completion of all planting operations, dispose of all debris and excess material to the satisfaction of the Owner. All pavements shall be swept and hosed clean.

FINAL INSPECTION AND ACCEPTANCE

C. At the end of the guarantee period, the Owner will inspect all guaranteed work for the Final Acceptance upon written request of the Contractor. The request shall be received at least 10 calendar days before the anticipated date for final inspection.

D. Upon completion and re-inspection of all repairs or renewals necessary in the judgment of the Owner at that time, he shall certify in writing to the Contractor as to the Final Acceptance of the project.
APPENDIX
April 22, 2019

Mr. Bill Scheer P.E., L. S
Deputy Director
Town of East Lyme
108 Pennsylvania Avenue
PO Box 519
Niantic, Connecticut 06357

RE: Limited Asbestos-Containing Materials Inspection Report
277 West Main Street
Niantic, Connecticut
Eagle Project No. 19-100.10T1

Dear Mr. Scheer:

Attached is the report for the limited asbestos-containing materials inspection conducted at 277 West Main Street located in Niantic, Connecticut. The inspection was performed to support the acquisition of the Site building. The inspection was limited to suspect floor tile and mastic, carpet mastic, ceiling tiles, sheetrock and joint compound.

Please do not hesitate to contact us if you have any questions regarding the contents of this report.

Sincerely,
Eagle Environmental, Inc.

[Signature]
Report Prepared By:
Kristi Gagnon
Environmental Consultant II

[Signature]
Report Reviewed By:
Peter Folino
Principal
TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 BUILDING DESCRIPTION ... 1

2. SCOPE OF INSPECTION ... 1
 2.1 ASBESTOS CONTAINING MATERIALS .. 1

3. INSPECTION PROTOCOLS .. 2
 3.1 ASBESTOS CONTAINING MATERIALS .. 2
 3.1.1 Inspection .. 2
 3.1.2 Bulk Sampling .. 2
 3.1.3 Bulk Sample Analysis .. 2

4. INSPECTION RESULTS ... 3
 4.1 ASBESTOS CONTAINING MATERIALS .. 3

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Asbestos-Containing Materials Summary Table</td>
</tr>
<tr>
<td>II</td>
<td>Non Asbestos-Containing Materials Summary Table</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asbestos Bulk Sample Laboratory Reports</td>
</tr>
<tr>
<td>2</td>
<td>Eagle Environmental Inc. Licenses and Laboratory Certificates</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

On April 8, 2019, Eagle Environmental, Inc. conducted a limited asbestos-containing material inspection at the structure located at 277 West Main Street in Niantic, Connecticut. The inspection was performed in general accordance with Eagle Environmental, Inc. proposal dated April 3, 2019.

The inspection was limited in nature and did not include all areas of the building and included only limited sampling of interior, targeted suspect asbestos-containing materials. Supplemental inspection and testing will be required prior to renovation of the building to fulfill USEPA inspection requirements.

1.1 Building Description

The subject building located at 277 West Main Street is a two (2)-story structure constructed of steel framing with concrete and cinderblock walls. The structure was built in 1988. The building is constructed slab on grade. The mechanical equipment consists of a forced air ventilation system. The mechanical system distribution system appears to be insulated fiberglass. The interior walls are of sheetrock and joint compound construction. The ceilings are suspended 2’ x 4’ acoustical ceiling tiles or bare metal decking. The window frames and sashes are of metal construction. The door frames are metal with wood and metal doors. The floors are finished with various resilient flooring finishes. The roof is flat and consists of tar and gravel.

2. SCOPE OF INSPECTION

The limited inspection is intended to provide a broad overview of the asbestos-containing materials within the structure. The asbestos inspection does not meet the criteria of a comprehensive pre-renovation asbestos inspection and supplemental inspection work will be required prior to building renovation. The inspection focused on limited interior, accessible suspect materials as requested by the Client.

2.1 Asbestos Containing Materials

A limited asbestos-containing materials inspection was conducted and bulk samples of interior suspect asbestos-containing materials were collected and analyzed. The inspection was limited in scope and not all suspect materials were sampled. Additionally, some spaces of the buildings were not accessible. No exterior samples were collected. Supplemental bulk sampling is necessary before renovations of the building to fulfill the United States Environmental Protection Agency (USEPA) sampling requirements. The intent of the inspection was to sample targeted suspect materials for asbestos. The targeted materials included, floor tile and mastic, carpet mastic, ceiling tiles, sheetrock and joint compound.

The asbestos inspection was performed by Kristi Gagnon; a State of Connecticut licensed Asbestos Inspector (license #000974).
3. INSPECTION PROTOCOLS

3.1 Asbestos Containing Materials

3.1.1 Inspection

The asbestos-containing materials (ACM) inspection included limited accessible interior portions of the building. Non-destructive testing techniques were utilized during the inspection process. Where feasible, Eagle Environmental, Inc. cored through suspect materials to identify different layering compositions for sampling. In occupied or operational buildings, only the top most layers were sampled if coring was not feasible without creating damage to the finish materials. The inspection was limited to a pre-determined number of bulk samples.

During the limited inspection, suspect materials are located, sampled, quantified and the friability of the material is determined. The inspection focused on suspect friable ACM and limited suspect non-friable materials.

3.1.2 Bulk Sampling

During the sampling process, suspect ACM is separated into three (3) USEPA categories. These categories are: Thermal System Insulation (TSI), Surfacing Materials (SURF) and Miscellaneous materials (MISC). TSI includes all materials used to prevent heat loss or gain or water condensation on mechanical systems. Examples of TSI are pipe covering, boiler insulation, duct wrap and mudpack fitting cement. Surfacing ACM includes all ACM that is sprayed, toweled or otherwise applied to an existing surface. These applications are most commonly used in fireproofing, decorative and acoustical applications. Miscellaneous materials include all ACM not listed in thermal or surfacing, such as linoleum, vinyl asbestos flooring and ceiling tile.

Eagle Environmental, Inc. categorized the suspect materials and performed limited bulk sampling of targeted suspect materials.

3.1.3 Bulk Sample Analysis

The samples of the suspect asbestos containing materials were sent to a State of Connecticut Department of Public Health (DPH) approved laboratory for analysis by Polarized Light Microscopy (PLM). PLM is the USEPA accepted method of analysis for identification of asbestos in bulk matrices. Samples are collected individually or in sets. When sets of samples are collected, each set is systematically analyzed until one (1) sample is determined to contain asbestos. Upon the determination of the presence of asbestos in one (1) sample in the set, analysis of the remaining samples in the set is discontinued. If no asbestos is observed during analysis of the set of samples, the suspect material is determined to be negative for asbestos content.

Sample analysis results are reported in percentage of asbestos and non-asbestos components. The USEPA defines any material that contains greater than one percent asbestos, utilizing PLM, as being an asbestos-containing material (ACM). Sample results indicating “no asbestos detected” (NAD) are specified as non-asbestos containing materials. Samples results indicating “Did Not Analyze” (DNA) are not analyzed due to the stop on first positive request to the laboratory.
3.1.3.1 Friable ACM Analysis

Certain samples of friable materials shown to contain less than ten (<10%) asbestos are analyzed further by the "Point Count Method". This procedure is recommended by the United States Environmental Protection Agency to confirm friable bulk samples shown to have less than ten (<10%) asbestos by PLM to be definitively negative or positive for asbestos. This method is accepted as providing statistically reliable results when analyzing bulk samples with very low asbestos concentrations. Friable materials containing "Trace" or "less than one percent (<1%)" asbestos must be analyzed by the PLM Point Count Method. None of the samples were further analyzed by the PLM Point Count Method.

3.1.3.2 Non Friable ACM Analysis

Certain samples of organically bound non-friable materials shown to contain "less than one (<1%) asbestos", "TRACE" or "NAD" are recommended for analyses by the "NOB TEM ELAP 198.4 Method". This procedure is recommended by the United States Environmental Protection Agency to further evaluate non-friable organically bound materials for asbestos. Suspect materials confirmed by NOB TEM to be "less than one (<1%) asbestos", "TRACE" or "NAD" are considered non-asbestos containing. None of the samples were further analyzed by the NOB TEM Method.

4. INSPECTION RESULTS

4.1 Asbestos Containing Materials

During the course of the building inspection thirty-six (36) bulk samples of suspect ACM were collected and analyzed by PLM analysis.

All tested suspect materials analyzed, were confirmed to be non-ACM. The summary of non-asbestos materials is presented in Table II. The asbestos analysis laboratory reports are provided in Appendix 1.

This inspection was limited in nature. Additional sampling will be required prior to renovation or demolition work to meet the USEPA criteria for buildings undergoing renovation or demolition.

The inspection was limited to targeted interior suspect materials only and did not include concealed or otherwise inaccessible materials. The intent of the inspection was to sample limited large-scale accessible items for asbestos. There are additional suspect materials that were identified but were not sampled during this inspection and will require evaluation prior to renovation.
TABLE I

ASBESTOS CONTAINING MATERIALS SUMMARY TABLE
KEY FOR TABLES I and II

* Please utilize the following key for abbreviations used in Tables I and II

<table>
<thead>
<tr>
<th>KEY</th>
<th>ANALYTICAL METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA = DID NOT ANALYZE</td>
<td>PLM PC = EPA 600/R-93/116 QUANTITATION 400 POINT COUNT</td>
</tr>
<tr>
<td>NAD = NO ASBESTOS DETECTED</td>
<td>TEM NOB = NEW YORK ELAP 198.4 METHOD</td>
</tr>
<tr>
<td>F = FRIABLE</td>
<td>PLM = EPA 600/R-93/116</td>
</tr>
<tr>
<td>NF = NON-FRIABLE</td>
<td>PS = Previously Sampled</td>
</tr>
<tr>
<td>TSI = THERMAL SYSTEMS INSULATION</td>
<td>EA = Each</td>
</tr>
<tr>
<td>SURF = SURFACING MATERIAL</td>
<td></td>
</tr>
<tr>
<td>MISC = MISCELLANEOUS MATERIAL</td>
<td></td>
</tr>
</tbody>
</table>

SF = SQUARE FEET
LF = LINEAR FEET
Chrys = Chrysotile
Amos = Amosite
Anth = Anthophylite
Trem = Tremolite
Croc = Crocidolite

BOLD TEXT IN "LOCATION" COLUMN INDICATES SAMPLE LOCATION
TABLE I
ASBESTOS CONTAINING MATERIALS
SUMMARY TABLE
277 WEST MAIN STREET
NIANTIC, CONNECTICUT

<table>
<thead>
<tr>
<th>LOCATION(S)</th>
<th>MATERIAL TYPE</th>
<th>SAMPLE NUMBER</th>
<th>CATEGORY</th>
<th>BULK SAMPLE ANALYSIS RESULTS</th>
<th>ESTIMATED QUANTITY</th>
<th>F/NF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLM</td>
<td>PLM PC</td>
<td>TEM NOB</td>
</tr>
</tbody>
</table>

NO ASBESTOS WAS IDENTIFIED DURING THIS INSPECTION
TABLE II

NON ASBESTOS-CONTAINING MATERIALS SUMMARY TABLE
KEY FOR TABLES I and II

* Please utilize the following key for abbreviations used in Tables I and II

<table>
<thead>
<tr>
<th>KEY</th>
<th>ANALYTICAL METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA = DID NOT ANALYZE</td>
<td>SF = SQUARE FEET</td>
</tr>
<tr>
<td>NAD = NO ASBESTOS DETECTED</td>
<td>LF = LINEAR FEET</td>
</tr>
<tr>
<td>F = FRIABLE</td>
<td>Chrys = Chrysotile</td>
</tr>
<tr>
<td>NF = NON-FRIABLE</td>
<td>Amos = Amosite</td>
</tr>
<tr>
<td>TSI = THERMAL SYSTEMS INSULATION</td>
<td>Anth = Anthophylite</td>
</tr>
<tr>
<td>SURF = SURFACING MATERIAL</td>
<td>Trem = Tremolite</td>
</tr>
<tr>
<td>MISC = MISCELLANEOUS MATERIAL</td>
<td>Croc = Crocidolite</td>
</tr>
<tr>
<td></td>
<td>PLM PC = EPA 600/R-93/116 QUANTITATION 400 POINT COUNT</td>
</tr>
<tr>
<td></td>
<td>TEM NOB = NEW YORK ELAP 198.4 METHOD</td>
</tr>
<tr>
<td></td>
<td>PLM = EPA 600/R-93/116</td>
</tr>
<tr>
<td></td>
<td>PS = Previously Sampled</td>
</tr>
<tr>
<td></td>
<td>EA = Each</td>
</tr>
</tbody>
</table>

BOLD TEXT IN "LOCATION" COLUMN INDICATES SAMPLE LOCATION
<table>
<thead>
<tr>
<th>LOCATION(S)</th>
<th>MATERIAL TYPE</th>
<th>SAMPLE NUMBER</th>
<th>CATEGORY</th>
<th>BULK SAMPLE ANALYSIS RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-01, 1-06, 1-22</td>
<td>12" x 12" Floor tile mastic - black</td>
<td>04-08-KG-01, 04-08-KG-02, 04-08-KG-03, 04-08-KG-04</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-01</td>
<td>12" x 12" Floor tile - black</td>
<td>04-08-KG-05, 04-08-KG-06, 04-08-KG-07, 04-08-KG-08</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-07, 1-09, 1-15</td>
<td>12" x 12" Floor tile - grey with grey streaks</td>
<td>04-08-KG-09, 04-08-KG-10, 04-08-KG-11, 04-08-KG-12</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-07, 1-15</td>
<td>12" x 12" Floor tile mastic - yellow</td>
<td>04-08-KG-13, 04-08-KG-14, 04-08-KG-15</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-06, 1-32, 2-26</td>
<td>12" x 12" Floor tile - cream with grey streaks</td>
<td>04-08-KG-16, 04-08-KG-17, 04-08-KG-18</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-08, 1-15</td>
<td>Carpet adhesive - yellow</td>
<td>04-08-KG-19, 04-08-KG-20, 04-08-KG-21</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-03, 1-50, 2-63</td>
<td>Carpet adhesive - yellow and green</td>
<td>04-08-KG-22, 04-08-KG-23, 04-08-KG-24</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-20, 1-50</td>
<td>Sheetrock - light grey</td>
<td>04-08-KG-25, 04-08-KG-26, 04-08-KG-27</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-13, 1-20, 2-73</td>
<td>Joint Compound - white</td>
<td>04-08-KG-28, 04-08-KG-29, 04-08-KG-30</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-20, 1-50</td>
<td>Sheetrock/joint compound composite</td>
<td>04-08-KG-31, 04-08-KG-32, 04-08-KG-33</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-03, 2-73, Stair A</td>
<td>2' x 4' Ceiling tile - white with circle pattern</td>
<td>04-08-KG-34, 04-08-KG-35, 04-08-KG-36</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
<tr>
<td>1-01, 1-35</td>
<td>2' x 4' Ceiling tile - bright white</td>
<td>04-08-KG-37, 04-08-KG-38, 04-08-KG-39</td>
<td>MISC</td>
<td>PLM: NAD, PLM PC: NAD, TEM NOB: NAD, ACM: NO</td>
</tr>
</tbody>
</table>
APPENDIX 1

ASBESTOS BULK SAMPLE LABORATORY REPORT
<table>
<thead>
<tr>
<th>Sample #</th>
<th>I/O HAJ</th>
<th>Sample Description</th>
<th>Sample Location</th>
<th>Volume (L) Area Sampled</th>
<th>Date/Time Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-08-19-KG 01</td>
<td>2</td>
<td>12"x12" Floor Tile Mastic - black</td>
<td>1-01</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 02</td>
<td>3+</td>
<td>12"x12" Floor Tile Mastic - black</td>
<td>1-04</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 03</td>
<td>3+</td>
<td>12"x12" Floor Tile Mastic - black</td>
<td>1-22</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 04</td>
<td>3+</td>
<td>12"x12" Floor Tile - black</td>
<td>1-01</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 05</td>
<td>3+</td>
<td>12"x12" Floor Tile - black</td>
<td>1-01</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 06</td>
<td>3+</td>
<td>12"x12" Floor Tile - black</td>
<td>1-01</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 07</td>
<td>3+</td>
<td>12"x12" Floor Tile - grey/grey streaks</td>
<td>1-07</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 08</td>
<td>3+</td>
<td>12"x12" Floor Tile - grey/grey streaks</td>
<td>1-15</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 09</td>
<td>3+</td>
<td>12"x12" Floor Tile - grey/grey streaks</td>
<td>1-09</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 10</td>
<td>3+</td>
<td>12"x12" Floor Tile - yellow</td>
<td>1-07</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 11</td>
<td>3+</td>
<td>12"x12" Floor Tile - yellow</td>
<td>1-07</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 12</td>
<td>3+</td>
<td>12"x12" Floor Tile - yellow</td>
<td>1-15</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 13</td>
<td>3+</td>
<td>12"x12" Floor Tile - cream/grey streaks</td>
<td>1-06</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 14</td>
<td>3+</td>
<td>12"x12" Floor Tile - cream/grey streaks</td>
<td>1-32</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 15</td>
<td>3+</td>
<td>12"x12" Floor Tile - cream/grey streaks</td>
<td>2-26</td>
<td>4/08/2019</td>
<td></td>
</tr>
</tbody>
</table>

Turnaround Time (TAT) Options - Please check box below <24 HR TAT's call ahead to confirm lab availability. Not all TAT options are valid for every test (7402, PLM NOB & 400 PC w/Gravimetric Reduction, TEM NOB for Culturable Fungi)

- 3 Hour
- 6 Hour
- 24 Hour
- 48 Hour
- 72 Hour
- 96 Hour
- 1 Week
- 2 Week

Asbestos
- TEM: Air
- TEM: Bulk
- PLM: Bulk
- TEM: Dust
- Other:

Lead (Pb) Flame Atomic Absorption
- TEM: Air
- TEM: Soil
- TEM: Chips
- TEM: Wipe
- Other:

Microbiology
- Air Samples
- Fungi Culturable Genus Level ID Test: M005
- Fungi Allergen-D Test: M032
- Fungi Culturable (Spore Trap) Test: M041
- Other:

Asbestos
- Air: Do Not Analyze Outsides or Blanks Unless Authorized by Eagle
- Lead: Bulk - Please Stop on First Positive Within Sets

Microbiology
- Other:

Client Sample #s
- 04-08-19-KG 16
- 04-08-19-KG 17
- 04-08-19-KG 18
- 04-08-19-KG 19
- 04-08-19-KG 20
- 04-08-19-KG 21
- 04-08-19-KG 22
- 04-08-19-KG 23
- 04-08-19-KG 24
- 04-08-19-KG 25
- 04-08-19-KG 26
- 04-08-19-KG 27
- 04-08-19-KG 28
- 04-08-19-KG 29
- 04-08-19-KG 30
- 04-08-19-KG 31
- 04-08-19-KG 32
- 04-08-19-KG 33
- 04-08-19-KG 34
- 04-08-19-KG 35
- 04-08-19-KG 36

Total # of Samples: 36

Date: 4/09/19
Time: 16:58

Received (Lab):

Reelinshued:

Received:

Date: 4/11/19
Time: 10:25 AM

Date: 4/10/19
Time: 7:00 PM

Date: 4/10/19
Time:
<table>
<thead>
<tr>
<th>Sample #</th>
<th>I/O HA#</th>
<th>Sample Description</th>
<th>Sample Location</th>
<th>Volume (L)</th>
<th>Date/Time Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-08-19-KG 16</td>
<td>3sect</td>
<td>Carpet Adhesive - yellow</td>
<td>1-08</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 17</td>
<td>3sect</td>
<td>Carpet Adhesive - yellow</td>
<td>1-08</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 18</td>
<td>3sect</td>
<td>Carpet Adhesive - yellow</td>
<td>1-15</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 19</td>
<td>3sect</td>
<td>Carpet Adhesive - yellow & green</td>
<td>1-03</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 20</td>
<td>3sect</td>
<td>Carpet Adhesive - yellow & green</td>
<td>2-63</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 21</td>
<td>3sect</td>
<td>Carpet Adhesive - yellow & green</td>
<td>1-50</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 22</td>
<td>3sect</td>
<td>Sheetrock - light grey</td>
<td>1-50</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 23</td>
<td>3sect</td>
<td>Sheetrock - light grey</td>
<td>1-20</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 24</td>
<td>3sect</td>
<td>Sheetrock - light grey</td>
<td>1-20</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 25</td>
<td>3sect</td>
<td>Joint Compound - white</td>
<td>1-13</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 26</td>
<td>3sect</td>
<td>Joint Compound - white</td>
<td>1-20</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 27</td>
<td>3sect</td>
<td>Joint Compound - white</td>
<td>2-73</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 28</td>
<td>3sect</td>
<td>Sheetrock/Joint Compound Composite</td>
<td>1-50</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 29</td>
<td>3sect</td>
<td>Sheetrock/Joint Compound Composite</td>
<td>1-20</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 30</td>
<td>3sect</td>
<td>Sheetrock/Joint Compound Composite</td>
<td>1-20</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 31</td>
<td>3sect</td>
<td>2'x4' Ceiling Tile - white w/circle pattern</td>
<td>1-03</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 32</td>
<td>3sect</td>
<td>2'x4' Ceiling Tile - white w/circle pattern</td>
<td>Ste.5-A</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 33</td>
<td>3sect</td>
<td>2'x4' Ceiling Tile - white w/circle pattern</td>
<td>2-73</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 34</td>
<td>3sect</td>
<td>2'x4' Ceiling Tile - bright white</td>
<td>1-01</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 35</td>
<td>3sect</td>
<td>2'x4' Ceiling Tile - bright white</td>
<td>1-35</td>
<td>4/08/2019</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 36</td>
<td>3sect</td>
<td>2'x4' Ceiling Tile - bright white</td>
<td>1-01</td>
<td>4/08/2019</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>% Fibrous</th>
<th>% Non-Fibrous</th>
<th>% Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-08-19-KG 01</td>
<td>1-01 - 12"x12" floor tile</td>
<td>Black</td>
<td>10% Cellulose</td>
<td>90.0% Non-fibrous</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>mastic-black</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 02</td>
<td>1-06 - 12"x12" floor tile</td>
<td>Black</td>
<td>10% Cellulose</td>
<td>90.0% Non-fibrous</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>mastic-black</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 03</td>
<td>1-22 - 12"x12" floor tile</td>
<td>Black</td>
<td>10% Cellulose</td>
<td>90.0% Non-fibrous</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>mastic-black</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 04</td>
<td>1-01 - 12"x12" floor tile</td>
<td>Black</td>
<td>100.0% Non-fibrous</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tile-black</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 05</td>
<td>1-01 - 12"x12" floor tile</td>
<td>Black</td>
<td>100.0% Non-fibrous</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tile-black</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 06</td>
<td>1-01 - 12"x12" floor tile</td>
<td>Black</td>
<td>100.0% Non-fibrous</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tile-black</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 07</td>
<td>1-07 - 12"x12" floor tile</td>
<td>Gray</td>
<td>100.0% Non-fibrous</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tile-grey w/grey streaks</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 08</td>
<td>1-15 - 12"x12" floor tile</td>
<td>Gray</td>
<td>100.0% Non-fibrous</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tile-grey w/grey streaks</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 09</td>
<td>1-09 - 12"x12" floor tile</td>
<td>Gray</td>
<td>100.0% Non-fibrous</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tile-grey w/grey streaks</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 10</td>
<td>1-07 - 12"x12" floor tile</td>
<td>Yellow</td>
<td>4% Cellulose</td>
<td>96.0% Non-fibrous</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>mastic-yellow</td>
<td></td>
<td></td>
<td>(Other)</td>
<td></td>
</tr>
</tbody>
</table>

EMSL maintains liability limited to cost of analysis. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 ‘Interim Method’), but augmented with procedures outlined in the 1993 (“Final”) version of the method. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. All samples received in acceptable condition unless otherwise noted. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. EMSL recommends gravimetric reduction for all non-friable organically bound materials prior to analysis. Estimation of uncertainty is available on request.

Attention: Brandy LeBlanc
Eagle Environmental, Inc. - CT
8 South Main Street
Suite 3
Wallingford, CT 06492
Tel/Fax: (860) 589-8257 / (860) 585-7034
http://www.EMSL.com/wallingfordlab@emsl.com

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>% Fibrous</th>
<th>% Non-Fibrous</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-06-19-KG 11</td>
<td>1-07 - 12"x12" floor tile mastic- yellow</td>
<td>Yellow Non-Fibrous Homogeneous</td>
<td>5% Cellulose</td>
<td>95.0% Non-fibrous (Other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>04-08-19-KG 12</td>
<td>1-15 - 12"x12" floor tile mastic- yellow</td>
<td>Yellow Non-Fibrous Homogeneous</td>
<td>10% Synthetic</td>
<td>90.0% Non-fibrous (Other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>04-08-19-KG 13</td>
<td>1-06 - 12"x12" floor tile-cream w/grey streaks</td>
<td>White Non-Fibrous Homogeneous</td>
<td>100.0% Non-fibrous (Other)</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 14</td>
<td>1-32 - 12"x12" floor tile-cream w/grey streaks</td>
<td>White Non-Fibrous Homogeneous</td>
<td>100.0% Non-fibrous (Other)</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 15</td>
<td>2-26 - 12"x12" floor tile-cream w/grey streaks</td>
<td>Tan Non-Fibrous Homogeneous</td>
<td>100.0% Non-fibrous (Other)</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 16</td>
<td>1-08 - carpet adhesive-yellow</td>
<td>Tan Non-Fibrous Homogeneous</td>
<td>100.0% Non-fibrous (Other)</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 17</td>
<td>1-08 - carpet adhesive-yellow</td>
<td>Yellow Non-Fibrous Homogeneous</td>
<td>3% Cellulose 5% Synthetic</td>
<td>92.0% Non-fibrous (Other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>04-08-19-KG 18</td>
<td>1-15 - carpet adhesive-yellow</td>
<td>Yellow Non-Fibrous Homogeneous</td>
<td>10% Synthetic</td>
<td>90.0% Non-fibrous (Other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>04-08-19-KG 19</td>
<td>1-03 - carpet adhesive-yellow & green</td>
<td>Green Non-Fibrous Homogeneous</td>
<td>100.0% Non-fibrous (Other)</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 20</td>
<td>2-63 - carpet adhesive-yellow & green</td>
<td>Green Non-Fibrous Homogeneous</td>
<td>100.0% Non-fibrous (Other)</td>
<td>None Detected</td>
<td></td>
</tr>
</tbody>
</table>

EMSL maintains liability limited to cost of analysis. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method"), but augmented with procedures outlined in the 1993 ("Final") version of the method. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. All samples received in acceptable condition unless otherwise noted. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. EMSL recommends gravimetric reduction for all non-friable organically bound materials prior to analysis. Estimation of uncertainty is available on request.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>% Fibrous</th>
<th>% Non-Fibrous</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-08-19-KG 21</td>
<td>1-50 - carpet adhesive-yellow</td>
<td>Green</td>
<td>100.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0021</td>
<td>& green</td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 22</td>
<td>1-50 - sheetrock-light grey</td>
<td>Gray</td>
<td>95.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0022</td>
<td></td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 23</td>
<td>1-20 - sheetrock-light grey</td>
<td>Gray</td>
<td>95.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0023</td>
<td></td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 24</td>
<td>1-20 - sheetrock-light grey</td>
<td>Gray</td>
<td>95.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0024</td>
<td></td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 25</td>
<td>1-13 - joint compound-white</td>
<td>White</td>
<td>100.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0025</td>
<td></td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 26</td>
<td>1-20 - joint compound-white</td>
<td>White</td>
<td>100.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0026</td>
<td></td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 27</td>
<td>2-73 - joint compound-white</td>
<td>White</td>
<td>100.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0027</td>
<td></td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 28</td>
<td>1-50 - sheetrock/joint</td>
<td>Gray/White</td>
<td>95.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0028</td>
<td>compound composite</td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 29</td>
<td>1-20 - sheetrock/joint</td>
<td>Gray/White</td>
<td>95.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0029</td>
<td>compound composite</td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 30</td>
<td>1-20 - sheetrock/joint</td>
<td>Gray</td>
<td>90.0%</td>
<td>Non-fibrous</td>
<td>None detected</td>
</tr>
<tr>
<td>241901786-0030</td>
<td>compound composite</td>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
</tr>
</tbody>
</table>

Result of sheetrock only. Joint compound was not found in sample bag.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>% Fibrous</th>
<th>% Non-Fibrous</th>
<th>% Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-08-19-KG 31</td>
<td>1-03 - 2x4' ceiling tile-white w/circle pattern</td>
<td>Gray</td>
<td>40% Cellulose</td>
<td>15% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>241901786-0031</td>
<td>Fibrous</td>
<td>40% MinWool</td>
<td>5.0% Non-fibrous (Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 32</td>
<td>Stair A - 2x4' ceiling tile-white w/circle pattern</td>
<td>Gray</td>
<td>40% Cellulose</td>
<td>10% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>241901786-0032</td>
<td>Fibrous</td>
<td>40% MinWool</td>
<td>10.0% Non-fibrous (Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 33</td>
<td>2-73 - 2x4' ceiling tile-white w/circle pattern</td>
<td>Gray</td>
<td>50% Cellulose</td>
<td>15% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>241901786-0033</td>
<td>Fibrous</td>
<td>25% MinWool</td>
<td>10.0% Non-fibrous (Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 34</td>
<td>1-01 - 2x4' ceiling tile-bright white</td>
<td>Gray</td>
<td>45% Cellulose</td>
<td>10% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>241901786-0034</td>
<td>Fibrous</td>
<td>40% MinWool</td>
<td>5.0% Non-fibrous (Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 35</td>
<td>1-35 - 2x4' ceiling tile-bright white</td>
<td>Gray</td>
<td>40% Cellulose</td>
<td>10% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>241901786-0035</td>
<td>Fibrous</td>
<td>45% MinWool</td>
<td>5.0% Non-fibrous (Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04-08-19-KG 36</td>
<td>1-01 - 2x4' ceiling tile-bright white</td>
<td>Gray</td>
<td>50% Cellulose</td>
<td>10% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>241901786-0036</td>
<td>Fibrous</td>
<td>25% MinWool</td>
<td>15.0% Non-fibrous (Other)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The samples in this report were submitted to EMSL for analysis by Asbestos Analysis of Bulk materials via EPA/600 (0513) Method using Polarized Light Microscopy. The reference number for these samples is the EMSL Order ID above. Please use this reference number when calling about these samples.

Report Comments:

<table>
<thead>
<tr>
<th>Sample Receipt Date:</th>
<th>04/11/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Completed Date:</td>
<td>04/17/2019</td>
</tr>
</tbody>
</table>

Sample Receipt Time: 10:25 AM
Analysis Completed Time: 4:46 PM

Analyst(s):

- Kelsey Milton PLM (10)
- Leslie Tetrick PLM (6)
- Quetsy Castro Romero PLM (20)

Samples Reviewed and approved by:

Almedina Hodzic, Asbestos Laboratory Manager
or other approved signatory

EMSL maintains liability limited to cost of analysis. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-62-020 “Interim Method”), but augmented with procedures outlined in the 1993 (“final”) version of the method. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. All samples received in acceptable condition unless otherwise noted. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. EMSL recommends gravimetric reduction for all non-friable organically bound materials prior to analysis. Estimation of uncertainty is available upon request.

APPENDIX 2

EAGLE ENVIRONMENTAL INC. LICENSES AND LABORATORY CERTIFICATES
CERTIFICATE OF ACHIEVEMENT

This certifies that

Kristi Gagnon

has successfully completed the
4 Hour Asbestos Site Inspector Refresher Training
Asbestos Accreditation Under TSCA Title II
40 CFR Part 763

conducted by

ATC Group Services LLC
73 William Franks Drive
West Springfield, MA 01089
(413) 781-0070

Principal Instructor: Mireille Sypura
January 17, 2019
Date of Course:

January 17, 2020
Expiration Date

STATE OF CONNECTICUT
DEPARTMENT OF PUBLIC HEALTH
PURSUANT TO THE PROVISIONS OF THE GENERAL STATUTES OF CONNECTICUT
THE INDIVIDUAL NAMED BELOW IS CERTIFIED
ASBESTOS CONSULTANT-INSPECTOR

KRISTI GAGNON

CERTIFICATE NO.
000974

CURRENT THROUGH
10/31/19

VALIDATION NO.
03-716246

[Signatures]
STATE OF CONNECTICUT, DEPARTMENT OF PUBLIC HEALTH
APPROVED ENVIRONMENTAL LABORATORY

THIS IS TO CERTIFY THAT THE LABORATORY DESCRIBED BELOW HAS BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH PURSUANT TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT.

EMSL ANALYTICAL, INC. - CT

LOCATED AT 29 North Plains Highway, Unit #4 IN Wallingford, CT 06492

AND REGISTERED IN THE NAME OF Gloria Oriol-Aguilar

THIS CERTIFICATE IS ISSUED IN THE NAME OF Gloria Oriol-Aguilar WHO HAS BEEN DESIGNATED BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF APPROVAL AS FOLLOWS:

DRINKING WATER, NON-POTABLE WATER/WASTEWATER
Examination for:
Bacteria
Asbestos - TEM

BUILDING MATERIALS
Examination for:
Asbestos Fibers - PCM, TEM
Bulk Identification - PLM, TEM

SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED

EFFECTIVE RENEWAL DATE October 1, 2017
THIS CERTIFICATE EXPIRES September 30, 2019 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH
DATED AT HARTFORD, CONNECTICUT, THIS 11th DAY OF September, 2017

Registration # PH - 0322

SUZANNE BLANCAFLOR, MS, MPH
CHIEF, ENVIRONMENTAL HEALTH SECTION