PROJECT MANUAL

TOWN OF FAIRFIELD

CONNECTICUT

Roger Sherman Elementary School Alterations & Upgrades
250 Fern Street
Fairfield, Connecticut 06824

State Project No. 051-0150 CV
Bid #2020-44
S/P+A Project No. 18.169

VOLUME 2 OF 2

BC/PCR Submission: August 16, 2019
Issued for Bid: November 14, 2019

Architect/Engineers/Interior Designers
Silver/Petrucelli + Associates, Inc.
3190 Whitney Avenue, Hamden, Connecticut 06518
One Post Hill Place, New London, Connecticut 06320
Table of Contents

ALTERATIONS & UPGRADES

ROGER SHERMAN ELEMENTARY SCHOOL
250 FERN STREET
FAIRFIELD, CT 06824
STATE PROJECT #051-0150 CV
BID #2020-44

S/P+A PROJECT NO. 18.169

DIVISION 00 – PROCUREMENT AND CONTRACT REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town of Fairfield Invitation to Bid/Instructions for Bidders</td>
<td>9</td>
</tr>
<tr>
<td>Instructions to Bidders (AIA A701)</td>
<td>8</td>
</tr>
<tr>
<td>Supplementary Instructions to Bidders</td>
<td>6</td>
</tr>
<tr>
<td>Bid Form</td>
<td>4</td>
</tr>
<tr>
<td>CHRO Contract Compliance Regulations Notification To Bidders</td>
<td>5</td>
</tr>
<tr>
<td>Standard Form of Agreement between Owner and Contractor (AIA A101)</td>
<td>8</td>
</tr>
<tr>
<td>General Conditions of the Contract for Construction (AIA A201)</td>
<td>40</td>
</tr>
<tr>
<td>Supplementary General Conditions</td>
<td>7</td>
</tr>
<tr>
<td>Project Application and Project Certificate for Payment (AIA G702)</td>
<td>1</td>
</tr>
<tr>
<td>Project Application Continuation Sheet (AIA G703)</td>
<td>1</td>
</tr>
<tr>
<td>Prevailing Wage Rate Information</td>
<td>36</td>
</tr>
<tr>
<td>2019-20 and 2020-21 School Calendars</td>
<td>2</td>
</tr>
<tr>
<td>Drawing List</td>
<td>2</td>
</tr>
</tbody>
</table>

DIVISION 01 – GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Requirements</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>011000</td>
<td>Summary of Work</td>
<td>5</td>
</tr>
<tr>
<td>012300</td>
<td>Alternates</td>
<td>2</td>
</tr>
<tr>
<td>012500</td>
<td>Substitution Procedures</td>
<td>4</td>
</tr>
<tr>
<td>012600</td>
<td>Contract Modification Procedures</td>
<td>2</td>
</tr>
<tr>
<td>012900</td>
<td>Payment Procedures</td>
<td>4</td>
</tr>
<tr>
<td>013100</td>
<td>Project Management and Coordination</td>
<td>6</td>
</tr>
<tr>
<td>013200</td>
<td>Construction Progress Documentation</td>
<td>6</td>
</tr>
<tr>
<td>013233</td>
<td>Photographic Documentation</td>
<td>2</td>
</tr>
<tr>
<td>013300</td>
<td>Submittal Procedures</td>
<td>9</td>
</tr>
<tr>
<td>014000</td>
<td>Quality Requirements</td>
<td>8</td>
</tr>
<tr>
<td>014200</td>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>015000</td>
<td>Temporary Facilities and Controls</td>
<td>4</td>
</tr>
<tr>
<td>016000</td>
<td>Product Requirements</td>
<td>5</td>
</tr>
<tr>
<td>017300</td>
<td>Execution</td>
<td>7</td>
</tr>
<tr>
<td>017700</td>
<td>Closeout Procedures</td>
<td>4</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
<td>8</td>
</tr>
<tr>
<td>017839</td>
<td>Project Record Documents</td>
<td>4</td>
</tr>
<tr>
<td>017900</td>
<td>Demonstration and Training</td>
<td>4</td>
</tr>
</tbody>
</table>

DIVISION 02 – EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Requirements</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>024119</td>
<td>Selective Demolition</td>
<td>7</td>
</tr>
<tr>
<td>028213</td>
<td>Asbestos Abatement</td>
<td>23</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>028319</td>
<td>Lead Paint Awareness</td>
<td>9</td>
</tr>
<tr>
<td>028416</td>
<td>Handling of Lighting Ballasts and Lamps Containing PCBs and Mercury</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Limited Hazardous Building Materials Inspection, November 2019</td>
<td>45</td>
</tr>
</tbody>
</table>

DIVISION 03 – CONCRETE

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>035416</td>
<td>Hydraulic Cement Underlayment</td>
<td>3</td>
</tr>
</tbody>
</table>

DIVISION 04 – MASONRY

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>042200</td>
<td>Concrete Unit Masonry</td>
<td>10</td>
</tr>
</tbody>
</table>

DIVISION 05 – METALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>055000</td>
<td>Metal Fabrications</td>
<td>5</td>
</tr>
<tr>
<td>055213</td>
<td>Pipe and Tube Railings</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 06 – WOOD, PLASTICS AND COMPOSITES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>061000</td>
<td>Rough Carpentry</td>
<td>5</td>
</tr>
<tr>
<td>062023</td>
<td>Interior Finish Carpentry</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>076200</td>
<td>Sheet Metal Flashing and Trim</td>
<td>8</td>
</tr>
<tr>
<td>077200</td>
<td>Roof Accessories</td>
<td>6</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
<td>4</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
<td>7</td>
</tr>
</tbody>
</table>

DIVISION 08 – OPENINGS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>081113</td>
<td>Hollow Metal Doors and Frames</td>
<td>6</td>
</tr>
<tr>
<td>081416</td>
<td>Flush Wood Doors</td>
<td>4</td>
</tr>
<tr>
<td>083113</td>
<td>Access Doors and Panels</td>
<td>3</td>
</tr>
<tr>
<td>087100</td>
<td>Door Hardware</td>
<td>11</td>
</tr>
</tbody>
</table>

DIVISION 09 – FINISHES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>092216</td>
<td>Non-Structural Metal Framing</td>
<td>2</td>
</tr>
<tr>
<td>092900</td>
<td>Gypsum Board</td>
<td>5</td>
</tr>
<tr>
<td>093000</td>
<td>Tiling</td>
<td>9</td>
</tr>
<tr>
<td>095113</td>
<td>Acoustical Panel Ceilings</td>
<td>7</td>
</tr>
<tr>
<td>096513</td>
<td>Resilient Base and Accessories</td>
<td>4</td>
</tr>
<tr>
<td>096519</td>
<td>Resilient Tile Flooring</td>
<td>5</td>
</tr>
<tr>
<td>099123</td>
<td>Interior Painting</td>
<td>6</td>
</tr>
<tr>
<td>099300</td>
<td>Staining and Transparent Finishing</td>
<td>4</td>
</tr>
<tr>
<td>099600</td>
<td>High-Performance Coatings</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 10 – SPECIALTIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>101400</td>
<td>Signage</td>
<td>5</td>
</tr>
<tr>
<td>102600</td>
<td>Wall and Door Protection</td>
<td>4</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DIVISION 21 – FIRE PROTECTION

Section 210517	Sleeves and Sleeve Seals for Fire-Suppression Piping	4
Section 210518	Escutcheons for Fire-Suppression Piping	3
Section 210523	General-Duty Valves for Fire Protection Piping	5
Section 210548	Vibration & Seismic Controls for Fire-Suppression Piping & Equipment	9
Section 210553	Identification for Fire-Suppression Piping and Equipment	4
Section 211119	Fire Department Connections	2
Section 211313	Wet-Pipe Sprinkler Systems	16
Section 211316	Dry-Pipe Sprinkler Systems	18

DIVISION 22 – PLUMBING

Section 220513	Common Motor Requirements for Plumbing Equipment	3
Section 220517	Sleeves and Sleeve Seals for Plumbing Piping	5
Section 220518	Escutcheons for Plumbing Piping	3
Section 220523.12	Ball Valves for Plumbing Piping	4
Section 220523.14	Check Valves for Plumbing Piping	4
Section 220529	Hangers and Supports for Plumbing Piping and Equipment	11
Section 220548	Vibration and Seismic Controls for Plumbing Piping and Equipment	13
Section 220553	Identification for Plumbing Piping and Equipment	7
Section 220719	Plumbing Piping Insulation	17
Section 221116	Domestic Water Piping	11
Section 221119	Domestic Water Piping Specialties	5
Section 221123	Domestic Water Pumps	5
Section 221316	Sanitary Waste and Vent Piping	12
Section 221319	Sanitary Waste Piping Specialties	5
Section 223300	Electric, Domestic-Water Heaters	6
Section 224213.13	Commercial Water Closets	5
Section 224216.13	Commercial Lavatories	5
Section 224716	Pressure Water Coolers	4

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

Section 230000	Basic Mechanical Materials and Methods	7
Section 230130.51	HVAC Air Distribution System Cleaning	6
Section 230513	Common Motor Requirements for HVAC Equipment	3
Section 230516	Expansion Fittings and Loops for HVAC Piping	7
Section 230517	Sleeves and Sleeve Seals for HVAC Piping	5
Section 230518	Escutcheons for HVAC Piping	3
Section 230519	Meters and Gages for HVAC Piping	9
Section 230529	Hangers and Supports for HVAC Piping and Equipment	11
Section 230548	Vibration and Seismic Controls for HVAC Piping and Equipment	14
Section 230553	Identification for HVAC Piping and Equipment	7
Section 230593	Testing, Adjusting, and Balancing for HVAC	17
Section 230713	Duct Insulation	16
Section 230719	HVAC Piping Insulation	16
Section 230923	Automatic Temperature Controls	30
Section 231123	Facility Natural-Gas Piping	12
Section 232300	Refrigerant Piping	11
Section 233113	Metal Ducts	16
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>233300</td>
<td>Air Duct Accessories</td>
<td>12</td>
</tr>
<tr>
<td>233346</td>
<td>Flexible Ducts</td>
<td>3</td>
</tr>
<tr>
<td>233713.13</td>
<td>Air Diffusers</td>
<td>3</td>
</tr>
<tr>
<td>233713.23</td>
<td>Air Registers and Grilles</td>
<td>3</td>
</tr>
<tr>
<td>237416.13</td>
<td>Packaged Rooftop Air-Conditioning Units</td>
<td>16</td>
</tr>
<tr>
<td>238127</td>
<td>VRV Heat Pump Systems</td>
<td>5</td>
</tr>
</tbody>
</table>

DIVISION 26 – ELECTRICAL

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>Common Work Results for Electrical</td>
<td>4</td>
</tr>
<tr>
<td>260509</td>
<td>Electrical Demolition Requirements</td>
<td>2</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
<td>6</td>
</tr>
<tr>
<td>260523</td>
<td>Control-Voltage Electrical Power Cables</td>
<td>9</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
<td>5</td>
</tr>
<tr>
<td>260533</td>
<td>Raceway and Boxes for Electrical Systems</td>
<td>12</td>
</tr>
<tr>
<td>260543</td>
<td>Underground Ducts and Raceways for Electrical Systems</td>
<td>11</td>
</tr>
<tr>
<td>260544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
<td>4</td>
</tr>
<tr>
<td>260548</td>
<td>Vibration and Seismic Controls for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Coordination Study</td>
<td>5</td>
</tr>
<tr>
<td>262200</td>
<td>Low-Voltage Transformers</td>
<td>6</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
<td>10</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
<td>8</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
<td>4</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>8</td>
</tr>
<tr>
<td>264313</td>
<td>Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits</td>
<td>7</td>
</tr>
</tbody>
</table>

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>Digital, Addressable Fire Alarm System</td>
<td>15</td>
</tr>
</tbody>
</table>

END OF TABLE OF CONTENTS
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 3. Sprinkler specialty pipe fittings.
 4. Sprinklers.
 5. Alarm devices.
 6. Pressure gages.
 7. Dry-pipe compressed air equipment, piping, controls

B. Related Sections:
 1. Sections 210517 “Sleeves and Sleeve Seals for Fire-Suppressing Piping” and 210518 “Escutcheons for Fire-Suppression Piping” for installations such as sleeves, sleeve seals and escutcheons.
 2. Section 211313 “Wet Pipe Sprinkler Systems”, for building wet-pipe sprinkler systems, including piping from new tap into existing fire main in tunnel to inlet of dry-pipe valve.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Dry-pipe sprinkler system piping designed to operate at working pressure 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Dry-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing compressed air. Opening of sprinklers releases compressed air and permits service pressure to open dry-pipe valve. Water then flows into piping and discharges from sprinklers that are open.

1.5 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
C. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design wet-pipe sprinkler systems.

1. Available fire-hydrant flow test records indicate the following conditions:
 a. Date: July 9, 2019.
 b. Time: 9:38 p.m.
 d. Location of Residual Fire Hydrant R: #0865, Birch Road at Fern Street.
 e. Location of Flow Fire Hydrant F: #1070, Fern Street #205 at Beach Road.
 f. Static Pressure at Residual Fire Hydrant R: 93 psig.
 h. Residual Pressure at Residual Fire Hydrant R: 57 psig.

D. Sprinkler system design shall be approved by authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: Ten percent (10%) or 10 psi, whichever is greater, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications:

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over most remote 1950-sq. ft. area.

4. Maximum Protection Area per Sprinkler: Per UL listing.
5. Maximum Protection Area per Sprinkler (Actual Maximum Allowed Depends on Construction Encountered and Approval Restrictions of Sprinkler Types Used):
 a. Light Hazard: 225 sq. ft.
 b. Areas with pitched ceilings or roofs, or with other than smooth ceiling construction: according to NFPA 13 for the construction and slope encountered, and sprinkler types used.

6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.

E. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to the Building Code of the State of Connecticut.

1.6 SUBMITTALS

A. Submittals-General: Full product data, working shop drawings, hydraulic calculations keyed to the Shop Drawings and designer’s qualifications shall be submitted to the Engineer, the Fairfield Fire Marshal’s Office, and the Owner’s Insurance Carrier for review and approval. Do not proceed with installation until approval has been received from all three (3) reviewing entities.
B. Product Data: For each type of product indicated. Include size, rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

C. Shop Drawings: For wet pipe sprinkler systems, including antifreeze-charged piping systems. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.

D. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. Obtain a new water flow test; refer to “Performance Requirements”, this Section.

E. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Domestic water, fuel gas, compressed air, drainage and vent piping.
2. HVAC equipment and piping.
3. Ductwork.
4. Items penetrating finished ceiling including but not limited to the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

F. Qualification Data: For qualified Installer and professional engineer.

G. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction including fire marshal and fire insurance underwriter, including hydraulic calculations.

H. Fire-hydrant flow test report (test date must be a maximum one (1) calendar year prior to project construction start date).

I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

J. Field quality-control reports.

K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of new fire-hydrant flow test, obtained from Aquarion Water Company, and paid for as part of Contractor's trade work.
a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

1. NFPA 13, "Installation of Sprinkler Systems."
2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six (6) spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Galvanized-Steel Pipe: ASTM A 53, Type E, Grade B, threaded ends.

B. Standard Weight, Galvanized-Steel Pipe, ASTM A 53, Type E, Grade B, with roll-grooved ends.

D. Galvanized, Steel Couplings: ASTM A 865, threaded.

E. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

F. Grooved-Joint, Steel-Pipe Appurtenances:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Tyco Fire & Building Products LP
 e. Victaulic Company

2. Pressure Rating: 175 psig minimum.

2.3 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

1. Valves shall be UL listed and FM approved.

B. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Anvil International, Inc.
 b. Victaulic Company of America
 c. NIBCO, INC.
2. Standard: UL 1091 except with ball instead of disc.
3. Valves NPS 1-1/2 (DN 40) and Smaller: Bronze body with threaded ends.
4. Valves NPS 2 and NPS 2-1/2 (DN 50 and DN 65): Bronze body with threaded ends or ductile-iron body with grooved ends.
5. Valves NPS 3 (DN 80): Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves (NPS 2 and Under):

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company
2. Standard: UL 1091.
5. End Connections:
 a. Under NPS 2: Threaded.
 b. NPS 2: Threaded or grooved.
6. Full port, slow close.

D. Iron Butterfly Valves (NPS 2-1/2 to NPS 4):

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Milwaukee Valve Company
 c. NIBCO INC.
 d. Tyco Fire & Building Products LP
 e. Victaulic Company

2. Standard: UL 1091.
5. Disc and Stem: 316 stainless-steel disc.
6. Seat: EPDM.
7. Style: Wafer.

E. Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Milwaukee Valve Company
 c. Mueller Co.; Water Products Division
 d. Reliable Automatic Sprinkler Co., Inc.
 e. Tyco Fire & Building Products LP
 f. Victaulic Company
 g. Viking Corporation

4. Type: Swing check.
5. Body Material: Cast iron.

F. Bronze OS&Y Gate Valves (NPS 2 and Smaller):

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves
 b. Crane Co.; Crane Valve Group; Stockham Division
 c. Milwaukee Valve Company
 d. NIBCO INC.
 e. United Brass Works, Inc.

G. Iron OS&Y Gate Valves (NPS 2-1/2 and larger):
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Crane Co.; Crane Valve Group; Stockham Division
 b. Hammond Valve
 c. Milwaukee Valve Company
 d. Mueller Co.; Water Products Division
 e. Tyco Fire & Building Products LP
 4. Body Material: Cast or ductile iron.
 5. Trim and Stem: Bronze.

H. Indicating Valves on piping to alarm devices such as electric alarm bells:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Milwaukee Valve Company
 c. NIBCO INC.
 d. Tyco Fire & Building Products LP
 e. Victaulic Company
 2. Standard: UL 1091.
 4. Valves NPS 2 (DN 50) and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

2.4 TRIM AND DRAIN VALVES

A. General Requirements:
2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Conbraco Industries, Inc.; Apollo Valves
 b. Kennedy Valve; a division of McWane, Inc.
 c. Milwaukee Valve Company
 d. NIBCO INC.
 e. Tyco Fire & Building Products LP
 f. Victaulic Company

D. Globe Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

E. Plug Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Southern Manufacturing Group

2.5 SPECIALTY VALVES

A. General Requirements:
2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
3. Body Material: Cast or ductile iron.
4. Size: Same as connected piping.
5. End Connections: Grooved.

B. Dry-Pipe Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Globe Fire Sprinkler Corporation
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP
 d. Victaulic Company
 e. Viking Corporation

2. Basis-of-Design: Reliable Model D

5. Include UL 1486, quick-opening devices, trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

6. Air-Pressure Maintenance Device:
 a. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1) Globe Fire Sprinkler Corporation
 2) Reliable Automatic Sprinkler Co., Inc.
 3) Tyco Fire & Building Products LP
 4) Victaulic Company
 5) Viking Corporation

 c. Type: Automatic device to maintain minimum air pressure in piping.
 d. Air Pressure Maintenance package: include shutoff valves to permit servicing without shutting down sprinkler piping, bypass valve for quick filling, pressure regulator or switch to maintain pressure, strainer, pressure ratings with 14- to 60-psig adjustable range, and 175-psig outlet pressure.

7. Air Compressor:
 a. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1) Gast Manufacturing Inc.
 2) General Air Products, Inc.
 3) Viking Corporation

 d. Power: 120-V ac, 60 Hz, single phase, unless arranged otherwise with electrical contractor at no additional charge to the Owner.

C. Automatic (Ball Drip) Drain Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. AFAC Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP

4. Type: Automatic draining, ball check.

2.6 SPRINKLER SPECIALTY PIPE FITTINGS

A. General Requirements for Dry-Pipe-System Fittings: UL listed and FM approved for dry-pipe service.

B. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products
 d. Tyco Fire & Building Products LP
 e. Victaulic Company

 5. Type: Mechanical-T and -cross fittings.
 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

C. Flow Detection and Test Assemblies:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP
 d. Victaulic Company

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

D. Branch Line Testers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 b. Fire-End & Croker Corporation
 c. Potter Roemer
 2. Standard: UL 199.
 5. Size: Same as connected piping.
 6. Inlet: Threaded.
 7. Drain Outlet: Threaded and capped.
 8. Branch Outlet: Threaded, for sprinkler.

E. Sprinkler Inspector's Test Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty
 c. Tyco Fire & Building Products LP
 d. Victaulic Company
 e. Viking Corporation
 4. Body Material: Cast- or ductile-iron housing with sight glass.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded.

2.7 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide all sprinklers by one (1) of the following:
 1. Globe Fire Sprinkler Corporation
 2. Reliable Automatic Sprinkler Co., Inc.
 3. Tyco Fire & Building Products LP
 4. Victaulic Company
 5. Viking Corporation
B. General Requirements:

a. Specific Application Sprinklers for Protecting Attics must be UL listed for their intended use.

C. General Application Automatic Sprinklers with Heat-Responsive Element:

1. Nonresidential Applications: UL 199.

2. Characteristics: Nominal ½-inch orifice with discharge coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by NFPA 13 for specific area of application.

D. Sprinkler Finishes:

1. Chrome plated.
2. Bronze.
3. Painted.

E. Special Coatings:

1. Wax.
2. Lead.
3. Corrosion-resistant paint.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Mounting: Chrome-plated steel, two-piece, with 1-inch (minimum) vertical adjustment.
2. Sidewall Mounting: Chrome-plated steel, one-piece, flat.

G. Sprinkler Guards:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP
 c. Victaulic Company
 d. Viking Corporation

2. Standard: UL 199.
3. Type: Wire cage with fastening device for attaching to sprinkler.
2.8 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:

1. None required; greenhouse dry sprinkler system shall be alarmed through flow switch of wet sprinkler zone feeding the greenhouse dry sprinkler system. Dry-pipe valve activation shall be notified through building addressable Fire Alarm system.
 a. Fire-Lite Alarms; a Honeywell company

C. Pressure Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Potter Electric Signal Company
 b. System Sensor; a Honeywell company

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

D. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Fire-Lite Alarms; a Honeywell company
 b. Potter Electric Signal Company
 c. System Sensor; a Honeywell company

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.9 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. AMETEK, Inc.; U.S. Gauge Division
2. Ashcroft, Inc.
3. Brecco Corporation
4. WIKA Instrument Corporation

B. Standard: UL 393.

C. Dial Size: 3½- to 4½-inch diameter.
D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

F. Air System Piping Gage: Include retard feature and "AIR" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Obtain and pay for fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing to the Owner and Architect/Engineer.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 13 for installation of sprinkler piping.

C. Install seismic restraints on piping. Comply with requirements in NFPA 13 for seismic-restraint device materials and installation.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.

G. Install Dry Type "Inspector's Test Connection" in most hydraulically remote area of dry-pipe sprinkler system piping, (test located in an adjacent secure area inside the building), complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler piping so as to minimize the number of auxiliary low point drains required and so as to minimize quantity and sizes of structural steel penetrations. Notify of proposed and coordinate locations of new steel penetrations in Contractor’s shop drawings with the Engineer, await direction and comply with his requirements for such penetrations.

J. Connect compressed-air supply to dry-pipe sprinkler piping.

K. Connect air compressor to the following piping and wiring:
1. Pressure gages and controls.
2. Electrical power system.
3. Fire-alarm devices, including low-pressure alarm.

L. Install alarm devices in piping systems.

M. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements in NFPA 13 for hanger materials.

N. Install pressure gages on riser or feed main, and at each sprinkler test connection. Include pressure gages with connection not less than NPS 1/4 (DN 8) and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

O. Drain dry-pipe sprinkler piping.

P. Pressurize and check dry-pipe sprinkler system piping and air compressors.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

G. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff and control valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Refer to Section 211313 "Wet-Pipe Sprinkler Systems” for backflow prevention on new fire service to project building.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 2. Dry-Pipe Valves: Install trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
 a. Install air compressor and compressed-air supply piping.
 b. Air-Pressure Maintenance Package: Install shutoff valves to permit servicing without shutting down sprinkler system; bypass valve for quick system filling; pressure regulator or switch to maintain system pressure; strainer; pressure ratings with 14- to 60-psig adjustable range; and 175-psig maximum inlet pressure.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

B. In attic areas, wherever hydraulically possible and allowed under the conditions of the sprinkler’s UL listing, install Specific Application Sprinklers for Protecting Attics.

C. Install dry-type upright sprinklers in areas exposed to freezing, when upfed from wet pipe system in heated space.

D. Install dry type pendent and sidewall sprinklers in dry-pipe sprinklers systems; DO NOT install wet type pendent or sidewall sprinklers in areas subject to freezing. Standard wet type upright sprinklers may be installed in dry-pipe sprinkler systems which are properly pitched back to drain or main riser per NFPA 13 requirements.

3.6 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Start and run air compressors.
6. Coordinate with fire-alarm tests. Operate as required.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.9 DEMONSTRATION

A. Provide 4 hours of training to Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.10 PIPING SCHEDULE

A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

B. Standard-pressure, dry-pipe sprinkler system, NPS 2 (DN 50) and smaller shall be the following:

1. Standard-weight galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.

C. Standard-pressure, dry-pipe sprinkler system, NPS 2-1/2 to NPS 4 (DN 65 to DN 100) shall be one (1) of the following:

1. Standard-weight galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
2. Standard-weight galvanized-steel pipe with roll-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3.11 SPRINKLER SCHEDULE

A. In attic areas, wherever hydraulically possible and allowed under the conditions of the sprinkler’s UL listing, install Specific Application Sprinklers for Protecting Attics.

B. Elsewhere, use Quick Response sprinklers; provide types in subparagraphs below for the following applications:

1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Dry recessed pendent sprinklers; standard coverage.
3. Wall Mounting: Dry sidewall sprinklers; standard coverage.
4. Spaces Subject to Freezing: Upright sprinklers (when up-fed from dry-pipe system); Dry recessed pendent sprinklers; Dry sidewall sprinklers; Dry upright sprinklers (when upfed from wet pipe system located in heated area).

C. Provide types in subparagraphs below with finishes indicated:

1. Dry Recessed Pendent Sprinklers: Bright chrome, with bright chrome escutcheon.
2. Dry and Wet Upright, and Dry Sidewall Sprinklers: Chrome plated in finished spaces inside the building exposed to view; rough bronze or brass in unfinished spaces inside the building not exposed to view, and for installation at outside covered walkway; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211316
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 100 deg F and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Zurn Industries, LLC

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.
2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company
4. Metraflex Company (The)
5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Stainless-steel.
3. Connecting Bolts and Nuts: Stainless-steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company
4. Metraflex Company (The)
5. Proco Products, Inc.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Non-shrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide ¼-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide ¼-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing.
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves, Stack-sleeve fittings,
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves, or Stack-sleeve fittings.

5. Interior Partitions:

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
 E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with rough-brass finish.
 h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 i. Bare Piping in Equipment Rooms: Split-casting brass type with rough-brass finish.
 j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze ball valves.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
 C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES
 A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than fifteen percent (15%) zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions
 c. Hammond Valve
 d. Lance Valves
 e. Milwaukee Valve Company
 f. NIBCO INC.
 g. Watts; a Watts Water Technologies company
 2. Description:
 b. CWP Rating: 600 psig.
d. Body Material: Bronze.
e. Ends: Threaded or soldered.
f. Seats: PTFE.
g. Stem: Stainless-steel.
h. Ball: Stainless-steel, vented.
i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules.

2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
3.4 VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:

1. Refer to Valve Schedule on Drawings.

END OF SECTION 220523.12
SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene-diene terpolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than fifteen percent (15%) zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. American Valve, Inc.
 b. Apollo Valves; Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions
 d. Hammond Valve
 e. Jenkins Valves; Crane Energy Flow Solutions
 f. KITZ Corporation
 g. Macomb Groups (The)
 h. Milwaukee Valve Company
 i. NIBCO INC.
 j. Powell Valves
 k. Red-White Valve Corporation
 l. Stockham; Crane Energy Flow Solutions
 m. Watts; a Watts Water Technologies company

 2. Description:
a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 200 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded or soldered. See valve schedule articles.
f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. End Connections:

 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves with bronze disc, Class 125, with threaded end connections.

END OF SECTION 220523.14
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Fiberglass pipe hangers.
 4. Metal framing systems.
 5. Thermal-hanger shield inserts.
 6. Fastener systems.
 7. Pipe stands.
 8. Pipe positioning systems.
 9. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Pipe stands.
4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS

A. Clevis-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 1, steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.

B. Strap-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless-steel.

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Allied Tube & Conduit; a part of Atkore International
 b. B-line, an Eaton business
 c. Flex-Strut Inc.
 d. Thomas & Betts Corporation; A Member of the ABB Group
 e. Unistrut; Part of Atkore International
 f. Wesanco, Inc.
 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 4. Channels: Continuous slotted steel channel with inturned lips.
 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

2.5 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Carpenter & Paterson, Inc.
2. Clement Support Services
3. ERICO International Corporation
4. National Pipe Hanger Corporation
5. PHS Industries, Inc.
6. Pipe Shields Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened Portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:

1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
3. Vertical Members: Two (2) or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One (1) or more; plastic.
 3. Vertical Members: Two (2) or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.10 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.

F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

G. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

H. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

I. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

J. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

L. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

M. Install lateral bracing with pipe hangers and supports to prevent swaying.

N. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

O. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

P. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

Q. Insulated Piping:
 1. Attach clamps and spacers to piping.
1. **HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT**

 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.

 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. **Shield Dimensions for Pipe: Not less than the following:**

 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048-inch-thick.
 b. NPS 4: 12 inches long and 0.06-inch-thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06-inch-thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075-inch-thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105-inch-thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. **Thermal-Hanger Shields:** Install with insulation same thickness as piping insulation.

3.2 **EQUIPMENT SUPPORTS**

 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 **METAL FABRICATIONS**

 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

 C. Field Welding: Comply with AWS D1.1 procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1½ inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers and fiberglass pipe hangers and fiberglass strut systems and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.
J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two (2) rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1¼ inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to twenty-five percent (25%) to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to twenty-five percent (25%) to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to twenty-five percent (25%) to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two (2) vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Restained elastomeric isolation mounts.
 4. Open-spring isolators.
 5. Housed-spring isolators.
 6. Restrained-spring isolators.
 8. Pipe-riser resilient supports.
 9. Resilient pipe guides.
 10. Elastomeric hangers.
 11. Spring hangers.
 12. Snubbers.
 13. Restrain channel bracings.
 15. Seismic-restraint accessories.
 16. Mechanical anchor bolts.
 17. Adhesive anchor bolts.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.

b. Annotate to indicate application of each product submitted and compliance with requirements.

3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

2. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, due to seismic forces required to select vibration isolators, and due to seismic restraints.

3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.

4. Seismic-Restraint Details:

 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.

 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

 d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.
D. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the Connecticut State Building Code unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 0.230.
4. Design Spectral Response Acceleration at 1.0-Second Period: 0.104.
5. Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.

 a. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four (4) times the maximum seismic forces to which they are subjected.

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

e. Mason Industries, Inc.
f. Novia; A Division of C&P
g. Vibration Eliminator Co., Inc.
h. Vibration Isolation
i. Vibration Mountings & Controls, Inc.

2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
3. Size: Factory or field cut to match requirements of supported equipment.
4. Pad Material: Oil and water resistant with elastomeric properties.
5. Surface Pattern: Ribbed and/or waffle pattern.
6. Infused nonwoven cotton or synthetic fibers.
7. Load-bearing metal plates adhered to pads.
8. Sandwich-Core Material: Resilient and/or elastomeric.
 a. Surface Pattern: Ribbed and/or waffle pattern.
 b. Infused nonwoven cotton or synthetic fibers.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia; A Division of C&P
 g. Vibration Eliminator Co., Inc.
 h. Vibration Isolation
 i. Vibration Mountings & Controls, Inc.

2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
2. Description: All-directional isolator with seismic restraints containing two (2) separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia; A Division of C&P
 g. Vibration Eliminator Co., Inc.
 h. Vibration Isolation
 i. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
3. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
4. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
5. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.6 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation
 h. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.

3. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.

4. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.

5. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with threaded mounting holes and internal leveling device.

2.7 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia; A Division of C&P
 g. Vibration Eliminator Co., Inc.
 h. Vibration Isolation
 i. Vibration Mountings & Controls, Inc.

2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.

3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
4. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
5. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
6. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
7. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation
 h. Vibration Mountings & Controls, Inc.

2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.

3. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
4. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
5. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
6. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two (2) steel tubes separated by a minimum ½-inch-thick neoprene.

1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.
2.10 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum ½-inch-thick neoprene.

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia; A Division of C&P
 g. Vibration Eliminator Co., Inc.
 h. Vibration Mountings & Controls, Inc.

2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.

3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.12 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. Novia; A Division of C&P
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation
 h. Vibration Mountings & Controls, Inc.
2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
3. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
4. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
5. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
6. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Novia; A Division of C&P
4. Vibration Mountings & Controls, Inc.

B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum ¼-inch air gap, and minimum ¼-inch-thick resilient cushion.

2.14 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. B-line, an Eaton business
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.
2.15 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Novia; A Division of C&P
4. Vibration & Seismic Technologies, LLC
5. Vibration Mountings & Controls, Inc.

B. Restraint Cables: ASTM A 492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two (2) clamping bolts for cable engagement.

2.16 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. B-line, an Eaton business
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. Novia; A Division of C&P
5. TOLCO
6. Vibration & Seismic Technologies, LLC

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.17 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. B-line, an Eaton business
2. Hilti, Inc.
VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

4. Mason Industries, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless-steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.18 ADHESIVE ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Hilti, Inc.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless-steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION CONTROL AND SEISMIC-RERAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points.
B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Equipment Restraints:
 1. Install seismic snubbers on plumbing equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125-inch.
 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

D. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

E. Install cables so they do not bend across edges of adjacent equipment or building structure.

F. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

G. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

H. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

I. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

J. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the Engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid pre-stressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 221116 "Domestic Water Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post-connection testing has been approved), and with at least seven (7) days' advance notice.
4. Test at least four (4) of each type and size of installed anchors and fasteners selected by Architect.
5. Test to ninety percent (90%) of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 220548
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Valve tags.
5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Brady Corporation
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP
 d. Champion America
 e. Craftmark Pipe Markers
 f. emedco
 g. Kolbi Pipe Marker Co.
h. LEM Products Inc.
i. Marking Services, Inc.
j. Seton Identification Products

2. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

4. Background Color: Black.

5. Minimum Label Size: Length and width vary for required label content, but not less than 2½-by-¾-inch.

6. Minimum Letter Size: ¼-inch for name of units if viewing distance is less than 24 inches, ½-inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Brady Corporation
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP
 d. Champion America
 e. Craftmark Pipe Markers
 f. emedco
 g. Kolbi Pipe Marker Co.
 h. LEM Products Inc.
i. Marking Services, Inc.
j. Seton Identification Products

2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8-inch-thick, and having predrilled holes for attachment hardware.

4. Background Color: Black.

5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

6. Minimum Label Size: Length and width vary for required label content, but not less than 2½-by-¾-inch.

7. Minimum Letter Size: ¼-inch for name of units if viewing distance is less than 24 inches, ½-inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
D. Equipment Label Schedule: For each item of equipment to be labeled, on 8½-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Brady Corporation
2. Brimar Industries, Inc.
3. Carlton Industries, LP
4. Champion America
5. Craftmark Pipe Markers
6. emedco
7. LEM Products Inc.
8. Marking Services Inc.
9. National Marker Company
10. Seton Identification Products
11. Stranco, Inc.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8-inch-thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: Yellow.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2½-by-¾-inch.

G. Minimum Letter Size: ¼-inch for name of units if viewing distance is less than 24 inches, ½-inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation
4. Carlton Industries, LP
5. Champion America
6. Craftmark Pipe Markers
7. emedco
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.
11. Seton Identification Products

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 2. Brady Corporation
 4. Carlton Industries, LP
 5. Champion America
 6. Craftmark Pipe Markers
 7. emedco
 8. Kolbi Pipe Marker Co.
 9. LEM Products Inc.
 10. Marking Services Inc.
 11. Seton Identification Products

B. Valve Tags: Stamped or engraved with ¼-inch letters for piping system abbreviation and ½-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link chain or S-hook.
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

C. Valve Schedules: For each piping system, on 8½-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Brady Corporation
2. Brimar Industries, Inc.
3. Carlton Industries, LP
4. Champion America
5. Craftmark Pipe Markers
6. emedco
8. LEM Products Inc.
9. Marking Services Inc.
10. Seton Identification Products

B. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5¼ inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Division 09.

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule:

1. Domestic Water Piping
 a. Background: Safety green.

2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Safety gray.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose
connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Hot Water: 2 inches, round.

2. Valve-Tag Colors:

3. Letter Colors:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at pipe expansion joints for each type of insulation.
 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 2. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:
 a. One (1) 10-foot section of NPS 1 to 1-1/2 straight pipe.
 b. One (1) each of a 90-degree (copper) threaded and soldered, and PEX elbow.
 c. One (1) each of a (copper) threaded and soldered, and PEX fitting.
 d. One (1) NPS 2 or smaller valve.
 e. One (1) support hanger including hanger shield and insert.
 f. One (1) threaded reducer.

2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
3. Notify Architect seven (7) days in advance of dates and times when mockups will be constructed.
4. Obtain Architect's approval of mockups before starting insulation application.
5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
7. Demolish and remove mockups when directed.

D. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.
1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General," and "Indoor Piping Insulation Schedule," articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless-steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless-steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Johns Manville; a Berkshire Hathaway company
 b. Knauf Insulation
 c. Manson Insulation Inc.
 d. Owens Corning

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Ramco Insulation, Inc.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Ramco Insulation, Inc.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Childers Brand; H. B. Fuller Construction Products
 b. Eagle Bridges - Marathon Industries
 c. Foster Brand; H. B. Fuller Construction Products
 d. Mon-Eco Industries, Inc.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Childers Brand; H. B. Fuller Construction Products
 b. Eagle Bridges - Marathon Industries
c. Foster Brand; H. B. Fuller Construction Products
d. Mon-Eco Industries, Inc.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Foster Brand; H. B. Fuller Construction Products
 b. Knauf Insulation
 c. Vimasco Corporation

2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: ASTM D 1644, fifty-eight percent (58%) by volume and seventy percent (70%) by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Childers Brand; H. B. Fuller Construction Products
 b. Eagle Bridges - Marathon Industries
 c. Foster Brand; H. B. Fuller Construction Products

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.

3. Service Temperature Range: Minus 50 to plus 220 deg F.

4. Solids Content: ASTM D 1644, thirty-three percent (33%) by volume and forty-six percent (46%) by weight.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Childers Brand; H. B. Fuller Construction Products
b. Eagle Bridges - Marathon Industries
c. Foster Brand; H. B. Fuller Construction Products
d. Knauf Insulation
e. Mon-Eco Industries, Inc.
f. Vimasco Corporation

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: Sixty percent (60%) by volume and sixty-six percent (66%) by weight.

2.5 LAGGING ADHESIVES
A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Childers Brand; H. B. Fuller Construction Products
 b. Foster Brand; H. B. Fuller Construction Products
 c. Vimasco Corporation
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS
A. Joint Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Childers Brand; H. B. Fuller Construction Products
 b. Eagle Bridges - Marathon Industries
 c. Foster Brand; H. B. Fuller Construction Products
 d. Mon-Eco Industries, Inc.
 e. Pittsburgh Corning Corporation
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F.
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. FSK and Metal Jacket Flashing Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

a. Childers Brand; H. B. Fuller Construction Products
b. Eagle Bridges - Marathon Industries
c. Foster Brand; H. B. Fuller Construction Products
d. Mon-Eco Industries, Inc.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Childers Brand; H. B. Fuller Construction Products

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, Kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with Kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

a. Avery Dennison Corporation, Specialty Tapes Division
b. Compac Corporation
c. Ideal Tape Co., Inc., an American Biltrite Company
d. Knauf Insulation
e. Venture Tape

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: Two percent (2%).
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division
 b. Compac Corporation
 c. Ideal Tape Co., Inc., an American Biltrite Company
 d. Knauf Insulation
 e. Venture Tape

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: Two percent (2%).
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Compac Corporation
 b. Ideal Tape Co., Inc., an American Biltrite Company
 c. Venture Tape

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: Five hundred percent (500%).
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
a. Avery Dennison Corporation, Specialty Tapes Division
b. Compac Corporation
c. Ideal Tape Co., Inc., an American Biltrite Company
d. Knauf Insulation
e. Venture Tape

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: Five percent (5%).
6. Tensile Strength: 34 lbf/inch in width.

2.9 SECUREMENTS

A. Bands:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. RPR Products, Inc.

2. Stainless-Steel: ASTM A 167 or ASTM A 240, Type 316; 0.015-inch-thick, ¾-inch-wide with wing seal or closed seal.

3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020-inch-thick, ¾-inch-wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal ¾-inch-wide, stainless-steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless-steel.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. C & F Wire

2.10 PROTECTIVE SHIELDING PIPING ENCLOSURES

A. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Truebro
 b. Zurn Industries, LLC

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping.
a. Comply with ADA requirements.
b. Provide manufacturer’s fixture-specific enclosure, if available.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.
J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1½ inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than seventy-five percent (75%) of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two (2) times the thickness of pipe insulation, or one (1) pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two (2) times the thickness of pipe insulation, or one (1) pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two (2) times the thickness of pipe insulation, or one (1) pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two (2) times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two (2) halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Finish exposed surfaces with a PVC jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1-inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.

2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Install jacket with 1½-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 1. Apply two (2) continuous beads of adhesive to seams and joints, one (1) bead under lap and the finish bead along seam and joint edge.

3.8 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below.
 1. Flat Acrylic Finish: Two (2) finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect and Owner from manufacturer’s entire range. Vary first and second coats to allow visual inspection of the completed Work.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation.Extent of inspection shall be limited to three (3) locations of straight pipe, three (3) locations of threaded fittings, three (3) locations of welded fittings, three (3) locations of threaded valves for each pipe service defined in the Pipe Insulation Schedule on the Drawings.
 2. If fewer than the specified quantity of test locations exist for any particular installation, all locations of that particular installation shall be tested.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one (1) material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 PIPING INSULATION SCHEDULE

A. Refer to Schedule on Drawings.

B. Exposed Piping Below Accessible Lavatories:

1. Protective Shielding Piping Enclosure; refer to Fixture Schedule on Drawings for Basis-of-Design.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one (1) material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:

1. None.
2. PVC: 20 mils thick.

D. Piping, Exposed:

1. Straight Lengths of Pipe:
 a. None.
 b. PVC, 30 mils thick.

2. Fittings, Unions, End Caps, Traps, Valves, Etc.:
 a. Factory-fabricated (if available; if not field-fabricated) Shaped PVC Fitting Covers: 30 mils thick.

3. Exposed Piping Below Accessible Lavatories:
 a. None.
 b. PVC, 30 mils thick.
END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside the building.
 2. Encasement for piping.

1.3 ACTION SUBMITTALS

A. Product Data: For pipe; standard, transition and dielectric fittings; and joining materials.

1.4 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.
 B. Field quality-control reports.

1.5 FIELD CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Water Authority, Construction Manager and Owner’s Director of Construction and Security no fewer than five (5) days in advance of proposed interruption of water service.
 2. Do not interrupt water service without Water Authority’s and Owner’s Director of Construction and Security’s written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
 B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."
2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

E. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

F. Copper Pressure-Seal-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the followings:
 a. Apollo Valves
 b. Elkhart Products Corporation
 c. NIBCO Inc.
 d. Viega
 2. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 3. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 4. Fittings: Bronze or copper shall conform to the material requirements of ASME B16.18 or ASME B16.22, and the performance requirements of IAPMO PS117, and ICC LC1002. Fittings shall have an EPDM sealing element and Smart Connect (SC) feature. 2½-inch thru 4-inch shall have a 420-stainless-steel grip ring, PBT separator ring, EPDM sealing element and Smart Connect (SC) feature. Fittings with EPDM sealing element shall conform to NSF 61-pw-G when installed in a potable water system.

G. Appurtenances for Grooved-End Copper Tubing:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Anvil International
 b. Shurjoint Piping Products
 c. Victaulic Company
 2. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75 copper tube or ASTM B 584 bronze castings.
 3. Mechanical Couplings for Grooved-End Copper Tubing:
2.3 PEX TUBE AND FITTINGS

A. PEX Distribution System: ASTM F 877, SDR 9 tubing. Provide ASTM E84 plenum rating for 3/8-inch to 2-inch nominal tube size in plenum-rated ceiling applications. Flame spread index of 0 and smoke development index of 30 up to a maximum diameter of 2 inches nominal tube size when covered with a ½-inch to 1-inch thick ASTM E 84 rated jacketed fiberglass insulation.

B. Fittings for PEX Tube: ASTM F 1807, metal-insert type with copper or stainless-steel crimp rings and matching PEX tube dimensions.

C. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 877; with plastic or corrosion-resistant-metal valve for each outlet.

2.4 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8-inch-thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.5 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105/A21.5.

B. Form: Sheet or tube.

C. Color: Black or natural.

2.6 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.
B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the followings:
 a. Cascade Waterworks Manufacturing
 b. Dresser, Inc.; Dresser Piping Specialties
 c. Hays Fluid Controls; a division of ROMAC Industries Inc.
 d. JCM Industries
 e. Smith-Blair, Inc.
 f. Viking Johnson

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Capitol Manufacturing Company; member of the Phoenix Forge Group
 b. Central Plastics Company
 d. Jomar International
 e. Matco-Norca
 g. Watts; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company
 3. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Capitol Manufacturing Company; member of the Phoenix Forge Group
 b. Central Plastics Company
 c. Matco-Norca
 d. Watts; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company
 3. Factory-fabricated, bolted, companion-flange assembly.
4. Pressure Rating: 125 psig minimum at 180 deg F
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint
copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of
 the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company
 d. Pipeline Seal and Insulator, Inc.
 2. Nonconducting materials for field assembly of companion flanges.
 4. Gasket: Neoprene or phenolic.
 5. Bolt Sleeves: Phenolic or polyethylene.

E. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of
 the following:
 a. Elster Perfection Corporation
 b. Grinnell Mechanical Products; Tyco Fire Products LP
 c. Matco-Norca
 d. Precision Plumbing Products, Inc.
 e. Victaulic Company
 3. Electroplated steel nipple complying with ASTM F 1545.
 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
 5. End Connections: Male threaded or grooved.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic
water piping. Indicated locations and arrangements are used to size pipe and calculate friction
loss, expansion, and other design considerations. Install piping as indicated unless deviations to
layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install underground copper tube in PE encasement according to ASTM A 674 or
 AWWA C105/A21.5.
D. Install shutoff valve immediately upstream of each dielectric fitting.

E. Install domestic water piping level without pitch and plumb.

F. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

G. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

K. Install piping to permit valve servicing.

L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and branch connections.

O. Install PEX piping with loop at each change of direction of more than 90 degrees.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

H. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

I. Joints for PEX Piping: Join according to ASTM F 1807.

J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:

1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8-inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with ½-inch rod.
5. NPS 3 to NPS 5: 10 feet with ½-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with ¾-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.

H. Install hangers for vertical PEX piping every 48 inches.

I. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect domestic water piping to existing building domestic water piping with shutoff valve; extend and connect to the following:

1. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one (1) day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for 4 hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.
3.9 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for 3 hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Refer to Pipe and Fitting Schedules on Plumbing Drawings. Drawings indicate what types to use.

B. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

C. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

3.12 VALVE SCHEDULE

A. Refer to Valve Schedule on plumbing drawings. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vacuum breakers.
 2. Temperature-actuated, water mixing valves.
 3. Drain valves.
 5. Trap-seal protection devices.
 6. Flexible connectors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.
 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.
2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ames Co.
 b. Ames Fire & Waterworks
 c. Apollo Valves; Conbraco Industries, Inc.
 d. Cash Acme
 e. FEBCO
 f. Rain Bird Corporation
 g. Toro Company (The)
 h. Watts; a Watts Water Technologies company
 i. Zurn Industries, LLC

3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.
6. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Arrowhead Brass Products
 c. Cash Acme
 d. Legend Valve & Fitting, Inc.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts; a Watts Water Technologies company
 h. Woodford Manufacturing Company
 i. Zurn Industries, LLC

5. Finish: Rough bronze.

C. Pressure Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ames Co.
 b. Ames Fire & Waterworks
 c. Apollo Valves; Conbraco Industries, Inc.
d. FEBCO
e. Flomatic Corporation
f. Toro Company (The)
g. Watts; a Watts Water Technologies company
h. Zurn Industries, LLC

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig maximum, through middle third of flow range.
5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.4 TEMPERATURE-LIMITING DEVICES FOR INDIVIDUAL FIXTURES

A. Individual-Fixture, Temperature-Limiting Devices:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Acorn Engineering Company
 b. Apollo Valves; Conbraco Industries, Inc.
 c. Cash Acme
 d. Honeywell Water Controls
 e. Lawler Manufacturing Company, Inc.
 f. Leonard Valve Company
 g. Powers
 h. Watts; a Watts Water Technologies company
 i. Zurn Industries, LLC

2. Standards: ASSE 1070, water-temperature-limiting devices; NSF 61-9, lead-free.
3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Body: Cast bronze body with brass interior components.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.
8. Tempered-Water Setting: 105 deg F.
9. Tempered-Water Design Flow Rate: 0.5 gpm.

2.5 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: Class 125.
5. Inlet: NPS 3/4 threaded or solder joint.
6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.6 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. AMTROL, Inc.
 c. Josam Company
 d. MIFAB, Inc.
 e. Precision Plumbing Products
 f. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; a subsidiary of McWane Inc.
 h. Watts; a Watts Water Technologies company
 i. Zurn Industries, LLC

3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.7 TRAP SEAL PROTECTION DEVICES

A. Barrier Type Trap Seal Protection Devices:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 b. SureSeal Manufacturing
 c. Zurn Industries, LLC
 d. IPS Corporation (Trap-Tite)

3. Body: ABS or HDPE plastic.
4. Diaphragm and Sealing Gasket: Neoprene or EPDM rubber.
5. Size: 2-, 3-, or 4-inch, to match floor drain outlet.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install individual-fixture water-temperature limiting devices with check stops and according to manufacturer’s instructions and requirements.
 1. Install lavatory water-temperature limiting devices within under-lavatory enclosures.

B. Install water-hammer arresters in water piping according to PDI-WH 201, sized and located per manufacturer’s instructions and best recommendations for fixture types and quantities served.

C. Install barrier-type trap seal protection devices in accordance with manufacturer’s instructions and requirements. Confirm/provide water trap seal prior to trap seal protection device installation.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test domestic water piping specialties according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.3 ADJUSTING

A. Set field-adjustable temperature set points of water-temperature limiting devices.

END OF SECTION 221119
SECTION 221123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. In-line, close-coupled centrifugal pumps.

1.3 DEFINITIONS
 A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.

1.8 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided.
PART 2 - PRODUCTS

2.1 IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Alyan Pump Company
2. Armstrong Pumps, Inc.
3. Bell & Gossett; a Xylem brand
4. Flo Fab Inc.
5. Grundfos Pumps Corp.
7. PACO Pumps; Grundfos Pumps Corporation, USA
8. Pentair Pump Group
9. TACO Comfort Solutions, Inc.
10. Thrush Co. Inc.
11. Weinman Division

B. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted vertical.

C. Pump Construction:

1. Casing: Radially split, cast iron, with wear rings and threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections. Include pump manufacturer's base attachment for mounting pump on concrete base.
2. Impeller: Statically and dynamically balanced, closed, and keyed to shaft.
4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket. Include water slinger on shaft between motor and seal.
5. Bearings: Oil-lubricated; bronze-journal or ball type.
6. Shaft Coupling: Flexible or rigid type if pump is provided with coupling.

D. Motor: Single speed, with grease-lubricated ball bearings; rigidly mounted to pump casing.

E. Capacities and Characteristics:

1. Refer to Schedules on Drawings for pump requirements.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2.3 CONTROLS

A. Pressure Switches: Electric, adjustable for control of water-supply pump.
 1. Type: Water-immersion pressure sensor, for installation in piping.
 2. Enclosure: NEMA 250, Type 4X.
 3. Operation of Pump: On or off.
 4. Transformer: Provide if required.
 5. Power Requirement: 120 V, ac.

B. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 1. Type: Water-immersion temperature sensor, for installation in piping.
 2. Range: 65 to 200 deg F.
 3. Enclosure: NEMA 250, Type 4X.
 4. Operation of Pump: On or off.
 5. Transformer: Provide if required.

C. Timers: Electric, for control of hot-water circulation pump.
 1. Type: Programmable, seven-day clock with manual override on-off switch.
 2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
 3. Operation of Pump: On or off.
 4. Transformer: Provide if required.
 5. Power Requirement: 120-V ac.
 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven (7) days.

D. Time-Delay Relays: Electric, for control of hot-water circulation pump between water heater and connected hot-water storage tank.
 1. Type: Adjustable time-delay relay.
 2. Range: Up to 5 minutes.
 3. Setting: 5 minutes.
 4. Enclosure: NEMA 250, Type 4X.
 5. Operation of Pump: On or off.
 6. Transformer: Provide if required.
 8. Programmable Sequence of Operation: Limit pump operation to periods of burner operation plus maximum 5 minutes after the burner stops.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.
3.2 PUMP INSTALLATION
 A. Comply with HI 1.4.
 B. Install in-line, close-coupled centrifugal pumps.
 C. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of size required to support pump weight.
 D. Install pressure switches in water supply piping.
 E. Install thermostats in hot-water return piping.
 F. Install timers.

3.3 CONNECTIONS
 A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
 B. Install piping adjacent to pumps to allow service and maintenance.
 C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. In-line, close-coupled centrifugal pumps.
 D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping.
 E. Connect pressure switches, thermostats, time-delay relays, and timers to pumps that they control.

3.4 IDENTIFICATION
 A. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE
 A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Set pressure switches, thermostats, timers, and time-delay relays for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:
a. Verify bearing lubrication.
b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
c. Verify that pump is rotating in the correct direction.

6. Prime pump by opening suction valves and closing drains and prepare pump for operation.
7. Start motor.
8. Open discharge valve slowly.
9. Adjust temperature settings on thermostats.
10. Adjust timer settings.

3.6 ADJUSTING

A. Adjust domestic water pumps to function smoothly and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes Sanitary, Waste, Vent piping and shall also apply to project’s Storm piping work scope:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.5 FIELD CONDITIONS
A. Interruption of Existing Sanitary Waste and Storm Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Architect, Construction Manager and Owner’s Director of Construction and Security no fewer than five (5) days in advance of proposed interruption of sanitary waste and or storm service.
 2. Do not proceed with interruption of sanitary waste and or storm service without Owner's Director of Construction and Security’s written permission.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

2. Gravity and Pumped Condensate Piping: 10-foot head of water.

B. Seismic Performance: Soil, waste, vent and storm piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 PIPING MATERIALS

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es).

B. Gaskets: ASTM C 564, rubber.

C. Caulking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Heavy-Duty, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. ANACO-Husky
 b. Charlotte Pipe and Foundry Company
 c. Clamp-All Corp.
 d. Mission Rubber Company, LLC; a division of MCP Industries
 e. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.
SANITARY WASTE AND VENT PIPING

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.

D. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

E. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.6 PVC PIPE AND FITTINGS

B. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

D. Adhesive Primer: ASTM F 656.

E. Solvent Cement: ASTM D 2564.

2.7 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 2. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 2) Mission Rubber Company, LLC; a division of MCP Industries
 c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. End Connections: Same size as and compatible with pipes to be joined.

B. Dielectric Fittings:
1. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1) A.Y. McDonald Mfg. Co.
 2) Capitol Manufacturing Company
 3) Central Plastics Company
 4) HART Industrial Unions, LLC
 5) Jomar Valve
 6) Matco-Norca
 7) Watts; a Watts Water Technologies company
 8) Wilkins
 9) Zurn Industries, LLC

 b. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 125 psig minimum at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

2. Dielectric Flanges:
 a. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1) Capitol Manufacturing Company
 2) Central Plastics Company
 3) Matco-Norca
 4) Watts; a Watts Water Technologies company
 5) Wilkins
 6) Zurn Industries, LLC

 b. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 125 psig minimum at 180 deg F.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

3. Dielectric-Flange Insulating Kits:
 a. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1) Advance Products & Systems, Inc.
 2) Calpico, Inc.
 3) Central Plastics Company
 4) Pipeline Seal and Insulator, Inc.
b. Description:

1) Nonconducting materials for field assembly of companion flanges.
2) Pressure Rating: 150 psig.
3) Gasket: Neoprene or phenolic.
4) Bolt Sleeves: Phenolic or polyethylene.
5) Washers: Phenolic with steel backing washers.

4. Dielectric Nipples:

a. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1) Elster Perfection Corporation
2) Grinnell Mechanical Products
3) Matco-Norca
4) Precision Plumbing Products
5) Victaulic Company

b. Description:

1) Standard: IAPMO PS 66.
2) Electroplated steel nipple.
3) Pressure Rating: 300 psig at 225 deg F.
4) End Connections: Male threaded or grooved.
5) Lining: Inert and noncorrosive, propylene.

2.8 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Standard: ASTM A 674 or AWWA C105/A 21.5.

B. Material: Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.

C. Form: Sheet or tube.

D. Color: Black or natural.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.

1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping per the requirements of the Connecticut State Building Code. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Make changes in direction for soil and waste drainage and vent, and storm piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep ¼-bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two (2) fixtures are installed back to back or side by side with common drain pipe.
 a. Straight tees, elbows, and crosses may be used on vent lines.
 3. Do not change direction of flow more than 90 degrees.
 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 a. Reducing size of waste piping in direction of flow is prohibited.

L. Lay buried building waste piping beginning at low point of each system.
 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 3. Maintain swab in piping and pull past each joint as completed.

M. Install gravity soil and waste and vent and storm piping at the following minimum slopes unless otherwise indicated:
1. Building Sanitary Waste and Storm: Two percent (2%) downward in direction of flow for piping NPS 3 and smaller; two percent (2%) downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Waste and Storm Piping: Two percent (2%) downward in direction of flow.
3. Vent Piping: One percent (1%) down toward vertical fixture vent or toward vent stack.

N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

P. Install aboveground PVC piping according to ASTM D 2665.

Q. Install underground PVC piping according to ASTM D 2321.

R. Plumbing Specialties:
 1. Install backwater valves in pumped condensate branch connections to storm gravity-flow piping.
 a. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."

S. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

T. Install sleeves for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs.
 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.
 1. Cut threads full and clean using sharp dies.
 2. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 c. Do not use pipe sections that have cracked or open welds.

E. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

F. Plastic, Non-Pressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 appendixes.

3.3 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in ODs.
 2. In Waste Drainage Piping: Shielded, non-pressure transition couplings.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 VALVE INSTALLATION

A. Backwater Valves: Install backwater valves in pumped condensate branch connection to gravity storm piping systems.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 2. Install backwater valves in accessible locations.
3. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install stainless-steel or fiberglass pipe hangers for horizontal piping in corrosive environments.
3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
5. Vertical Piping: MSS Type 8 or Type 42, clamps.
6. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
8. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one (1) size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with ½-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with ¾-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/4 and Smaller: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
3. NPS 2-1/2: 108 inches with ½-inch rod.
4. NPS 3 and NPS 5: 10 feet with ½-inch rod.
5. NPS 6: 10 feet with 5/8-inch rod.
6. NPS 8: 10 feet with ¾-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

J. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with ½-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 48 inches with ¾-inch rod.
 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

K. Install supports for vertical PVC piping every 48 inches.

L. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:
 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 3. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 4. Install horizontal backwater valves concealed from public view but readily accessible.
 5. Comply with requirements for backwater valves, cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 6. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent and storm piping.
B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary waste, vent, storm and gravity and pumped condensate piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.
 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 c. Inspect joints for leaks.
 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 d. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.
D. Repair damage to adjacent materials caused by waste and vent piping installation.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
B. Refer to Schedules on Drawings.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes specialties for project Sanitary, Waste, Vent and Storm piping systems:
 1. Backwater valves.
 2. Cleanouts.
 3. Through-penetration firestop assemblies.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.
C. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include (as applicable) rated capacities, operating characteristics, and accessories for the following:
 1. Backwater Valves.
 2. Cleanouts

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14 for plastic sanitary waste piping specialty components.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 BACKWATER VALVES

A. Horizontal, Plastic Backwater Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Canplas LLC
 b. IPS Corporation
 c. NDS Inc.
 d. Oatey
 e. Plastic Oddities
 f. Sioux Chief Manufacturing Company, Inc.
 g. Zurn Industries, LLC

2. Size: Same as connected piping.
3. Body: PVC.
4. Check Valve: Removable swing check.
5. End Connections: Socket type.

2.3 CLEANOUTS

A. Cast-Iron Exposed Floor Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 b. Josam Company
 c. Oatey
 d. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; a subsidiary of McWane Inc.
 f. Watts; a Watts Water Technologies company
 g. Zurn Industries, LLC

2. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Heavy-duty, adjustable housing.
5. Body or Ferrule: Cast iron.
8. Closure: Bronze or ABS plastic plug.
9. Adjustable Housing Material: Cast iron with threads.
11. Frame and Cover Shape: Round.
12. Top Loading Classification: Heavy-duty.
13. Vandalproof Top: Required.
14. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ProSet Systems Inc.

3. Size: Same as connected soil, waste, or vent stack.
4. Sleeve: Molded-PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
6. Special Coating: Corrosion resistant on interior of fittings.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Sleeve Flashing Device:

1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1-inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
2. Size: As required for close fit to riser or stack piping.
3. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backwater valves in pumped condensate branch connections to existing building storm leaders.

1. Install with adequate clearance for access and maintenance.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.
C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.

 1. Comply with requirements in Section 078413 "Penetration Firestopping."

F. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

G. Install wood-blocking reinforcement for wall-mounting-type specialties.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:

 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Verify proper operation of backwater valves.
3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Commercial, electric, storage, domestic-water heaters.
 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS
A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For commercial domestic-water heaters, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
B. Product Certificates: For each type of commercial, electric, domestic-water heater, from manufacturer.
C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
D. Source quality-control reports.
E. Field quality-control reports.
F. Warranty: Sample of special warranty.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For electric, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.

 a. Commercial, Electric, Storage, Domestic-Water Heaters:

 1) Storage Tank: Three (3) years.
 2) Controls and Other Components: Three (3) years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

A. Commercial, Electric, Storage, Domestic-Water Heaters:

 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
ELECTRIC, DOMESTIC-WATER HEATERS

a. American Water Heaters
b. Lochinvar, LLC
c. PVI Industries, LLC
d. Rheem Manufacturing Company
e. Smith, A. O. Corporation
f. State Industries

 a. Tappings: Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges, and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Pressure Rating: 150 psig.
 c. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending lining material into tappings.

4. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 c. Insulation: Comply with ASHRAE/IESNA 90.1.
 d. Jacket: Steel with enameled finish.
 e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three (3).
 f. Temperature Control: Adjustable thermostat.
 g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.
 h. Relief Valves: ASME rated and stamped for combination temperature-and-pressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

5. Special Requirements: NSF 5 construction.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. AMTROL, Inc.
 b. Flexcon Industries
c. Honeywell Water Controls
d. Pentair Pump Group
e. Smith, A. O. Corporation
f. State Industries
g. TACO Comfort Solutions, Inc.

2. Description: Steel pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

4. Capacity and Characteristics:
 a. Working-Pressure Rating: 100 psig.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than those indicated on schedules and or details, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.

D. Heat-Trap Fittings: ASHRAE 90.2.

E. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

F. Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than domestic-water heater working-pressure rating.

H. Shock Absorbers: ASSE 1010 or PDI-WH 201, Size A water hammer arrester.

I. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half (1½) times pressure rating before shipment.
C. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base.

1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping."

C. Install commercial, electric, domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

D. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap to drain pan (if specified) or to closest floor drain.

E. Install water-heater drain piping as indirect waste to spill by positive air gap into drain pan (if specified) or to floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
F. Install thermometer in thermowell on outlet piping of electric, domestic-water heaters and on outlet piping of TMV-1 (water heater system thermostatic mixing valve). Thermometers shall be ASME B40.200, compact, high range (0 to 220 deg F), direct mounted, adjustable position, bimetallic insertion type, tapered end sensing element, rust-resistant metal case, 1- to 2-inch dial with plastic or glass face. Accuracy: Plus or minus one percent (+/-1%) of scale range. Thermowells: ASME B40.200, pressure-tight, socket-type fitting, CNR or CUNI material.

G. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.

H. Fill electric, domestic-water heaters with water.

I. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

END OF SECTION 223300
SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.

1.3 DEFINITIONS

A. Effective Flush Volume: Average of two (2) reduced flushes and one (1) full flush per fixture.

B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 1. Flushometer-Valve Repair Kits: Equal to ten percent (10%) of amount of each type installed, but no fewer than one (1) of each type.
PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET TOP-SPUD WATER CLOSETS

A. Water Closets: Floor mounted, bottom outlet, top spud.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. American Standard America
 b. Briggs Plumbing Products, Inc.
 c. Crane Plumbing, LLC
 d. Gerber Plumbing Fixtures LLC
 e. Kohler Co.
 f. Mansfield Plumbing Products LLC
 g. Sloan Valve Company
 h. TOTO USA, INC.
 i. Zurn Industries, LLC

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve.
 f. Rim Contour: Elongated.
 g. Water Consumption: 1.28 gal. per flush.
 h. Spud Size and Location: NPS 1-1/2; top.
 i. Color: White.

3. Bowl-to-Drain Connecting Fitting: ASTM A 1045 or ASME A112.4.3.
4. Refer to Fixture Schedule on Drawings for Basis-of-Design and additional requirements.

2.2 FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Delany Products
 b. Gerber Plumbing Fixtures LLC
 c. Sloan Valve Company
 d. Zurn Industries, LLC

4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless-steel.
9. Consumption: 1.28 gal. per flush.
12. Refer to Fixture Schedule on Drawings for Basis-of-Design and additional requirements.

2.3 TOILET SEATS

A. Toilet Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. American Standard America
 b. Bemis Manufacturing Company
 c. Centoco Manufacturing Corporation
 d. Church Seats; Bemis Manufacturing Company
 e. Kohler Co.
 f. Olsonite Seat Co.
 g. TOTO USA, INC
 h. Zurn Industries, LLC

4. Type: Commercial (heavy-duty).
5. Shape: Elongated rim, open front.
8. Seat Cover: Not required.
10. Refer to Fixture Schedule on Drawings for Basis-of-Design.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:

1. Install level and plumb according to roughing-in Drawings.
2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.

B. Flushometer-Valve Installation:
 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
 4. Install actuators in locations that are easy for people with disabilities to reach.

C. Install toilet seats on water closets.

D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.
 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13
SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Lavatories.
 2. Faucets.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Cartridges and O-Rings: Equal to five percent (5%) of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES
A. Lavatory: Vitreous china, wall mounted, with faucet ledge.
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. American Standard America
 b. Briggs Plumbing Products, Inc.
 c. Crane Plumbing, LLC
 d. Gerber Plumbing Fixtures LLC
 e. Kohler Co.
 f. Peerless Pottery Sales, Inc.
 g. Sloan Valve Company

2. Fixture:
 b. Type: For concealed arms.
 c. Nominal Size: Rectangular, 18½ by 17 inches overall; 14¼-by-10¾-inch bowl size.
 d. Faucet-Hole Punching: for 4-inch center set faucet (three (3) holes on 2-inch centers).
 e. Faucet-Hole Location: Top.
 g. Mounting: Concealed arms, floor-mounted wall support.

3. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1.
4. Refer to Fixture Schedule on Drawings for Basis-of-Design.

2.2 SOLID-METAL, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, single-control mixing, commercial, solid-metal valve.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. American Standard America
 b. Bradley Corporation
 c. Chicago Faucets; Geberit Company
 d. Delta Faucet Company
 e. Elkay Manufacturing Co.
 f. Gerber Plumbing Fixtures LLC
 g. GROHE America, Inc.
 h. Just Manufacturing
 i. Kohler Co.
 j. Moen Incorporated
 k. Speakman Company
 l. Symmons Industries, Inc.
 m. T & S Brass and Bronze Works, Inc.

3. General: Coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
4. Body Type: Center set.
7. Maximum Flow Rate: 0.5 gpm.
8. Mounting Type: Deck, exposed.
9. Valve Handle(s): Single lever, 6-inch.
10. Spout: Rigid type.
11. Spout Outlet: 0.5 GPM aerator.
12. Drain: Grid type; part of faucet package.
13. Refer to Fixture Schedule on Drawings for Basis-of-Design.

2.3 SUPPORTS

A. Lavatory Carrier – Floor-mounted wall lavatory support for concealed arms:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 b. Josam Company
 c. MIFAB, Inc.
 d. Wade Drains
 e. Watts; a Watts Water Technologies company
 f. Zurn Industries, LLC
 2. Standard: ASME A112.6.1M.

2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 2. Chrome-plated, soft-copper flexible tube or ASME A112.18.6, braided- or corrugated-stainless-steel, flexible hose riser.
2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.6 SUPPORTS

A. Floor-mounted wall lavatory support for concealed arms:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.

B. Examine walls for suitable conditions where lavatories will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-mounted lavatories.

C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.

D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

F. Install protective shielding enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."
3.3 CONNECTIONS
 A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
 B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
 C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING
 A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
 B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION
 A. After completing installation of lavatories, inspect and repair damaged finishes.
 B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
 C. Provide protective covering for installed lavatories and fittings.
 D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13
SECTION 224716 - PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes pressure water coolers and related components.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of pressure water cooler.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filter Cartridges: Equal to ten percent (10%) of quantity installed for each type and size indicated, but no fewer than one (1) of each.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS
 A. Pressure Water Coolers: Wall mounted, two cabinets, standard and wheelchair accessible, with bottle filler.
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Elkay Manufacturing Co.
 b. Halsey Taylor
 c. Haws Corporation
d. Larco Inc.

e. Tri Palm International, LLC

2. Cabinet: Bi-level with two (2) attached cabinets.
3. Cane apron on Upper Basin: Required.
4. Bubblers: Mechanically activated, double stream, laminar flow, one (1) located on each cabinet deck.
5. Controls: Front and side push bars, for each basin.
8. Drains: Grid with NPS 1-1/4 tailpiece, one (1) for each basin.
10. Waste Fitting: ASME A112.18.2/CSA B125.2, collect (2) NPS 1-1/4: wastes within cooler cabinets and provide NPS 1-1/4 brass P-trap.
11. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.

a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

12. Capacities and Characteristics:

b. Ambient-Air Temperature: 90 deg F.
c. Inlet-Water Temperature: 80 deg F.
d. Cooled-Water Temperature: 50 deg F.
e. Electrical Characteristics:

2) Volts: 120-V ac.
3) Phase: Single.
4) Hertz: 60.
5) Full-Load Amperes: 6.0

2.2 SUPPORTS

A. Type II Water Cooler Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

b. Josam Company
c. MIFAB, Inc.
d. Wade Drains
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.

B. Examine walls and floors for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.

B. Install floor-mounted carrier supports, affixed to building substrate, for wall-mounted fixtures.

C. Install manufacturer’s hanger brackets and attach pressure water coolers to hanger brackets.

D. Secure pressure water cooler to floor mounted carrier supports via manufacturer’s hanger brackets, complying with manufacturer’s instructions and best recommendations.

E. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523.12 "Ball Valves for Plumbing Piping."

F. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

G. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

H. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Install ball or gate shutoff valve on water supply to each fixture. Install valve upstream from filter for water cooler. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224716
SECTION 230000 - BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Sleeves.
5. Escutcheons.
7. Mechanical demolition.
8. Equipment installation requirements common to equipment sections.
9. Concrete bases.
10. Supports and anchorages.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Mechanical Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS
A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
D. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
E. Welding Filler Metals: Comply with AWS D10.12.

2.3 DIELECTRIC FITTINGS
A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
B. Insulating Material: Suitable for system fluid, pressure, and temperature.
C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
2.4 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

C. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

2.5 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.

1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.

1. Finish: Polished chrome-plated.

2.7 GROUT

A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.

1. Characteristics: Post-hardening, volume-adjusting, non-staining, noncorrosive, nongaseous, and recommended for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

P. Verify final equipment locations for roughing-in.

Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.
3.4 EQUIPMENT INSTALLATION – COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.
3.8 GROUTING

A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 230000
SECTION 230123.51 - HVAC AIR DISTRIBUTION SYSTEM CLEANING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes cleaning HVAC air-distribution equipment, ducts, plenums, and system components.

1.3 DEFINITIONS
A. ASCS: Air systems cleaning specialist.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For an ASCS.
B. Strategies and procedures plan.
C. Cleanliness verification report.

1.5 QUALITY ASSURANCE
A. ASCS Qualifications: A certified member of NADCA.
 1. Certification: Employ an ASCS certified by NADCA on a full-time basis.
 2. Supervisor Qualifications: Certified as an ASCS by NADCA.
B. UL Compliance: Comply with UL 181 and UL 181A for fibrous-glass ducts.
C. Cleaning Conference: Conduct conference at Project site.
 1. Review methods and procedures related to HVAC air-distribution system cleaning including, but not limited to, review of the cleaning strategies and procedures plan.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine HVAC air-distribution equipment, ducts, plenums, and system components to
determine appropriate methods, tools, and equipment required for performance of the Work.

B. Perform "Project Evaluation and Recommendation" according to NADCA ACR 2006.

C. Prepare written report listing conditions detrimental to performance of the Work.

D. Proceed with work only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare a written plan that includes strategies and step-by-step procedures. At a minimum,
include the following:

1. Supervisor contact information.
2. Work schedule including location, times, and impact on occupied areas.
3. Methods and materials planned for each HVAC component type.
4. Required support from other trades.
5. Equipment and material storage requirements.
6. Exhaust equipment setup locations.

B. Use the existing service openings, as required for proper cleaning, at various points of the
HVAC system for physical and mechanical entry and for inspection.

C. Comply with NADCA ACR 2006, "Guidelines for Constructing Service Openings in HVAC
Systems" Section.

3.3 CLEANING

A. Clean all supply, return, exhaust and outside air ductwork associated with work of this project.

B. Comply with NADCA ACR 2006.

C. Remove visible surface contaminants and deposits from within the HVAC system.

D. Systems and Components to Be Cleaned:

1. Air devices for supply and return air.
2. Air-terminal units.
3. Ductwork:
 a. Supply-air ducts, including turning vanes, to the air-handling unit.
 b. Return-air ducts to the air-handling unit.
 c. Exhaust-air ducts.
 d. Outside air intake ducts.
4. **Air-Handling Units:**
 a. Interior surfaces of the unit casing.
 b. Coil surfaces compartment.
 c. Condensate drain pans.
 d. Fans, fan blades, and fan housings.

5. **Exhaust Fans:**
 a. Interior surfaces of the unit casing.
 b. Roof curbs.
 c. Associated louvers.
 d. Fan, fan blades and fan housings.

6. **Filters and filter housings.**

E. Collect debris removed during cleaning. Ensure that debris is not dispersed outside the HVAC system during the cleaning process.

F. **Particulate Collection:**
 1. For particulate collection equipment, include adequate filtration to contain debris removed. Locate equipment downwind and away from all air intakes and other points of entry into the building.
 2. HEPA filtration with 99.97 percent collection efficiency for particles sized 0.3 micrometer or larger shall be used where the particulate collection equipment is exhausting inside the building.

G. Control odors and mist vapors during the cleaning and restoration process.

H. Mark the position of manual volume dampers and air-directional mechanical devices inside the system prior to cleaning. Restore them to their marked position on completion of cleaning.

I. System components shall be cleaned so that all HVAC system components are visibly clean. On completion, all components must be returned to those settings recorded just prior to cleaning operations.

J. Clean all air-distribution devices, registers, grilles, and diffusers.

K. Clean visible surface contamination deposits according to NADCA ACR 2006 and the following:
 1. Clean air-handling units, airstream surfaces, components, condensate collectors, and drains.
 2. Ensure that a suitable operative drainage system is in place prior to beginning wash-down procedures.
 3. Clean evaporator coils, reheat coils, and other airstream components.

L. **Duct Systems:**
 1. Create service openings in the HVAC system as necessary to accommodate cleaning.
HVAC AIR DISTRIBUTION SYSTEM CLEANING

2. Mechanically clean duct systems specified to remove all visible contaminants so that the systems are capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).

M. Debris removed from the HVAC system shall be disposed of according to applicable Federal, state, and local requirements.

N. Mechanical Cleaning Methodology:

1. Source-Removal Cleaning Methods: The HVAC system shall be cleaned using source-removal mechanical cleaning methods designed to extract contaminants from within the HVAC system and to safely remove these contaminants from the facility. No cleaning method, or combination of methods, shall be used that could potentially damage components of the HVAC system or negatively alter the integrity of the system.

 a. Use continuously operating vacuum-collection devices to keep each section being cleaned under negative pressure.
 b. Cleaning methods that require mechanical agitation devices to dislodge debris that is adhered to interior surfaces of HVAC system components shall be equipped to safely remove these devices. Cleaning methods shall not damage the integrity of HVAC system components or damage porous surface materials such as duct and plenum liners.

2. Cleaning Mineral-Fiber Insulation Components:

 a. Fibrous-glass thermal or acoustical insulation elements present in equipment or ductwork shall be thoroughly cleaned with HEPA vacuuming equipment while the HVAC system is under constant negative pressure and shall not be permitted to get wet according to NADCA ACR 2006.
 b. Cleaning methods used shall not cause damage to fibrous-glass components and will render the system capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).
 c. Fibrous materials that become wet shall be discarded and replaced.

O. Coil Cleaning:

1. See NADCA ACR 2006, "Coil Surface Cleaning" Section. Type 1, or Type 1 and Type 2, cleaning methods shall be used to render the coil visibly clean and capable of passing Coil Cleaning Verification (see applicable NADCA ACR 2006).
2. Coil drain pans shall be subject to NADCA ACR 2006, "Non-Porous Surfaces Cleaning Verification." Ensure that condensate drain pans are operational.
3. Cleaning methods shall not cause any appreciable damage to, cause displacement of, inhibit heat transfer, or cause erosion of the coil surface or fins, and shall comply with coil manufacturer's written recommendations when available.
4. Rinse thoroughly with clean water to remove any latent residues.

P. Antimicrobial Agents and Coatings:

1. Apply antimicrobial agents and coatings if active fungal growth is reasonably suspected or where unacceptable levels of fungal contamination have been verified. Apply
antimicrobial agents and coatings according to manufacturer's written recommendations and EPA registration listing after the removal of surface deposits and debris.

2. When used, antimicrobial treatments and coatings shall be applied after the system is rendered clean.

3. Apply antimicrobial agents and coatings directly onto surfaces of interior ductwork.

4. Sanitizing agent products shall be registered by the EPA as specifically intended for use in HVAC systems and ductwork.

3.4 CLEANLINESS VERIFICATION

A. Verify cleanliness according to NADCA ACR 2006, "Verification of HVAC System Cleanliness" Section.

B. Verify HVAC system cleanliness after mechanical cleaning and before applying any treatment or introducing any treatment-related substance to the HVAC system, including biocidal agents and coatings.

C. Perform visual inspection for cleanliness. If no contaminants are evident through visual inspection, the HVAC system shall be considered clean. If visible contaminants are evident through visual inspection, those portions of the system where contaminants are visible shall be re-cleaned and subjected to re-inspection for cleanliness.

D. Additional Verification:

1. Perform surface comparison testing or NADCA vacuum test.
2. Conduct NADCA vacuum gravimetric test analysis for nonporous surfaces.

E. Verification of Coil Cleaning:

1. Measure static-pressure differential across each coil.
2. Coil will be considered clean if cleaning restored the coil static-pressure differential within ten percent (10%) of the differential measured when the coil was first installed.
3. Coil will be considered clean if the coil is free of foreign matter and chemical residue, based on a thorough visual inspection.

F. Prepare a written cleanliness verification report. At a minimum, include the following:

1. Written documentation of the success of the cleaning.
2. Site inspection reports, initialed by supervisor, including notation on areas of inspection, as verified through visual inspection.
3. Surface comparison test results if required.
4. Gravimetric analysis (nonporous surfaces only).
5. System areas found to be damaged.

G. Photographic Documentation: Provide photographic evidence of coils, ducts and grilles being cleaned.

3.5 RESTORATION

A. Restore and repair HVAC air-distribution equipment, ducts, plenums, and components according to NADCA ACR 2006, "Restoration and Repair of Mechanical Systems" Section.
HVAC AIR DISTRIBUTION SYSTEM CLEANING

B. Restore service openings capable of future reopening. Include location of service openings in Project closeout report.

C. Replace fibrous-glass materials that cannot be restored by cleaning or resurfacing. Comply with requirements in Section 233113 "Metal Ducts".

D. Replace damaged insulation according to Section 230713 "Duct Insulation."

E. Ensure that closures do not hinder or alter airflow.

F. New closure materials, including insulation, shall match opened materials and shall have removable closure panels fitted with gaskets and fasteners.

END OF SECTION 230130.51
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230516 - EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Flexible, ball-joint packed expansion joints.
 2. Slip-joint, packed expansion joints.
 3. Metal, compensator packless expansion joints.
 4. Rubber union connector packless expansion joints.
 5. Flexible-hose packless expansion joints.
 6. Metal-bellows packless expansion joints.
 7. Externally pressurized metal-bellows packless expansion joints.
 8. Alignment guides and anchors.
 9. Pipe loops and swing connections.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Delegated-Design Submittal: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb two hundred percent (200%) of maximum axial movement between anchors.

2.2 PACKED EXPANSION JOINTS

A. Flexible, Ball-Joint Packed Expansion Joints:

3. Design: Provide 360-degree rotation and angular deflection.
4. Minimum Pressure Rating: 250 psig at 400 deg F.
5. Angular Deflection for NPS 6 and Smaller: 30 degree minimum.
6. Angular Deflection for NPS 8 and Larger: 15 degree minimum.
7. Seal Type: Two (2) carbon steel and graphite seals suitable for continuous operation at temperature up to 650 deg F.
8. Internal Ball: Plated with minimum 1-mil chrome cover.
9. Ball Socket: One- or two-piece design with integral socket/retainer.
 a. Stuffing Box: Incorporates containment seals and compression seals for containment of injectable packing.
 b. Packing Cylinders: Provides packing under full line pressure with check valves to prevent blowback.
10. End Connections for NPS 2 and Smaller: Threaded.
11. End Connections for NPS 2-1/2 and Larger: Flanged.

B. Slip-Joint Packed Expansion Joints:

3. Design: With internal guide and injection ports for repacking under full system pressure. Housing shall be furnished with drain ports and lifting ring. Include drip connection if used for steam piping.
4. Configuration: Single joint, Single joint with base and double joint with base class(es), unless otherwise indicated.
5. Slip Tube for sizes NPS 1-1/2 through NPS 16: Schedule 80.
7. End Connections: Flanged or welded ends to match piping system.
2.3 PACKLESS EXPANSION JOINTS

A. Metal, Compensator Packless Expansion Joints:

1. Minimum Pressure Rating: 150 psig, unless otherwise indicated.
2. Description: Totally enclosed, externally pressurized, multi-ply bellows isolated from fluid flow by an internal pipe sleeve and external housing.
4. Configuration for Copper Tubing: Multi-ply, phosphor-bronze bellows with copper pipe ends.
 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Threaded.

5. Configuration for Steel Piping: Multi-ply, stainless-steel bellows; steel-pipe end connections; and carbon-steel shroud.
 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 to NPS 4: Welded.

B. Rubber Union Connector Expansion Joints:

1. Material: Twin reinforced-rubber spheres with external restraining cables.
2. Minimum Pressure Rating: 150 psig at 170 deg F, unless otherwise indicated.
3. End Connections for NPS 2 and Smaller: Threaded.

C. Flexible-Hose Packless Expansion Joints:

1. Description: Manufactured assembly with inlet and outlet elbow fittings and two (2) flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.
2. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
3. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.
 a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 b. Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.
4. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.
5. Expansion Joints for Steel Piping NPS 2 and Smaller: Carbon-steel fittings with threaded end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.

7. Expansion Joints for Steel Piping NPS 8 to NPS 12: Carbon-steel fittings with welded end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.

D. Metal-Bellows Packless Expansion Joints:
 2. Type: Circular, corrugated bellows with external tie rods.
 3. Minimum Pressure Rating: 150 psig, unless otherwise indicated.
 4. Configuration: Single joint, Single joint with base, and double joint with base classes, unless otherwise indicated.
 5. Expansion Joints for Copper Tubing: multi-ply phosphor-bronze bellows, copper pipe ends, and brass shrouds.
 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Solder joint.
 c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.

 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 and Larger: Welded.

E. Externally Pressurized Metal-Bellows Packless Expansion Joints:
 1. Minimum Pressure Rating: 150 psig, unless otherwise indicated.
 2. Description:
 a. Totally enclosed, externally pressurized, multi-ply, stainless-steel bellows isolated from fluid flow by an internal pipe sleeve.
 b. Carbon-steel housing.
 c. Drain plugs and lifting lug for the NPS 3 and larger.
 d. Bellows shall have operating clearance between the internal pipe sleeves and the external shrouds.
 e. Joints shall be supplied with a built-in scale to confirm the starting position and operating movement.
 3. Permanent Locking Bolts: Set locking bolts to maintain joint lengths during installation. Temporary welding tabs that are removed after installation in lieu of locking bolts are not acceptable.
 4. End Connection Configuration: Flanged; one (1) raised, fixed and one (1) floating flange.
2.4 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:
 1. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.

B. Anchor Materials:
 1. Steel Shapes and Plates: ASTM A 36.
 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened Portland cement concrete, with tension and shear capacities appropriate for application.
 5. Chemical Fasteners: Insert-type stud, bonding-system anchor for use with hardened Portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

PART 3 - EXECUTION

3.1 GENERAL

A. Contractor shall obtain the services of a registered professional engineer specializing in the design of expansion loops and fittings. Engineer shall determine quantity, size and location of expansion joints and fittings as required to meet the system’s expansion needs.

B. Provide expansion fittings and loops as required for hot water supply and return piping.

C. Contractor and engineer shall note, and take into account, the limited ceiling space within the existing and new buildings. Provide expansion joints as opposed to expansion loops in order to conserve space.

D. Professional engineer will determine appropriate style of expansion fitting for each application and location based on field conditions.

3.2 EXPANSION JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.
B. Install packed-type expansion joints with packing suitable for fluid service.

C. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

D. Install rubber packless expansion joints according to FSA-PSJ-703.

E. Install grooved-joint expansion joints to grooved-end steel piping.

3.3 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least five (5) pipe fittings, including tee in main.

C. Connect risers and branch connections to terminal units with at least four (4) pipe fittings, including tee in riser.

D. Connect mains and branch connections to terminal units with at least four (4) pipe fittings, including tee in main.

3.4 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install two (2) guides on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four (4) pipe diameters from expansion joint.

C. Attach guides to pipe, and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:

2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1.

1. Anchor Attachment to Steel Structural Members: Attach by welding.

2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.
END OF SECTION 230516
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
2.2 STACK-SLEEVE FITTINGS

A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless-steel.
 3. Connecting Bolts and Nuts: Stainless-steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Non-shrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide ¼-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide ¼-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing.
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.
3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Stack-sleeve fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

5. Interior Partitions:

END OF SECTION 230517
SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
 E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated rough-brass finish.

h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.

i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated rough-brass finish.

j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518
SECTION 230519 – METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Filled-system thermometers.
 4. Thermowells.
 5. Dial-type pressure gages.
 7. Test plugs.
 8. Test-plug kits.
 B. Related Sections:
 1. Section 231123 "Facility Natural-Gas Piping" for gas meters.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
1. Ashcroft Inc.
2. Palmer Wahl Instrumentation Group
3. Trerice, H. O. Co.
4. Ernst Flow Industries
5. Miljoco Corporation

C. Case: Liquid-filled and sealed type; stainless-steel with 5-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: \(\frac{1}{2}\)-inch, with ASME B1.1 screw threads.

G. Stem: 0.375-inch in diameter; stainless-steel.

H. Window: Plain glass.

I. Ring: Stainless-steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus one percent (+/-1%) of scale range.

2.2 FILLED-SYSTEM THERMOMETERS

A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ashcroft Inc.
 b. Palmer Wahl Instrumentation Group
 c. Trerice, H. O. Co.
 d. Miljoco Corporation
 e. Weiss Instruments, Inc.

3. Case: Sealed type, cast aluminum, 5-inch nominal diameter.

4. Element: Bourdon tube.

5. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.

6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.

8. Window: Glass.

10. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device with ASME B1.1 screw threads.

11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.

12. Accuracy: Plus or minus one and one-half percent (+/-1.5%) of scale range.

B. Remote-Mounted, Metal-Case, Vapor-Actuated Thermometers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Trerice, H. O. Co.
 b. Miljoco Corporation
 c. Weiss Instruments, Inc.
 d. Ashcroft Inc.

 3. Case: Sealed type, cast aluminum 5-inch nominal diameter with back flange and holes for panel mounting.

 4. Element: Bourdon tube or other type of pressure element.

 5. Movement: Mechanical, with link to pressure element and connection to pointer.

 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.

 8. Window: Glass.

 10. Connector Type(s): Union joint, bottom; with ASME B1.1 screw threads.

 11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.

 b. Design for Thermowell Installation: Bare stem.

 12. Accuracy: Plus or minus one and one-half percent (+/-1.5%) of scale range.

2.3 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Trerice, H. O. Co.
 b. Dresser Industries, Inc.; Instrument Div.; Weksler Instruments Operating Unit
 c. Ernst Gage Co.
3. Case: Cast aluminum; 6-inch nominal size.
4. Case Form: Straight unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Brass and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus one percent (+/-1%) of scale range or one scale division, to a maximum of one and one-half percent (1.5%) of scale range.

B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Flo Fab Inc.
 b. Palmer Wahl Instrumentation Group
 c. Trerice, H. O. Co.
 d. Miljoco Corporation
 e. Weiss Instruments, Inc.
3. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Brass and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus one percent (+/-1%) of scale range or one scale division, to a maximum of one and one-half percent (1.5%) of scale range.

2.4 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.5 THERMOWELLS

A. Thermowells:
2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
3. Material for Use with Copper Tubing: Stainless-Steel.
5. Type: Stepped shank unless straight or tapered shank is indicated.
6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
8. Bore: Diameter required to match thermometer bulb or stem.
9. Insertion Length: Length required to match thermometer bulb or stem.
10. Lagging Extension: Include on thermowells for insulated piping and tubing.
11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

2.6 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Trerice, H. O. Co.
 b. Ashcroft, Inc
 c. Ernst Flow Industries
 d. Palmer Wahl Instrumentation Group

4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus one percent (+/-1%) of middle half of scale range.

B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products or comparable product by one (1) of the following:
 a. AMETEK, Inc.; U.S. Gauge
 b. Palmer Wahl Instrumentation Group
 c. Trerice, H. O. Co.
 d. Ashcroft, Inc.
 e. Ernst Flow Industries

3. Case: Liquid-filled type; cast aluminum; 4½-inch nominal diameter with back flange and holes for panel mounting.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus one percent (±1%) of middle half of scale range.

2.7 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 ASME B1.20.1 pipe threads and porous-metal-type surge-dampening device. Include extension for use on insulated piping.

B. Siphons: Loop-shaped section of brass pipe with NPS 1/4 pipe threads.

C. Valves: Brass ball with NPS 1/4, ASME B1.20.1 pipe threads.

2.8 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Flow Design, Inc.
2. Miljoco Corporation
3. Trerice, H. O. Co.
4. Peterson Equipment Co., Inc.
5. Weiss Instruments, Inc.

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless-steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: EPDM self-sealing rubber.

2.9 TEST-PLUG KITS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Flow Design, Inc.
2. Miljoco Corporation
3. Trerice, H. O. Co.
4. Peterson Equipment Co., Inc.
5. Weiss Instruments, Inc.
B. Furnish one (1) test-plug kit containing two (2) thermometers, one (1) pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 100 deg F.

D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.

E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch-diameter dial and probe. Dial range shall be at least 0 to 200 psig.

F. Carrying Case: Metal or plastic, with formed instrument padding.

2.10 SIGHT FLOW INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products or comparable product by one (1) of the following:

1. Archon Industries, Inc.
2. Dwyer Instruments, Inc.
3. Emerson Process Management; Brooks Instrument
4. Ernst Flow Industries
5. KOBOLD Instruments, Inc. - USA; KOBOLD Messring GmbH

B. Description: Piping inline-installation device for visual verification of flow.

C. Construction: Bronze with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.

D. Minimum Pressure Rating: 150 psig.

E. Minimum Temperature Rating: 200 deg F.

F. End Connections for NPS 2 and Smaller: Threaded.

G. End Connections for NPS 2-1/2 and Larger: Flanged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.
D. Fill thermowells with heat-transfer medium.
E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
I. Install remote-mounted pressure gages on panel.
J. Install valve and snubber in piping for each pressure gage for fluids.
K. Install test plugs in piping tees.
L. Install flow indicators in piping systems in accessible positions for easy viewing.
M. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
N. Install permanent indicators on walls or brackets in accessible and readable positions.
O. Install connection fittings in accessible locations for attachment to portable indicators.
P. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic zone.
 2. Inlet and outlet of each hydronic coil in air-handling units.
 3. Outside-, return-, supply-, and mixed-air ducts.
Q. Install pressure gages in the following locations:
 1. Inlet and outlet of each hot water connection.
 2. Suction and discharge of each pump.
 3. Inlet and outlet of each chiller.
R. Install pressure/temperature ports in the following locations:
 1. Inlet and outlet of each hydronic zone.
 2. Inlet and outlet of each hydronic coil in air-handling units.

3.2 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
B. Connect flowmeter-system elements to meters.
C. Connect flowmeter transmitters to meters.
D. Connect thermal-energy meter transmitters to meters.

3.2 ADJUSTING

A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.3 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each hydronic zone shall be one (1) of the following:
 1. Liquid-filled and sealed bimetallic-actuated type.
 2. Direct-or mounted, metal-case, vapor-actuated type.
 3. Compact or Industrial-style, liquid-in-glass type.
 4. Test plug with chlorosulfonated polyethylene synthetic self-sealing rubber inserts.

B. Thermometers at outside-, return-, supply-, and mixed-air ducts shall be one (1) of the following:
 1. Liquid-filled and sealed bimetallic-actuated type.
 2. Direct-or mounted, metal-case, vapor-actuated type.
 3. Compact or Industrial-style, liquid-in-glass type.

C. Thermometer stems shall be of length to match thermowell insertion length.

3.4 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range Hot-Water Piping: 40 to 240 deg F.

B. Scale Range for Heating, Hot-Water Piping: 20 to 240 deg F.

C. Scale Range for Air Ducts: 0 to 150 deg F.

3.5 PRESSURE-GAGE SCHEDULE

A. Pressure gages at inlet and outlet of each chiller chilled-water, hot water connection shall be one (1) of the following:
 1. Sealed direct mounted, metal case.
 2. Test plug with EPDM self-sealing rubber inserts.

3.6 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Hot-Water Piping: 0 to 160 psi

END OF SECTION 230519
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Fiberglass pipe hangers.
4. Metal framing systems.
5. Fiberglass strut systems.
6. Thermal-hanger shield inserts.
7. Fastener systems.
8. Pipe stands.
9. Equipment supports.

B. Related Sections:

1. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
2. Section 230548 "Vibration and Seismic Controls for HVAC for vibration isolation devices.
3. Section 233113 "Metal Ducts for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Fiberglass strut systems.
 4. Pipe stands.
 5. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
1. Description: MSS SP-58, Types 1 through 5, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig, ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened Portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two (2) or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One (1) or more; plastic.
 3. Vertical Members: Two (2) or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.
K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048-inch-thick.
 b. NPS 4: 12 inches long and 0.06-inch-thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06-inch-thick.

 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1½ inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two (2) rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

b. Medium (MSS Type 32): 1500 lb.
c. Heavy (MSS Type 33): 3000 lb.

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1\(\frac{1}{4}\) inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to twenty-five percent (25%) to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to twenty-five percent (25%) to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary, to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two (2) vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Open-spring isolators.
5. Housed-spring isolators.
6. Restrained-spring isolators.
8. Pipe-riser resilient supports.
9. Resilient pipe guides.
10. Elastomeric hangers.
11. Spring hangers.
12. Snubbers.
13. Restrainment channel bracings.
15. Seismic-restraint accessories.
16. Mechanical anchor bolts.
17. Adhesive anchor bolts.
18. Vibration isolation equipment bases.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 1. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic and wind forces required to select vibration isolators and seismic and wind restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
 4. Seismic- and Wind-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Air-Mounting System Performance Certification: Include natural frequency, load, and damping test data performed by an independent agency.

E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-spring mounts and restrained-air-spring mounts to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:
B. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Cambridge
2. Mason Industries
3. Kinetics Noise Control
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation

C. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.

D. Size: Factory or field cut to match requirements of supported equipment.

E. Verify availability of various pad materials and their properties with manufacturers.

F. Pad Material: Oil and water resistant with elastomeric properties.

G. Surface Pattern: Waffle pattern.

H. Retain first subparagraph below if pad is infused with synthetic fibers.

I. Infused nonwoven cotton or synthetic fibers.

2.2 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

 a. Cambridge
 b. Mason Industries
 c. Kinetics Noise Control
 d. Vibration Eliminator Co., Inc.
 e. Vibration Isolation

2. Mounting Plates:

 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Mason Industries
 b. Cambridge
 c. Kinetics Noise Control
 d. Vibration Eliminator Co., Inc.
 e. Vibration Isolation

2. Description: All-directional isolator with seismic restraints containing two (2) separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Mason Industries
 b. Cambridge
 c. Kinetics Noise Control
 d. Vibration Eliminator Co., Inc.
 e. Vibration Isolation

2. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
3. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
4. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
5. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.5 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Mason Industries
 b. Cambridge
 c. Kinetics Noise Control
d. Vibration Eliminator Co., Inc.
e. Vibration Isolation

2. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
3. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
4. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
5. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt, threaded mounting holes and internal leveling device, elastomeric pad.

2.6 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Mason Industries
 b. Cambridge
 c. Kinetics Noise Control
 d. Vibration Eliminator Co., Inc.
 e. Vibration Isolation
 2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes, elastomeric pad.
 c. Internal leveling bolt that acts as blocking during installation.
 3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 4. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
 5. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
 6. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
 7. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Mason Industries
 b. Cambridge
 c. Kinetics Noise Control
 d. Vibration Eliminator Co., Inc.
 e. Vibration Isolation

2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.

3. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.

4. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.

5. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.

6. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2.8 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two (2) steel tubes separated by a minimum ½-inch-thick neoprene.

 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two (2) steel tubes or post and sleeve arrangement separated by a minimum ½-inch-thick neoprene.

 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.11 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
3. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
4. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
5. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.12 SNUBBERS

A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum ¼-inch air gap, and minimum ¼-inch-thick resilient cushion.

2.13 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.14 RESTRAINT CABLES

A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two (2) clamping bolts for cable engagement.
2.15 SEISMIC-RESTRAINT ACCESSORIES

A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.

B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.16 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.17 ADHESIVE ANCHOR BOLTS

A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.18 VIBRATION ISOLATION EQUIPMENT BASES

A. Steel Rails: Factory-fabricated, welded, structural-steel rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36. Rails shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

B. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

C. Concrete Inertia Base: Factory-fabricated or field-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.

a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.19 RESTRAINED VIBRATION ISOLATION ROOF CURB

A. Manufacturers:

1. Mason Industries

B. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand 125-mph wind impinging laterally against side of equipment.

C. Lower Support Assembly: Sheet-metal "Z" section containing adjustable and removable steel springs that support upper floating frame. Upper frame shall provide continuous support for equipment and shall be captive to resiliently resist wind and seismic forces. Lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.

D. Spring Isolators: Adjustable, restrained spring isolators shall be mounted on ¼-inch-thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.

1. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.
a. Housing: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.

b. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.

c. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.

d. Lateral Stiffness: More than eighty percent (80%) of the rated vertical stiffness.

e. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.

 b. Use multiple layers, separated by steel shims, depending on supported equipment load. See manufacturer's data for load capacities.

E. Snubber Bushings: All-directional, elastomeric snubber bushings at least ¼-inch-thick.

F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic and wind control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.
3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points.

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Equipment Restraints:
 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125-inch.
 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

D. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

E. Install cables so they do not bend across edges of adjacent equipment or building structure.

F. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

G. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

H. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

I. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

J. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the Structural Engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION
A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment.

3.5 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post-connection testing has been approved), and with at least seven (7) days' advance notice.
 4. Test at least four (4) of each type and size of installed anchors and fasteners selected by Architect.
 5. Test to ninety percent (90%) of rated proof load of device.
 7. Measure isolator deflection.
 8. Verify snubber minimum clearances.
 9. Test and adjust restrained-air-spring isolator controls and safeties.
C. Remove and replace malfunctioning units and retest as specified above.
D. Prepare test and inspection reports.

3.6 ADJUSTING
A. Adjust isolators after piping system is at operating weight.
B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.7 AIR-SPRING ISOLATOR INSTALLATION
A. Independent Isolator Installation:
1. Install tank valve into each air isolator.
2. Inflate each isolator to height and pressure specified on Drawings.

3.8 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

D. Where devices and terminal units are installed above ceiling, coordinate installation of ceiling grid identifiers.
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2½-by-¾-inch.
 6. Minimum Letter Size: ¼-inch for name of units if viewing distance is less than 24 inches, ½-inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8½-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F

E. Minimum Label Size: Length and width vary for required label content, but not less than 2½-by-¾-inch.

F. Minimum Letter Size: ¼-inch for name of units if viewing distance is less than 24 inches, ½-inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1½ inches high.

2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

C. Minimum Label Size: Length and width vary for required label content, but not less than 2½-by-½-inch.

D. Minimum Letter Size: ¼-inch for name of units if viewing distance is less than 24 inches, ½-inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

E. Fasteners: Stainless-steel rivets or self-tapping screws.

F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

G. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1½ inches high.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with ¼-inch letters for piping system abbreviation and ½-inch numbers.
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8½-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

C. Valve Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Included mounting screws.

1. Frame: Extruded Aluminum.
2. Glazing: ASTM C 1036, Type I, Class I, Glazing Quality B, 2.5-mm, single thickness glass.

2.6 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5¼ inches minimum.
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

2.7 ACCESS PANEL AND DOOR MARKERS: 1/16-inch-thick, engraved laminated plastic with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch center hole for attachment. Fasteners: Self-tapping, stainless steel screws or contact type, permanent adhesive.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

C. HVAC Equipment Installed Above T-Bar Ceiling: Label T-bar grid with mechanical equipment identifier as shown on the Drawings. Use label maker with peel and stick labels, blue background, and black lettering.
3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Section 099123 "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, with painted color coded bands, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 20 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Pipe Label Color Schedule:

1. Hot Water:
 b. Background Color: Red.

2. Chilled Water:
 b. Background Color: Blue.

3. Fuel-Oil Gas:
 a. Background Color: Yellow.
 b. Letter Color: Black.

3.4 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue: For cold-air supply ducts.
2. Yellow: For hot-air supply ducts.
4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Stenciled Duct Label Option: Stenciled labels, showing service and flow direction, may be provided instead of plastic-laminated duct labels, at Installer's option, if lettering larger than 1-inch-high is needed for proper identification because of distance from normal location of required identification.

C. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 10 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Chilled Water: 1½ inches round
 c. Fuel-Oil: 1½ inches round.

2. Valve Tag Color:
 a. Hot Water: Natural.
 b. Chilled Water: Natural.
 c. Fuel-Oil: Natural.

3. Letter Color:
 a. Hot Water: Black.
 b. Chilled Water: Black.
 c. Fuel-Oil: Black.

C. Valves and Hydronic Specialties Installed Above T-Bar Ceiling: Label T-bar with peel and stick labels, color blue.

3.6 VALVE SCHEDULE INSTALLATION

A. Mount valve schedule on wall in accessible location in each major equipment room.

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.
3.8 AUTOMATIC TEMPERATURE CONTROLS IDENTIFICATION

A. ATC Controllers Installed Above T-Bar Ceiling: Label T-bar grid with ATC identifiers. Use label maker with peel and stick labels, yellow background, and black lettering.

3.9 TERMINAL UNITS

A. Mark all terminal units so that the markings can be easily read from the most likely viewing position (e.g., through the ceiling below, etc.).

B. Terminal Units Installed Above T-Bar Ceiling: Label T-bar with terminal unit identifier as shown on the Drawings. Use label maker with peel and stick labels, blue background, and black lettering.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 2. Balancing steam systems.
 3. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Condensing units.
 c. Heat-transfer coils.
 4. Testing, adjusting, and balancing existing systems and equipment.
 5. Sound tests.
 6. Vibration tests.
 7. Duct leakage tests.
 8. Control system verification.

1.3 DEFINITIONS
 B. BAS: Building automation systems.
 D. TAB: Testing, adjusting, and balancing.
 F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
 G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS
 A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the
details. Provide a minimum of fourteen (14) days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within thirty (30) days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within thirty (30) days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC, NEBB or TABB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC, NEBB or TABB.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC, NEBB or TABB as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.
I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

K. Examine operating safety interlocks and controls on HVAC equipment.

L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance", NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems", SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation" and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.

 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.

 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from commissioning authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
2. Measure inlets and outlets airflow.
3. Adjust each inlet and outlet for specified airflow.
4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.

1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
2. Re-measure and confirm that total airflow is within design.
3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
4. Mark all final settings.
5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.
3.6 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.7 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Record fan and motor operating data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:

1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.

B. Measure, adjust, and record the following data for each electric heating coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each steam coil:

1. Dry-bulb temperature of entering and leaving air.
2. Airflow.
3. Inlet steam pressure.
D. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.

3.9 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at fifteen (15) locations as designated by the Architect.

B. Instrumentation:

1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:

1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight (8) un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment off.
6. Take sound readings in dBA and sound pressure levels in the eight (8) un-weighted octave bands 63 Hz to 8000 Hz] with the equipment operating.
7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:

1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
 d. Sound pressure level in each octave band with equipment on and off.

2. Plot sound pressure levels on NC worksheet with equipment on and off.
3.10 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than 10.

B. Instrumentation:
 1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
 2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
 3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
 4. Verify calibration date is current for vibration meter before taking readings.

C. Test Procedures:
 1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
 2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
 3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
 4. Record CPM or rpm.
 5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.

D. Reporting:
 1. Report shall record location and the system tested.
 2. Include horizontal-vertical-axial measurements for tests.
 3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally "smooth" to "good."
 4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.11 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.

B. Verify that proper test methods are used and that leakage rates are within specified tolerances.

C. Report deficiencies observed.
3.12 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.13 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.

1. Measure and record the operating speed, airflow, and static pressure of each fan.
2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
3. Check the refrigerant charge.
4. Check the condition of filters.
5. Check the condition of coils.
6. Check the operation of the drain pan and condensate-drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:

1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the airflow rates and water flow rates by more than five percent (5%), make equipment adjustments to achieve the calculated rates. If increase or decrease is five percent (5%) or less, equipment adjustments are not required.
4. Balance each air outlet.

3.14 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus ten percent (±10%).
 2. Air Outlets and Inlets: Plus or minus ten percent (±10%).

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.15 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.16 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.
 3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Fan curves.
 2. Manufacturers' test data.
 3. Field test reports prepared by system and equipment installers.
 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Fan drive settings including settings and percentage of maximum pitch diameter.
 e. Settings for supply-air, static-pressure controller.
 f. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
h. Sheave make, size in inches, and bore.
i. Center-to-center dimensions of sheave and amount of adjustments in inches.
j. Number, make, and size of belts.
k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
f. Entering-air, wet- and dry-bulb temperatures in deg F.
g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Water flow rate in gpm.
i. Water pressure differential in feet of head or psig.
j. Entering-water temperature in deg F.
k. Leaving-water temperature in deg F.
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.
o. Inlet steam pressure in psig.

G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches, and bore.
 n. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:
1. **Fan Data:**
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. **Motor Data:**
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. **Test Data (Indicated and Actual Values):**
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

I. **Round, Flat-Oval, and Rectangular Duct Traverse Reports:** Include a diagram with a grid representing the duct cross-section and record the following:

1. **Report Data:**
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

J. **Air-Terminal-Device Reports:**

1. **Unit Data:**
 a. System and air-handling unit identification.
b. Location and zone.
c. Apparatus used for test.
d. Area served.
e. Make.
f. Number from system diagram.
g. Type and model number.
h. Size.
i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.

K. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.17 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of commissioning authority.

B. Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either ten percent (10%) of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than ten percent (10%) of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.

3. If the second verification also fails, design professional may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.18 ADDITIONAL TESTS

A. Within ninety (90) days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
7. Outdoor, concealed supply and return.
8. Outdoor, exposed supply and return.

B. Related Sections:

1. Section 230719 "HVAC Piping Insulation."
2. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application of field-applied jackets.
4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Insulation materials for use on austenitic stainless-steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Armacell
 b. Aeroflex USA
 c. Kflex USA

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap
 b. Johns Manville; Microlite
 c. Knauf Insulation; Friendly Feel Duct Wrap
 d. Manson Insulation Inc.; Alley Wrap
 e. Owens Corning; SOFTR All-Service Duct Wrap

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. CertainTeed Corp.
 b. Fibrex Insulations Inc
 c. Johns Manville
 d. Knauf Insulation
 e. Manson Insulation Inc.
 f. Owens Corning

H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. CertainTeed Corp.
2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

E. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
2. Service Temperature Range: 0 to 180 deg F.
3. Solids Content: ASTM D 1644, forty-four percent (44%) by volume and sixty-two percent (62%) by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
2. Service Temperature Range: Minus 50 to plus 220 deg F.
3. Solids Content: ASTM D 1644, thirty-three percent (33%) by volume and forty-six percent (46%) by weight.
D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: Sixty percent (60%) by volume and sixty-six percent (66%) by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 2. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, Kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with Kraft-paper backing; complying with ASTM C 1136, Type II.
 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Adhesive: As recommended by jacket material manufacturer.

D. Metal Jacket:
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems
 b. ITW Insulation Systems; Aluminum and Stainless-Steel Jacketing
 c. RPR Products, Inc.; Insul-Mate
 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 2.5-mil-thick polysurlyn.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: Two percent (2%).
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: Two percent (2%).
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. Width: 2 inches.
2. Thickness: 6 mils.
3. Adhesion: 64 ounces force/inch in width.
4. Elongation: Five hundred percent (500%).
5. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Width: 2 inches.
2. Thickness: 3.7 mils.
3. Adhesion: 100 ounces force/inch in width.
4. Elongation: Five percent (5%).
5. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:

1. Stainless-Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015-inch-thick, ¾-inch-wide with wing seal.
2. Springs: Twin spring set constructed of stainless-steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. Insulation Pins and Hangers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding. 0.135-inch-diameter shank, length to suit depth of insulation indicated with integral 1½-inch galvanized carbon-steel washer.
2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1½ inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Wire: 0.062-inch soft-annealed, stainless-steel.

2.11 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1-by-1-inch PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040-inch-thick, minimum 1-by-1-inch aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

3. Overlap jacket longitudinal seams at least 1½ inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than seventy-five percent (75%) of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.

2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.

4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.

2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.

4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Section 078413 "Penetration Firestopping."

E. Insulation Installation at Floor Penetrations:

1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for one hundred percent (100%) coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with ½-inch outward-clinching staples, 1-inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two (2) times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for one hundred percent (100%) coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one (1) edge and one (1) end of insulation segment. Secure laps to adjacent insulation section with ½-inch outward-clinching staples, 1-inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the
duct insulation

surface. Cover insulation face and surface to be insulated a width equal to two (2) times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two (2) 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1½-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two (2) continuous beads of adhesive to seams and joints, one (1) bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."
3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.

 1. Flat Acrylic Finish: Two (2) finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two (2) coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect and Owner from manufacturer’s entire range. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one (1) location for each duct system defined in the "Duct Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, exposed return located in unconditioned space.
 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 7. Outdoor, concealed supply and return.
 8. Outdoor, exposed supply and return.

B. Items Not Insulated:

 1. Fibrous-glass ducts.
 2. Factory-insulated flexible ducts.
 3. Factory-insulated plenums and casings.
 4. Flexible connectors.
 5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and required R-values are identified below. If more than one (1) material is listed for a duct system, selection from materials listed is Contractor's option.

B. Concealed, round and flat-oval, supply-air duct insulation shall be the following:

C. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:

D. Concealed, rectangular, supply-air duct insulation shall be one (1) of the following:

E. Concealed, rectangular, outdoor-air duct insulation shall be one (1) of the following:

F. Concealed, supply-air plenum insulation shall be one (1) of the following:

G. Concealed, outdoor-air plenum insulation shall be one (1) of the following:

H. Exposed, round and flat-oval, supply-air duct insulation shall be the following:

I. Exposed, round and flat-oval, outdoor-air duct insulation shall be the following:

J. Exposed, round and flat-oval, exhaust-air duct insulation shall be the following:

K. Exposed, rectangular, supply-air duct insulation shall be the following:

L. Exposed, rectangular, outdoor-air duct insulation shall be the following:

M. Exposed, supply-air plenum insulation shall be the following:

N. Exposed, outdoor-air plenum insulation shall be the following:

3.13 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and required R-values are identified below. If more than one (1) material is listed for a duct system, selection from materials listed is Contractor's option.

B. Concealed, round and flat-oval, supply-air duct insulation shall be the following:

C. Concealed, round and flat-oval, return-air duct insulation shall be the following:

D. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:

E. Concealed, rectangular, supply-air duct insulation shall be the following:

F. Concealed, rectangular, return-air duct insulation shall be the following:

G. Concealed, supply-air plenum insulation shall be the following:

H. Concealed, return-air plenum insulation shall be the following:

I. Exposed, round and flat-oval, supply-air duct insulation shall be the following:

J. Exposed, round and flat-oval, return-air duct insulation shall be the following:

K. Exposed, rectangular, supply-air duct insulation shall be the following:

L. Exposed, rectangular, return-air duct insulation shall be the following:

M. Exposed, supply-air plenum insulation shall be the following:

N. Exposed, return-air plenum insulation shall be the following:

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one (1) material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. PVC: 20 mils thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install field applied metal jacket over insulation material. Refer to Detail on Drawing M801, ‘Exterior Duct Wrap Detail’.

END OF SECTION 230713
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Condensate drain piping.
2. Chilled-water and brine piping.
3. Refrigerant suction and hot-gas piping.

B. Related Sections:

1. Section 230713 "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless-steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless-steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Pittsburgh Corning Corporation; Foamglas
 2. Block Insulation: ASTM C 552, Type I.
 3. Special-Shaped Insulation: ASTM C 552, Type III.
 4. Board Insulation: ASTM C 552, Type IV.
 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Armacell
 b. Aeroflex USA
 c. Kflex USA
 2. Type I for insulation without jackets, Type II for insulation with vinyl jackets, and Type III for insulation with FSK or FSP jackets.

H. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Johns Manville; Micro-Lok
 b. Knauf Insulation; 1000-Degree Pipe Insulation
 c. Manson Insulation Inc.; Alley-K
 d. Owens Corning; Fiberglas Pipe Insulation
 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
2.2 INSULATING CEMENTS
B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

2.3 ADHESIVES
A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
F. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS
A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
B. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 2. Service Temperature Range: 0 to 180 deg F.
 3. Solids Content: ASTM D 1644, forty-four percent (44%) by volume and sixty-two percent (62%) by weight.
C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 2. Service Temperature Range: Minus 50 to plus 220 deg F.
 3. Solids Content: ASTM D 1644, thirty-three percent (33%) by volume and forty-six percent (46%) by weight.
D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: Sixty percent (60%) by volume and sixty-six percent (66%) by weight.
2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
2. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Cellular-Glass, Phenolic, and Polyisocyanurate Joint Sealants:

1. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, Kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with Kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
1. Adhesive: As recommended by jacket material manufacturer.
3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

D. Underground Direct-Buried Jacket: 125-mil-thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

E. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 1. Finish and thickness are indicated in field-applied jacket schedules.
 4. Factory-Fabricated Fitting Covers:
 a. Same material, finish, and thickness as jacket.
 b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 c. Tee covers.
 d. Flange and union covers.
 e. End caps.
 f. Beveled collars.
 g. Valve covers.
 h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: Two percent (2%).
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: Two percent (2%).
 5. Tensile Strength: 40 lbf/inch in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Width: 2 inches.
2. Thickness: 6 mils.
3. Adhesion: 64 ounces force/inch in width.
4. Elongation: Five hundred percent (500%).
5. Tensile Strength: 18 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:

1. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020-inch-thick, ¾-inch-wide with closed seal.
2. Springs: Twin spring set constructed of stainless-steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1½ inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints at ends adjacent to pipe flanges and fittings.
M. Cut insulation in a manner to avoid compressing insulation more than seventy-five percent (75%) of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two (2) times the thickness of pipe insulation, or one (1) pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two (2) times the thickness of pipe insulation, or one (1) pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two (2) times the thickness of pipe insulation, or one (1) pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and
unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two (2) times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two (2) halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two (2) coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1-inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.

2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.

4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.

2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.

2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1-inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

A. For glass-cloth jackets, install directly over bare insulation or insulation with factory-applied jackets.
1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two (2) 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. For FSK jackets, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1½-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. For PVC jackets, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.

1. Apply two (2) continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.10 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.

1. Flat Acrylic Finish: Two (2) finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two (2) coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect and Owner from manufacturer’s entire range. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three (3) locations of straight pipe, three (3) locations of threaded fittings, three (3) locations of welded fittings, two (2) locations of threaded strainers, two (2) locations of welded strainers, three (3) locations of threaded valves, and three (3) locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be one (1) of the following:
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-inch-thick.

B. Refrigerant Suction and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1½ inches thick.

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 2 inches thick.

3.15 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one (1) material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
1. PVC: 20 mils thick.

END OF SECTION 230719
SECTION 230923 - AUTOMATIC TEMPERATURE CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. All work of this Division shall be coordinated and provided by the Building Automation System (BAS) Contractor.

C. The work of this Division shall be scheduled, coordinated, and interfaced with the associated work of other trades.

D. The work of this Division shall be as required by the Specifications, Point Schedules and Drawings.

E. If the BAS Contractor believes there are conflicts or missing information in the project documents, the Contractor shall promptly request clarification and instruction from the design team.

1.2 DEFINITIONS

A. Analog: A continuously variable system or value not having discrete levels. Typically exists within a defined range of limiting values.

B. Binary: A two-state system where an “ON” condition is represented by one discrete signal level and an “OFF” condition is represented by a second discrete signal level.

C. Building Automation System (BAS): The total integrated system of fully operational and functional elements, including equipment, software, programming, and associated materials, to be provided by this Division BAS Contractor and to be interfaced to the associated work of other related trades.

D. BAS Contractor: The Contractor to provide the work of this Division. This Contractor shall be the primary manufacturer, installer, commissioner and ongoing service provider for the BAS work.

E. Control Sequence: A BAS pre-programmed arrangement of software algorithms, logical computation, target values and limits as required to attain the defined operational control objectives.

F. Direct Digital Control: The digital algorithms and pre-defined arrangements included in the BAS software to provide direct closed-loop control for the designated equipment and controlled variables. Inclusive of Proportional, Derivative and Integral control algorithms together with target values, limits, logical functions, arithmetic functions, constant values, timing considerations and the like.
G. BAS Network: The total digital on-line real-time interconnected configuration of BAS digital processing units, workstations, panels, sub-panels, controllers, devices and associated elements individually known as network nodes. May exist as one or more fully interfaced and integrated sub-networks, LAN, WAN or the like.

H. Node: A digitally programmable entity existing on the BAS network.

I. BAS Integration: The complete functional and operational interconnection and interfacing of all BAS work elements and nodes in compliance with all applicable codes, standards and ordinances so as to provide a single coherent BAS as required by this Division.

J. Provide: The term “provide” and its derivatives when used in this Division shall mean to furnish, install in place, connect, calibrate, test, commission, warrant, document and supply the associated required services ready for operation.

K. PC: IBM-compatible Personal Computer from a recognized major manufacturer

L. Furnish: The term “furnish” and its derivatives when used in this Division shall mean supply at the BAS Contractor’s cost to the designated third party trade contractor for installation. BAS Contractor shall connect furnished items to the BAS, calibrate, test, commission, warrant and document.

M. Wiring: The term “wiring” and its derivatives when used in this Division shall mean provide the BAS wiring and terminations.

N. Install: The term “install” and its derivatives when used in this Division shall mean receive at the jobsite and mount.

O. Protocol: The term “protocol” and its derivatives when used in this Division shall mean a defined set of rules and standards governing the on-line exchange of data between BAS network nodes.

P. Software: The term “software” and its derivatives when used in this Division shall mean all programmed digital processor software, preprogrammed firmware and project specific digital process programming and database entries and definitions as generally understood in the BAS industry for real-time, on-line, integrated BAS configurations.

Q. The use of words in the singular in these Division documents shall not be considered as limiting when other indications in these documents denote that more than one (1) such item is being referenced.

R. Headings, paragraph numbers, titles, shading, bolding, underscores, clouds and other symbolic interpretation aids included in the Division documents are for general information only and are to assist in the reading and interpretation of these Documents.

S. The following abbreviations and acronyms may be used in describing the work of this Division:

ADC - Analog to Digital Converter
AI - Analog Input
AN - Application Node
ANSI - American National Standards Institute
AO - Analog Output
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigeration and Air Conditioning Engineers</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>CZC</td>
<td>Commercial Zone Control</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DC</td>
<td>Digital Controller</td>
</tr>
<tr>
<td>DCX</td>
<td>Digital Controller with extension capability</td>
</tr>
<tr>
<td>DCXM</td>
<td>Digital Controller Master with extension capability</td>
</tr>
<tr>
<td>DDC</td>
<td>Direct Digital Control</td>
</tr>
<tr>
<td>DI</td>
<td>Digital Input</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Output</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electronically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>EV</td>
<td>Commercial Zone Control</td>
</tr>
<tr>
<td>FAS</td>
<td>Fire Alarm Detection and Annunciation System</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HOA</td>
<td>Hand-Off-Auto</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>MCC</td>
<td>Motor Control Center</td>
</tr>
<tr>
<td>MD</td>
<td>Master Display Controller</td>
</tr>
<tr>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>NIC</td>
<td>Not In Contract</td>
</tr>
<tr>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>OWS</td>
<td>Operator Workstation</td>
</tr>
<tr>
<td>OAT</td>
<td>Outdoor Air Temperature</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio Frequency Interference</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Temperature Device</td>
</tr>
<tr>
<td>NAC</td>
<td>Network Area Controller</td>
</tr>
<tr>
<td>SI</td>
<td>Systems Integrator</td>
</tr>
<tr>
<td>SPDT</td>
<td>Single Pole Double Throw</td>
</tr>
<tr>
<td>SPST</td>
<td>Single Pole Single Throw</td>
</tr>
<tr>
<td>XVGA</td>
<td>Extended Video Graphics Adapter</td>
</tr>
<tr>
<td>TBA</td>
<td>To Be Advised</td>
</tr>
<tr>
<td>TEC</td>
<td>Networked Thermostat Equipment Controller</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TTD</td>
<td>Thermistor Temperature Device</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>UNT</td>
<td>Unitary Controller</td>
</tr>
<tr>
<td>VAC</td>
<td>Volts, Alternating Current</td>
</tr>
</tbody>
</table>
1.3 BAS DESCRIPTION

A. BMS Contractor can reuse the existing JACE. If new JACE is required, replace the existing JACE with a new JACE 8000 supervisory controller. Model number to be determined by BAS Contractor. The model is determined by the amount of existing, new and integration points. All new controllers will communicate via BACnet. BMS Contractor shall integrate to the VRF manufacturer controllers via BACnet. BMS Contractor shall provide new graphics for the new HVAC equipment to the Fairfield Schools standard.

B. This specification for a Building Automation System (BAS) as detailed herein shall be strictly enforced. Provide a Building Automation System (BAS) incorporating BACnet Testing Laboratories (BTL) certified BACnet devices communicating over a Master-Slave Token Passing (MSTP) network at the field level and Niagara 4 based network managers at the network level. The Niagara 4 based network managers shall bridge the BACnet/MSTP field communications network to the Owner’s local and/or wide area network, as designated by the Owner, and shall communicate seamlessly with the other existing Niagara 4 based devices on the Owner’s enterprise-wide BAS network.

C. The BAS shall consist of Direct Digital Control (DDC) controllers, Building Controllers (BC), network management tools, programming tools, web browser based Graphical User Interface, sensors, relays, valves, actuators, and other equipment as may be necessary to provide for a complete and operational control system for the HVAC and other building related systems as described within these specifications.

D. The BAS Contractor shall manage and coordinate the BAS work in a timely manner in consideration of the Project schedules. Coordinate with the associated work of other trades so as to not impede or delay the work of associated trades.

E. BACnet components not supplied by the primary manufacturer of the BAS shall be integrated to share common software for network communications, time scheduling, alarm handling, and history logging.

F. The documentation contained in this section and other contract documents pertaining to HVAC Controls is schematic in nature. The Contractor shall provide hardware and software necessary to implement the functions shown or as implied in the contract documents.

G. System configuration and monitoring shall be performed via a PC-type computer. Under no circumstances shall the PC be used as a control device for the network. It can be used for storage of data.

H. Open Systems Design – It is the Owner’s expressed goal to implement an open Building Automaton System that will allow products from different manufacturers and/or suppliers to be integrated into a single unified system in order to provide flexibility for expansion, maintenance, and service of the system. The BAS provided shall maintain open interoperability in the following areas.
I. Network Management – Network management tools shall be based upon Niagara Framework technology as developed by the Tridium Corporation. All tools and hardware provided shall comply with the current release of the Niagara 4 Framework platform.

J. User Access – The supplied system must incorporate the ability to access all data using standard Web browsers without requiring a proprietary operator/user interface and configuration programs.

K. Databases – All controller program graphics and network databases shall be provided in a Niagara Framework 4 format. The database shall be stored on the Owner’s PC and provide on a separate CD upon final acceptance of the project. An updated database shall be provided on a CD at the end of the warranty period.

L. Building Controllers (BC) – All BCs (devices that provide for communication between the field level controllers and the Owner’s wide and/or local area network, and manage facility global functions such as alarms, trends, schedules and normalization of data) shall conform to the current release of the Niagara 4 Framework. All BCs shall be furnished with extended memory. No BC shall be provided with less than 128 MB of RAM. The number of BACnet or Lonworks nodes (controllers) attached to any Niagara 4 based network manager shall not exceed the following limits:

<table>
<thead>
<tr>
<th>COMBINED MEMORY</th>
<th>MINIMUM NUMBER OF NODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 MB SDRAM/64 MB SERIAL FLASH</td>
<td>25</td>
</tr>
<tr>
<td>256 MB DDR RAM/128 MB SERIAL FLASH</td>
<td>50</td>
</tr>
<tr>
<td>1 GB DDR2 RAM/1 GB SERIAL FLASH</td>
<td>125</td>
</tr>
</tbody>
</table>

Regardless of the minimum number of nodes indicated above, it is ultimately the exclusive responsibility of the systems integrator/building controls contractor to ensure that the BC has adequate resources for the number of nodes (controllers) attached to it.

M. Remote Data Access – The system shall support the Internet Browser-based remote access to the building data. The BAS Contractor shall coordinate with the Owner’s IT department to insure all remote browser access (if desired by the Owner) is protected with the latest Niagara Software updates and a VPN (Virtual Private Network) must be installed to protect the Owner’s network from cyber-attacks.

N. Direct Digital Controllers (DDC) – All DDC devices for HVAC and lighting control, with the exception of DDC device furnished as part of the OEM control package, shall be certified to the current LONMARK and BTL standards appropriate to their application provided an appropriate LONMARK or BTL Certification standard exist. All points within a controller including hard I/O and software-based points shall be available for viewing, management, and manipulation through the Niagara Framework tools.

O. Software Tools – All software tools needed for full functional use, including programming of BCs and DDC, network management and expansion, and graphical user interface development, of the BAS described within these specifications, shall be provided to the Owner or his designated agent. Any licensing required by the manufacturer now and into the future, including changes to the licensee of the software tools and the addition of hardware corresponding to the licenses, to allow for a complete and operational system for both normal day to day operation and servicing shall be provided. Any such changes to the designated license holders shall be made by the
P. Programming Tools – Provide freely available Niagara 4 Wizards to facilitate the programming and configuration of all the DDC devices that are provided for the HVAC and lighting control. Wizards shall be provided free of charge and be compatible with the current published versions of the network management tool that is provided as part of this project. The wizard software shall be available for public access from the manufacturer’s web site. These wizard programming tools shall be compatible with at least three (3) other brands of the Niagara Framework network management tools. The SI shall demonstrate as part of their prequalification as to how they intend to comply with these requirements.

Q. Software License Agreement – The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition of this contract. Such license shall grant use of all programs and application software to Owner as defined by the manufacturer's license agreement, but shall protect manufacturer's rights as it relates to disclosure of trade secrets contained within said software. The Owner shall be the named license holder of all software associated with any and all incremental work on the project(s). In addition, the Owner shall receive ownership of all job specific configuration documentation, data files, and application-level software developed for the project. This shall include all custom, job specific software code, databases and documentation for all configuration and programming that is generated for a given project and/or configured for use with the BC, BAS Server(s), and any related LAN/WAN/Intranet and Internet connected routers and devices. Any and all required IDs and passwords for access to any component or software program shall be provided to the Owner.

R. The System Integrator shall provide as part of the submittals a copy of the Niagara Compatibility Statement (NiCS) verifying that all aspect of the Niagara Framework as provided maintain an Open System Design. The System as provided shall confirm with the following NiCS:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION COMPATIBILITY IN</td>
<td>All</td>
</tr>
<tr>
<td>STATION COMPATIBILITY OUT</td>
<td>All</td>
</tr>
<tr>
<td>TOOL COMPATIBILITY IN</td>
<td>All</td>
</tr>
<tr>
<td>TOOL COMPATIBILITY OUT</td>
<td>All</td>
</tr>
</tbody>
</table>

S. Provide remote access via WEB/Mobile Browser and mobile applications for unlimited users without requiring proprietary software fees, seat licensing or restricted/annual licensing.

T. All building automation controllers and peripherals are required to be readily available from multiple local sources for direct purchase. Single source availability of said devices is not acceptable.

U. The BAS system must be programmed utilizing a non-proprietary software tool such as Niagara Workbench. Additional software for configuration is not permitted. Proprietary software configuration tools are not acceptable. Copy of Niagara Workbench to be provided to Owner after project completion.

V. Owner to receive administration rights to all features, functionality and configuration of the building automation system.
1.4 QUALITY ASSURANCE

A. General – The HVAC Control System shall be furnished, engineered, and installed by a licensed Controls Contractor or System Integrator (SI). All work provided under this section shall be provided by direct employees of the SI or under the direct supervision of the SI personnel.

B. System Integrator Qualifications

1. The SI must be regularly engaged in the service and installation of JCI N2, BACnet, and Niagara 4 based systems as specified herein, The SI shall have a minimum of five (5) years’ experience in the sales, installation, engineering, programming servicing and commissioning of the Niagara4 platform and the field controllers as proposed.

2. The system integrator must be an authorized factory direct representative in good standing of the manufacturer of the proposed hardware and software components. Provide a letter dated within the last 6 months, from the manufacture certifying that the System Integrator is an authorized factory direct representative.

3. The SI shall have an office within fifty (50) miles of the building site that is staffed with a minimum of five (5) technicians who have successfully completed the factory authorized training of the proposed manufactures hardware and software components and have successfully completed a Niagara 4 certification course. supplying complete maintenance. SI must provide proof of required training. The SI capabilities shall include engineering and design of control systems, programming, electrical installation of control systems, troubleshooting and service. **SI shall be staffed to provide support services on a 24-hour, 7-day-a-week basis.**

4. The SI shall submit a list of no less than three (3) similar projects, which have similar Building Automation Systems as specified herein installed by the SI. These projects must be on-line and functional such that the Owner’s/User’s representative can observe the system in full operation.

C. Hardware and Software Component Manufacturer Qualifications

1. The manufacturer of the hardware and software components must be primarily engaged in the manufacture of both LonWorks and BACnet based systems as specified herein, and must have been so for a minimum of five (5) years. The manufacturer shall demonstrate that they are the manufacturer of all DDC devices and Niagara 4 products provided.

2. The manufacturer of the hardware and software components as well as its subsidiaries must be a member in good standing of the BACnet International, and the BACnet Manufacturers Association.

3. The manufacturer of the hardware and software components shall have a technical support group accessible via a toll-free number that is staffed with qualified personnel, capable of providing instruction and technical support service for networked control systems.

1.5 SUBMITTALS

A. Submit six (6) complete sets of documentation in the following phased delivery schedule:

1. Valve and damper schedules.
2. Equipment data cut sheets.
3. System schematics, including:
 a. Sequence of operations.
b. Point names.
c. Point addresses.
d. Point to point wiring.
e. Interface wiring diagrams.
f. Panel layouts.
g. System riser diagrams.

4. Visio® or AutoCAD compatible as-built drawings.

B. Upon project completion, submit operation and maintenance manuals, consisting of the following:

1. Index sheet, listing contents in alphabetical order.
2. Manufacturer's equipment parts list of all functional components of the system, disk of system schematics, including wiring diagrams.
3. Description of sequence of operations.
4. As-Built interconnection wiring diagrams.
5. User’s documentation containing product, system architectural and programming information.
6. Trunk cable schematic showing remote electronic panel locations, and all trunk data.
7. List of connected data points, including panels to which they are connected and input device (ionization detector, sensors, etc.).
8. Copy of the warranty.
9. Recommended spare parts list.

1.6 TRAINING

A. Meet all applicable training requirements of Divisions 01, Division 23, and the following:

1. Instruct the operators how to accomplish control of the system. Include basic troubleshooting and override of equipment and controls in the event of system failure.
2. Training Allowance – Provide not less than 8 hours formal training to the Owner’s designated operations personnel.
3. Trainers – Persons conducting the training shall hold a Niagara certification, be knowledgeable in the workings of the system, and shall be regularly engaged in training exercises, so as to provide effective training.
4. Training Classes – Prior to conducting training, prepare and submit for approval the proposed training literature and topics. Submit this information at least two (2) weeks prior to the first class.

1.7 WARRANTY

A. The HVAC Control System shall be free from defects in workmanship and material under normal use and service. If within 12 months from the date of substantial completion or the Owner receives beneficial use of the system, the installed equipment is found to be defective in operation, workmanship or materials, the building systems contractor shall replace, repair or adjust the defect at no cost. Service shall be provided within the next business day upon notice from Owner’s designated Representative.

B. The warranty shall extend to material that is supplied and installed by the Contractor. Material supplied but not installed by the Contractor shall be covered per the above to the extent of the
C. All corrective software modifications made during warranty service periods shall be updated on all user documentation and on user and manufacturer archived software disks.

1.8 OWNERSHIP OF PROPRIETARY MATERIAL

A. Project-specific software and documentation shall become Owner's property. This includes, but is not limited to:

2. Record drawings.
3. Database.
4. Application programming code.
5. Documentation.
6. Provide to the Owner the highest-level administrative password for the system. This password is to be filed away by the Owner and not used during the warranty period. This is to protect the Owners’ interest in the system they purchased.

1.9 REFERENCES

A. All work shall conform to the following Codes and Standards, as applicable:

1. National Electric Code (NEC) and all other applicable local Electric Codes.
2. Underwriters Laboratories (UL) listing and labels.
3. UL 916 Energy Management.
5. NFPA 90A - Standard For The Installation Of Air Conditioning And Ventilating Systems.
8. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
9. Institute of Electrical and Electronic Engineers (IEEE).
11. Electronics Industries Association (EIA).
12. Occupational Safety and Health Administration (OSHA).

B. In the case of conflicts or discrepancies, the more stringent regulation shall apply.

C. All work shall meet the approval of the Authorities Having Jurisdiction at the project site.
PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Acceptable Tridium Niagara manufacturers of the hardware and software components as specified herein are as follows:

1. Honeywell WEBs by ESC – Contact Rob Croston 860-0471-1941
2. Johnson Controls Facility Explorer
3. Distech

B. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.

C. Controls shall be microprocessor based Interoperable Niagara4 Controllers. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.

1. The Contractor shall use only operator workstation software, controller software, custom application programming language, and controllers from the corresponding manufacturer and product line. The use of field level controllers from multiple manufacturers is acceptable provided no proprietary configuration or programming software is needed. Other products specified herein (such as sensors, valves, dampers, and actuators) need not be manufactured by the above manufacturers.

2.2 NETWORKS

A. Any required Niagara 4 based network managers supplied under this section shall bridge the Lonworks, BACnet or ModBus field bus to the Owner’s Local Area Network (LAN) and/or Wide Area Network (WAN) as designated by the Owner. The network managers shall communicate at no less than 100 Megabits/sec over the Ethernet network and shall support BACnet over IP, Java, XML, HTTP, Fox and SOAP for maximum flexibility as it relates to the integration of building data with enterprise information systems. The system shall provide support for multiple network managers, Building Controllers (BC), user workstations and, if specified, a local server. The WAN and/or LAN will be provided by others. The SI shall coordinate with the General Contractor for the access to the WAN and/or LAN.

1. Network minimum physical and media access requirements:
 a. Ethernet; IEEE standard 802.3
 b. Cable; 100 Base-T, UTP-8 wire, category 5 Minimum throughput; 100 Mbps

B. Network Access – Remote Access – For Local Area Network installations; provide access to the WAN and/or LAN from a remote location, via the Internet. The Owner shall provide a connection to the Internet to enable access via high speed cable modem, asynchronous digital subscriber line (ADSL) modem, ISDN line, T1 Line or via the customer’s Intranet to a corporate server providing access to an Internet Service Provider (ISP). The Owner agrees to pay monthly access charges for connection and ISP.

C. Network Field Level Controllers – The communication network between the field level controllers shall be Lonworks TP/FT 10 bus topology, BACnet MSTP, BACnet/IP, Modbus RS-
485 or Modbus/IP. All wiring shall be provided in accordance with the standards for the appropriate protocol. The number of devices on any one (1) network shall not exceed ninety percent (90%) of capacity.

D. Network Management Devices – These various devices will service multiple functions on the network depending on network design, communication medium and needed task. These functions can include: management of traffic on the network, reconfiguring and strengthening of signals, the conversion of protocols, normalizing of data, global management of alarms, trends and schedules, control logic, protocol conversion and web page hosting for use as a Graphical User Interface.

1. Building Controller (BC) – This Niagara Framework based device shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control devices connected to the BC.

 a. It shall be provided with these features:

 1) Web page hosting.
 2) Extended memory.
 3) Appropriate hardware and driver(s) associated with the protocol it manages.
 4) Din rail mounted power supply.

 b. Provide multiple Building Controllers as necessary. In order to maintain peak performance of the network, limit the maximum consumed resources to eighty percent (80%) as indicated by the resource meter resident in the network management tools.

 c. Provide for the creation of a minimum of eight (8) of alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc. Manage alarms as defined in the points list.

 d. Provide timed (schedule) routing of alarms by class, object, group, or node.

 e. Provide alarm generation from binary object “runtime” and/or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control. Control equipment and network failures shall be treated as alarms and annunciated.

 f. Alarms shall be annunciated in any of the following manners as defined by the user:

 1) Screen message text.
 2) Email of the complete alarm message to multiple recipients. Provide the ability to route and email alarms based on:

 a) Day of week.
 b) Time of day.
 c) Recipient.

 3) Mobile phone text message.
 4) Graphic with flashing alarm object(s).
 5) Printed message, routed directly to a dedicated alarm printer.

 g. The following shall be recorded by the BC for each alarm (at a minimum):

 1) Time and date.
2) Location (building, floor, zone, office number, etc.)
3) Equipment (air handler #, access way, etc.)
4) Acknowledge time, date, and user who issued acknowledgement.
5) Number of occurrences since last acknowledgement.

h. Alarm actions may be initiated by user defined programmable objects created for that purpose.
i. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.
j. A log of all alarms shall be maintained by the BC and/or a server (if configured in the system) and shall be available for review by the user.
k. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.
l. Data Collection and Storage – The BC shall collect data for any property of any object and store this data as defined in the points list.
m. The data collection shall be performed by log objects, resident in the BC that shall have, at a minimum, the following configurable properties:

1) Designating the log as interval or deviation.

n. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
o. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
p. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
q. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.
r. Audit Log – Provide and maintain an Audit Log that tracks all activities performed on the BC. Provide the ability to specify a buffer size for the log and the ability to archive log based on time or when the log has reached its user-defined buffer size. Provide the ability to archive the log locally (to the BC), to another BC on the network, or to a server. For each log entry, provide the following data:

1) Time and date.
2) User ID.
3) Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

2.3 BUILDING AUTOMATION SYSTEM CONTROLLERS

A. All controllers shall be designed for easy installation and servicing including removable enclosures, removable terminals, and factory applied labels for all I/O. All internal points within the Programmable Controllers shall be fully supported by the Graphical User Interface (GUI), allowing the user to easily modify them and monitor them. All the internal programming points (e.g. variables, constants, PID’s, timers, inputs and outputs) shall be exposed to the network on dedicated network variable outputs. All controllers’ programs and schedules shall contain non-volatile flash memory. Upon a loss of power all controllers shall perform a self-restart.
B. Programmable Controllers (PC) – A controller designed for more complex sequences of operations such as built up AHU, central plant operations, electrical monitoring, and control and management for chillers, boilers and generators. The PCs are to allow for the flexibility of custom control programming to meet the needed sequences of operation.

C. Performance

1. Each PC shall have a minimum of 64K of non-volatile flash memory for control applications and 128K non-volatile flash memory for storage with a 8-bit processor. The PC shall have a minimum ambient operating temperature range of -0°C to 70°C or 32°F to 158°F.
2. Inputs – Analog inputs shall have the following minimum level of performance: 16-bit A to D resolution; allow monitoring of platinum 100 ohms, platinum 1000 ohm, nickel 1000 ohms, thermistor 10K type II, thermistor 10K type III, voltage input 0-10VDC, current input 4-20mA, digital input, pulsed input minimum 2 Hz.
3. Outputs – Outputs shall be either software configurable to be either analog or digital or dedicated digital only – Analog outputs shall be selectable as voltage of 0-10 VDC (linear) or 4-20mA or Digital outputs shall be 0-12 VDC (off/on), floating or PWM. Outputs shall have an adjustable range of 2 seconds to 15 minutes. Output Resolution shall be a minimum 8 bits digital/analog converter. All individual outputs and power supply shall be protected by an auto reset fuse. There shall be an LED status indicator on each of the outputs.
4. Programmable Controller Features
 a. Provide an onboard network communication jack.
 b. The PC shall be provided with a diagnostic indicator lights for power and network communication of transmit and receive along with a light indication position for each output.
 c. Hand/Off/Auto Switches – For all controllers applied to a AHU, Chiller, Pumps Cooling Tower or Boiler, provide for the manual override and adjustment of all Analog and Digital outputs through a three-position switch giving the selection of Hand, Off and Auto (HOA). A HOA shall be provided for each separate digital and analog output from the controller and be an integral part of the controller. HOA switches external from the controller shall not be accepted. For the Analog outputs the Hand position of the switch shall provide for the adjustment of the output signal through a linear scaled potentiometer. The position of the HOA shall be monitored and an alarm shall be delivered to the Graphical User Interface should the switch be in an Off or Hand position. An indicating LED shall be provided on the controller for each HOA indicating position of the switch. For all Analog outputs, the indicating LED shall provide a linear indication of the position of the Potentiometer through a variation in the intensity of the indicator LED and be provided as a numerical value that can be viewed at the Graphical User Interface.
 d. Enclosures – Provide for an enclosure with a separate back plate with terminals such that the electronic portion of the controller can be easily removed for ease of installation and servicing.

2.4 BAS SOFTWARE TOOLS

A. Controller Programming Software – Provide Wizards or objects that facilitate the programming and configuration of the Configurable Controllers (CC), Programmable Controller (PC) and or the Special Purpose Configurable Controllers (SPCC) sequence of operation through menu driven wizard. The programming tools shall perform the following functions:
1. PC programming shall be accomplished by graphical programming language (GPL) where objects are used to define different portions of the control sequence. All control sequences programmed into the PC shall be stored in non-volatile memory. Systems that only allow selection of sequences from a library or table are not acceptable. All code must be exportable to a library for future use.

2. CC and SPCC – Provide for the programming of the required sequence of operation through an intuitive configuration menu driven selection process. The configuration tools menu shall define items such as I/O configurations, set point, delays, PID loops, optimum start stops, and network variables settings. The configuration tool must indicate the device status and allows system override. Graphical programming language as described for the PC is acceptable.

2.5 USER INTERFACES

A. Provide for a series of browser accessible graphical screens that are resident on the BC and Server that represent the systems controllers and managed by that BC and its associated controllers.

1. The Web browser client shall support at a minimum, the following functions:

 a. Unlimited concurrent users shall be able to simultaneously login without the need of any additional user licenses or fees.
 b. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.
 c. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the GUI shall be supported by the Web browser interface.
 d. HTML programming shall not be required to display system graphics or data on a Web page.
 e. Storage of the graphical screens shall be in the Building Controller (BC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.
 f. Real-time values displayed on a Web page shall update automatically without requiring a manual “refresh” of the Web page.
 g. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:

 1) Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 2) Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 3) Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 4) Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
 5) View logs and charts.
 6) View and acknowledge alarms.
The system shall provide the capability to specify a user’s (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to just their defined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.

Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

B. Reports and Summaries

1. Reports and Summaries shall be generated and directed to the user interface displays, with subsequent assignment to printers, or disk. As a minimum, the system shall provide the following reports:

 a. All points in the BAS.
 b. All points in each BAS application.
 c. All points in a specific controller.
 d. All points in a user-defined group of points.
 e. All points currently in alarm.
 f. All BAS schedules.
 g. All user defined and adjustable variables, schedules, interlocks and the like.

2. Reports shall be exportable to .pdf, .txt, or .csv formats.
3. The system shall allow for the creation of custom reports and queries.

C. Schedules

1. A graphical display for time-of-day scheduling and override scheduling of building operations shall be provided. At a minimum, the following functions shall be provided:

 a. Regular schedules.
 b. Repeating schedules.
 c. Exception Schedules.

2. Weekly schedules shall be provided for each group of equipment with a specific time use schedule.
3. It shall be possible to define one or more exception schedules for each schedule including references to calendars.
4. Monthly calendars shall be provided that allow for simplified scheduling of holidays and special days. Holidays and special days shall be user-selected with the pointing device or keyboard.

D. Password

1. Multiple-level password access protection shall be provided to allow the user/manager to user interface control, display, and data manipulation capabilities deemed appropriate for each user, based on an assigned password.
2. Each user shall have the following: a username, a password, and access levels.
3. The system shall provide the capability to require a password of minimum length and require a combination of characters and numerical or special characters.
4. When entering or editing passwords, the system shall not echo the actual characters for display on the monitor.
5. The system shall provide unlimited flexibility with access rights. A minimum of four (4) levels of access shall be provided along with the ability to customize the system to provide additional levels.
6. A minimum of one hundred (100) unique passwords shall be supported.
7. Operators shall be able to perform only those commands available for their respective passwords. Display of menu selections shall be limited to only those items defined for the access level of the password used to log-on.
8. The system shall automatically generate a report of log-on/log-off and system activity for each user.
9. All log data shall be available in .pdf, .txt, and .csv formats.

E. Historical Data Collection
1. All numeric, binary or data points in the system data shall allow their values to be logged over time (trend log). Each historical record shall include the point’s name, a time stamp including time zone, and the point’s value.
2. The Network Area Controller (NAC) shall have the ability to store its historical data records locally and periodically to a remote server on the network (archiving).
3. The configuration of the historical data collection shall allow for recording data based on change of value or on a user-defined time interval.
4. The configuration of the historical data collection shall allow for the collection process to stop or rollover when capacity has been reached.
5. A historical data viewing utility shall be provided with access to all history records. This utility shall allow historical data to be viewed in a table or chart format.
6. The history data table view shall allow the user to hide/show columns and to filter data based on time and date. The history data table shall allow exporting to .txt, .csv, or .pdf file formats.
7. The historical data chart view shall allow different point histories to be displayed simultaneously, and also provide panning and zooming capabilities.

F. Audit Log – For each log entry, provide the following data:
1. Time and date.
2. User ID.
3. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

G. Database Backup and Storage – The user shall have the ability to back up the System Controller databases.

2.6 INPUT DEVICE CHARACTERISTICS
A. General Requirements – Installation, testing, and calibration of all sensors, transmitters, and other input devices shall be provided to meet the system requirements.

B. Temperature Sensors
1. General Requirements:
a. Sensors and transmitters shall be provided, as outlined in the input/output summary and sequence of operations.
b. The temperature sensor shall be of the resistance type, and shall be either two-wire 1000 ohm nickel RTD, or two-wire 1000 ohm platinum RTD.
c. The following point types (and the accuracy of each) are required, and their associated accuracy values include errors associated with the sensor, lead wire, and A to D conversion:

<table>
<thead>
<tr>
<th>Point Type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water</td>
<td>± 0.5°F.</td>
</tr>
<tr>
<td>Room Temp</td>
<td>± 0.5°F.</td>
</tr>
<tr>
<td>Duct Temperature</td>
<td>± 0.5°F.</td>
</tr>
<tr>
<td>All Others</td>
<td>± 0.75°F.</td>
</tr>
</tbody>
</table>

2. Offices/Conference Spaces
 a. Room sensors shall be constructed for either surface or wall box mounting.
 b. Room sensors shall have the following options when specified:
 1) Adjustable – with override button.

C. Thermowells
 1. When thermowells are required, the sensor and well shall be supplied as a complete assembly, including wellhead and Greenfield fitting.
 2. Thermowells shall be pressure rated and constructed in accordance with the system working pressure.
 3. Thermowells and sensors shall be mounted in a threadolet or ½-inch NFT saddle and allow easy access to the sensor for repair or replacement.
 4. Thermowells shall be constructed of 316 stainless-steel.

D. Outside Air Sensors
 1. Outside air sensors shall be designed to withstand the environmental conditions to which they will be exposed. They shall also be provided with a solar shield.
 2. Sensors exposed to wind velocity pressures shall be shielded by a perforated plate that surrounds the sensor element.
 3. Temperature transmitters shall be of NEMA 3R construction and rated for ambient temperatures.

E. Duct Mount Sensors
 1. Duct mount sensors shall mount in an electrical box through a hole in the duct, and be positioned so as to be easily accessible for repair or replacement.
 2. Duct sensors shall be insertion type and constructed as a complete assembly, including lock nut and mounting plate.
 3. For outdoor air duct applications, a weatherproof mounting box with weatherproof cover and gasket shall be used.
F. Averaging Sensors

1. For ductwork greater in any dimension that 48 inches and/or where air temperature stratification exists, an averaging sensor with multiple sensing points shall be used.
2. For plenum applications, such as mixed air temperature measurements, a string of sensors mounted across the plenum shall be used to account for stratification and/or air turbulence. The averaging string shall have a minimum of four (4) sensing points per 12-foot long segment.
3. Capillary supports at the sides of the duct shall be provided to support the sensing string.

G. Differential Pressure Transmitters

1. General Water Pressure Transmitter Requirements:
 a. Pressure transmitters shall be constructed to withstand one hundred percent (100%) pressure over-range without damage, and to hold calibrated accuracy when subject to a momentary forty percent (40%) over-range input.
 b. Pressure transmitters shall transmit a 0 to 5 VDC, 0 to 10 VDC, or 4 to 20 mA output signal.
 c. Differential pressure transmitters used for flow measurement shall be sized to the flow sensing device, and shall be supplied with tee fittings and shut-off valves in the high and low sensing pick-up lines to allow the balancing Contractor and Owner permanent, easy-to-use connection.
 d. A minimum requirement of a NEMA 1 housing shall be provided for the transmitter. Transmitters shall be located in accessible local control panels wherever possible.

2. Differential Water Pressure Applications (0”-20” w.c.)
 a. The differential pressure transmitter shall be of industrial quality and transmit a linear, 4 to 20 mA output in response to variation of flow meter differential pressure or water pressure sensing points.
 b. The differential pressure transmitter shall have non-interactive zero and span adjustments that are adjustable from the outside cover and meet the following performance specifications:
 1) 0.01-20” w.c. input differential pressure range.
 2) 4-20 mA output.
 3) Maintain accuracy up to 20 to 1 ratio turndown.
 4) Reference Accuracy: +0.2% of full span.

3. Steam or Water Pressure Applications (0”-20” w.c.)
 a. The pressure transmitter shall be of industrial quality and transmit a linear, 4 to 20 mA output in response to variation of flow meter differential pressure or water pressure sensing points.
 b. The pressure transmitter shall have non-interactive zero and span adjustments that are adjustable from the outside cover and meet the following performance specifications:
 1) 0.01-20” w.c. input differential pressure range.
 2) 4-20 mA output.
AUTOMATIC TEMPERATURE CONTROLS

3) Maintain accuracy up to 20 to 1 ratio turndown.
4) Reference Accuracy: +0.2% of full span.

H. Smoke Detectors – Ionization type air duct detectors shall be furnished as specified elsewhere in Division 23 for installation under Division 28. All wiring for air duct detectors shall be provided under Division 28, Fire Alarm System.

I. Status and Safety Switches

1. General Requirements – Switches shall be provided to monitor equipment status, safety conditions, and generate alarms at the BAS when a failure or abnormal condition occurs. Safety switches shall be provided with two (2) sets of contacts and shall be interlock wired to shut down respective equipment.

2. Current Sensing Switches

 a. The current sensing switch shall be self-powered with solid-state circuitry and a dry contact output. It shall consist of a current transformer, a solid-state current sensing circuit, adjustable trip point, solid state switch, SPDT relay, and an LED indicating the on or off status. A conductor of the load shall be passed through the window of the device. It shall accept over-current up to twice its trip point range.

 b. Current sensing switches shall be used for run status for fans, pumps, and other miscellaneous motor loads.

 c. Current sensing switches shall be calibrated to show a positive run status only when the motor is operating under load. A motor running with a broken belt or coupling shall indicate a negative run status.

 d. Acceptable Manufacturers: Veris Industries Hawkeye H100, 500, 600, 800, 900 Series

3. Air Filter Status Switches

 a. Differential pressure switches used to monitor air filter status shall be of the automatic reset type with SPDT contacts rated for 2 amps at 120VAC.

 b. A complete installation kit shall be provided, including static pressure tops, tubing, fittings, and air filters.

 c. Provide appropriate scale range and differential adjustment for intended service.

4. Air Flow Switches – Differential pressure flow switches shall be bellows actuated mercury switches or snap acting micro-switches with appropriate scale range and differential adjustment for intended service.

5. Low Temperature Limit Switches

 a. The low temperature limit switch shall be of the manual reset type with Double Pole/Single Throw snap acting contacts rated for 16 amps at 120VAC.

 b. The sensing element shall be a minimum of 15 feet in length and shall react to the coldest 18-inch section. Element shall be mounted horizontally across duct in accordance with manufacturers recommended installation procedures.

 c. For large duct areas where the sensing element does not provide full coverage of the air stream, additional switches shall be provided as required to provide full protection of the air stream.
2.7 OUTPUT DEVICE CHARACTERISTICS

A. Actuators

1. General Requirements – Damper and valve actuators shall be electronic, as specified in the System Description section.

2. Electronic Damper Actuators
 a. Electronic damper actuators shall be direct shaft mount.
 b. Modulating and two-position actuators shall be provided as required by the sequence of operations. Damper sections shall be sized based on actuator manufacturer’s recommendations for face velocity, differential pressure and damper type. The actuator mounting arrangement and spring return feature shall permit normally open or normally closed positions of the dampers, as required. All actuators (except terminal units) shall be furnished with mechanical spring return unless otherwise specified in the sequences of operations. All actuators shall have external adjustable stops to limit the travel in either direction, and a gear release to allow manual positioning.
 c. Modulating actuators shall accept 24 VAC or VDC power supply, consume no more than 15 VA, and be UL listed. The control signal shall be 2-10 VDC or 4-20 mA, and the actuator shall provide a clamp position feedback signal of 2-10 VDC. The feedback signal shall be independent of the input signal and may be used to parallel other actuators and provide true position indication. The feedback signal of one (1) damper actuator for each separately controlled damper shall be wired back to a terminal strip in the control panel for trouble-shooting purposes.
 d. Two-position or open/closed actuators shall accept 24 or 120 VAC power supply and be UL listed. Isolation, smoke, exhaust fan, and other dampers, as specified in the sequence of operations, shall be furnished with adjustable end switches to indicate open/closed position or be hard wired to start/stop associated fan. Two-position actuators, as specified in sequences of operations as “quick acting,” shall move full stroke within 20 seconds. All smoke damper actuators shall be quick acting.

3. Electronic Valve Actuators
 a. Electronic valve actuators shall be manufactured by the valve manufacturer.
 b. Each actuator shall have current limiting circuitry incorporated in its design to prevent damage to the actuator.
 c. Modulating and two-position actuators shall be provided as required by the sequence of operations. Actuators shall provide the minimum torque required for proper valve close-off against the system pressure for the required application. The valve actuator shall be sized based on valve manufacturer’s recommendations for flow and pressure differential. All actuators shall fail in the last position unless specified with mechanical spring return in the sequence of operations. The spring return feature shall permit normally open or normally closed positions of the valves, as required. All direct shaft mount rotational actuators shall have external adjustable stops to limit the travel in either direction.
 d. Modulating Actuators shall accept 24 VAC or VDC and 120 VAC power supply and be UL listed. The control signal shall be 2-10 VDC or 4-20 mA and the actuator shall provide a clamp position feedback signal of 2-10 VDC. The feedback signal shall be independent of the input signal, and may be used to parallel other actuators.
and provide true position indication. The feedback signal of each valve actuator (except terminal valves) shall be wired back to a terminal strip in the control panel for trouble-shooting purposes.

e. Two-position or open/closed actuators shall accept 24 or 120 VAC power supply and be UL listed. Butterfly isolation and other valves, as specified in the sequence of operations, shall be furnished with adjustable end switches to indicate open/closed position or be hard wired to start/stop the associated pump or chiller.

4. Control Dampers

a. The BAS Contractor shall furnish all automatic dampers. All automatic dampers shall be sized for the application by the BAS Contractor or as specifically indicated on the Drawings.

b. All dampers used for throttling airflow shall be of the opposed blade type arranged for normally open or normally closed operation, as required. The damper is to be sized so that, when wide open, the pressure drop is a sufficient amount of its close-off pressure drop to shift the characteristic curve to near linear.

c. All dampers used for two-position, open/close control shall be parallel blade type arranged for normally open or closed operation, as required.

d. Damper frames and blades shall be constructed of either galvanized steel or aluminum. Maximum blade length in any section shall be 60 inches. Damper blades shall be 16-gauge minimum and shall not exceed 8 inches in width. Damper frames shall be 16-gauge minimum hat channel type with corner bracing. All damper bearings shall be made of reinforced nylon, stainless steel or oil-impregnated bronze. Dampers shall be tight closing, low leakage type, with synthetic elastomer seals on the blade edges and flexible stainless-steel side seals. Dampers of 48 inches x 48 inches size shall not leak in excess of 8.0 cfm per square foot when closed against 4” w.g. static pressure when tested in accordance with AMCA Std. 500.

e. Airfoil blade dampers of double skin construction with linkage out of the air stream shall be used whenever the damper face velocity exceeds 1500 FPM or system pressure exceeds 2.5” w.g., but no more than 4000 FPM or 6” w.g.

f. One-piece rolled blade dampers with exposed or concealed linkage may be used with face velocities of 1500 FPM or below.

5. Control Relays

a. Control Pilot Relays

1) Control pilot relays shall be of a modular plug-in design with retaining springs or clips.

2) Mounting bases shall be snap-mount.

3) SPDT, DPDT, 3PDT, or 4PDT relays shall be provided, as appropriate for application.

4) Contacts shall be rated for 10 amps at 120VAC.

5) Relays shall have an integral indicator light, manual override and check button or integral H-O-A switch.

6) Acceptable manufacturers: Veris Industries VMD-F Series

6. Control Valves
a. All automatic control valves shall be fully proportioning and provide near linear heat transfer control. The valves shall be quiet in operation and fail-safe open, closed, or in their last position. All valves shall operate in sequence with another valve when required by the sequence of operations. All control valves shall be sized by the control manufacturer, and shall be guaranteed to meet the heating and cooling loads, as specified. All control valves shall be suitable for the system flow conditions and close against the differential pressures involved. Body pressure rating and connection type (sweat, screwed, or flanged) shall conform to the pipe schedule elsewhere in this Specification.

b. Chilled water control valves shall be modulating plug, ball, and/or butterfly, as required by the specific application. Modulating water valves shall be sized per manufacturer’s recommendations for the given application. In general, valves (2- or 3-way) serving variable flow air handling unit coils shall be sized for a pressure drop equal to the actual coil pressure drop, but no less than 5 PSI. Valves (3-way) serving constant flow air handling unit coils with secondary circuit pumps shall be sized for a pressure drop equal to twenty-five percent (25%) the actual coil pressure drop, but no less than 2 PSI. Mixing valves (3-way) serving secondary water circuits shall be sized for a pressure drop of no less than 5 PSI. Valves for terminal reheat coils shall be sized for a 2 PSIG pressure drop, but no more than a 5 PSI drop.

c. Ball valves shall be used for hot and chilled water applications, water terminal reheat coils, radiant panels, unit heaters, package air conditioning units, and fan coil units except those described hereinafter.

d. Modulating plug water valves of the single-seat type with equal percentage flow characteristics shall be used for all special applications as indicated on the valve schedule. Valve discs shall be composition type. Valve stems shall be stainless steel.

e. Butterfly valves shall be acceptable for modulating large flow applications greater than modulating plug valves, and for all two-position, open/close applications. In-line and/or three-way butterfly valves shall be heavy-duty pattern with a body rating comparable to the pipe rating, replaceable lining suitable for temperature of system, and a stainless-steel vane. Valves for modulating service shall be sized and travel limited to 50 degrees of full open. Valves for isolation service shall be the same as the pipe. Valves in the closed position shall be bubble-tight.

2.8 MISCELLANEOUS DEVICE CHARACTERISTICS

A. Local Control Panels

1. All control panels supplied by the BAS Contractor, without exception, shall be prefabricated and tested by the BAS manufacturer, incorporating the BAS manufacturer’s latest design standards and layouts. All control panels shall be of steel construction, UL inspected, and listed as a UL assembly and carry the UL 508 label listing. Control panels shall be fully enclosed, with perforated sub-panel, hinged door, and slotted flush latch. The BAS Contractor shall provide as part of the project submittal written verification of the BAS manufacturer’s panel facility ISO9001 and UL certifications.

2. In general, the control panels shall consist of the DDC controller(s), display module as specified and indicated on the plans, and I/O devices—such as relays, transducers, and so forth—that are not required to be located external to the control panel due to function. Where specified the display module shall be flush mounted in the panel face unless otherwise noted.

3. All I/O connections on the DDC controller shall be provide via removable or fixed screw terminals.
4. Low and line voltage wiring shall be segregated. All provided terminal strips and wiring shall be UL listed, 300-volt service and provide adequate clearance for field wiring.
5. All wiring shall be neatly installed in plastic wire trough.
6. A convenience 120 VAC duplex receptacle shall be provided in each enclosure, fused on/off power switch, and required transformers.

B. Power Supplies
1. DC power supplies shall be sized for the connected device load. Total rated load shall not exceed seventy-five percent (75%) of the rated capacity of the power supply.
2. Input: 120 VAC +10%, 60Hz.
3. Output: 24 VDC.
4. Line Regulation: +0.05% for ten percent (10%) line change.
5. Load Regulation: +0.05% for fifty percent (50%) load change.
6. Ripple and Noise: 1 mV rms, 5 mV peak to peak.
7. An appropriately sized fuse and fuse block shall be provided and located next to the power supply.
8. A power disconnect switch shall be provided next to the power supply.

PART 3 - EXECUTION
3.1 BAS SPECIFIC REQUIREMENTS
A. Graphic Displays
1. Provide a color graphic system flow diagram display for each system with all points as indicated on the point list. At a minimum the Contractor shall insure there are graphics depicting building floor plans, all central panels, boiler rooms, zone control, and animated 3-dimensional graphics for each unit ventilator, air handler, fan coil, etc.
2. User shall access the various system schematics via a graphical penetration scheme and/or menu selection.
3. Graphics shall be to the style of the existing Tridium Niagara graphics.

B. Actuation/Control Type
1. Unit Mounted Equipment
 a. Where control devices are indicated to be unit mounted, the BAS Contractor shall supply and ship all DDC controllers, relays, transformers, valves and damper actuators to the unit equipment manufacturer for mounting and wiring. The unit manufacturer shall mount and wire the controllers as per the BAS Contractor’s control wiring diagrams and instructions.
 b. All damper and valve actuation shall be electric, spring return fail-safe and normally open or closed as specified herein.
2. Air Handling Equipment
 a. All Air Handling Equipment shall be one hundred percent (100%) DDC controlled.
 b. All damper and valve actuation shall be electric.
3.2 INSTALLATION PRACTICES

A. BAS Wiring

1. All conduit, wiring, accessories and wiring connections required for the installation of the Building Automation System, as herein specified, shall be provided by the BAS Contractor unless specifically shown on the Electrical Drawings under Division 26. All wiring shall comply with the requirements of applicable portions of Division 26 and all local and national electric codes, unless specified otherwise in this section.

2. All BAS wiring materials and installation methods without exception are to comply with the following BAS manufacturers recommended installation standards.

 a. All Analog Input, Analog Output, Binary Input, Binary Output and 24VAC control cables shall be UL Plenum Rated and color coded as follows: Analog Input Cable – Yellow Jacket, Analog Output Cable – Tan Jacket, Binary Input Cable – Orange Jacket, Binary Output Cable – Violet Jacket, 24VAC Cable – Grey Jacket.

 b. All Field Bus and Ethernet LAN communications cables shall be UL Plenum Rated and be color coded as follows: Field Bus – Blue Jacket with Yellow Stripe, Ethernet LAN Cable – Violet Jacket.

 c. All Ethernet LAN communications cable be UL Plenum Rated and shall meet or exceed Category 6 rating.

3. The sizing, type and provision of cable, conduit, cable trays, and raceways shall be the design responsibility of the BAS Contractor. If complications arise, however, due to the incorrect selection of cable, cable trays, raceways and/or conduit by the BAS Contractor, the Contractor shall be responsible for all costs incurred in replacing the selected components.

4. Class 2 Wiring

 a. All Class 2 (24VAC or less) wiring shall be installed in conduit unless otherwise specified.

 b. Conduit is not required for Class 2 wiring in concealed accessible locations. Class 2 wiring not installed in conduit shall be supported every 5 feet from the building structure utilizing metal hangers designed for this application. Wiring shall be installed parallel to the building structural lines. All wiring shall be installed in accordance with local code requirements.

 c. Class 2 signal wiring and 24VAC power can be run in the same conduit. Power wiring 120VAC and greater cannot share the same conduit with Class 2 signal wiring.

 d. Provide for complete grounding of all applicable signal and communications cables, panels and equipment so as to ensure system integrity of operation. Ground cabling and conduit at the panel terminations. Avoid grounding loops.

B. BAS Line Voltage Power Source

1. 120-volt AC circuits used for the Building Automation System shall be taken from panel boards and circuit breakers provided by Division 26.

2. Circuits used for the BAS shall be dedicated to the BAS and shall not be used for any other purposes.

3. DDC terminal unit controllers may use AC power from motor power circuits.
AUTOMATIC TEMPERATURE CONTROLS

C. BAS Raceway

1. All cables to be open plenum rated with EMT in exposed areas.
2. Where it is not possible to conceal raceways in finished locations, surface raceway (Wiremold) may be used as approved by the Architect.
3. All conduits and raceways shall be installed level, plumb, at right angles to the building lines and shall follow the contours of the surface to which they are attached.
4. Flexible Metal Conduit shall be used for vibration isolation and shall be limited to 3 feet in length when terminating to vibrating equipment. Flexible Metal Conduit may be used within partition walls. Flexible Metal Conduit shall be UL listed.

D. Penetrations

1. Provide fire stopping for all penetrations used by dedicated BAS conduits and raceways.
2. All openings in fire proofed or fire stopped components shall be closed by using approved fire resistive sealant.
3. All wiring passing through penetrations, including walls shall be in conduit or enclosed raceway.
4. Penetrations of floor slabs shall be by core drilling. All penetrations shall be plumb, true, and square.

E. BAS Identification Standards – Node Identification. All nodes shall be identified by a permanent label fastened to the enclosure. Labels shall be suitable for the node location. Cable types specified in Item A shall be color coded for easy identification and troubleshooting.

F. BAS Panel Installation

1. The BAS panels and cabinets shall be located as indicated at an elevation of not less than 2 feet from the bottom edge of the panel to the finished floor. Each cabinet shall be anchored per the manufacturer’s recommendations.
2. The BAS contractor shall be responsible for coordinating panel locations with other trades and electrical and mechanical contractors.

G. Input Devices

1. All Input devices shall be installed per the manufacturer recommendation
2. Locate components of the BAS in accessible local control panels wherever possible.

H. HVAC Input Devices – General

1. All Input devices shall be installed per the manufacturer recommendation
2. Locate components of the BAS in accessible local control panels wherever possible.
3. The Mechanical Contractor shall install all in-line devices such as temperature wells, pressure taps, airflow stations, etc.
5. Outside Air Sensors
 a. Sensors shall be mounted on the North wall to minimize solar radiant heat impact or located in a continuous intake flow adequate to monitor outside air conditions accurately.
b. Sensors shall be installed with a rain proof, perforated cover.

6. Water Differential Pressure Sensors
 a. Differential pressure transmitters used for flow measurement shall be sized to the flow-sensing device.
 b. Differential pressure transmitters shall be supplied with tee fittings and shut-off valves in the high and low sensing pick-up lines.
 c. The transmitters shall be installed in an accessible location wherever possible.

7. Duct Temperature Sensors:
 a. Duct mount sensors shall mount in an electrical box through a hole in the duct and be positioned so as to be easily accessible for repair or replacement.
 b. The sensors shall be insertion type and constructed as a complete assembly including lock nut and mounting plate.
 c. For ductwork greater in any dimension than 48 inches or where air temperature stratification exists such as a mixed air plenum, utilize an averaging sensor.
 d. The sensor shall be mounted to suitable supports using factory approved element holders.

8. Space Sensors:
 a. Shall be mounted per ADA requirements.
 b. Provide lockable tamper-proof covers in public areas and/or where indicated on the plans.

9. Low Temperature Limit Switches:
 a. Install on the discharge side of the first water or steam coil in the air stream.
 b. Mount element horizontally across duct in a serpentine pattern insuring each square foot of coil is protected by 1 foot of sensor.
 c. For large duct areas where the sensing element does not provide full coverage of the air stream, provide additional switches as required to provide full protection of the air stream.

10. Air Differential Pressure Status Switches – Install with static pressure tips, tubing, fittings, and air filter.

I. HVAC Output Devices

1. All output devices shall be installed per the manufacturer’s recommendation. The Mechanical Contractor shall install all in-line devices such as control valves, dampers, airflow stations, pressure wells, etc.
2. Actuators – All control actuators shall be sized capable of closing against the maximum system shut-off pressure. The actuator shall modulate in a smooth fashion through the entire stroke.
3. Control Dampers shall be opposed blade for modulating control of airflow. Parallel blade dampers shall be installed for two (2) position applications.
4. Control Valves shall be sized for proper flow control with equal percentage valve plugs. The maximum pressure drop for water applications shall be 5 PSI. The maximum pressure drop for steam applications shall be 2 PSI.

3.3 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain control systems and components.

1. Provide 8 hours of training.
2. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment and schedules.
3. Provide operator training on data display, alarm and status descriptors, requesting data, executing commands, calibrating and adjusting devices, resetting default values, and requesting logs. Include a minimum of 40 hours' dedicated instructor time on-site.
4. Review data in maintenance manuals. Refer to Section 017823 "Operation and Maintenance Data."
5. Schedule training with Owner, through Architect, with at least seven (7) days' advance notice.

3.4 ON-SITE ASSISTANCE

A. Occupancy Adjustments – Within one (1) year of date of Substantial Completion, provide up to three (3) site visits, when requested by Owner, to adjust and calibrate components and to assist Owner's personnel in making program changes and in adjusting sensors and controls to suit actual conditions.

PART 4 – SEQUENCE OF OPERATION

4.1 VARIABLE REFRIGERANT FLOW SYSTEM SEQUENCE

A. The BMS shall enable, disable, set operating modes and send setpoints to the VRF Controls System via BACNet Communication interface. For the VRF system, enable indicates the unit is on and disable indicates the unit is off. Setpoint temperature will define the occupied and unoccupied condition.

1. Occupied Mode: During occupied periods, the supply fan shall run continuously to meet with required ventilation requirements. The VRF unit will supply the required heating and cooling to maintain the occupied space temperature setpoint.
2. Unoccupied Mode:
 a. When the space temperature is below the unoccupied heating setpoint of 60.0°F (adj.) the indoor unit shall start and begin the process of heating the space.
 b. When the space temperature rises above the unoccupied heating setpoint of 60.0°F (adj.) plus the unoccupied differential of 4.0°F (adj) the unit will shut down.
 c. When the space temperature is above the unoccupied cooling setpoint of 85.0°F (adj.) the indoor unit shall start and begin the process of cooling the space.
 d. When the space temperature falls below the unoccupied cooling setpoint of 85.0°F (adj.) minus the unoccupied differential of 4.0°F (adj.) the unit will shut down.
B. The BMS contractor shall also be responsible for installation and communication wiring of all VRF control components to provide a complete and operational system including but not limited to return air thermistor, indoor units (air handlers and heat recovery boxes), and outdoor units. The VRF manufacturer will furnish return air thermistors and associated cabling. Refer to Section 238127 “VRV Heat Pump System” for additional information.

C. The BMS shall set the occupied and unoccupied temperature set-points based on the Owner’s request. Temperature set-points may be changed at the RC (remote controller) if installed in the space.

1. The BMS shall send PROHIBIT commands for prohibiting the MODE button at the local remote controller in the space during occupied and unoccupied times.
2. The BMS shall send PROHIBIT commands for prohibiting the ON/OFF button at the local remote controller in the space during occupied times only.
3. The BMS shall send PERMIT commands for permitting the ON/OFF button at the local remote controller in the space during unoccupied times to allow for setback override.

D. During unoccupied times the BMS shall send the OFF command to the indoor unit at the start of unoccupied times and every 2 hours thereafter to reinforce the setback conditions.

E. The BMS shall monitor the following points via the VRF Master Controller and report them to the BMS for display at the operator interface.

1. Space Temperature.
2. Unit Status. (Indoor and Outdoor Units)
3. Unit Common Alarm. (Indoor and Outdoor Units)
4. Operating Mode Status.
5. Error Code.

4.2 ROOFTOP UNIT SEQUENCE (SINGLE ZONE RTU)

A. BMS shall integrate to the factory mounted RTU controller. RTU manufacturer to provide all applicable sensors required per sequence of operation. Building Management Control System Interface: The Building Management Control System (BMS) shall send the controller Occupied Bypass, Morning Warm-up/Pre-Cool, Occupied/Unoccupied and Heat/Cool modes. If a BMS is not present, or communication is lost with the BMS the controller shall operate using default modes and setpoints.

1. Occupied Mode: During occupied periods, the supply fan shall run continuously, and the outside air damper shall open to maintain minimum ventilation requirements. The DX cooling shall stage, and gas heat shall modulate to maintain the occupied space temperature setpoint. If economizing is enabled the outside air damper shall modulate to maintain the occupied space temperature setpoint.

2. Unoccupied Mode:
 a. When the space temperature is below the unoccupied heating setpoint of 60.0°F (adj.) the supply fan shall start, the outside air damper shall remain closed and the gas heat shall be enabled.
 b. When the space temperature rises above the unoccupied heating setpoint of 60.0°F (adj.) plus the unoccupied differential of 4.0°F (adj) the supply fan shall stop and the gas heat shall be disabled.
c. When the space temperature is above the unoccupied cooling setpoint of 85.0°F (adj.) the supply fan shall start, the outside air damper shall open if economizing is enabled and remain closed if economizing is disabled and the DX cooling shall be enabled.

d. When the space temperature falls below the unoccupied cooling setpoint of 85.0°F (adj.) minus the unoccupied differential of 4.0°F (adj.) the supply fan shall stop, the DX cooling shall be disabled, and the outside air damper shall close.

3. Optimal Start: The BMS shall monitor the scheduled occupied time, occupied space setpoints and space temperature to calculate when the optimal start occurs.

B. Cooling Mode: The unit controller shall monitor space temperature and space temperature cooling setpoint to determine when to initiate requests for cooling. When the space temperature rises above the space temperature cooling setpoint, the unit controller shall modulate the economizer or stage the mechanical cooling “On” or “Off” as required to maintain the space temperature cooling setpoint.

1. The first compressor shall energize after its minimum 3-minute off time has expired.
2. The supply fan shall modulate above minimum speed to meet zone requirements. If additional cooling capacity is required, the next stage of cooling shall be enabled.
3. Once the space temperature falls below the setpoint the compressors shall be deactivated, and the fan shall modulate to minimum speed.

C. Heating Mode: The unit controller shall monitor space temperature and space temperature heating setpoint to determine when to initiate requests for heat. When the space temperature drops below the space temperature heating setpoint, the controller shall enable the modulating the furnace to satisfy the space temperature heating setpoint. The supply fan speed shall vary to meet zone heating requirements in conjunction with the heat bank output. Once the space temperature rises above the setpoint, the heating cycle shall be disabled.

D. Economizer Control/Comparative Enthalpy: Outside air enthalpy is compared with return air enthalpy point. The economizer shall be enabled when outdoor air enthalpy is less than return air enthalpy - 3.0 BTU/LB. The economizer shall be disabled when outdoor air enthalpy is greater than return air enthalpy.

E. Demand Control Ventilation (DCV):

1. As the supply fan speed command varies between minimum and maximum, the Building Design and DCV Minimum Position Targets shall be calculated linearly between the user selected setpoints based on the instantaneous supply fan speed. The Bldg. Design and DCV Minimum Position Targets will be used to calculate the Active OA Damper Minimum Position Target based on CO2 levels relative to the active Design and DCV CO2 setpoints.
2. The Design Minimum and DCV Minimum OA Damper Position setpoints at Minimum Fan Speed Command and the Design Minimum OA Damper Position setpoint at Middle Fan Speed Command shall have a range of zero to one hundred percent (0-100%) while the Design Minimum and DCV Minimum OA Damper Position setpoints at Full fan speed shall have a range of zero to fifty percent (0-50%).
3. Note: On non-Single Zone VAV units, a ten percent (10%) offset shall be enforced between the Design and DCV Minimum Positions throughout the fan speed range.
F. Supply Fan Operation: The supply fan shall be enabled while in the occupied mode and cycled on during the unoccupied mode. The unit controller shall vary the supply fan speed to optimize minimum fan speed in all cooling and heating modes. A differential pressure switch shall monitor the differential pressure across the fan. If the switch does not open within 40 seconds after a request for fan operation a fan failure alarm shall be annunciated, the unit shall stop, requiring a manual reset.

G. Building Pressure Control: The barometric relief dampers shall open with increased building pressure. As the building pressure increases, the pressure in the unit return section also increases, opening the dampers and relieving air.

H. Filter Status: A differential pressure switch shall monitor the differential pressure across the filter when the fan is running. If the switch closes for 2 minutes after a request for fan operation a dirty filter alarm shall be annunciated at the BMS.

4.3 EXISTING JOHNSON CONTROLS FACILITY CONTROLLER JACE 6 (LOCATED IN BOILER ROOM)

1. The BMS contractor shall replace the existing JACE 6 with a new JACE 8000 and integrate the existing controllers to the new JACE 8000.
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Standards: Comply with NFPA 54 - National Fuel Gas Code, edition currently in force in State in which project is located.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators (line and appliance types).
6. Pressure regulator vent piping to atmosphere, with required clearances from fresh air intakes, operable window and doors, sources of ignition, etc.
7. Gauges.
8. Supports.
9. Contractor’s gas distribution work shall commence at discharge of existing service meter/regulator installation. The intent is to route all new gas piping outside the building.

B. Natural Gas Service Meter:

1. The existing natural gas service meter and service regulator will remain. Coordinate with the gas utility, Southern Connecticut Gas Company (SCG), as required to accommodate increased building connected gas loads.
2. If determined necessary by the utility, a new gas service meter and service regulator will be sized, furnished and installed by the Southern Connecticut Gas Company (SCG). Refer to proposed location on the Plumbing Drawings. Contractor shall confirm with SCG and provide meter rough-in and concrete housekeeping pad per their requirements. SCG shall also extend existing gas service and connect to new meter/regulator installation.

1.3 DEFINITIONS

A. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Pressure: According to pressure gauge upstream of the service meter/ regulator, gas service pressure is between 50 and 60 psig.
 a) Provide appliance pressure regulators to reduce building distribution pressure to the middle of each new gas-fired item’s inlet pressure range, including providing regulator vents to atmosphere. Vent-limiting type pressure regulators are not permitted at outdoor locations.
4. Additional Building Connected Gas Load (based on all four (4) new Rooftop units installed, using specified Basis-of-Design Equipment): 930 MBH.

B. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 SUBMITTALS

A. Product Data: For each type of the following:
 1. Piping specialties.
 2. Corrugated, stainless-steel tubing with associated components.
 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 4. Pressure regulators (other than service pressure regulator, which will be provided by the gas utility). Indicate pressure ratings and capacities.
 5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 1. Shop Drawing Scale: ¼-inch per foot (1:50).
 2. Detail mounting, supports, and valve arrangements for gas pressure boosting equipment.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of seismic restraints.
 2. Design Calculations: Calculate requirements for selecting seismic restraints.

D. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

E. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

F. Qualification Data: For qualified professional engineer.
G. Field quality-control reports.

H. Operation and Maintenance Data: For motorized gas valves, pressure booting equipment, and pressure regulators to include in emergency, operation, and maintenance manuals.

I. Due to combustibility of proposed construction, on-site welding is not permitted.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.8 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

1.9 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate provision of concrete pad, to gas utility specifications, for gas-utility provided gas meter and service regulator.

C. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53, black steel, Schedule 40, Type E or S, Grade B.

2. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
3. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

4. Operating-Pressure Rating: 5 psig.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. OmegaFlex, Inc.
 b. Parker Hannifin Corporation
 c. Titeflex
 d. Tru-Flex Metal Hose Corp.
 3. Coating: PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.
 4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.
 5. Striker Plates: Steel, designed to protect tubing from penetrations.
 6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.
 7. Operating-Pressure Rating: 5 psig.
 9. Refer to Schedules for additional requirements.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:
 2. Corrugated stainless-steel tubing with polymer coating.
 3. Operating-Pressure Rating: 0.5 psig.
 5. Threaded Ends: Comply with ASME B1.20.1.

B. Y-Pattern Strainers:
1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with fifty percent (50%) free area.

C. Basket Strainers:
1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with fifty percent (50%) free area.

D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS
A. Joint Compound and Tape: Suitable for natural gas.
B. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F (540 deg C) complying with AWS A5.8. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES
A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1-inch and smaller.
 6. Service Mark: Valves 1¼ inches to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.
C. General Requirements for Metallic Valves, NPS 2-1/2 (DN 65) and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. BrassCraft Manufacturing Company; a Masco company
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company
 3. Ball: Chrome-plated brass.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Flowserve
 b. Homestead Valve; a division of Olson Technologies, Inc.
 d. Milliken Valve Company
 e. Mueller Co.; Gas Products Div.
 2. Body: Cast iron, complying with ASTM A 126, Class B.
 3. Plug: Bronze or nickel-plated cast iron.
 4. Seat: Coated with thermoplastic.
 5. Stem Seal: Compatible with natural gas.
 7. Operator: Square head or lug type with tamperproof feature where indicated.
 8. Pressure Class: 125 psig.
 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
 2. Steel jacket and corrosion-resistant components.
 3. Elevation compensator.
 4. End Connections: Threaded for regulators NPS 2 (DN 50) and smaller; flanged for regulators NPS 2-1/2 (DN 65) and larger.
 5. Rated (CSA-Certified) Inlet Pressure: 5 psig minimum.

 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company
 e. SCP, Inc.
 5. Seat Disc: Nitrile rubber.
 8. Regulator shall be Listed vent limiting device type, unless located outdoors. For outdoor applications use vent-to-atmosphere type regulators approved for outdoor use.

2.6 DIAL-TYPE PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Ametek U.S. Gauge
 b. Ashcroft Inc.
 c. Palmer Wahl Instrumentation Group
 d. Trerice, H. O. Co.
 e. Weiss Instruments, Inc.
 3. Case: Solid-front, pressure relief type; cast aluminum or drawn steel; 1½-inch nominal diameter or larger.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
10. Ring: Brass or stainless-steel.
11. Accuracy: Grade A, plus or minus one percent (+/-1%) of middle half of scale range.
12. Pressure range: 0 psi to 5 psi.

2.7 DIELECTRIC FITTINGS

A. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Capitol Manufacturing Company
 b. Central Plastics Company
 e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 f. Wilkins; Zurn Plumbing Products Group

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for natural gas.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, or plain end connections that match piping system materials.

B. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Capitol Manufacturing Company
 b. Central Plastics Company
 c. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 d. Wilkins; Zurn Plumbing Products Group

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for natural gas.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, or plain end connections that match piping system materials.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to NFPA 54 National Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with NFPA 54 National Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

A. Comply with NFPA 54 for installation and purging of natural-gas piping.

B. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.

C. Install fittings for changes in direction and branch connections.

D. Install pressure gage upstream and downstream from each service regulator.

3.4 PIPING INSTALLATION

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Locate valves for easy access.

D. Install natural-gas piping at uniform grade of two percent (2%) down toward drip and sediment traps, if provided.

E. Install piping free of sags and bends.

F. Install fittings for changes in direction and branch connections.
G. Verify final equipment locations for roughing-in.

H. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

I. Drips and Sediment Traps: Install drips at points where condensate may collect, accessible to permit cleaning and emptying, EXCEPT do not install where condensate is subject to freezing (e.g. base of riser to roof) unless required by the utility.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of three (3) pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

J. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices as required to maintain code clearances from fresh air intakes and operable windows and doors, and terminate outdoors with weatherproof vent cap or downturned elbow.

K. Prohibited Locations:
 1. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 2. Do not install natural-gas piping in solid walls or partitions.
 3. Do not directly install natural-gas piping in cast-in-place concrete floors or slabs.

L. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

M. Connect branch piping from top or side of horizontal piping.

N. Install unions in pipes NPS 2 (DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

O. Do not use natural-gas piping as grounding electrode.

P. Install strainer on inlet of each line-pressure regulator.

Q. Install pressure gage upstream and downstream from each line regulator. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

3.5 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of flexible gas connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.6 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

3.7 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping per the requirements of the Connecticut State Building Code. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Mount gas piping routing on roof on MAPA MT Series nylon-based free-standing non-penetrating adjustable roller pipe supports with neoprene base pads (or approved equal).

C. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

D. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 (DN 25) and Smaller: Maximum span, 96 inches; minimum rod size, 3/8-inch.
 4. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): Maximum span, 10 feet; minimum rod size, ½-inch.
 5. NPS 4 (DN 100) and Larger: Maximum span, 10 feet; minimum rod size, 5/8-inch.

3.8 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.
3.9 LABELING AND IDENTIFYING
A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.
B. Install detectable warning tape directly above buried gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING
A. Paint all new exterior natural-gas piping, providing a minimum of two (2) coats of rust-inhibiting paint, final coat light gray. Prepare pipe surfaces beforehand per paint manufacturer’s instructions and best recommendations.
B. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to NFPA 54 - National Fuel Gas Code and authorities having jurisdiction.
C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.12 OUTDOOR PIPING SCHEDULE
A. Aboveground natural-gas piping shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints, with one coat of rust-inhibiting primer and two coats rust-resistant finish paint, color: yellow.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE
A. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller shall be the following:
 1. One-piece, bronze ball valve with bronze trim.
B. Valves in branch piping for single appliance shall be the following:
 1. One-piece, bronze ball valve with bronze trim.

END OF SECTION 231123
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Refrigerant pipes and fittings.
 2. Refrigerant piping valves and specialties.
 3. Refrigerants.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of valve, refrigerant piping, and piping specialty.
 1. Include pressure drop, based on manufacturer's test data, for the following:
 a. Thermostatic expansion valves.
 b. Solenoid valves.
 c. Filter dryers.
 d. Strainers.
 e. Pressure-regulating valves.

 B. Shop Drawings:
 1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
 2. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 3. Show interface and spatial relationships between piping and equipment.
 4. Shop Drawing Scale: ¼-inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

2.2 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum ¾-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.
2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
 5. Seal Cap: Forged-brass or valox hex cap.
 6. End Connections: Socket, union, threaded, or flanged.
 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 6. End Connections: Socket, union, threaded, or flanged.
 7. Maximum Opening Pressure: 0.50 psig.
 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
 1. Body: Forged brass with brass cap including key end to remove core.
 2. Core: Removable ball-type check valve with stainless-steel spring.
 4. End Connections: Copper spring.

E. Solenoid Valves: Comply with AHRI 760 and UL 429; listed and labeled by a National Recognized Testing Laboratory (NRTL).
 4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with ½-inch conduit adapter, and 24, 115, 208-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 4. End Connections: Threaded.
 6. Maximum Operating Temperature: 240 deg F.

G. Thermostatic Expansion Valves: Comply with AHRI 750.
 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 5. Suction Temperature: 40 deg F.
 7. Reverse-flow option (for heat-pump applications).
 8. End Connections: Socket, flare, or threaded union.

H. Straight-Type Strainers:
 2. Screen: 100-mesh stainless-steel.
 3. End Connections: Socket or flare.
 5. Maximum Operating Temperature: 275 deg F.

I. Angle-Type Strainers:
 1. Body: Forged brass or cast bronze.
 2. Drain Plug: Brass hex plug.
 3. Screen: 100-mesh monel.
 4. End Connections: Socket or flare.
 6. Maximum Operating Temperature: 275 deg F.

J. Moisture/Liquid Indicators:
 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 3. Indicator: Color coded to show moisture content in parts per million (ppm).
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.

K. Replaceable-Core Filter Dryers: Comply with AHRI 730.
 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 4. Designed for reverse flow (for heat-pump applications).
 5. End Connections: Socket.
 9. Maximum Operating Temperature: 240 deg F.

L. Mufflers:
 2. End Connections: Socket or flare.
 4. Maximum Operating Temperature: 275 deg F.

M. Receivers: Comply with AHRI 495.
 1. Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 2. Comply with UL 207; listed and labeled by an NRTL.
 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
 5. End Connections: Socket or threaded.
 7. Maximum Operating Temperature: 275 deg F.

N. Liquid Accumulators: Comply with AHRI 495.
 2. End Connections: Socket or threaded.
 4. Maximum Operating Temperature: 275 deg F.

2.4 REFRIGERANTS

A. ASHRAE 34, R-134a: Tetrafluoroethane.
B. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.
C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

E. Install a full-size, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two (2) bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by 2010 ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for the device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Compressor.
K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Section 230923 "Automatic Temperature Controls" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:
1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps and double risers to entrain oil in vertical runs.
4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 1. Shot blast the interior of piping.
 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and to restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod, ¼-inch.
 2. NPS 5/8: Maximum span, 60 inches minimum rod, ¼-inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod, ¼-inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod, 3/8-inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod, 3/8-inch.

D. Support multi-floor vertical runs at least at each floor.
3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

B. Prepare test and inspection reports.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Double-wall rectangular ducts and fittings.
 4. Sheet metal materials.
 5. Duct liner.
 7. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7. SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.
B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008, with oiled, matte finish for exposed ducts.

D. Reinforcement Shapes and Plates: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

E. Tie Rods: Galvanized steel, ¼-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Flexible Elastomeric Duct Liner: Non-porous, Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
METAL DUCTS

1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
2. Water Vapor Permeability (perm-in): <0.06.
3. Water absorption (lbs/sf): 0.091.
4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch-diameter shank, length to suit depth of insulation indicated with integral 1½-inch galvanized carbon-steel washer.
2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1½ inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least ninety percent (90%) adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of twenty-three percent (23%).
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

1. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Solvent-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum sixty percent (60%).
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
11. Service: Indoor or outdoor.
12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless-steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:

1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.
2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

F. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES

A. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

B. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

C. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections, reinforcing steel angle clamped to hanger rod.

D. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.
C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1-inch, where possible, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1½ inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless-steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.
3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-activated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-activated concrete fasteners after concrete is placed and completely cured.
3. Use powder-activated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-activated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-activated concrete fasteners for seismic restraints.

C. Hanger/Support Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.
E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems.", ASCE/SEI 7.
 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 2. Brace a change of direction longer than 12 feet.

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

F. Drilling for and Setting Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one (1) coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099123 "Interior Painting."

B. Paint all exposed ductwork. Coordinate color selection with Architect.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections totaling no less than twenty-five percent (25%) of total installed duct area for each designated pressure class.
 b. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than fifty percent (50%) of total installed duct area for each designated pressure class.
 c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than fifty percent (50%) of total installed duct area for each designated pressure class.
 d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than fifty percent (50%) of total installed duct area for each designated pressure class.
 e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than fifty percent (50%) of total installed duct area for each designated pressure class.
 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 4. Test for leaks before applying external insulation.
 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new duct systems before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).

2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.

3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.

5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.

7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.

2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 6.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

D. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

F. Intermediate Reinforcement:
G. Liner:
2. Return Air Ducts: Flexible elastomeric 1-inch-thick.

H. Elbow Configuration:
1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two (2) vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two (2) vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two (2) vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
METAL DUCTS

1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three (3) segments for 90-degree elbow.
2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four (4) segments for 90-degree elbow.
3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five (5) segments for 90-degree elbow.
4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Backdraft and pressure relief dampers.
 3. Control dampers.
 4. Fire dampers.
 5. Smoke dampers.
 6. Combination fire and smoke dampers.
 7. Flange connectors.
 8. Duct silencers.
 10. Duct-mounted access doors.
 11. Flexible connectors.
 12. Duct accessory hardware.

B. Related Requirements:
 1. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control-damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
AIR DUCT ACCESSORIES

e. Duct security bars.
f. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

C. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

E. Tie Rods: Galvanized steel, ¼-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Greenheck
2. Prefco Products, Inc.
3. Ruskin Company

B. Description: Gravity balanced.

D. Maximum System Pressure: 2.5-inch wg.

E. Frame: Hat-shaped, 0.063-inch-thick extruded aluminum with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, 6063T5 extruded aluminum, 0.050-inch.

G. Blade Action: Parallel.

H. Blade Seals: Vinyl.

I. Blade Axles:
 1. Material: Aluminum.

J. Return Spring: Adjustable tension.

K. Bearings: Synthetic polycarbonate sleeve type.

L. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
 4. Chain pulls.
 5. Screen Mounting: Rear mounted.
 7. Screen Type: Bird.
 8. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Metalaire
 2. Ruskin Company
 3. Nailor Industries

B. Standard, Steel, Manual Volume Dampers:
 1. Standard leakage rating, with linkage outside airstream.
 2. Suitable for horizontal or vertical applications.
 3. Frames:
 a. Frame: Hat-shaped, 0.0635-inch-thick, galvanized sheet steel.
b. Mitered and welded corners.
c. Flanges for attaching to walls and flangeless frames for installing in ducts.

4. Blades:
 a. Multiple blade.
 b. Opposed blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064-inch-thick.

6. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

7. Tie Bars and Brackets: Galvanized steel.

2.5 CONTROL DAMPERS

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Ruskin Company
 2. Greenheck
 3. Nailor Industries

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. 0.0635-inch-thick, galvanized sheet steel.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 6 inches.
 2. Opposed-blade design.
 4. 0.064-inch-thick single skin.

E. Blade Axles: ½-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic.
2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Greenheck
 2. Nailor Industries
 3. Ruskin Company

B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: Refer to architectural code plan for associated ratings.

E. Frame: Multiple-blade type, fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 16-gauge-thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 16-gauge-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 SMOKE DAMPERS

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Ruskin Company
 2. Greenheck
 3. Nailor Industries

B. General Requirements: Label according to UL 555S by an NRTL.

C. Refer to Architectural code plans for locations.

D. Smoke Detector: Integral, factory wired for single-point connection.
E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with mechanically attached corners and mounting flange.

F. Blades: Roll-formed, horizontal, overlapping, 16-gauge-thick, galvanized sheet steel.

G. Leakage: Class II.

H. Rated pressure and velocity to exceed design airflow conditions.

I. Mounting Sleeve: Factory-installed, 0.05-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulking.

J. Damper Motors: Two-position action.

K. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Automatic Temperature Controls"

3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. Non-Spring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 115 V, single phase, 60 Hz.

L. Accessories:

1. Auxiliary switches for signaling.
2. Test and reset switches, damper remote mounted.

2.8 COMBINATION FIRE AND SMOKE DAMPERS

A. Equipment provided exclusively by one (1) of the following manufacturers

1. Ruskin Company
2. Greenheck
3. Nailor Industries

B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
D. Fire Rating: Refer to Architectural code plan for associated ratings and requirements.

E. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with mechanically attached corners and mounting flange.

G. Smoke Detector: Integral, factory wired for single-point connection.

H. Blades: Roll-formed, horizontal, overlapping, 0.063-inch-thick, galvanized sheet steel.

I. Leakage: Class I.

J. Rated pressure and velocity to exceed design airflow conditions.

K. Mounting Sleeve: Factory-installed, 0.05-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulking.

L. Master control panel for use in dynamic smoke-management systems.

M. Damper Motors: Two-position action.

N. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Automatic Temperature Controls."

3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. Non-Spring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 115 V, single phase, 60 Hz.

O. Accessories:

1. Auxiliary switches for signaling.
2. Test and reset switches, damper remote mounted.
AIR DUCT ACCESSORIES

2.9 FLANGE CONNECTORS

A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.10 TURNING VANES

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Metal Aire
 2. Ductmate Industries, Inc.
 3. Duro Dyne Corp.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.11 DUCT-MOUNTED ACCESS DOORS

A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Greenheck
 2. Nailor Industries
 3. Ductmate Industries, Inc.

 1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

 3. Number of Hinges and Locks:
a. Access Doors Less Than 12 Inches Square: No hinges and two (2) sash locks.
b. Access Doors up to 18 Inches Square: Two (2) hinges and two (2) sash locks.
c. Access Doors up to 24 by 48 Inches: Three (3) hinges and two (2) compression latches with outside and inside handles.

2.12 DUCT ACCESS PANEL ASSEMBLIES
A. Labeled according to UL 1978 by an NRTL.
B. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
C. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
D. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
E. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.13 FLEXIBLE CONNECTORS
A. Equipment provided exclusively by one (1) of the following manufacturers:
 1. Duro Dyne Corp.
 2. Ventfabrics, Inc.
 3. Ward Industries, Inc.
B. Materials: Flame-retardant or noncombustible fabrics.
C. Coatings and Adhesives: Comply with UL 181, Class 1.
 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lb/inch in the warp and 360 lb/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.
E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lb/inch in the warp and 440 lb/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.
F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
4. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
5. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of ¼-inch movement at start and stop.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 - "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.
2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream and downstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream and downstream from turning vanes.
9. Upstream or downstream from duct silencers.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

N. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

O. Connect flexible ducts to metal ducts with draw bands or adhesive plus sheet metal screws.

P. Install duct test holes where required for testing and balancing purposes.

Q. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of ¼-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulated flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For flexible ducts.

1. Include plans showing locations and mounting and attachment details.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from installers of the items involved.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."

2.2 INSULATED FLEXIBLE DUCTS

A. Products provided exclusively by one (1) of the following manufacturers:
1. Buckley Associates
2. Hart and Cooley
3. Johns Manville

B. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 210 deg F.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches to suit duct size.

B. Non-Clamp Connectors: Adhesive plus sheet metal screws.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

D. Connect flexible ducts to metal ducts with draw bands or adhesive plus sheet metal screws.

E. Install duct test holes where required for testing and balancing purposes.

F. Installation:

1. Install ducts fully extended.
2. Do not bend ducts across sharp corners.
3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
5. Install flexible ducts in a direct line, without sags, twists, or turns.

G. Supporting Flexible Ducts:

1. Suspend flexible ducts with bands 1½ inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed ½-inch per 12 inches.
2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.

3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer’s written installation instructions.

END OF SECTION 233346
SECTION 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Rectangular and square ceiling diffusers.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
 2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples: For each exposed product and for each color and texture specified. Actual size of smallest diffuser indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 RECTANGULAR AND SQUARE CEILING DIFFUSERS

A. Equipment provided exclusively by one (1) of the following manufacturers:

1. Greenheck
2. Titus
3. Metalaire

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Steel.

D. Finish: Baked enamel, white.

E. Face Style: Four (4) cone.

F. Mounting: As required.

G. Pattern: Adjustable.

H. Accessories:

1. Equalizing grid.
2. Plaster ring.
4. Wire guard.
5. Sectorizing baffles.
6. Operating rod extension.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design
requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13
SECTION 233713.23 - AIR REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Adjustable blade face grilles.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples: For each exposed product and for each color and texture specified. Smallest size register and grille indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 GRILLES

A. Adjustable Blade Face Grille:

1. Equipment exclusively provided by one (1) of the following manufacturers:
 a. Price
 b. Titus
 c. Metalaire

3. Finish: Baked enamel, white.

9. Accessories:
 a. Front-blade gang operator.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install registers and grilles level and plumb.

B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.
3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.23
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, large-capacity, rooftop air-conditioning units (RTUs) with the following components:

1. Casings.
2. Fans, drives, and motors.
3. Coils.
4. Refrigerant circuit components.
5. Air filtration.
7. Dampers.
8. Electrical power connections.
9. Controls.
10. Roof curbs.
11. Accessories.

1.3 DEFINITIONS

A. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, large-capacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

1.4 ACTION SUBMITTALS

A. Product Data: For each RTU.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Include rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
3. Include unit dimensions and weight.
4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
5. Fans:
 a. Include certified fan-performance curves with system operating conditions indicated.
 b. Include certified fan-sound power ratings.
 c. Include fan construction and accessories.
 d. Include motor ratings, electrical characteristics, and motor accessories.
6. Include certified coil-performance ratings with system operating conditions indicated.
7. Include filters with performance characteristics.
8. Include gas furnaces with performance characteristics.
9. Include factory selection calculations for each antimicrobial ultraviolet lamp installation.
10. Include dampers, including housings, linkages, and operators.

B. Shop Drawings: For each packaged, large-capacity, rooftop air-conditioning units.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required
 clearances, method of field assembly, components, and location and size of each field
 connection.
 3. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance
 requirements and design criteria, including analysis data signed and sealed by the qualified
 professional engineer responsible for their preparation.
 1. Include design calculations for selecting vibration isolators and seismic restraints and for
 designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate
 coordinating requirements with roof membrane system.
 3. Wind- and Seismic-Restraint Details: Detail fabrication and attachment of wind and
 seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter,
 and depth of penetration of anchors.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing
 the items described in this Section, and coordinated with all building trades.

B. Sample Warranty: For manufacturer's warranty.

C. Seismic Qualification Data: Certificates, for RTUs, accessories, and components, from
 manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of
 assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate
 and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based
 and their installation requirements.
 4. Restraint of internal components.

D. Product Certificates: Submit certification that specified equipment will withstand wind forces
 identified in "Performance Requirements" Article and in Section 230548 "Vibration and
 Seismic Controls for HVAC Piping and Equipment."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of
 assembled components or on calculations.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Source quality-control reports.

F. System startup reports.

G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One (1) set of filters for each unit.
2. Gaskets: One (1) set for each access door.
3. Fan Belts: One (1) set for each belt-driven fan.
4. Filters: One (1) set of filters for each unit.

1.8 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace components of outdoor, semi-custom, air-handling unit that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of RTUs and components.

C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE 15 Compliance: For refrigeration system safety.

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

G. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design mounting and restraints for RTUs, including comprehensive engineering analysis.

1. Design RTU supports to comply with wind and seismic performance requirements.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Carrier Corporation; a unit of United Technologies Corp.
2. Daikin Applied
3. Trane
4. YORK; a Johnson Controls company

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction:

1. Outside Casing Wall: Galvanized steel, minimum 18-gauge-thick with manufacturer's standard finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
2. Inside Casing Wall: G90-coated galvanized steel, 0.034-inch-thick, perforated forty percent (40%) free area.
3. Floor Plate: G90 galvanized steel, treadplate, minimum thick.
4. Casing Insulation:
 b. Insulation Thickness: 2 inches.
 c. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roof of unit.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Panels and Doors:

1. Panels:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 b. Fasteners: Two (2) or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
d. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

2. Access Doors:
 a. Hinges: A minimum of two (2) ball-bearing hinges or stainless-steel piano hinge and two (2) wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Locations and Applications:
 a. Fan Section: Doors and inspection and access panels.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panels.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

4. Service Light: 100-W vaporproof fixture with switched junction box located outside adjacent to door.

E. Condensate Drain Pans:
 1. Location: Each type of cooling coil.
 2. Construction:
 a. Single-wall, galvanized-steel or noncorrosive polymer sheet.
 3. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two (2) planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
 7. Depth: A minimum of 2 inches deep.
 9. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
2.4 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

B. Supply-Air Fans: Centrifugal, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.

1. Shafts: With field-adjustable alignment.

 a. Turned, ground, and polished hot-rolled steel with keyway.

2. Shaft Bearings:

 a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.

3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.

 a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.

4. Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel or aluminum hub swaged to backplate and fastened to shaft with setscrews.

5. Mounting: For internal vibration isolation and seismic control. Factory-mount fans with manufacturer's standard restrained vibration isolation mounting devices having a minimum static deflection of 1-inch.

6. Shaft Lubrication Lines: Extended to a location outside the casing.

7. Flexible Connector: Factory fabricated with a fabric strip minimum 3½ inches wide, attached to two (2) strips of minimum 2¼-inch-wide by 0.028-inch-thick, galvanized-steel sheet.

C. Drives, Direct: Factory-mounted, direct drive.

D. Drives, Belt: Factory-mounted, V-belt drive, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.

1. Pulleys: Cast iron or cast steel with split, tapered bushing, dynamically balanced at the factory.

2. Belts: Oil resistant, non-sparking and non-static; in matched sets for multiple-belt drives.

3. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.146-inch-thick, ¾-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.

E. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated ECM motors.
F. Relief-Air Fan: shaft mounted on permanently lubricated motor.

G. Motors:

1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
3. Enclosure Type: Open, dripproof.
4. Enclosure Materials: Cast iron.
5. Efficiency: Premium efficient as defined in NEMA MG 1.
6. Motor Pulleys: Adjustable pitch for use with 5-hp motors and smaller; fixed pitch for use with motors larger than 5 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.

2.5 COILS

A. General Requirements for Coils:

1. Comply with AHRI 410.
2. Fabricate coils section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
3. Coils shall not act as structural component of unit.

B. Supply-Air Refrigerant Coil:

1. Tubes: Copper.
2. Fins:
 b. Fin Spacing: Maximum twelve (12) fins per inch.
3. Fin and Tube Joints: Mechanical bond.
5. Frames: Galvanized steel.
6. Coatings: None.
7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

C. Outdoor-Air Refrigerant Coil:

1. Tubes: Copper.
2. Fins:
 b. Fin Spacing: Maximum twelve (12) fins per inch.
3. Fin and Tube Joints: Mechanical bond.
5. Frames: Galvanized steel.
6. Coatings: None.
7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

D. Hot-Gas Reheat Refrigerant Coil:
1. Tubes: Copper.
2. Fins:
 b. Fin Spacing: Maximum twelve (12) fins per inch.
3. Fin and Tube Joints: Mechanical bond.
5. Frames: Galvanized steel.
6. Coatings: None.
7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.
8. Suction-discharge bypass valve.

2.6 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, variable speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

B. Refrigeration Specialties:
1. Refrigerant: R-410A.
2. Expansion valve with replaceable thermostatic element.
3. Refrigerant filter/dryer.
5. Automatic-reset low-pressure safety switch.
8. Brass service valves installed in compressor suction and liquid lines.
9. Low-ambient kit high-pressure sensor.
11. Hot-gas bypass solenoid valve with a replaceable magnetic coil.
12. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.

2.7 AIR FILTRATION

A. Panel Filters:
1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
2. Filter Unit Class: UL 900.
3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.

2.8 GAS FURNACES

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.
B. CSA Approval: Designed and certified by and bearing label of CSA.
C. Burners: Stainless-steel.
 1. Rated Minimum Turndown Ratio: 30 to 1.
 3. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
D. Heat-Exchanger and Drain Pan: Stainless-steel.
E. Venting, Gravity: Gravity vented with vertical extension.
F. Venting, Power: Power vented, with integral, motorized centrifugal fan interlocked with gas valve with vertical extension.
G. Safety Controls:

2.9 DAMPERS

A. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg.
B. Barometric relief dampers.
C. Electronic Damper Operators:
 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.

4. Non-Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.

5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.

6. Size dampers for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.

8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
9. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on non-spring-return actuators.
11. Power Requirements (Modulating): Maximum 10 VA at 24 V ac or 8 W at 24 V dc.
12. Proportional Signal: 2 to 10 V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
13. Temperature Rating: Minus 22 to plus 122 deg F.

2.10 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.11 ROOF CURBS

A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment" for wind-load requirements.
C. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.

 a. Materials: ASTM C1071, Type I or II.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.

 a. Liner Adhesive: Comply with ASTM C916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C916, Type I.

2.12 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

C. Remote potentiometer to adjust minimum economizer damper position.

D. Return-air bypass damper.

E. Factory- or field-installed demand-controlled ventilation.

F. Safeties:

 1. Smoke detector.
 2. Condensate overflow switch.
 3. Phase-loss reversal protection.
 4. High- and low-pressure control.
 5. Gas furnace airflow-proving switch.

G. Coil guards of painted, galvanized-steel wire.

H. Hail guards of galvanized steel, painted to match casing.

I. Vertical vent extensions to increase the separation between the outdoor-air intake and the flue-gas outlet.

J. Door switches to disable heating or reset set point when open.
K. Outdoor air intake weather hood.

L. Service Lights and Switch: Factory installed in each accessible section with weatherproof cover. Factory wire lights to a single-point field connection.

2.13 MATERIALS

A. Steel:

1. ASTM A 36 for carbon structural steel.
2. ASTM A 568 for steel sheet.

B. Stainless-Steel:

1. Manufacturer's standard grade for casing.
2. Manufacturer's standard type, ASTM A 240 for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A 653.

2.14 SOURCE QUALITY CONTROL

A. AHRI Compliance:

1. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
2. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:

1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
2. Damper leakage tested in accordance with AMCA 500-D.
3. Operating Limits: Classify according to AMCA 99.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with Architectural Drawings. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

C. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

3.3 PIPING CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to RTU, allow space for service and maintenance.

C. Connect piping to unit mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest equipment or roof drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

F. Refrigerant Piping: Comply with applicable requirements in Section 232300 "Refrigerant Piping." Install shutoff valve and union or flange at each supply and return connection.

3.4 DUCT CONNECTIONS

A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.

3.5 ELECTRICAL CONNECTIONS

A. Connect electrical wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 260553 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs as layers of black with engraved white letters at least ½-inch-high.
 3. Locate nameplate where easily visible.

3.6 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions.
 1. Inspect for visible damage to unit casing.
 2. Inspect for visible damage to furnace combustion chamber.
 3. Inspect for visible damage to compressor, coils, and fans.
 4. Inspect internal insulation.
 5. Verify that labels are clearly visible.
 6. Verify that clearances have been provided for servicing.
 7. Verify that controls are connected and operable.
 8. Verify that filters are installed.
 9. Clean condenser coil and inspect for construction debris.
 10. Clean furnace flue and inspect for construction debris.
 11. Connect and purge gas line.
 12. Remove packing from vibration isolators.
 13. Inspect operation of barometric relief dampers.
 14. Verify lubrication on fan and motor bearings.
 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 16. Adjust fan belts to proper alignment and tension.
 17. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.
18. Inspect and record performance of interlocks and protective devices; verify sequences.
19. Operate unit for an initial period as recommended or required by manufacturer.
20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency.
 a. Measure gas pressure on manifold.
 b. Inspect operation of power vents.
 c. Measure combustion-air temperature at inlet to combustion chamber.
 d. Measure flue-gas temperature at furnace discharge.
 e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
22. Adjust and inspect high-temperature limits.
23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.
27. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Relief-air fan operation.
 f. Smoke and firestat alarms.
29. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.8 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.9 CLEANING

A. After completing system installation and testing, adjusting, and balancing RTUs and air-distribution systems and after completing startup service, clean RTUs internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.10 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 237416.13
SECTION 238127 - VRV HEAT PUMP SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. The system shall consist of an exposed ceiling mounted evaporator exclusively matched to outdoor model, air-cooled, variable speed, inverter driven compressor using R-410A refrigerant. The outdoor unit is a horizontal discharge, variable speed, single fan unit using a single-phase power supply. The system shall have a self diagnostic function, 3-minute time delay mechanism and have a factory pre-charge of R-410A adequate for 33 feet of total length. The system shall have automatic restart capability after a power failure has occurred and a low voltage cut-off feature to prevent stalling during power supply issues.

1.3 QUALITY ASSURANCE

A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL), in accordance with ANSI/UL 1995 – Heating and Cooling Equipment and bear the Listed Mark.

B. All wiring shall be in accordance with the National Electric Code (NEC).

C. Each combination shall be rated in accordance with Air Conditioning Refrigeration Institute’s (ARI) Standard 210/240 and bear the ARI label.

D. The system will be produced in an ISO 9001 and ISO 14001 facility, which are standards set by the International Standard Organization (ISO). The system shall be factory tested for safety and function.

E. The outdoor unit will be factory charged for a length of 33 feet of refrigerant with R-410A refrigerant.

F. A holding charge of dry nitrogen shall be provided in the evaporator.

G. System efficiency shall meet or exceed 24.5 SEER and 12.5 HSPF

1.4 DELIVERY, STORAGE AND HANDLING

A. Unit shall be stored and handled according to the manufacturer’s recommendations.
1.5 WARRANTY

A. Limited Warranty: Products shall be free from defects in material or workmanship. This warranty applies to parts only and is limited in duration to five (5) years from the earlier to occur of (a) the date of original installation, whether or not actual use begins on that date, or (b) 18 months from the date of shipment by the manufacturer. Customer must present proof of the original date of receipt and of installation of the Product in order to establish the effective date of this warranty. Otherwise the effective date will be deemed to be the date of manufacture plus sixty (60) days. Repaired or replacement parts are warranted for the balance of the warranty period applicable to the original part following the date on which the repaired or replacement part is provided to the Customer.

B. Extended Warranty: For its compressors only, the manufacturer shall provide the above warranty (which is applicable to parts only) for a 7-year period. This extended warranty for compressors is limited in duration to seven (7) years from the earlier to occur of (a) the date of original installation, whether or not actual use begins on that date, or (b) 18 months from the date of shipment by the manufacturer, and applies to the compressor and compressor parts only. The effective date of this extended warranty shall be established as above.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS:

A. The system performance shall be in accordance with ARI 210/240 test conditions as shown in the performance table below.

1. The cooling performance is based on 80°F DB/67°F WB for the indoor unit and 95°F DB/75°F WB for the outdoor unit and 25 feet of piping.
2. The heating performance is based on 70°F DB/60°F WB for the indoor unit and 47°F DB/43°F WB for the outdoor unit and 25 feet of piping.

B. The operating range in cooling will be 50°F DB ~ 115°F DB, and 0°F DB ~ 115°F DB when used with an optional wind baffle. The system will stop functioning below -0.4°F DB.

C. The operating range in heating will be 5°F DB ~ 77°F DB, and 0°F DB ~ 77°F DB when used with an optional wind baffle.

2.2 MANUFACTURERS

A. Mitsubishi
B. JCI
C. Daikin

2.3 INDOOR UNIT

A. General: The indoor unit shall be factory assembled and pre-wired with all necessary electronic and refrigerant controls. Both liquid and suction lines must be individually insulated between the outdoor and indoor units.
B. Unit Cabinet:
 1. The indoor unit shall have a white, “flat screen” finish.
 2. Cabinet shall be exposed and capable of being supported by building structure.

C. Fan:
 1. The evaporator fan shall be an assembly consisting of a direct-driven fan by a single motor.
 2. The fan shall be statically and dynamically balanced and operate on a motor with permanent lubricated bearings.
 3. An auto-swing louver for adjustable air flow (both vertically and horizontally) is standard via the wireless remote control furnished with each system.
 4. The indoor fan shall offer a choice of five speeds, plus quiet and auto settings.

D. Filter: The return air filter provided will be a mildew proof, removable and washable filter. Optional photo catalytic, air purifying filters are available.

E. Coil:
 1. The evaporator coil shall be a nonferrous, aluminum fin on copper tube heat exchanger.
 2. All tube joints shall be brazed with silver alloy or phoscopper.
 3. All coils will be factory pressure tested.
 4. A condensate pan shall be provided under the coil with a drain connection.

F. Control:
 1. The unit shall have a backlit, wireless remote infra-red controller capable to operate the system. It shall have Cooling Operation, Heating Operation, Automatic Operation, Dry Operation and Fan Only Operation.
 2. The infrared remote controller shall consist of an On/Off Power switch, Mode Selector, Outdoor Quiet Operation (for outdoor unit), Fan Setting, Swing Louver, On/Off Timer Setting, Temperature Adjustment, °C or °F Temperature Display, “Intelligent Eye” sensor, and Powerful Operation.
 a. On/Off switch powers the system on or off.
 b. Mode selector shall operate the system in auto, cool, heat, fan or dry operation.
 c. Outdoor quiet operation shall lower the sound level of the outdoor unit by slowing the inverter driven fan speed.
 d. Fan setting shall provide five fan speeds, plus quiet and auto settings.
 e. Swing louver shall adjust the airflow (horizontal and vertical) blades.
 f. On/Off timer is used for automatically switching the unit on or off.
 g. Temperature adjustment allows for the increase or decrease of the desired temperature.
 h. Intelligent eye provides an infrared sensor which detects movement and adjusts the temperature by 3.6°F up or down depending on operating mode.
 i. Powerful operation allows quick cool down or heating up in the desired space to achieve maximum desired temperature in the shortest allowable time period.
 3. The infrared remote control shall perform Fault Diagnostic functions which may be system related, indoor unit or outdoor unit related depending on the fault code.
4. Temperature range on the remote control shall be 64°F to 90°F in cooling mode and 50°F to 86°F in heating mode.
5. The indoor unit microprocessor has the capability to receive and process commands via return air temperature and indoor coil temperature sensors enabled by commands from the remote control.

G. Sound: Indoor unit sound levels shall not exceed the values as indicated on the mechanical schedules.

2.4 OUTDOOR UNIT

A. General: The outdoor unit shall be specifically matched to the corresponding indoor unit size. The outdoor unit shall be complete factory assembled and pre-wired with all necessary electronic and refrigerant controls.

B. Unit Cabinet: The outdoor unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed mild steel panels coated with a baked enamel finish.

C. Fan:
 1. The fan shall be a direct drive, propeller type fan.
 2. The motor shall be inverter drive, permanently lubricated type bearings, inherent.
 3. The fan shall be capable of operating in “silent operation” which lowers the outdoor fan speed in either cool, heat or auto modes.
 4. A fan guard is provided on the outdoor unit to prevent contact with fan operation.
 5. Airflow shall be horizontal discharge.

D. Coil:
 1. The outdoor coil shall be nonferrous construction with corrugated fin tube.
 2. The fins are to be covered with an anti-corrosion acrylic resin and hydrophilic film type E1.
 3. Refrigerant flow from the condenser will be controlled via a metering device.

E. Compressor:
 1. The compressor shall be an inverter-driven compressor.
 2. The outdoor unit shall have an accumulator, four-way reversing valve.
 3. The compressor shall have an internal thermal overload.
 4. The outdoor unit can operate with a maximum vertical height difference of 49 feet and overall maximum length of 66 feet without any oil traps or additional components.

F. Electrical:
 1. The outdoor shall be controlled by a microprocessor located in the outdoor and indoor units via commands from the infrared remote controller.
 2. Dedicated EEV’s shall be provided for capacity control during part load of the indoor unit.
PART 3 - EXECUTION

3.1 INSTALLATION REQUIREMENTS

A. The system shall be installed by a manufacturer’s factory trained contractor/dealer.

3.2 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.

END OF SECTION 238127
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Common electrical installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Section 083113 "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."
PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052-inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and one (1) or more sides equal to, or more than, 16 inches, thickness shall be 0.138-inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM and/or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

3. Pressure Plates: Plastic, carbon steel or stainless-steel. Include two (2) for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or stainless-steel of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, non-staining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide ½-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Section 078413 "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Section 078413 "Penetration Firestopping."

END OF SECTION 260500
SECTION 260509 - ELECTRICAL DEMOLITION REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Demolition involving electrical system as described in Contract Documents.
 B. Related Sections:
 1. Section 260500 “Common Work Results for Electrical”
 2. New and replacement work specified in appropriate specification sections.

1.3 SCHEDULING
 A. Include on Construction Schedule sequence of individual electrical demolition operations.
 B. Coordinate with Owner for equipment and materials to be removed by Owner.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION
 A. All relocations, reconnections and removals are not necessarily indicated on Drawings. All such work shall be included without additional cost to Owner.

3.2 PREPARATION
 A. Disconnect equipment that is to be removed or relocated. Carefully remove, disassemble or dismantle as required, and store in approved location on site, existing items to be reused in completed work.
 B. Where affected by demolition or new construction, relocate, extend or repair raceways, conductors, outlets and apparatus to allow continued use of electrical system. Use methods and materials as specified for new construction.
3.3 PERFORMANCE

A. Perform drilling, cutting, block-offs and demolition work required for removal of necessary portions of electrical system. Do not cut joists, beams, girders, trusses or columns without prior written permission from Architect.

B. Remove concealed wiring abandoned due to demolition or new construction. Remove circuits, conduits and conductors that are not to be re-used back to next active fixture, device or junction box.

C. Patch, repair and finish surfaces affected by electrical demolition work, unless work is specifically called for under other Sections of the specifications.

3.4 CLEANING

A. Remove obsolete raceways, conductors, apparatus and lighting fixtures promptly from site and dispose of legally.

END OF SECTION 260509
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

1.3 DEFINITIONS
 A. EPDM: Ethylene-propylene-diene terpolymer rubber.
 B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Qualification Data: For testing agency.
 C. Field quality-control test reports.

1.5 QUALITY ASSURANCE
 A. Testing Agency Qualifications: An independent agency, with the experience and capability to
 conduct the testing indicated, that is a member company of the InterNational Electrical Testing
 Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in
 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational
 Electrical Testing Association or the National Institute for Certification in Engineering
 Technologies to supervise on-site testing specified in Part 3.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70,
 Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for
 intended use.
 C. Comply with NFPA 70.
1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Alcan Products Corporation; Alcan Cable Division
2. American Insulated Wire Corp.; a Leviton Company
3. General Cable Corporation
4. Senator Wire & Cable Company
5. Southwire Company
6. Belden

B. Aluminum and Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

D. Multiconductor Cable: Comply with NEMA WC 70 for armored cable, Type AC, metal-clad cable, Type MC, mineral-insulated, and metal-sheathed cable, Type MI with ground wire.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC
4. 3M; Electrical Products Division
5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Plastic, carbon steel, or stainless-steel. Include two (2) for each sealing element.
3. Connecting Bolts and Nuts: Stainless-steel of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper for all feeders except, service entrance cables shall be aluminum and where indicated. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN-THWN, single conductors in raceway.

B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

E. Feeders in Cable Tray: Type THHN-THWN, single conductors in raceway and metal-clad cable, Type MC.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.
G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway and metal-clad cable, Type MC.

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

I. Branch Circuits in Cable Tray: Type THHN-THWN, single conductors in raceway and metal-clad cable, Type MC.

J. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

K. Class 1 Control Circuits: Type THHN-THWN, in raceway.

L. Class 2 Control Circuits: Type THHN-THWN, in raceway Power-limited cable, concealed in building finishes, Power-limited tray cable, in cable tray.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.
3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Section 078413 "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052-inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and one (1) or more sides equal to, or greater than, 16 inches, thickness shall be 0.138-inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide ¼-inch annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Section 079200 "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Section 078413 "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.
3.6 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and conductors feeding the following critical equipment and services for compliance with requirements.

C. Test Reports: Prepare a written report to record the following:

1. Test procedures used.

2. Test results that comply with requirements.

3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519
SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. RS-232 cabling.
 3. RS-485 cabling.
 4. Low-voltage control cabling.
 5. Control-circuit conductors.
 6. Identification products.

1.3 DEFINITIONS

A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.

B. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.

C. EMI: Electromagnetic interference.

D. IDC: Insulation displacement connector.

E. Ladder Cable Tray: A fabricated structure consisting of two (2) longitudinal side rails connected by individual transverse members (rungs).

F. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

G. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).

H. RCDD: Registered Communications Distribution Designer.

I. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.

J. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

K. UTP: Unshielded twisted pair.
1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:

1. Vertical and horizontal offsets and transitions.
2. Clearances for access above and to side of cable trays.
3. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
4. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance Data: For wire and cable to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test each pair of UTP cable for open and short circuits.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
PART 2 - PRODUCTS

2.1 PATHWAYS

A. Support of Open Cabling: NRTL labeled for support of Category 5e and Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. Support brackets with cable tie slots for fastening cable ties to brackets.
2. Lacing bars, spools, J-hooks, and D-rings.
3. Straps and other devices.

B. Cable Trays:

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 a. Cable Management Solutions, Inc.
 b. Cablofil Inc.
 c. Cooper B-Line, Inc.
 d. Cope - Tyco/Allied Tube & Conduit
 e. GS Metals Corp.

2. Cable Tray Materials: Metal, suitable for indoors and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472-inch-thick hot-dip galvanizing, complying with ASTM A 123, Grade 0.55, not less than 0.002165-inch-thick.
 a. Basket Cable Trays: 6 inches wide and 2 inches deep. Wire mesh spacing shall not exceed 2 by 4 inches.
 b. Trough or Ventilated Cable Trays: Nominally 6 inches wide.
 c. Ladder Cable Trays: Nominally 18 inches wide, and a rung spacing of 12 inches.
 d. Channel Cable Trays: One-piece construction, nominally 4 inches wide. Slot spacing shall not exceed 4½ inches o.c.
 e. Solid-Bottom or Nonventilated Cable Trays: One-piece construction, nominally 12 inches wide. Provide with solid covers.

C. Conduit and Boxes: Comply with requirements in Section 260533 "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.

1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2½ inches deep.

2.2 BACKBOARDS

A. Description: Plywood, fire-retardant treated, ¼ by 48 by 96 inches. Comply with requirements for plywood backing panels in Section 061000 "Rough Carpentry."

2.3 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
1. Berk-Tek; a Nexans company
2. CommScope, Inc.
3. Mohawk; a division of Belden CDT
4. Superior Essex Inc.

B. Description: 100-ohm, 4-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA/EIA-568-B.1 for performance specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP complying with UL 1685.
 b. Communications, Riser Rated: Type CMP or Type CMR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."

2.4 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Hubbell Premise Wiring
2. Orthotronics
3. Leviton Voice & Data Division
4. Panduit Corp.

B. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.

C. Connecting Blocks: 110 style for Category 5e and 110 style for Category 6. Provide blocks for the number of cables terminated on the block, plus twenty-five percent (25%) spare; integral with connector bodies, including plugs and jacks where indicated.

2.5 RS-232 CABLE

A. Plenum-Rated Cable: NFPA 70, Type CMP.

1. Paired, two (2) pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
2. Plastic insulation.
3. Individual aluminum foil-polyester tape shielded pairs with one hundred percent (100%) shield coverage.
5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.
2.6 RS-485 CABLE

A. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, two (2) pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.
 4. Fluorinated ethylene propylene jacket.

2.7 LOW-VOLTAGE CONTROL CABLE

A. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One (1) pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with NFPA 262.

B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One (1) pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.

2.8 CONTROL-CIRCUIT CONDUCTORS

A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, Type XHHN, in raceway, complying with UL 83 and/or UL 44.

B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, Type XHHN, in raceway, power-limited cable, concealed in building finishes, power-limited tray cable, in cable tray, complying with UL 83 and/or UL 44.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or Type TF, complying with UL 83.

2.9 IDENTIFICATION PRODUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Brady Corporation
 2. HellermannTyton
 3. Kroy LLC
 4. Panduit Corp.
B. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Comply with requirements in Section 260553 "Identification for Electrical Systems."

2.10 SOURCE QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test UTP on reels according to TIA/EIA-568-B.1.
C. Factory test UTP cables according to TIA/EIA-568-B.2.
D. Cable will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

PART 3 - EXECUTION
3.1 INSTALLATION OF PATHWAYS
A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A-7.
B. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
C. Comply with requirements in Section 260533 "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.
D. Install manufactured conduit sweeps and long-radius elbows if possible.
E. Pathway Installation in Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed or in the corner of room if multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard if entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
F. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.2 INSTALLATION OF CONDUCTORS AND CABLES
A. Comply with NECA 1.
B. General Requirements for Cabling:
2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
8. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:

2. Install 110-style IDC termination hardware unless otherwise indicated.
3. Do not untwist UTP cables more than ½-inch from the point of termination to maintain cable geometry.

D. Installation of Control-Circuit Conductors:

1. Install wiring in raceways. Comply with requirements specified in Section 260533 "Raceway and Boxes for Electrical Systems."

E. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2½ inches.
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

3.3 REMOVAL OF CONDUCTORS AND CABLES
 A. Remove abandoned conductors and cables.

3.4 CONTROL-CIRCUIT CONDUCTORS
 A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits, No 12 AWG.

3.5 FIRESTOPPING
 A. Comply with requirements in Section 078413 "Penetration Firestopping."
 B. Comply with TIA/EIA-569-A, Annex A, "Firestopping."
 C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING
 A. For data communication wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 B. For low-voltage wiring and cabling, comply with requirements in Section 260526 “Grounding and Bonding for Electrical Systems.”

3.7 IDENTIFICATION
 A. Identify system components, wiring, and cabling according to TIA/EIA-606-A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:

1. Visually inspect UTP jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not after cross connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

D. End-to-end cabling will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 260523
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Foundation steel electrodes.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Grounding arrangements and connections for separately derived systems.

C. Qualification Data: For qualified testing agency and testing agency's field supervisor.

D. Field quality-control reports.

E. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Instructions for periodic testing and inspection of grounding features at test wells, and grounding connections for separately derived systems based on NETA MTS and NFPA 70B.
 a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16-inch-thick.

2.2 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two (2) bolts.

1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression and exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad, sectional type; ¼-inch by 10 feet and 5/8 by 96 inches in diameter.

B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
2. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down to specified height above floor; connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, non-shrink grout.
3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

E. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.

1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a ¼-by-4-by-12-inch grounding bus.
3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

F. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least three (3) rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 1. Test Wells: Install at least one (1) test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one (1) of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
3.6 LABELING

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" Article for instruction signs. The label or its text shall be green.

B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.

1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.7 FIELD QUALITY CONTROL

A. Perform Tests and Inspections:

1. Manufacturer's Field Service: Contractor shall engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

2. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

3. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

4. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance no fewer than two (2) full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

5. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

B. Grounding system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

D. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.

2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.

3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.

4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm.

E. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five (5) times the applied force.

1.5 SUBMITTALS

A. Product Data: For the following:

1. Steel slotted support systems.
2. Nonmetallic slotted support systems.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Nonmetallic slotted channel systems. Include Product Data for components.
4. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA 4, factory-fabricated components for field assembly.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit
 b. Cooper B-Line, Inc.; a division of Cooper Industries
 c. ERICO International Corporation
 d. GS Metals Corp.
 e. Thomas & Betts Corporation
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch-diameter holes at a maximum of 8 inches o.c., in at least one (1) surface.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit
b. Cooper B-Line, Inc.; a division of Cooper Industries
c. Fabco Plastics Wholesale Limited
d. Seasafe, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.

3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless-steel.

4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened Portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated and stainless-steel, for use in hardened Portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.

 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1) Cooper B-Line, Inc.; a division of Cooper Industries
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
5) MKT Fastening, LLC

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be ¼-inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least twenty-five percent (25%) in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps single-bolt conduit clamps single-bolt conduit clamps using spring friction action for retention in support channel.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1½-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1, with lock washers and nuts, Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69, Spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of ten (10) bolt diameters from edge of the base.

B. Anchor equipment to concrete base.

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

B. Related Sections include the following:

1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. ENT: Electrical nonmetallic tubing.

C. EPDM: Ethylene-propylene-diene terpolymer rubber.

D. FMC: Flexible metal conduit.

E. IMC: Intermediate metal conduit.

F. LFMC: Liquidtight flexible metal conduit.

G. LFNC: Liquidtight flexible nonmetallic conduit.

H. NBR: Acrylonitrile-butadiene rubber.

I. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.

1. Custom enclosures and cabinets.

2. For handholes and boxes for underground wiring, including the following:

 a. Duct entry provisions, including locations and duct sizes.
b. Frame and cover design.
c. Grounding details.
d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
e. Joint details.

C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members in the paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

D. Qualification Data: For professional engineer and testing agency.

E. Source quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Allied Tube & Conduit; a Tyco International Ltd. Co.
4. Anamet Electrical, Inc.; Anaconda Metal Hose
5. Electri-Flex Co.
6. Manhattan/CDT/Cole-Flex
7. Maverick Tube Corporation
8. O-Z Gedney; a unit of General Signal
9. Wheatland Tube Company

B. Rigid Steel Conduit: ANSI C80.1.

C. Aluminum Rigid Conduit: ANSI C80.5.

D. IMC: ANSI C80.6.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit and IMC.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040-inch, minimum.
F. EMT: ANSI C80.3.

G. FMC: Zinc-coated steel or aluminum.

H. LFMC: Flexible steel conduit with PVC jacket.

I. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: Steel or die-cast and set-screw or compression type.
 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040-inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.; Anaconda Metal Hose
 3. Arnco Corporation
 4. CANTEX Inc.
 5. CertainTeed Corp.; Pipe & Plastics Group
 7. ElecSYS, Inc.
 8. Electri-Flex Co.
 9. Lamson & Sessions; Carlon Electrical Products
 10. Manhattan/CDT/Cole-Flex
 11. RACO; a Hubbell Company
 12. Thomas & Betts Corporation

B. ENT: NEMA TC 13.

C. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.

D. LFNC: UL 1660.

E. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.

F. Fittings for LFNC: UL 514B.

2.3 COMMUNICATIONS CABLE RACEWAY AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
2.4 METAL WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Cooper B-Line, Inc.
2. Hoffman
3. Square D; Schneider Electric

B. Description: Comply with UL 2024; flexible type, approved for plenum, riser, general-use installation.

2.5 NONMETALLIC WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Hoffman
2. Lamson & Sessions; Carlon Electrical Products

B. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.6 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color as selected by Architect and Owner from manufacturer’s entire range.

1. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
2.7 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric
3. Erickson Electrical Equipment Company
4. Hoffman
5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division
6. O-Z/Gedney; a unit of General Signal
7. RACO; a Hubbell Company
8. Robroy Industries, Inc.; Enclosure Division
9. Scott Fetzer Co.; Adalet Division
10. Spring City Electrical Manufacturing Company
11. Thomas & Betts Corporation
12. Walker Systems, Inc.; Wiremold Company (The)
13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, cast feralloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

E. Metal Floor Boxes: Cast iron or sheet metal, fully adjustable, rectangular. Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
G. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1 and UL 1773, galvanized cast iron with gasketed cover.

H. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

I. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

2.8 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. Description: Comply with SCTE 77.
 2. Configuration: Units shall be designed for flush burial and have integral closed bottom, unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering, "ELECTRIC." And "TELEPHONE.", or as indicated for each service.
 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 7. Handholes 2 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel or fiberglass or a combination of the two (2).
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one (1) of the following:
 a. Armorcast Products Company
 b. Carson Industries LLC
 c. CDR Systems Corporation
 d. NewBasis

2.9 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping.

2.10 SLEEVE SEALS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one (1) of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Stainless-steel. Include two (2) for each sealing element.
3. Connecting Bolts and Nuts: Stainless-steel of length required to secure pressure plates to sealing elements. Include one (1) for each sealing element.

2.11 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
2. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:

1. Exposed Conduit: Rigid steel conduit, IMC, RNC, Type EPC-40-PVC, RNC, Type EPC-80-PVC.
2. Concealed Conduit, Aboveground: Rigid steel conduit, IMC, RNC, Type EPC-40-PVC, RNC, Type EPC-80-PVC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC and/or LFNC.
6. Application of Handholes and Boxes for Underground Wiring:
 a. Handholes and Pull Boxes in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete and Fiberglass enclosures with polymer-concrete frame and cover, SCTE 77, Tier 15 structural load rating.
 b. Handholes and Pull Boxes in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Heavy-duty fiberglass units with polymer-concrete frame and cover, SCTE 77, Tier 8 structural load rating.
 c. Handholes and Pull Boxes Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf vertical loading.

B. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT, ENT, or RNC, Exposed, Not Subject to Severe Physical Damage: EMT, RNC identified for such use.
 2. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 b. Mechanical rooms.
 3. Concealed in Ceilings and Interior Walls and Partitions: EMT, ENT, or RNC, Type EPC-40-PVC.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 5. Damp or Wet Locations: Rigid steel conduit.
 6. Raceways for Communications Cable in Spaces Used for Environmental Air: Plenum-type, communications cable raceway, EMT.
 7. Raceways for Communications Cable Risers in Vertical Shafts: Riser-type, communications cable raceway, EMT.
 8. Raceways for Concealed General-Purpose Distribution of Communications Cable: General-use, communications cable raceway, Riser-type, communications cable raceway, Plenum-type, communications cable raceway, EMT.
 9. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless-steel nonmetallic in damp or wet locations.

C. Minimum Raceway Size: ¾-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Section 260529 "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

F. Install no more than the equivalent of four (4) 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

L. Raceways for Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 1. ¾-Inch Trade Size and Smaller: Install raceways in maximum lengths of 50 feet.
 2. 1-Inch Trade Size and Larger: Install raceways in maximum lengths of 75 feet.
3. Install with a maximum of two (2) 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet.

1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 d. Attics: 135 deg F (75 deg C) temperature change.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041-inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change.
3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.

O. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semi-recessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

Q. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

R. Set metal floor boxes level and flush with finished floor surface.
3.3 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from ½-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes and boxes with bottom below the frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.

F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:

1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052-inch.
2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and one (1) or more sides equal to, or greater than, 16 inches, thickness shall be 0.138-inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide ¼-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Section 079200 "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials.

L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.

M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.5 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.7 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct bank, and in single duct runs.
2. Handholes and pull boxes.

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

B. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Duct-bank materials, including separators and miscellaneous components.
2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Accessories for manholes, handholes, pull boxes, and other utility structures.
4. Warning tape.
5. Warning planks.

B. Shop Drawings for Factory-Fabricated Handholes and Pull Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:

1. Duct entry provisions, including locations and duct sizes.
2. Cover design.
4. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

C. Product Certificates: For concrete and steel used in precast concrete manholes, pull boxes, and handholes, comply with ASTM C 858.

D. Qualification Data: For qualified professional engineer and testing agency.

E. Source quality-control reports.
F. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Comply with IEEE C2.

B. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.

B. Store precast concrete and other factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.

C. Lift and support precast concrete units only at designated lifting or supporting points.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Architect and Construction Manager no fewer than two (2) days in advance of proposed interruption of electrical service.

2. Do not proceed with interruption of electrical service without Architect's and Construction Manager's written permission.

1.8 COORDINATION

A. Coordinate layout and installation of ducts, manholes, handholes, and pull boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.

B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and pull boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Furnish cable-support stanchions, arms, insulators, and associated fasteners in quantities equal to five percent (5%) of quantity of each item installed.
PART 2 - PRODUCTS

2.1 CONDUIT

B. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 NONMETALLIC DUCTS AND DUCT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFC Cable Systems
2. ARNCO Corporation
3. Beek Manufacturing
4. Cantex, Inc.
5. CertainTeed Corp.
7. DCX-CHOL Enterprises, Inc.; ELECSYS Division
8. Electri-Flex Company
9. IPEX Inc.
10. Lamson & Sessions; Carlon Electrical Products
11. Manhattan Wire Products; a Belden company

B. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type EB-20-PVC, ASTM F 512, UL 651A, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.

C. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type DB-60-PVC and Type DB-120-PVC, ASTM F 512, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.

D. Duct Accessories:

1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and retained to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.
3. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 6000-psi concrete.
 b. Mark each plank with "ELECTRIC" in 2-inch-high, 3/8-inch-deep letters.
2.3 PRECAST CONCRETE HANDHOLES AND PULL BOXES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Christy Concrete Products
2. Cretex Concrete Products West, Inc.; Riverton Division
3. Elmhurst-Chicago Stone Co.
4. Oldcastle Precast Group
5. Oldcastle Precast Inc.; Utility Vault Division
6. Utility Concrete Products, LLC
7. Wausau Tile Inc.

B. Comply with ASTM C 858 for design and manufacturing processes.

C. Ferrous metal hardware shall be hot-dip galvanized in accordance with ASTM A 153 and ASTM A 123.

D. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or pull box.

1. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing stainless-steel bolts.
 a. Cover Hinges: Concealed, with hold-open ratchet assembly.
 b. Cover Handle: Recessed.
2. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
3. Cover Legend: molded lettering, "ELECTRIC.", "TELEPHONE.", and as indicated for each service.
4. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
5. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 a. Extension shall provide increased depth of 12 inches.
 b. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
6. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 a. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 b. Window opening shall have cast-in-place, welded wire fabric reinforcement for field cutting and bending to tie into concrete envelopes of duct banks.
 c. Window openings shall be framed with at least two additional No. 4 steel reinforcing bars in concrete around each opening.
7. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 a. Type and size shall match fittings to duct or conduit to be terminated.
 b. Fittings shall align with elevations of approaching ducts and be located near interior corners of handholes to facilitate racking of cable.

8. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.4 HANDHOLES AND PULL BOXES OTHER THAN PRECAST CONCRETE

A. Description: Comply with SCTE 77.

2. Configuration: Units shall be designed for flush burial and have integral closed bottom unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering,
 a. "ELECTRIC.", "TELEPHONE.", and as indicated for each service.
 b. Tier level number, indicating that the unit complies with the structural load test for that tier according to SCTE 77.

6. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, retained to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
8. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

B. Polymer Concrete Handholes and Pull Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two (2). Handholes and pull boxes shall comply with the requirements of SCTE 77 Tier 8 and Tier 15 loading.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armorcast Products Company
 b. Carson Industries LLC
 c. CDR Systems Corporation
 d. Hubbell Power Systems; Lenoir City Division
 e. NewBasis
C. Fiberglass Handholes and Pull Boxes with Polymer Concrete Frame and Cover: Complying with SCTE 77 Tier 8 and Tier 15 loading. Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armorcast Products Company
 b. Carson Industries LLC
 c. Christy Concrete Products
 d. Synertech Moulded Products, Inc.; a division of Oldcastle Precast

D. Fiberglass Handholes and Pull Boxes: Molded of fiberglass-reinforced polyester resin, with covers of polymer concrete, complying with SCTE 77 Tier 8 and Tier 5 loading.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Carson Industries LLC
 b. Christy Concrete Products
 c. Nordic Fiberglass, Inc.

E. High-Density Plastic Pull Boxes: Injection molded of high-density polyethylene or copolymer-polypropylene, complying with SCTE 77 Light Duty loading. Cover shall be polymer concrete.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Carson Industries LLC
 b. Nordic Fiberglass, Inc.
 c. Pencell Plastics

2.5 PRECAST MANHOLES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Christy Concrete Products
2. Cretex Concrete Products West, Inc.; Riverton Division
3. Elmhurst-Chicago Stone Co.
4. Oldcastle Precast Group
5. Oldcastle Precast Inc.; Utility Vault Division
6. Utility Concrete Products, LLC
7. Wausau Tile Inc.

B. Comply with ASTM C 858, with structural design loading as specified in "Underground Enclosure Application" Article, and with interlocking mating sections, complete with accessories, hardware, and features.
1. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 a. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
 b. Window opening shall have cast-in-place, welded wire fabric reinforcement for field cutting and bending to tie into concrete envelopes of duct banks.
 c. Window openings shall be framed with at least two (2) additional No. 4 steel reinforcing bars in concrete around each opening.
2. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 a. Type and size shall match fittings to duct or conduit to be terminated.
 b. Fittings shall align with elevations of approaching ducts and be located near interior corners of manholes to facilitate racking of cable.

C. Concrete Knockout Panels: 1½ to 2 inches thick, for future conduit entrance and sleeve for ground rod.

D. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.6 SOURCE QUALITY CONTROL
 A. Test and inspect precast concrete utility structures according to ASTM C 1037.
 B. Nonconcrete Handhole and Pull Box Prototype Test: Test prototypes of manholes and pull boxes for compliance with SCTE 77. Strength tests shall be for specified Tier ratings of products supplied.
 1. Testing Agency: Owner will engage a qualified testing agency to evaluate nonconcrete handholes and pull boxes.
 2. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION
3.1 PREPARATION
 A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
 B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks, as determined by coordination with
other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

3.2 CORROSION PROTECTION
A. Aluminum shall not be installed in contact with earth or concrete.

3.3 UNDERGROUND DUCT APPLICATION
A. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40 PVC, in direct-buried duct bank unless otherwise indicated.
B. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank unless otherwise indicated.
C. Underground Ducts for Telephone, Communications, or Data Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank unless otherwise indicated.

3.4 UNDERGROUND ENCLOSURE APPLICATION
A. Handholes and Pull Boxes for 600 V and Less, Including Telephone, Communications, and Data Wiring:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 or Tier 22 structural load rating.
 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: structural load rating.
 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf "Light-Duty" vertical loading.

3.5 EARTHWORK
A. Restore surface features at areas disturbed by excavation and reestablish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
B. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary top soiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Cut and patch existing pavement in the path of underground ducts and utility structures.
3.6 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two (2) manholes to drain in both directions.

B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 25 ft. both horizontally and vertically, at other locations unless otherwise indicated.

C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

D. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 ft. from the end bell without reducing duct line slope and without forming a trap in the line.
 2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole.
 3. Grout end bells into structure walls from both sides to provide watertight entrances.

E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 ft. outside the building wall without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Section 260500 "Common Work Results for Electrical."

F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

G. Pulling Cord: Install 100-lbf-test nylon cord in ducts, including spares.

3.7 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND PULL BOXES

A. Cast-in-Place Manhole Installation:
 1. Finish interior surfaces with a smooth-troweled finish.
 2. Windows for Future Duct Connections: Form and pour concrete knockout panels 1½ to 2 inches thick, arranged as indicated.

B. Precast Concrete Handhole and Manhole Installation:
 1. Comply with ASTM C 891 unless otherwise indicated.
 2. Install units level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevations:

1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1-inch above finished grade.
3. Install handholes with bottom below the frost line, below grade.
4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1-inch above finished grade.
5. Where indicated, cast handhole cover frame integrally with handhole structure.

D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

E. Manhole Access: Circular opening in manhole roof; sized to match cover size.

1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
2. Install chimney, constructed of precast concrete collars and rings to support frame and cover and to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for cast-iron frame to chimney.

F. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three (3) days. After ducts have been connected and grouted, and before backfilling, waterproof joints and connections and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three (3) days.

G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

H. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

I. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two (2) anchors for each cable stanchion.

J. Warning Sign: Install "Confined Space Hazard" warning sign on the inside surface of each manhole cover.

3.8 INSTALLATION OF HANDHOLES AND PULL BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and pull boxes level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances. Use pull box extension if required to match depths of ducts, and seal joint between box and extension as recommended by the manufacturer.
B. Unless otherwise indicated, support units on a level 6-inch-thick bed of crushed stone or gravel, graded from ½-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: Set so cover surface will be flush with finished grade.

D. Install handholes and pull boxes with bottom below the frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Retain arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.

F. Field-cut openings for ducts and conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.9 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.10 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.

2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to eighty percent (80%) fill of duct. If obstructions are indicated, remove obstructions and retest.

3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

END OF SECTION 260543
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

1. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, plain ends.
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052-inch.
b. For sleeve cross-section rectangle perimeter 50 inches or more and one (1) or more sides larger than 16 inches, thickness shall be 0.138-inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Sealing Elements: EPDM or nitrile (Buna N) rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel, plastic or stainless steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Non-Shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, non-shrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.
B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide ¼-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel or cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Isolation pads.
 2. Spring isolators.
 3. Restrained spring isolators.
 4. Channel support systems.
 5. Restraint cables.
 6. Hanger rod stiffeners.
 7. Anchorage bushings and washers.

B. Related Requirements:
 1. Section 260529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:
 1. Site Class as Defined in the IBC: D.
 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II.
 a. Component Importance Factor: 1.0.
 b. Component Response Modification Factor: 5.0.
 c. Component Amplification Factor: 2.5.
 3. Design Spectral Response Acceleration at Short Periods (0.2 Second).

1.5 ACTION SUBMITTALS

A. Product Data: For the following:
1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other electrical Sections for equipment mounted outdoors.
2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.
3. Field-fabricated supports.
4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control test reports.
1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

E. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
3. California Dynamics Corporation
4. Isolation Technology, Inc.
5. Kinetics Noise Control
6. Mason Industries
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation

B. Pads: Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene.

C. Spring Isolators: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
2. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
3. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
4. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to ¼-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

D. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to ¼-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Restraint: Seismic or limit-stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than eighty percent (80%) of the compressed height of the spring at rated load.
4. Minimum Additional Travel: Fifty percent (50%) of the required deflection at rated load.
5. Lateral Stiffness: More than eighty percent (80%) of rated vertical stiffness.
6. Overload Capacity: Support two hundred percent (200%) of rated load, fully compressed, without deformation or failure.

2.2 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. Amber/Booth Company, Inc.
2. California Dynamics Corporation
3. Cooper B-Line, Inc.; a division of Cooper Industries
4. Hilti Inc.
5. Loos & Co.; Seismic Earthquake Division
6. Mason Industries
7. TOLCO Incorporated; a brand of NIBCO INC.
8. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.

1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four (4) times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.

E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods.

F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless-steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless-steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment and Hanger Restraints:
 1. Install restrained isolators on electrical equipment.
 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125-inch.
 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the Structural Engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.
3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven (7) days’ advance notice.
4. Test at least four (4) of each type and size of installed anchors and fasteners selected by Architect.
5. Test to ninety percent (90%) of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.
9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after isolated equipment is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 7. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Metal Tags: Brass or aluminum, 2-by-2-by-0.05-inch, with stamped legend, punched for use with self-locking cable tie fastener.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Metal Tags: Brass or aluminum, 2-by-2-by-0.05-inch, with stamped legend, punched for use with self-locking cable tie fastener.

C. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.5 UNDERGROUND-LINE WARNING TAPE

A. Tape:
 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
 3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:
 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
 3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

C. Tag: Type ID:
 1. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 2. Overall Thickness: 5 mils.
 3. Foil Core Thickness: 0.35 mil.
 5. 3-Inch Tensile According to ASTM D 882: 70 lbf, and 4600 psi.

D. Tag: Type IID:
 1. Reinforced, detectable three-layer laminate, consisting of a printed pigmented woven scrim, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core, bright-colored, continuous-printed on one (1) side with the inscription of the utility, compounded for direct-burial service.
 2. Overall Thickness: 8 mils.
 3. Foil Core Thickness: 0.35 mil.
 4. Weight: 34 lb/1000 sq. ft.
 5. 3-Inch Tensile According to ASTM D 882: 300 lbf, and 12,500 psi.
2.6 EQUIPMENT IDENTIFICATION LABELS

2.7 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one-piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one-piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one-piece, self-locking.
 2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
 5. Color: Black.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.
D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

I. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

 2. Power.
 3. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.

 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.

 b. Colors for 208/120-V Circuits:

 1) Phase A: Black.
 2) Phase B: Red.
3) Phase C: Blue.

c. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two (2) turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring.

1. Limit use of underground-line warning tape to direct-buried cables.
2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.

2. Identify system voltage with black letters on an orange background.
3. Apply to exterior of door, cover, or other access.
4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

H. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Adhesive film label. Unless otherwise indicated, provide a single line of text with ½-inch-high letters on 1½-inch-high label; where two (2) lines of text are required, use labels 2 inches high.
b. Outdoor Equipment: Engraved, laminated acrylic or melamine label. Stenciled legend 4 inches high.
c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment to Be Labeled:

a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive and engraved laminated acrylic or melamine label.
b. Enclosures and electrical cabinets.
c. Access doors and panels for concealed electrical items.
d. Switchgear.
e. Switchboards.
f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
g. Emergency system boxes and enclosures.
h. Enclosed switches.
i. Enclosed circuit breakers.
j. Enclosed controllers.
k. Variable-speed controllers.
l. Push-button stations.
m. Power transfer equipment.
n. Contactors.
o. Remote-controlled switches, dimmer modules, and control devices.
p. Battery-inverter units.
q. Battery racks.
r. Power-generating units.
s. Monitoring and control equipment.
t. UPS equipment.

END OF SECTION 260553
SECTION 260573 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.

 1. Coordination of series-rated devices is permitted where indicated on Drawings.

1.3 ACTION SUBMITTALS
 A. Product Data: For computer software program to be used for studies.
 B. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals may be in digital form.

 1. Coordination-study input data, including completed computer program input data sheets.
 2. Study and Equipment Evaluation Reports.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For coordination-study specialist.
 B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.

1.5 QUALITY ASSURANCE
 A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.
 B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

 1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.
 C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.
D. Comply with IEEE 399 for general study procedures.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one (1) of the following:

1. CGI CYME
2. EDSA Micro Corporation
3. ESA Inc.
4. Operation Technology, Inc.
5. SKM Systems Analysis, Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.

1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:
OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

1. Product Data for overcurrent protective devices specified in other electrical Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Impedance of utility service entrance.

3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Generator kilovolt amperes, size, voltage, and source impedance.
 e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 f. Busway ampacity and impedance.
 g. Motor horsepower and code letter designation according to NEMA MG 1.

4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:

1. Switchgear and switchboard bus.
2. Medium-voltage controller.
3. Motor-control center.
4. Distribution panelboard.
5. Branch circuit panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.

D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141, IEEE 241 and IEEE 242.

1. Transformers:
 a. ANSI C57.12.10.
 b. ANSI C57.12.22.
 c. ANSI C57.12.40.
 d. IEEE C57.12.00.
 e. IEEE C57.96.

4. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:

1. Show calculated X/R ratios and equipment interrupting rating (½-cycle) fault currents on electrical distribution system diagram.
2. Show interrupting (5-cycle) and time-delayed currents (6 cycles and above) on medium-voltage breakers as needed to set relays and assess the sensitivity of overcurrent relays.

F. Equipment Evaluation Report:

1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated ½-cycle symmetrical fault current.
2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to ½-cycle symmetrical fault current.
3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated ½-cycle symmetrical fault current.

3.4 COORDINATION STUDY

1. Calculate the maximum and minimum ½-cycle short-circuit currents.
2. Calculate the maximum and minimum interrupting duty (five (5) cycles to 2 seconds) short-circuit currents.
3. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 141, IEEE 241 and IEEE 242 recommendations for fault currents and time intervals.
 1. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

C. Motors served by voltages more than 600 V shall be protected according to IEEE 620.

D. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

E. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:
 1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
 e. Ground-fault relay-pickup and time-delay settings.
 2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

F. Completed data sheets for setting of overcurrent protective devices.

END OF SECTION 260573
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:

1. Distribution transformers.
2. Buck-boost transformers.

1.3 ACTION SUBMITTALS

A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Source quality-control test reports.

C. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7.

C. Source Limitations: Obtain each transformer type through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

1.8 COORDINATION

A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:

1. ACME Electric Corporation; Power Distribution Products Division
2. Challenger Electrical Equipment Corp.; a division of Eaton Corp.
3. Eaton Electrical Inc.; Cutler-Hammer Products
4. General Electric Company
5. Myers Power Products, Inc.
7. Square D; Schneider Electric

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
B. Cores: Grain-oriented, non-aging silicon steel.

C. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NEMA ST 20, and list and label as complying with UL 1561.

B. Cores: One (1) leg per phase.

C. Enclosure: Ventilated, NEMA 250, Type 2.
 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

D. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: Gray.

E. Taps for Transformers Smaller Than 3 kVA: None.

F. Taps for Transformers 7.5 to 24 kVA: One (1) five percent (5%) tap above and one (1) five percent (5%) tap below normal full capacity.

G. Taps for Transformers 25 kVA and Larger: Two (2) two and one-half percent (2.5%) taps above and two (2) two and one-half percent (2.5%) taps below normal full capacity.

H. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

I. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 2. Tested according to NEMA TP 2.

J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for non-sinusoidal load current-handling capability to the degree defined by designated K-factor.
 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 2. Indicate value of K-factor on transformer nameplate.

K. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.
 3. Shield Effectiveness:
a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.

L. Wall Brackets: Manufacturer's standard brackets.

M. Fungus Proofing: Permanent fungicidal treatment for coil and core.

N. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.

O. Low-Sound-Level Requirements: Maximum sound levels, when factory tested according to IEEE C57.12.91, as follows:
 1. 9 kVA and Less: dBA.
 2. 30 to 50 kVA: dBA.
 3. 51 to 150 kVA: dBA.

2.4 BUCK-BOOST TRANSFORMERS

A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall comply with NEMA ST 1 and shall be listed and labeled as complying with UL 506 or UL 1561.

B. Enclosure: Ventilated, NEMA 250, Type 2.
 1. Finish Color: Gray.

2.5 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.91.

B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.

B. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

C. Remove and replace units that do not pass tests or inspections and retest as specified above.

D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two (2) follow-up infrared scans of transformers, one (1) at 4 months and the other at 11 months after Substantial Completion.
 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus ten percent (10%) and not being lower than nameplate voltage minus three percent (3%) at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus five percent (5%), at secondary terminals.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.

B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.

 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.

C. Qualification Data: For qualified testing agency.

D. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

F. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407 and NEMA PB 1.
1.8 PROJECT CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect and Construction Manager Owner no fewer than two (2) days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Architect's and Construction Manager's written permission.
3. Comply with NFPA 70E.

1.9 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five (5) years from date of Substantial Completion.

1.11 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Keys: Two (2) spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two (2) spares for each panelboard.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Enclosures: Flush- and surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5 or Type 12.
 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 6. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

B. Incoming Mains Location: Top and bottom.

C. Phase, Neutral, and Ground Buses:
 1. Material: Hard-drawn copper, ninety-eight percent (98%) conductivity.
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 4. Extra-Capacity Neutral Bus: Neutral bus rated two hundred percent (200%) of phase bus and UL listed as suitable for nonlinear loads.
5. Split Bus: Vertical buses divided into individual vertical sections.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
 1. Material: Hard-drawn copper, ninety-eight percent (98%) conductivity.
 2. Main and Neutral Lugs: Compression type.
 3. Ground Lugs and Bus-Configured Terminators: Compression type.
 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 7. Extra-Capacity Neutral Lugs: Rated two hundred percent (200%) of phase lugs mounted on extra-capacity neutral bus.

E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one (1) or more main service disconnecting and overcurrent protective devices.

F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

G. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.

2.2 DISTRIBUTION PANELBOARDS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two (2) latches, keyed alike.

D. Mains: Circuit breaker, fused switch, and lugs only.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

G. Branch Overcurrent Protective Devices: Fused switches.

H. Contactors in Main Bus: NEMA ICS 2, Class A, electrically and/or mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically and/or mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric
B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I2t response.
4. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression and Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Ground-Fault Protection: Remote-mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 d. Shunt Trip: 120 and/or 24 V trip coil energized from separate circuit, set to trip at seventy-five percent (75%) of rated voltage.
 e. Undervoltage Trip: Set to operate at thirty-five to seventy-five percent (35-75%) of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 f. Auxiliary Contacts: One (1) SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 g. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 h. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 i. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
 j. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
 k. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 l. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.5 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407 and/or NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NECA 407 and/or NEMA PB 1.1.

B. Equipment Mounting: Install panelboards on concrete bases, 4-inch nominal thickness.
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to panelboards.
 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

D. Mount top of trim 90 inches above finished floor unless otherwise indicated.

E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

F. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

G. Install filler plates in unused spaces.

H. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four (4) 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.

I. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

J. Comply with NECA 1.
3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:

 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:

 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

D. Panelboards will be considered defective if they do not pass tests and inspections.
E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Load Balancing: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, measure load balancing and make circuit changes.

1. Measure as directed during period of normal system loading.
2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
4. Tolerance: Difference exceeding twenty percent (20%) between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Receptacles with integral surge suppression units.
 4. Snap switches and wall-box dimmers.
 5. Wall-switch and exterior occupancy sensors.
 6. Communications outlets.
 7. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.
 8. EPO mushroom switches

1.3 DEFINITIONS
 A. EMI: Electromagnetic interference.
 B. GFCI: Ground-fault circuit interrupter.
 C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
 D. RFI: Radio-frequency interference.
 E. TVSS: Transient voltage surge suppressor.
 F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
 C. Samples: One (1) for each type of device and wall plate specified, in each color specified.
 D. Field quality-control test reports.
 E. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.
1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one (1) source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one (1) source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:

1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper)
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell)
3. Leviton Mfg. Company Inc. (Leviton)
4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour)

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; 5351 (single), 5352 (duplex)
 b. Hubbell; HBL5351 (single), CR5352 (duplex)
 c. Leviton; 5891 (single), 5352 (duplex)
 d. Pass & Seymour; 5381 (single), 5352 (duplex)

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; GF20
b. Pass & Seymour; \textbf{2084}

2.4 **TWIST-LOCKING RECEPTACLES**

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; \textbf{L520R}
 b. Hubbell; \textbf{HBL2310}
 c. Leviton; \textbf{2310}
 d. Pass & Seymour; \textbf{L520-R}

2.5 **SNAP SWITCHES**

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; \textbf{2221} (single pole), \textbf{2222} (two-pole), \textbf{2223} (three-way), \textbf{2224} (four-way)
 b. Hubbell; \textbf{CS1221} (single pole), \textbf{CS1222} (two-pole), \textbf{CS1223} (three-way), \textbf{CS1224} (four-way)
 c. Leviton; \textbf{1221-2} (single pole), \textbf{1222-2} (two-pole), \textbf{1223-2} (three-way), \textbf{1224-2} (four-way)
 d. Pass & Seymour; \textbf{20AC1} (single pole), \textbf{20AC2} (two-pole), \textbf{20AC3} (three-way), \textbf{20AC4} (four-way)

C. Key-Operated Switches, 120/277 V, 20 A:

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; \textbf{2221L}
 b. Hubbell; \textbf{HBL1221L}
 c. Leviton; \textbf{1221-2L}
 d. Pass & Seymour; \textbf{PS20AC1-L}

2. Description: Single pole, with factory-supplied key in lieu of switch handle.

D. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; \textbf{1995}
 b. Hubbell; \textbf{HBL1557}
 c. Leviton; \textbf{1257}
 d. Pass & Seymour; \textbf{1251}
E. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Cooper; **1995L**
 b. Hubbell; **HBL1557L**
 c. Leviton; **1257L**
 d. Pass & Seymour; **1251L**

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

2.7 OCCUPANCY SENSORS

A. Wall-Switch Sensors:

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Hubbell; **AT120** for 120 V, **AT277** for 277 V
 b. Leviton; **ODS 15-ID**

2. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

B. Long-Range Wall-Switch Sensors:

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Hubbell; **ATD1600WRP**
 b. Leviton; **ODW12-MRW**
 c. Watt Stopper (The); **DT-200**

2. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft.

C. Wide-Range Wall-Switch Sensors:

1. Products: Subject to compliance with requirements, provide one (1) of the following:
 a. Hubbell; **ATP120HBRP**
 b. Leviton; **ODWHB-IRW**
 c. Pass & Seymour; **HS1001**
 d. Watt Stopper (The); **CX-100-3**
2. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft.

2.8 WALL PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Stainless, tamper resistant with trident pan head matching current building standard.
 3. Material for Unfinished Spaces: Brushed stainless for flush box installations, raised galvanized for surface box installations.
 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet locations while in use.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, thermoplastic with lockable cover.

2.9 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Rectangular, solid brass with satin finish.

D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Two (2) modular, keyed, color-coded, RJ-45 Category 5e jacks for UTP cable.

2.10 MULTIOUTLET ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one (1) of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems
 2. Wiremold Company (The)

B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

C. Raceway Material: Metal, with manufacturer's standard finish.

D. Wire: No. 12 AWG.

2.11 EPO MUSHROOM SWITCHES

A. Pushbuttons: NEMA ICS 2; Heavy-duty, oil-tight and dust-tight without boot, chrome plated bezel, EMERG. STOP in front cover, red mushroom style actuator.
B. Contact Blocks: Stacked mounting with single screw installation, color coded with clear window for contact status. Furnish with two N.O. and two N.C. contacts.

C. Activation: Two-position, push to activate, key to return to normal state.

2.12 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.

1. Wiring Devices Connected to Normal Power System: Ivory and/or as selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:

1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:

1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to ¾ of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
10. Install GFCI devices in all wet locations.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

J. EPO Switches: Pressing the EPO switch shall immediately shut down the designated loads by activating the assigned shunt trip or contactor device(s). As part of the EPO circuit, an interface shall also be provided for connecting one or more normally open or normally closed remote EPO switches to the EPO circuit. Reset shall be by key operation.

3.2 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

1. Receptacles and Switches: Identify panelboard and circuit number from which served. Use self-adhesive labels with black lettering on white field mounted on face of plate, and durable wire markers or tags inside outlet boxes.
3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of six percent (6%) or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, enclosed controllers and motor-control centers.
2. Plug fuses rated 125-V ac and less for use in plug-fuse-type enclosed switches.
4. Spare-fuse cabinets.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
4. Fuse sizes for elevator feeders and elevator disconnect switches.

B. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Comply with UL 248-11 for plug fuses.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to ten percent (10%) of quantity installed for each size and type, but no fewer than two (2) of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper Bussmann, Inc.
2. Edison Fuse, Inc.
3. Ferraz Shawmut, Inc.
4. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

2.3 PLUG FUSES

A. Characteristics: UL 248-11, nonrenewable plug fuses; 125-V ac.
2.4 PLUG-FUSE ADAPTERS

A. Characteristics: Adapters for using Type S, rejection-base plug fuses in Edison-base fuse holders or sockets; ampere ratings matching fuse ratings; irremovable once installed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:

1. Feeders: Class J, fast acting.
2. Motor Branch Circuits: Class RK1, time delay.
3. Other Branch Circuits: Class J, fast acting.
4. Control Circuits: Class CC, fast acting.

B. Plug Fuses:

2. Other Branch Circuits: Edison-base type, single-element fast acting.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install plug-fuse adapters in Edison-base fuse holders and sockets. Ensure that adapters are irremovable once installed.

C. Install spare-fuse cabinet(s).
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Non-fusible switches.
2. Molded-case circuit breakers (MCCBs).
4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of NRTL listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.
B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.

C. Qualification Data: For qualified testing agency.

D. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Field quality-control reports.

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

F. Manufacturer's field service report.

G. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect and Construction Manager no fewer than seven (7) days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Architect and Construction Manager written permission.
4. Comply with NFPA 70E.

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 NONFUSIBLE SWITCHES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
4. Square D; a brand of Schneider Electric

B. Type HD, Heavy Duty, Single Throw, 600-V ac and 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Six-Pole, Single Throw, 600-V ac and 240-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.
D. Type HD, Heavy Duty, Double Throw, 600-V ac and 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three (3) padlocks, and interlocked with cover in closed position.

E. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Auxiliary Contact Kit: Two (2) NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. Hookstick Handle: Allows use of a hookstick to operate the handle.
6. Lugs: Mechanical and/or Compression type, suitable for number, size, and conductor material.

2.2 MOLDED-CASE CIRCUIT BREAKERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
4. Square D; a brand of Schneider Electric

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:

1. Instantaneous trip.
2. Long- and short-time pickup levels.
3. Long- and short-time time adjustments.
4. Ground-fault pickup level, time delay, and I2t response.

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical and/or Compression type, suitable for number, size, trip ratings, and conductor material.
 3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 5. Undervoltage Trip: Set to operate at thirty-five to seventy-five percent (35-75%) of rated voltage without intentional time delay.
 6. Auxiliary Contacts: Two (2) SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 7. Alarm Switch: One (1) NC contact that operates only when circuit breaker has tripped.
 8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 9. Zone-Selective Interlocking: Integral with electronic and/or ground-fault trip unit; for interlocking ground-fault protection function.
 10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.3 MOLDED-CASE SWITCHES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 2. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 4. Square D; a brand of Schneider Electric

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
 2. Lugs: Mechanical and/or compression type, suitable for number, size, trip ratings, and conductor material.
 3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay
settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at thirty-five to seventy-five percent (35-75%) of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two (2) SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One (1) NC contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
3. Kitchen and/or Wash-Down Areas: NEMA 250, Type 4X.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

C. Comply with NECA 1.
3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified

END OF SECTION 262816
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes field-mounted TVSS for low-voltage (120 to 600 V) power distribution and control equipment.

B. Related Sections:

1. Section 262416 "Panelboards" for factory-installed TVSS.
2. Section 262726 "Wiring Devices" for devices with integral TVSS.

1.3 DEFINITIONS

B. SVR: Suppressed voltage rating.

C. TVSS: Transient voltage surge suppressor(s), both singular and plural; also, transient voltage surge suppression.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating weights, electrical characteristics, furnished specialties, and accessories.

B. Qualification Data: For qualified testing agency.

C. Product Certificates: For TVSS devices, from manufacturer.

D. Field quality-control reports.

E. Operation and Maintenance Data: For TVSS devices to include in emergency, operation, and maintenance manuals.

F. Warranties: Sample of special warranties.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency, and marked for intended location and application.

C. Comply with IEEE C62.41.2 and test devices according to IEEE C62.45.

D. Comply with NEMA LS 1.

E. Comply with UL 1283 and UL 1449.

F. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Architect and Construction Manager no fewer than two (2) days in advance of proposed electrical service interruptions.
2. Do not proceed with interruption of electrical service without Architect and Construction Manager written permission.

B. Service Conditions: Rate TVSS devices for continuous operation under the following conditions unless otherwise indicated:

1. Maximum Continuous Operating Voltage: Not less than one hundred fifteen percent (115%) of nominal system operating voltage.
2. Operating Temperature: 30 to 120 deg F (0 to 50 deg C).
3. Humidity: 0 to 85 percent, noncondensing.
4. Altitude: Less than 20,000 feet above sea level.

1.7 COORDINATION

A. Coordinate location of field-mounted TVSS devices to allow adequate clearances for maintenance.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five (5) years from date of Substantial Completion.

B. Special Warranty for Cord-Connected, Plug-in Surge Suppressors: Manufacturer's standard form in which manufacturer agrees to repair or replace electronic equipment connected to circuits protected by surge suppressors.
1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Replaceable Protection Modules: One (1) of each size and type installed.

PART 2 - PRODUCTS

2.1 SERVICE ENTRANCE SUPPRESSORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

 1. ABB USA
 2. AC Data Solutions
 3. Advanced Protection Technologies Inc. (APT)
 4. Atlantic Scientific
 5. Current Technology Inc.; Danaher Power Solutions
 6. Danaher Power Solutions; United Power Products
 7. Eaton Electrical Inc.; Cutler-Hammer Business Unit
 8. General Electric Company; GE Consumer & Industrial - Electrical Distribution
 9. Intermatic, Inc.
 10. LEA International
 12. Liebert Corporation; a division of Emerson Network Power
 13. Northern Technologies, Inc.; a division of Emerson Network Power
 15. Square D; a brand of Schneider Electric
 16. Surge Suppression Incorporated

B. Surge Protection Devices:

 1. Comply with UL 1449.
 2. Modular design (with field-replaceable modules).
 3. Fuses, rated at 200-kA interrupting capacity.
 4. Fabrication using bolted compression lugs for internal wiring.
 5. Integral disconnect switch.
 6. Redundant suppression circuits.
 7. Redundant replaceable modules.
 8. Arrangement with copper bus bars and for bolted connections to phase buses, neutral bus, and ground bus.
 9. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 10. LED indicator lights for power and protection status.
 11. Audible alarm, with silencing switch, to indicate when protection has failed.
 12. Form-C contacts rated at 5 A and 250-V ac, one (1) normally open and one (1) normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

C. Peak Single-Impulse Surge Current Rating: 320 kA per mode/640 kA per phase.

D. Minimum single impulse current ratings, using 8-by-20-mic.sec waveform described in IEEE C62.41.2

1. Line to Neutral: 70,000 A.
2. Line to Ground: 70,000 A.
3. Neutral to Ground: 50,000 A.

E. Protection modes and UL 1449 SVR for grounded wye circuits with 400 V for 208Y/120 V., 3-phase, 4-wire circuits shall be as follows:

1. Line to Neutral: 400 V for 208Y/120 V.
2. Line to Ground: 400 V for 208Y/120 V.
3. Neutral to Ground: 400 V for 208Y/120 V.

F. Protection modes and UL 1449 SVR for 240/120 V, single-phase, 3-wire circuits shall be as follows:

1. Line to Neutral: 400 V.
2. Line to Ground: 400 V.
3. Neutral to Ground: 400 V.

G. Protection modes and UL 1449 SVR for 240/120-V, 3-phase, 4-wire circuits with high leg shall be as follows:

1. Line to Neutral: 400 V, 800 V from high leg.
2. Line to Ground: 400 V.
3. Neutral to Ground: 400 V.

H. Protection modes and UL 1449 SVR for 240 V, 480 V, or 600 V, 3-phase, 3-wire, delta circuits shall be as follows:

1. Line to Line: 1000 V for 240 V.
2. Line to Ground: 1000 V for 240 V.

2.2 PANELBOARD SUPPRESSORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. ABB USA
2. AC Data Solutions
3. Advanced Protection Technologies Inc. (APT)
4. Atlantic Scientific
5. Current Technology Inc.; Danaher Power Solutions
6. Danaher Power Solutions; United Power Products
7. Eaton Electrical Inc.; Cutler-Hammer Business Unit
8. General Electric Company; GE Consumer & Industrial - Electrical Distribution
9. Intermatic, Inc.
10. LEA International
12. Liebert Corporation; a division of Emerson Network Power
13. Northern Technologies, Inc.; a division of Emerson Network Power
15. Square D; a brand of Schneider Electric
16. Surge Suppression Incorporated

B. Surge Protection Devices:

1. Comply with UL 1449.
2. Modular design (with field-replaceable modules).
3. Short-circuit current rating complying with UL 1449, and matching or exceeding the panelboard short-circuit rating and redundant suppression circuits; with individually fused metal-oxide varistors.
4. Fuses, rated at 200-kA interrupting capacity.
5. Fabrication using bolted compression lugs for internal wiring.
6. Integral disconnect switch.
7. Redundant suppression circuits.
8. Redundant replaceable modules.
9. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
10. LED indicator lights for power and protection status.
11. Audible alarm, with silencing switch, to indicate when protection has failed.
12. Form-C contacts rated at 5 A and 250-V ac, one (1) normally open and one (1) normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

C. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase.

D. Minimum single impulse current ratings, using 8-by-20-mic.sec waveform described in IEEE C62.41.2:

1. Line to Neutral: 70,000 A.
2. Line to Ground: 70,000 > A.
3. Neutral to Ground: 50,000 A.

E. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120 V, 3-phase, 4-wire circuits shall be as follows:

1. Line to Neutral: 400 V for 208Y/120 V.
2. Line to Ground: 400 V for 208Y/120 V.
3. Neutral to Ground: 400 V for 208Y/120 V.

F. Protection modes and UL 1449 SVR for 240/120-V, single-phase, 3-wire circuits shall be as follows:

1. Line to Neutral: 400 V.
2. Line to Ground: 400 V.
3. Neutral to Ground: 400 V.
G. Protection modes and UL 1449 SVR for 240/120-V, 3-phase, 4-wire circuits with high leg shall be as follows:

1. Line to Neutral: 400 V, 800 V from high leg.
2. Line to Ground: 400 V.
3. Neutral to Ground: 400 V.

H. Protection modes and UL 1449 SVR for 240 V, 480 V, or 600 V, 3-phase, 3-wire, delta circuits shall be as follows:

1. Line to Line: 1000 V for 240 V.
2. Line to Ground: 800 V for 240 V.

2.3 ENCLOSURES

A. Indoor Enclosures: NEMA 250 Type 1.

B. Outdoor Enclosures: NEMA 250 Type 4X.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install TVSS devices at service entrance on load side, with ground lead bonded to service entrance ground.

B. Install TVSS devices for panelboards and auxiliary panels with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

1. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters.
2. After installing TVSS devices but before electrical circuitry has been energized, test for compliance with requirements.
3. Complete startup checks according to manufacturer's written instructions.

C. TVSS device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.
TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

3.3 STARTUP SERVICE

A. Do not energize or connect service entrance equipment to their sources until TVSS devices are installed and connected.

B. Do not perform insulation resistance tests of the distribution wiring equipment with the TVSS installed. Disconnect before conducting insulation resistance tests, and reconnect immediately after the testing is over.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train personnel to maintain TVSS devices.

END OF SECTION 264313
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 5. Carbon monoxide detectors.
 8. Addressable interface device.
 10. Radio alarm transmitter.

1.3 DEFINITIONS

A. LED: Light-emitting diode.

1.4 SYSTEM DESCRIPTION

A. Noncoded addressable system, with automatic sensitivity control of certain smoke detectors and multiplexed signal transmission, dedicated to fire-alarm service only.

1.5 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.6 SUBMITTALS

A. General Submittal Requirements:

 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level III and/or Level IV minimum.
 c. Licensed or certified by authorities having jurisdiction.

B. Product Data: For each type of product indicated.

C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 2. Include voltage drop calculations for notification appliance circuits.
 3. Include battery-size calculations.
 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
 6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.

D. Delegated-Design Submittal: For smoke and heat detectors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the detector.
 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72.

E. Qualification Data: For qualified Installer.

F. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

G. Field quality-control reports.
H. Operation and Maintenance Data: For fire-alarm systems and components to include in operation and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.
5. Manufacturer's required maintenance related to system warranty requirements.
6. Abbreviated operating instructions for mounting at fire-alarm control unit.
7. Copy of NFPA 25.

I. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.

C. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NFPA Certification: Obtain certification according to NFPA 72

1.8 PROJECT CONDITIONS

A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
1. Notify Architect and Construction Manager no fewer than two (2) days in advance of proposed interruption of fire-alarm service.
2. Do not proceed with interruption of fire-alarm service without Architect and Construction Manager written permission.

1.9 SEQUENCING AND SCHEDULING

A. The system alarm operation subsequent to the alarm activation of any manual pull station, hood suppression system or automatic detection device is to be in accordance with Article 2.2 of this specification.

B. Alarm Verification:

1. The activation of any system smoke detector shall initiate an Alarm Verification operation whereby the panel will reset the activated detector and wait for a second alarm activation.
2. If, within 1 minute after resetting, a second alarm is reported from the same or any other smoke detector, the system shall process the alarm as described previously.
3. If no second alarm occurs within 1 minute the system shall resume normal operation.
4. The Alarm Verification is to operate only on smoke detector alarms. Other activated initiating devices shall be processed immediately.
5. The alarm verification operation is to be selectable by addressable device.
6. The control Unit shall have the capability to display the number of times (tally) a device has gone into a verification mode. Should this smoke verification tally reach a pre-programmed number, a trouble condition shall occur.

C. Supervisory Service:

1. The control panel shall have a dedicated supervisory service condition and a dedicated supervisory service acknowledge switch.
2. Activating the Supervisory Service Acknowledge Switch will silence the supervisory audible signal while maintaining the Supervisory Service listing on indicating the tamper contact is still in the off-normal state.
3. Restoring the valve to the normal position shall cause the Supervisory Service indication to reset thus indicating restoration to normal position.
4. Restoring the valve to the normal position shall cause the supervisory service audible signal to pulse thus indicating restoration to normal position.
5. Activating the Supervisory Service Acknowledge Switch will silence the audible signal and restore the system to normal.

D. A manual evacuation switch shall be provided to operate system alarm indicating appliances. Other control circuits shall not be activated. However, an actual alarm shall be processed as described previously.

E. Activation of an auxiliary bypass switch shall override the automatic functions either selectively or throughout the system.

F. Alarm and trouble conditions shall be immediately displayed on the control panel front.
1.10 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two (2) years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two (2) years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide thirty (30) days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.11 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps for Strobe Units: Quantity equal to ten percent (10%) of amount installed, but no fewer than one (1) unit.
2. Smoke Detectors and Heat Detectors: Quantity equal to ten percent (10%) of amount of each type installed, but no fewer than one (1) unit of each type.
3. Detector Bases: Quantity equal to two percent (2%) of amount of each type installed, but no fewer than one (1) unit of each type.
4. Keys and Tools: One (1) extra set for access to locked and tamper-proofed components.
5. Audible and Visual Notification Appliances: One (1) of each type installed.
6. Fuses: Two (2) of each type installed in the system.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one (1) of the following:

1. Edwards
2. Notifier
3. Siemens Building Technologies, Inc.; Fire Safety Division
4. Simplex

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one (1) or more of the following devices and systems:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Verified automatic alarm operation of smoke detectors.
6. Automatic sprinkler system water pressure.
7. Fire-extinguishing system operation (Kitchen Hood).

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm visual notification appliances until extinguished by the Alarm Reset Switch.
2. Identify alarm at fire-alarm control unit and remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Activate alarm communication system until silenced by the alarm silence switch or individual circuit switch at the control panel.
5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
6. Close smoke dampers in air ducts of designated air-conditioning duct systems.
7. Activate emergency shutoffs for gas and fuel supplies.
8. Record events in the system memory.

C. Supervisory signal initiation shall be by one (1) or more of the following devices and actions:

1. Valve supervisory switch.
2. Low-air-pressure switch of a dry-pipe sprinkler system.
3. Generator general alarm switch.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at fire-alarm control unit.
4. Ground or a single break in fire-alarm control unit internal circuits.
5. Abnormal ac voltage at fire-alarm control unit.
7. Failure of battery charging.
8. Abnormal position of any switch at fire-alarm control unit or annunciator.
9. Low-air-pressure switch operation on a dry-pipe or preaction sprinkler system.

E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and remote annunciators.

2.3 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
b. Include a real-time clock for time annotation of events on the event recorder and printer.

2. Addressable initiation devices that communicate device identity and status.
 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.

3. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, two (2) lines of forty (40) characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Circuits:

1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class B.
 a. Initiating Device Circuits: Style B.
 b. Notification Appliance Circuits: Style Y.
 c. Signaling Line Circuits: Style 3.
 d. Install no more than fifty (50) addressable devices on each signaling line circuit.

2. Serial Interfaces: Two (2) RS-232 ports for printers.

D. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an NRTL-listed and -approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Sound general alarm if the alarm is verified.
4. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

E. Notification Appliance Circuit: Operation shall sound with an initial alert tone, followed by a pre-recorded emergency voice message of approximately 15 seconds, followed by a repeating alarm “whoop” tone.

F. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated
changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

G. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

H. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals and supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed eighty percent (80%) of the power-supply module rating.

I. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2. System shall be provided with sufficient battery capacity to operate the entire system upon loss of normal 120 VAC power in a normal supervisory mode for a period of 60 hours with 5 minutes of alarm operation at the end of this period.

J. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key operated switch.
3. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
4. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be two-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.

5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.

6. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.

7. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.
 c. Provide multiple levels of detection sensitivity for each sensor.

B. Photoelectric Smoke Detectors:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Ionization Smoke Detector:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
a. Primary status.
b. Device type.
c. Present average value.
d. Present sensitivity selected.
e. Sensor range (normal, dirty, etc.).

3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
7. Remote Test Switch: With keyed switch and LED indicator.

2.6 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.
B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 CARBON MONOXIDE DETECTORS

A. General Requirements for System-type Carbon Monoxide Detectors:
 1. Comply with UL 2075 and UL 2034; operating at 24-V dc, nominal.
 2. Electrochemical sensing technology.
 3. Detectors shall be two-wire type.
 4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
B. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
2.8 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.

1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.

B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

C. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch high letters on the lens.

1. Rated Light Output: 15/30/75/110 cd, selectable in the field.
2. Mounting: Wall mounted unless otherwise indicated.
3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
4. Flashing shall be in a temporal pattern, synchronized with other units.
5. Strobe Leads: Factory connected to screw terminals.

2.9 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.10 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.

B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall, to circuit-breaker shunt trip for power shutdown and other functions as required.

2.11 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.
B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone lines and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on one of the lines is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:

1. Verification that both telephone lines are available.
2. Programming device.
3. LED display.
5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:

1. Address of the alarm-initiating device.
2. Address of the supervisory signal.
3. Address of the trouble-initiating device.
4. Loss of ac supply or loss of power.
5. Low battery.
6. Abnormal test signal.
7. Communication bus failure.

E. Control panel and NAC panel shall receive 120 VAC power via a dedicated branch circuit protected in accordance with the National Electric Code.

1. The system shall support one hundred percent (100%) of notification and initiating devices in alarm or operated at the same time, under both primary (AC) and secondary (battery) power conditions.
2. System shall be provided with sufficient battery capacity to operate the entire system upon loss of normal 120 VAC power in a normal supervisory mode for a period of 60 hours with 5 minutes of alarm operation at the end of this period. Any system cabinets furnished with independent power supplies and/or batteries shall also meet these requirements.
3. System shall automatically transfer to standby batteries upon power failure. All battery charging and recharging operations shall be automatic.
4. All circuits requiring system operating power shall be 24 VDC and shall be individually fused or equivalently protected at the control unit.
5. The incoming power to the system shall be supervised so that any power failure must be audibly and visibly indicated at the control unit and the annunciator. A green "power on" LED shall be displayed continuously while incoming power is present.
6. If a “LOW BATTERY” condition is left unattended a second stage “DEPLETED BATTERY” trouble condition shall be audibly and visibly reported at the control unit indicating the batteries are below the listed system operating voltage.
7. The system batteries shall be supervised so that a low battery condition or disconnection of the battery shall be audibly and visibly indicated at the control unit and the annunciator.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.12 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.

1. Factory fabricated and furnished by manufacturer of device.
2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.

B. Equipment Mounting: Install fire-alarm control unit on wall with tops of cabinets not more than 72 inches above the finished floor.

C. Smoke- or Heat-Detector Spacing:

1. Smooth ceiling spacing shall not exceed 30 feet.
2. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix A in NFPA 72.
3. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.
4. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture.

D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.

E. Carbon Monoxide Detectors: Comply with NFPA 720. Install per manufacturer’s instructions and as remotely located from the heating appliance as possible (within room). Detectors shall be individually addressably monitored and programmed to initiate a supervisory signal.

F. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

G. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.

H. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling.

I. Device Location-Indicating Lights: Locate in public space near the device they monitor.
J. Annunciator: Install with top of panel not more than 72 inches above the finished floor.

3.2 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.

1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Smoke dampers in air ducts of designated air-conditioning duct systems.
2. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
4. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Visual Inspection: Conduct visual inspection prior to testing.

 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.

 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
3. Test carbon monoxide detectors in accordance with NFPA 720.
4. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
5. Test audible appliances for the private operating mode according to manufacturer's written instructions.
6. Test visible appliances for the public operating mode according to manufacturer's written instructions.

C. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

D. Fire-alarm system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

F. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

G. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.