Table of Contents

Division 01 General Requirements
- 010000 General Requirements
- 010100 Summary of Work
- 010450 Cutting and Patching

Division 03 Concrete
- 030100 Concrete Work
- 033053 Miscellaneous Cast-In-Place Concrete

Division 07 Thermal and Moisture Protection
- 078413 Penetration Firestopping
- 079200 Sealants and Caulking

Division 09 Finishes
- 099000 Painting

Division 22 Plumbing
- 221113 Water Distribution Piping
- 221623 Facility Natural Gas Piping

Division 23 HVAC
- 230500 Common Work Results for HVAC
- 230510 Selective Demolition HVAC
- 230519 Meters and Gauges for HVAC
- 230523 General Duty Valves for HVAC Piping
- 230529 Hangers and Supports for HVAC Piping and Equipment
- 230548 Vibration & Seismic Controls for HVAC
- 230553 Identification for HVAC Piping and Equipment
- 230593 Testing, Adjusting and Balancing for HVAC
- 230719 HVAC Piping Insulation
- 230923 Instrumentation and Control for HVAC
- 230993 Sequences of Operation
- 232000 HVAC Pumps
- 232113 Hydronic Piping
- 232114 Hydronic Specialties
- 235216 High Efficiency Condensing Boilers

19MIL22301 BOILER AND WATER HEATER REPLACEMENT
NL 13-001 NEW LONDON ARMORY
JANUARY 9, 2019 NEW LONDON, CT
Division 26 Electrical

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>Common Work Results for Electrical</td>
<td>10</td>
</tr>
<tr>
<td>260501</td>
<td>Common Work Results for Electrical Materials and Methods</td>
<td>8</td>
</tr>
<tr>
<td>260519</td>
<td>Low Voltage Electrical Power Conductors and Cable</td>
<td>4</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding</td>
<td>8</td>
</tr>
<tr>
<td>260529</td>
<td>Supporting Devices</td>
<td>8</td>
</tr>
<tr>
<td>260533</td>
<td>Raceway and Boxes</td>
<td>14</td>
</tr>
<tr>
<td>260553</td>
<td>ID for Electrical Systems</td>
<td>8</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
<td>8</td>
</tr>
<tr>
<td>262800</td>
<td>Overcurrent Protective Devices</td>
<td>8</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>4</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazmat Report</td>
<td>98</td>
</tr>
</tbody>
</table>
A. Project Number 19MIL22301 is entitled Boiler and Water Heater Replacement. Project location: The Connecticut Army National Guard (New London Armory), 249 Bayonet Street, New London, CT 06320-3905. It is to be completed and ready for use by the Owner and Agency within the Contract Time specified in Section 00020 Bid Proposal Form.

B. The Project Description:
 1. Replacement of the existing boilers and hot water heater and associated accessories.
 2. This Project does not Exceed the Threshold Limits as defined by the Connecticut General Statutes.

C. Project Location: The Connecticut Army National Guard Armory (New London Armory), located at 249 Bayonet St, New London, CT 06320

A. The Owner and Agency is the Connecticut State Military Department.
 1. The Agency Design Coordinator is Ed Fulton. The Agency Design Coordinator is located at 360 Broad Street, Hartford Connecticut 06105. Phone: (860) 548-3274; Fax: (860) 524-4937; E-mail:george.e.fulton.nfg@mail.mil.
 a. The Agency Design Coordinator is the authorized representative for the Military Department for all design related decisions at the facility and or site where the work is being performed but does not have the authority to change the contract documents or direct the contractor.
 2. The Agency Construction Coordinator is James A. Cavanna. The Agency Construction Coordinator is located at 360 Broad Street, Hartford, Connecticut 06105. Phone: (860) 548-3279; Fax: (860) 548-3260; E-mail: james.a.cavanna2.nfg@mail.mil.
 a. The Agency Construction Coordinator is the authorized representative for the Military Department for all construction related decisions at the facility and or site where the work is being performed but does not have the authority to change the contract documents or direct the contractor.

A. The Engineering Firm is Salamone and Associates, P.C., and is located at 116 North Plains Industrial Road, Wallingford, Connecticut 06492. The Engineer representing the firm for this project is Joseph Salamone. Phone: (203) 281-6895 (x3029); E-mail: jsalamone@salamoneassoc.com
1. The Architect and Engineer or their accredited representative is referred to in the Contract Documents as "Architect" or "Architects" or "Engineer" or "Engineers" or by pronouns which imply them. As information for the Contractor, the Architect’s or Engineer’s status is defined as follows:
 a. The Architect and Engineer will not make interpretations or decisions directly to the Contractor. All interpretations or decisions will be conveyed through the Construction Administrator.
 b. As the authorized representative of the Department of Public Works Commissioner, the Architect and Engineer is responsible for review of shop drawings, materials, and equipment intended for the work, in accordance with the "General Conditions", and the "Supplementary Conditions".

2. Wherever the Architect or Engineer is mentioned in the documents in connection with an administrative function, it shall include the Construction Administrator in that function except for shop drawings.

01003 CONSTRUCTION ADMINISTRATOR:

A. The Construction Administrator is James A. Cavanna, AIA, CBO, Construction Specialist, and is located at 360 Broad Street, Hartford, Connecticut 06105. Phone: (860) 548-3279; Fax: (860) 548-3260; E-mail: james.a.cavanna2.nfg@mail.mil.

1. The Construction Administrator is referred to in the Contract Documents as "Construction Administrator" or "Construction Manager" or by pronouns which imply it. All communications concerning the project will be directed through the Construction Administrator or a designated representative(s).

2. As information to the Contractor, the Construction Administrator’s status is defined as follows:
 a. The Construction Administrator is the Owner’s Agent who will, among other things, monitor the General Contractor’s performance, scheduling and construction, process shop drawings, material, and equipment submittals, review and process periodic billings, review and recommend cost changes.
 b. The Construction Administrator will process all requests for information, interpretations and decisions regarding the meaning and intent of the Contract Documents, consulting with appropriate parties prior to rendering the interpretations or decisions to the Contractor. All such requests and replies shall be in writing.

01010 SUMMARY OF WORK

A. Summary of Work includes but is not limited to the following:

1. Boiler and water heater replacement.
2. Hazmat removal will be provided by the General Contractor, owner will engage TRC to provide monitoring.
B. The Contractor will include in his bid, all items required in order to carry out the intent of the work as described, shown and implied in the Contract Documents.

C. It shall be the Contractor's responsibility upon discovery to immediately notify the Construction Administrator, in writing, of errors, omissions, discrepancies, and instances of noncompliance with applicable codes and regulations within the documents, and of any work which will not fit or properly function if installed as indicated on the Contract Documents. Any additional costs arising from the Contractor's failure to provide such notification shall be borne by the Contractor.

D. The Work will be constructed under a single lump.

E. Work Sequence - Phase:
 1. The entire Project shall be constructed in 1 Phase. Work of this Phase shall be substantially complete, ready for occupancy within 120 Calendar Days of commencement of the Work.

01011 EXAMINATION OF SITE

A. It is not the intent of the Documents to show all existing conditions. All contractors are advised to visit and examine the site with the Construction Administrator prior to submitting bids.

B. Contractors should investigate and satisfy themselves as to the conditions affecting the work, including but no restricted to those bearing upon transportation, disposal, handling and storage of materials, availability of labor, water, electric power, uncertainties of weather, roads or similar physical conditions of the ground, the character of equipment, and facilities needed preliminary to and during the prosecution of the Work. The Contractor should further satisfy himself as to the character, quality, and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information is reasonably ascertainable from an inspection of the site, as well as from information presented by the Contract Documents. Any failure by the Contractor to acquaint himself with the available information shall not relieve him from the responsibility for estimating properly the difficulty and cost of successfully performing the Work.

C. Review Of Hazardous Material Reports are contained in a separate Volume of this Project Manual.

D. Pre-Bid Conference:
 1. A Pre-Bid Conference and tour of the site will be conducted as scheduled in the Invitation to Bid.
 This scheduled conference is the only official opportunity for the bidders to tour the site with the Owner, Architect, Engineer, Construction Administrator, and Agency.

01012 PROJECT DOCUMENTS

A. The Specifications and Drawings are intended to describe and illustrate the materials and labor necessary for the work of this Project.
B. Throughout the Technical Specifications, the Connecticut Department of Transportation Standard Specifications for Roads, Bridges, and Incidental Construction Form 814A, current addition including any interim and supplemental specifications are referenced. Where so referenced the requirements set forth therein are applicable and made a part hereof. Copies of Form 814A are available from the Connecticut Department of Transportation at a nominal charge.

01013 DOCUMENTS FURNISHED

A. The General Contractor will be given 3 sets of the Contract Documents on or about the time of execution of Contract, free of charge. If additional copies are wanted, they will be available at the direct additional cost of their reproduction, to the contractor.

B. The Contractor shall receive one (1) set of AutoCAD compatible (latest version) Floor Plans on disks at no cost on or about the time of execution of the Contract from the Architect. Additional sets of AutoCAD compatible (latest version) Floor Plans on disks from the Architect at the cost of their reproduction, to the contractor.

01014 CONTRACTOR'S USE OF PREMISES

A. The Contractor shall confine his operations, including storage of apparatus, equipment and materials to the contract limit lines as directed by the Construction Administrator.

B. The areas and/or spaces, including their access, shall be maintained free and clear throughout the contract term.

C. Parking for Contractor's employees will be limited to an area (or areas) designated by the Construction Administrator. The Contractor may be required to provide identification stickers for employees' cars.

01015 OCCUPANCY REQUIREMENTS

A. Full Agency Occupancy During Construction: The Agency will occupy the site and existing building during the entire construction period. Cooperate with the Agency during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with the Agency's operations.

1. Provide adequate building and fire code egress from the buildings during the renovation process. The Contractor will be responsible to maintain and protect egress ways during the construction sequence per the design as supplied by the Architect. Contractor shall be responsible for preparing egress plans for Owner approval and for Office of State Building Official and Office of State Fire Marshal for approval if required.

01019 CONTRACT CONSIDERATIONS

A. Unit Prices - General:

1. Definition - Unit Price: Amount the General Contractor acknowledges in the Bid
Proposal Form as a price per unit of measurement for materials or services as described in the Bidding Documents or in the Contract Documents.

2. Procedures:
 a. Unit Prices included in the Contract Documents are to be used for determining compensation to the Contractor or Owner for changes to the scope of the work indicated in the Contract Documents, and included in the Lump Sum Contract Price. Special Unit Prices are for items complete, in place, and shall be inclusive of furnishing and installing of all material, labor, trucking, overhead, profit, equipment, hoisting, engineering, scaffolding, power hookups, protection, shop drawings, taxes, permits, appliances, delivery, insurance, supervision, cost of bond, etc. and shall remain in effect until completion of the Contract.
 b. Unit Price: Is identified by the Owner as a price per unit of measurement for materials or services added to or deducted from the Contract Sum by appropriate modification, if the estimated quantities of Work required by the Contract Documents are increased or decreased.
 c. Increases or Decreases: Should the amount of the Work required be increased or decreased because of changes in the work ordered in writing by the Project Manager, the Undersigned agrees that the following supplemental UNIT PRICES will be decreased 10% for a reduction of work. Each Unit Price shall include all equipment, tools, labor, permits, fees, etc., incidental to the completion of the work involved. All items marked with an asterisk (*) in the unit price schedules shall include the completion of the excavation, formation and compaction of subgrade and the disposal of surplus or unsuitable materials in accordance with the Plans and Specifications or as directed by the Construction Administrator.

2. The Owner reserves the right to reject the Contractor's measurement of work-in-place that involves use of established unit prices, and to have this work measured, at the Owner's expense, by an independent surveyor acceptable to the Contractor.

3. Defect Assessment: Replace the Work, or portions of the Work, not conforming to the specified requirements. If, in the opinion of the Architect/Engineer it is not practical to remove and replace the work the Architect/Engineer will direct an appropriate remedy or adjust the payment.

4. Unit Price Schedule: A "Unit Price Schedule" is included at the end of this Section. Specification Sections referenced in the Schedule contain requirements for materials described under each unit price.

B. Unit Price Schedule – Alterations – NOT USED
 1. Unit Price - Alterations:
2. Unit prices shall be negotiated if there is a change in scope of work.

01027 APPLICATION FOR PAYMENT

A. Schedule of Values

Submit the “Schedule of Values” to the Construction Administrator at the earliest possible date but no later than (21) twenty-one Calendar Days after the Contract Start Date. A separate "Schedule of Values" shall be provided for each Phase of the Project identified in Section 01010 Summary of Work, Work Sequence - Phase(s).

1. **Format and Content:** Use the Project Manual Table of contents as a guide to establish the format for the “Schedule of Values”. Provide at least one line item for each of the Specification Section on electronic media printout.

2. **Identification:** Project identification on the Schedule of Values shall include, but not be limited to, the following:
 a. Owner
 b. Project Number
 c. Project Name
 d. Project Location
 e. Contractor's name and address.

3. **Arrange the “Schedule of Values”** in tabular format as required by the Owner, containing separate columns including, but not limited to, the following Items:
 a. Item Number.
 b. Description of Work with Related Specification Section or Division Number.
 c. Scheduled Values broken down by description number, type material, units of each material.
 d. Name of subcontractor.
 e. Name of manufacturer or fabricator.
 f. Name of supplier.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Values</th>
<th>Subcontractor</th>
<th>Manufacturer</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
g. Retainage.
h. Contract sum in sufficient detail.

4. Percentage of Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.

5. Provide a breakdown of the Contract Sum in sufficient detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Break principal subcontract amounts down into several line items.

6. Round amounts to nearest whole dollar; the total shall equal the Contract Sum.

7. Unit-Cost Allowances: Show the line-item value of unit-cost allowances, as a product of the unit cost, multiplied by the measured quantity. Estimate quantities from the best indication in the Contract Documents.

8. General Conditions: Show line items for indirect costs and margins on actual costs only when such items are listed individually in Applications for Payment. Each item in the Schedule of Values and Applications for Payment shall be complete. Include the total cost and proportionate share of general overhead and profit margin for each item.
 a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the Schedule of Values or distributed as general overhead expense, at the Contractor's option.

B. Applications for Payment - General: Each Application for Payment shall be consistent with previous applications and payments as certified by the Architect and Construction Administrator and paid for by the Owner.

1. The initial “Application for Payment”, the “Application for Payment”, at time of “Substantial Completion”, and the final “Application for Payment”, involve additional requirements.

2. Payment-Application Terms: The Owner will process monthly progress payments. The Contractor may submit applications for payment on a monthly basis.

3. Payment-Application Forms: Use the “Application for Payment” form as required by the Owner. Present the required information on electronic media printout or approved Owner Form, multiple pages should be used if required.

4. For each item, provide a column including but not limited to the following items:
 a. Item Number.
 b. Description of Work and Related Specification Section or Division.
 c. Scheduled Value, break down by units of material and units of labor.
 d. Work completed from previous application.
 e. Work completed this period.
 f. Materials presently stored.
 g. Total completed and stored to date of application.
 h. Percentage of Completion.
i. Balance to Finish.

j. Retainage
5. Application Preparation: Complete every entry on the Application form. At the time of Final Payment only, include an executed Application form by a person authorized to sign legal documents on behalf of the Contractor. The Construction Administrator will return incomplete Applications without action.

 a. Entries shall match data on the “Schedule of Values”.
 b. Include amounts of Change Orders issued prior to the last day of the construction period covered by the application.

6. Transmittal: Except for final payment, submit to the Construction Administrator by a method ensuring receipt within forty-eight (48) hours. One (1) complete, signed and notarized original of each Application for Payment, including lien waivers and similar attachments when required, along with six (6) copies. For Final Payment, nine (9) complete, signed and notarized copies shall be submitted.

 a. Transmit each copy with a transmittal form listing attachments and recording appropriate information related to the application, in a manner acceptable to the Architect.

7. Applications for Payment: Administrative actions and submittals, that must precede or coincide with submittal of the first Application for Payment and all subsequent Application for Payments including, but not limited to, the following items:

 a. List of subcontractors and suppliers’ name, FEIN/Social Security numbers, and Connecticut Tax Registration Numbers.
 b. List of principal suppliers and fabricators.
 c. Schedule of Values.
 d. Contractor's Construction Schedule (preliminary if not final).
 e. Schedule of principal products.
 f. Submittal Schedule (preliminary if not final).
 g. List of Contractor's staff assignments.
 h. List of Contractor's principal consultants.
 i. Copies of all applicable permits.
 j. Copies of authorizations and licenses from governing authorities for performance of the Work.
 k. Proof that as-built documents are updated as required by Section 01700 “Contract Closeout”.
 l. Initial as-built survey and damage report, if required.

C. Application for Payment at Substantial Completion: Following issuance of the Certificate of Substantial Completion submit an Application for Payment form, use the form as required by the Owner. Present the required information on electronic media printout.

 1. This application shall reflect Certificates of Partial Substantial Completion issued
previously for Owner occupancy of designated portions of the Work.

2. Administrative actions and submittals that shall precede or coincide with this application include, but are not limited to, the following:
 a. Occupancy permits and similar approvals.
 b. Warranties (guarantees) and maintenance agreements.
 c. Test/adjust/balance records.
 d. Maintenance instructions.
 e. Meter readings.
 f. Startup performance reports.
 g. Changeover information related to Owner's occupancy, use, operation, and maintenance.
 h. Final cleaning.
 i. Application for reduction of retainage and consent of surety.
 j. Advice on shifting insurance coverage.
 k. Final progress photographs.
 l. List of incomplete Work, recognized as exceptions to Architect's Certificate of Substantial Completion.
 m. DD Form 1354 Transfer and Acceptance of DoD Real Property.
 n. NGB 593 Project Inspection Report.

D. Final Payment Application: Administrative actions and submittals that must precede or coincide with submittal of the final Application for Payment include, but are not limited, to the following:

1. Completion of Project Closeout requirements.
2. Completion of list of items remaining to be completed as indicated on the attachment to the Certificate of Substantial Completion.
3. Ensure that unsettled claims will be settled.
4. Ensure that incomplete Work is not accepted and will be completed without undue delay.
5. Transmittal of required Project construction records to the Owner (including as-built documents Reference Section 01700 “Contract Closeout”).
6. Certified property survey.
7. Proof that taxes, fees, and similar obligations were paid.
8. Removal of temporary facilities and services.
10. Change of door locks to Owner's access.
11. The requirements of the General Conditions and Supplementary Conditions for Final Acceptance, Final Completion, Final Inspection, and Final Payment.
12. Asbestos, Lead or other hazardous material manifests.

13. Completion of “Building Contractor Reporting Form” as supplied by Department of Construction Services, for all Contractors, Subcontractors, Vendors, Suppliers, etc. who work on the Contract. The form includes the following information:
 a. Contractor/Subcontractor name.
 b. FEIN/Social Security Numbers
 c. Connecticut Tax Registration Numbers
 d. Type of work
 e. Name of business and address
 f. Remittance address.

01030 SUPPLEMENTAL BIDS

A. Definition: A Supplemental Bid is an amount proposed by bidders and stated on the Bid Proposal Form for certain work defined in the Bidding Documents that may be added to the Base Bid amount if the Owner decides to accept a corresponding change in either the amount of construction to be completed, or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. The cost for each supplemental bid is the net addition to the Contract Sum to incorporate the Supplemental Bid into the Work. Supplemental Bids are only accepted in the numerical order that they are listed on the Bid Proposal Form and never accepted out of numerical sequence. No other adjustments are made to the Contract Sum.

B. Procedures:

1. Coordination: Modify or adjust affected adjacent Work as necessary to completely and fully integrate that Work into the Project.
 a. Include as part of each Supplemental Bid, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not mentioned as part of the Supplemental Bid.

2. Execute accepted Supplemental Bids under the same conditions as other Work of this Contract.

3. Schedule: A "Schedule of Supplemental Bids" is included at the end of this Section. Specification Sections referenced in the Schedule contain requirements for materials necessary to achieve the Work described under each Supplemental Bid.

01035 MODIFICATION PROCEDURES

A. Summary: This Section specifies administrative and procedural requirements for handling and processing contract modifications.

B. Requests for Information:

1. In the event that the contractor or subcontractor, at any tier, determines that some portion of the drawings, specifications, or other contract documents requires clarification
or interpretation by the Architect, the contractor shall submit a “Request for Information” in writing to the Architect via Construction Administrator. “Requests for Information” may only be submitted by the contractor and shall only be submitted on the “Request for Information” forms as required by the owner. In the “Request for Information”, the contractor shall clearly and concisely set forth the issue for which clarification or interpretation is sought and why a response is needed from the Architect.

a. In the “Request for Information”, the contractor shall set forth an interpretation or understanding of the requirement along with reasons why such an understanding was reached.

b. The owner acknowledges that this is a complex project. Based upon the owner’s past experience with projects of similar complexity, the owner anticipates that there will probably be some “Requests for Information” on this project.

c. The Architect will review all “Requests for Information” to determine whether they are “Requests for Information” within the meaning of this term. If it is determined that the document is not a “Request for Information”, it will be returned to the contractor, unreviewed as to content, for resubmittal on the proper form and in the proper manner.

d. “Requests for Information Response” shall be issued within seven (7) Working Calendar Days of receipt of the request from the contractor unless the owner determines that a longer time is necessary to provide an adequate response. If a longer time is determined necessary by the owner, the owner will, within seven (7) Working Calendar Days of receipt of the request, notify the contractor of the anticipated response time. If the contractor submits a “Request for Information” on an activity with seven (7) Working Calendar Days or less of float on the current project schedule, the contractor shall not be entitled to any time extension due to the time it takes the Architect to respond to the request provided that the Architect responds within the seven (7) Working Calendar Days set forth above.

e. “Requests for Information Response” from Architect will not change any requirement of the contract documents. In the event the contractor believes that the “Requests for Information Response” will cause a change to the requirements of the contract document, the contractor shall immediately give written notice to the Construction Administrator stating that the contractor believes the “Requests for Information Response” will result in “Change Order” and the Contractor intends to submit a “Change Order Proposal” request. Failure to give such written notice immediately shall waive the contractor’s right to seek additional time or cost under the requirement these Requirements.

C. Minor Changes in the Work

1. The Architect, through the Construction Administrator, will issue supplemental instruction authorizing minor changes in the Work, not involving adjustment to the Contract Sum or Contract time, on the “Supplemental Instructions” form as required by the Owner.

D. Proposal Request:

1. Architect/Owner-Initiated Requests For Proposals: The Architect or Owner will issue a
detailed description of proposed changes in the Work via the Construction Administrator that will require adjustment to the Contract Sum or Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications. Such requests shall be on a “Proposal Request” form as required by the owner.

2. “Proposal Request” is issued for information only. Do not consider them as an instruction either to stop work in progress or to execute the proposed change.

3. Within Fourteen (14) Working Calendar Days of receipt of a “Proposal Request”, submit an “Change Order Proposal” with the required information necessary to execute the change to the Construction Administrator for the Architect’s/Owner’s review.

4. Include a list of quantities of products required and unit costs, with the total amount of purchases to be made. Where requested, furnish survey data to substantiate quantities.
 a. Indicate applicable delivery charges, equipment rental, and amounts of trade discounts.
 b. Include a statement indicating the effect the proposed change in the Work will have on the Contract Time.
 c. The Agency is tax exempt. All Contractor and Subcontractor services provided under your contract with the State of Connecticut may not be exempt from taxes. The Department of Revenue Services can guide you as to which services are exempt and which are not. Please contact the State of Connecticut, Department of Revenue Services at 1-800-382-9463 or 860 541-3280.
 d. Dollar values shown on the Schedule of Values shall not be the governing (or deciding) final amounts for change orders involving either additional charges or deletions.

E. Change Order Proposal:

1. When either a “Request for Information” from the Contractor or a “Proposal Request” from the Architect or Owner results in conditions that may require modifications to the Contract, the Contractor may propose changes by submitting a request for a “Change Order Proposal” to the Architect via the Construction Administrator on forms as required by the Owner. These forms shall also include “Change Order Proposal Worksheets” as required by the Owner.
 a. Include statements outlining the reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and Contract Time.
 b. Include a list of quantities of products required and unit costs, with the total amount of purchases to be made. Where requested, furnish survey data to substantiate quantities as directed by Article 13 “Compensation for Changes in the Work” of the General Conditions of the Contract for Construction.
 c. Indicate applicable delivery charges, equipment rental, and amounts of trade discounts.
 d. Comply with requirements in Section 01631 “Equals and Substitutions” if the
proposed change requires an equal or substitution of one product or system for a product or system specified.

2. The State of Connecticut construction contract has the following tax exemptions:
 a. Purchasing of materials which will be physically incorporated and become a permanent part of the project.
 b. Tools, supplies and equipment used in fulfilling the construction contract are not exempt.
 c. Services that are resold by the contractor are exempt, i.e. if a General Contractor hires a plumber, carpenter or electrician, a resale certificate may be issued to the subcontractor because these services are considered to be integral and inseparable component parts of the building contract.

4. “Change Order Proposal” cannot be submitted without the Contractor either prior submission of a “Request for Information” from the Contractor or as a response to a “Proposal Request” submitted by the Architect or Owner.

5. Any “Change Order Request” submitted without a prior submittal of a “Request for Information” or as a response to a “Proposal Request” will be immediately rejected and returned to the Contractor.

F. Construction Change Directive:

1. “Construction Change Directive”: When the Owner and the Contractor disagree on the terms of a “Change Order Proposal” resulting from either a “Request for Information” or “Proposal Request”, then the Architect through the Construction Administrator may issue a “Construction Change Directive” on a “Construction Change Directive” as authorized by the Owner on the form required by the Owner. The “Construction Change Directive” instructs the Contractor to proceed with a change in the Work, for subsequent inclusion in a “Change Order”.
 a. The “Construction Change Directive” contains a complete description of the change in the Work. It also designates the method to be followed to determine change in the Contract Sum or Contract Time.

2. Documentation: The Contractor shall maintain detailed records on a time and material basis of work required by the “Construction Change Directive”.
 a. After completion of the change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.
 b. The final value shall be negotiated based on the supporting data to determine the value of the work.

G. Change Order Procedures:

1. Upon the Owner’s approval of a Contractor’s “Change Order Proposal”, the Construction Administrator will issue a “Change Order” for signatures of the Architect, Owner and the Contractor on “Change Order” form as required by the Owner.
A. Construction Administrator:

1. The Construction Administrator is identified in Division 1 Section 01003 “Construction Administrator”.

2. Construction Mobilization:
 a. Cooperate with the Construction Administrator in the allocation of mobilization areas of the site, for field offices and sheds, for agency facility access, traffic, and parking facilities.
 b. During Construction, coordinate use of site and facilities through the Construction Administrator.
 c. Comply with Construction Administrators procedures for intra-project communications; submittals, reports and records, schedules, coordination drawings, and recommendations; and resolution of ambiguities and conflicts.
 d. Comply with instructions of the Construction Administrator for use of temporary utilities and construction facilities.
 e. Coordinate field engineering layout as specified in Section 01050 “Field Engineering” for work under the instructions of the Construction Administrator.

B. Coordinate construction operations included in various Sections of these Specifications to assure efficient and orderly installation of each part of the Work. Coordinate construction operations included under different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in the sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.

2. Coordinate installation of different components to assure maximum accessibility for required maintenance, service, and repair.

3. Make provisions to accommodate items scheduled for later installation.

C. Where necessary, prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and attendance at meetings.

1. Prepare similar memoranda for the Construction Administrator, Owner and separate contractors where coordination of their work is required.

D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and assure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Preparation of schedules.

2. Installation and removal of temporary facilities.

3. Delivery and processing of submittals.

4. Progress meetings.
5. Project closeout activities.

E. General Coordination Provisions:

1. Inspection of Conditions: Require the Installer of each major component to inspect both the substrate and conditions under which Work is to be performed and coordinate such inspections with the Construction Administrator and authorities having jurisdictions. If unsatisfactory conditions exist notify the Construction Administrator immediately. Do not proceed until unsatisfactory conditions have been corrected in an acceptable manner.

2. The Contractor shall coordinate temporary enclosures with required inspections and tests to minimize the necessity of uncovering completed construction for that purpose.

3. The Construction Administrator will meet with the Contractor on all major items of coordination.

4. See also General Conditions Article 7 “Cooperation of Trades”.

01045 CUTTING AND PATCHING

A. Openings and chases may not be shown on the Drawings. It is the responsibility of the Contractor to examine the Architectural, Electrical, Heating, Cooling, Ventilating and Plumbing Drawings and to provide chases, channels or openings where needed.

B. The Contractor shall install sleeves, inserts and hangers furnished by the trades needing same.

C. After installing work into openings, channels and/or chases, the Contractor shall close same. If finishes are to be restored, the new work shall match the original and shall be done by the trade customarily responsible for the particular kind of work.

D. Permission shall be obtained from the Construction Administrator before cutting beams, arches, lintels or other structural members.

E. Requirements for Structural Work: Do not cut and patch structural elements in a manner that would change their load-carrying capacity or load-deflection ratio.

1. Obtain approval from the Architect/Engineers of the cutting and patching proposal before cutting and patching the following structural elements:

 a. Foundation construction.

 b. Bearing and retaining walls.
c. Structural concrete.
d. Structural steel.
e. Lintels.
f. Structural decking.
g. Miscellaneous structural metals.
h. Exterior curtain-wall construction.
i. Equipment supports.
j. Piping, ductwork, vessels, and equipment.
k. Structural systems of special construction in Division 13 Sections.

F. Do cutting and patching to integrate all elements of the work. Provide penetrations of existing surfaces. Provide samples for testing. Seal penetrations through floors, walls, ceilings and roofs, as applicable; restore or preserve fire-rated and smoke-barrier construction. Construction and finishes shall match original work.

G. The Contractor shall verify dimensions for built-in work and/or work adjoining that of other trades before ordering any material or doing any work. Discrepancies shall be submitted to the Construction Administrator before proceeding with the work.

H. Existing Warranties: Replace, patch, and repair material and surfaces cut or damaged by methods and with materials in such a manner as not to void any warranties required or existing.

I. See also General Conditions Article 23 “Cutting, Fitting, Patching and Digging”.

01050 FIELD ENGINEERING

A. Provide field engineering services to establish and record grades, lines and elevations.

B. The Contractor shall retain a Professional Engineer or Land Surveyor registered by the State of Connecticut to lay out the building, underground utility lines and other site work from the horizontal and vertical control information furnished by the Owner and to establish and record the necessary elevations, at no additional cost to the State.

C. The Contractor shall forward a letter from his Land Surveyor or Professional Engineer stating that the control information furnished by the Owner, is accurate or shall identify inaccuracies, if they exist. The Contractor shall not take advantage of errors, which may be included in the control information. Stakes and markings shall be preserved.

01095 REFERENCE STANDARDS & DEFINITIONS

A. For products specified by association or trade standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.

B. References to standard specifications and codes refer to the editions current at the bid due date. An exception is, buildings exceeding the threshold limit must be in substantial compliance with the requirements of the effective code at the time of receipt of
completed application to the Office of State Building Inspector (OSBI). References include their addenda and errata, if any, and shall be considered a part of these specifications as if they were printed herein in full.

C. The manufacturers' standard warranties or guarantees shall apply when their products are used on this project.

D. Flame Spread Ratings - all materials that are required of obligated to meet specified standards shall be submitted to the owner for their records as part of the shop drawing submittal process for their construction records.

01120 RENOVATION/DEMOLITION PROJECT PROCEDURES

A. Products For Patching And Extending Work:
 1. New materials: As specified in product sections; match existing Products and Work. For patching and extending Work.
 2. Type and Quality of Existing Products: Determine by inspecting and testing Products where necessary, referring to existing Work as a standard.

B. Inspection- General:
 1. Verify that demolition is complete and areas are ready for installation of new Work.
 2. Beginning of restoration Work means acceptance of existing conditions.

C. Project Procedures for Work Involving Lead Containing Material (LBP):
 1. Exposure levels for lead in the construction industry are regulated by 29 CFR 1926.62. Construction activities disturbing surfaces containing lead-based paint (LBP) which are likely to be employed, such as sanding, grinding, welding, cutting and burning, have been known to expose workers to levels of lead in excess of the Permissible Exposure Limit (PEL). Conduct demolition and removal Work specified in the technical sections of this specification in conformance with these regulations. In addition, construction debris/waste may be classified as hazardous waste. Disposal of hazardous waste material shall be in accordance with 40 CFR Parts 260 through 271 and Connecticut Hazardous Waste Management Regulations Section 22a-209-1; 22a-209-8(c); 22a-449(c)-11; and 22a-449(c)-100 through 110.
 2. The Contractor's Work shall be based on a child under the age of six (6) in residence; the Work shall also be in accordance with Connecticut Regulations Section 19a-111-1 through 11.
 3. This facility was constructed prior to 1978 and is likely to have painted surfaces containing lead- based paint.
 4. Testing for lead-based paint has been conducted at the facility scheduled for renovation, demolition, reconstruction, alteration, remodeling, or repair. Results of the LBP testing are for information purposes only. The testing results are in a separate Volume of this Project Manual. Under no circumstance shall this information be the sole means used by the Contractor for determining the extent of LBP. The Contractor shall be responsible for verification of all field conditions affecting performance of the
D. Project Procedures for Work Involving Asbestos Containing Material (ACM):

1. The Contractor is responsible for abating all ACM that is within the boilers, and is identified in Asbestos Inspection Reports. This is to be accomplished as part of the project. In demolition portion, every attempt shall be made by the Contractor to remove all ACM.

2. If the Contractor should encounter any material suspect or known to contain ACM, he should immediately notify the Construction Administrator of same. It is the Contractor’s responsibility to have the material tested and abated (if necessary).

3. Testing for asbestos has been conducted at the facility scheduled for renovation, demolition, reconstruction, alteration, remodeling, or repair. The asbestos testing results are for information purposes only. The testing results are in a separate Volume of this Project Manual. Under no circumstance shall this information be the sole means used by the Contractor for determining the extent of asbestos. The Contractor shall be responsible for verification of all field conditions affecting performance of the Work.

4. See also General Conditions Article 23 “Cutting, Fitting, Patching and Digging”.

E. Project Procedures for Work Involving Products Containing Persistent Bioaccumulative Toxic Chemicals” (PBT’s) such as Polychlorinated Biphenols (PCB’s), Di-2-ethylhexyl Phthalate (DEHP), and Mercury:

1. The Contractor is responsible for abating all PCB’s, DEHP, and mercury prior to the start any work involving construction, renovation or demolition (if necessary).

2. Exposure Levels for Products Containing Persistent Bioaccumulative Toxic Chemicals (PBT’s) such as PCB’s. DEHP, and mercury in the construction industry is regulated by 29CFR1910.1200 and 29CFR1926.28 et. al. Construction, renovation or demolition activities disturbing Products Containing Persistent Bioaccumulative Toxic Chemicals” (PBT’s) such as PCB’s and DEHP which are likely to be employed. These materials include but are not limited to fluorescent light fixture & exit sign, ballast’s, high density discharge (HID) lamps , and certain types of construction products containing vinyl, and mercury containing electrical switches and thermostats. These activities may expose workers in excess of the respective Permissible Exposure Limit (PEL). Conduct demolition and removal Work specified in the technical sections of these specifications in conformance with these regulations. In addition construction debris/waste may be classified as hazardous waste. Disposal of all hazardous materials shall be in accordance with but not limited to 40CRF Parts 761 Subpart K, 761, and 761.65 and the Connecticut General Hazardous Waste Statute Sec. 22a-454.

3. A Survey for Products Containing Persistent Bioaccumulative Toxic Chemicals (PBT’s) such as PCB’s, DEHP and Mercury has NOT been conducted at the facility. Examples include but are not limited to fluorescent light fixture & exit sign, ballast’s, high density discharge(HID) lamps , and certain types of construction products containing vinyl, and mercury containing electrical switches and thermostats. It is the Contractors responsibility for verification of all material and field conditions prior to construction, renovation, and demolition that may affect the performance of their
Work.

F. Preparation:
1. Cut, move, or remove items as are necessary for access to alterations and renovation Work. Replace and restore at completion.
2. Remove unsuitable material not marked for salvage, such as rotted wood, corroded metals, and deteriorated masonry and concrete. Replace materials as specified for finished Work.
3. Remove debris and abandoned items from area and from concealed spaces.
4. Prepare surface and remove surface finishes to provide for proper installation of new Work and finishes.
5. Close openings in exterior surfaces to protect existing Work and salvage items from weather and extremes of temperature and humidity. Insulate ductwork and piping to prevent condensation in exposed areas.

G. Installation:
1. Coordinate Work of alterations and renovations to expedite completion and if required sequence Work to accommodate Owner occupancy.
2. Remove, cut and patch Work in a manner to minimize damage and to provide restoring Products and finishes to original and or specified condition in accordance with Section 01045 “Cutting and Patching”.
3. Refinish visible existing surfaces to remain in renovated rooms and spaces, to specified condition for each material, with neat transition to adjacent finishes in accordance with Section 01045 “Cutting and Patching”.
4. In addition to specified replacement of equipment and fixtures, restore existing plumbing, heating, ventilation, air conditioning, electrical, systems to full operational condition.
5. Recover and refinish Work that exposes mechanical and electrical Work exposed accidentally during the Work.
6. Install Products as specified in individual sections.

H. Transitions:
1. Where new Work abuts or aligns with existing, perform a smooth and even transition. Patch work to match existing adjacent Work in texture and appearance.
2. When finished surfaces are cut so that a smooth transition with new Work is not possible, terminate existing surface along a straight line at a natural line of division and make recommendation to Architect/Engineer.

I. Adjustments:
1. Where removal of partitions or walls result in adjacent spaces becoming one, rework floors, walls, and ceilings to a smooth plane without breaks, steps, or bulkheads.
2. Where a change of plane of ¼ inch in 12 inches or more occurs, request
recommendation from Architect/Engineer for providing a smooth transition.

3. Trim existing doors as necessary to clear new floor finish. Refinish trim as required.

4. Fit Work at penetrations of surfaces as specified in Section 01045 “Cutting and Patching”.

J. **Repair of Damaged Surfaces:**

1. Patch or replace portions of existing surfaces that are damaged, lifted, discolored, or showing imperfections.

2. Repair substrate prior to patching finish.

K. **Finishes:**

1. Finish surfaces as specified in individual Product sections.

2. Finish patches to produce uniform finish and texture over entire area. When finish cannot be matched, refinish entire surface to nearest intersections.

L. **Cleaning:**

1. In addition cleaning specified in Section 01700 “Project Closeout”, clean Agency occupied areas of Work

01120 SALVAGEABLE MATERIALS

NOT USED

01200 PROJECT MEETINGS

A. **Pre-construction Conference:**

1. The Contractor will attend a Pre-construction Conference before starting construction, as scheduled by the Construction Administrator convenient to the Owner, the Construction Administrator, Architect, and Contractor. This meeting will take place within fourteen (14) Calendar Days after the written Notice to Proceed and before the Contract Start Date. Hold the conference at the Project Site or another convenient location as directed by the Construction Administrator. The Construction Administrator shall conduct the Pre-construction Conference to review the Contractor and Subcontractor responsibilities and personnel assignments.

2. Attendees: Authorized representatives of the Construction Administrator, Owner, Architect, and their consultants; the Contractor and its superintendent; major subcontractors; agency; and other concerned parties shall attend the conference. All participants at the conference shall be familiar with the Project and authorized to conclude matters relating to the Work.

3. Agenda: Discuss items of significance that could affect progress, including the following:

 a. Tentative construction schedule.

 b. Critical work sequencing.

 c. Progress meeting schedule.

 d. Designation of responsible personnel.
e. Procedures for processing field decisions and Change Orders.

f. Procedures for processing Applications for Payment.

g. Distribution of Contract Documents.

h. Submittal of Shop Drawings, Product Data, and Samples.

i. Preparation of record documents.

j. Use of the premises.

k. Parking availability.

l. Office, work, and storage areas.

m. Equipment deliveries and priorities.

n. Safety procedures.

o. First aid.

q. Housekeeping.

r. Working hours.

s. Coordination with Audio-Visual and Telecommunications.

B. Progress Meetings:

1. The Construction Administrator will conduct progress meetings, bi-weekly, at the Project Site or at regular intervals as agreed upon at the Pre-construction Conference. The Construction Administrator will notify the Owner, the Architect, and the Contractor of the scheduled Progress Meeting dates. Coordinate dates of Progress Meetings with preparation of Application for Payment requests.

2. Attendees: In addition to representatives of the Contractor, Construction Administrator, Owner and the Architect, subcontractor, supplier, or other entity concerned with current progress or involved in planning, coordination, or performance of future activities may be requested to attend these meetings on an as needed basis. All participants at the meeting shall be familiar with the Project and authorized to conclude matters relating to the Work. The Contractor shall include the site superintendent as a minimum.

3. Agenda: Progress Meetings shall review and correct or approve minutes of the previous Progress Meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to the status of the Project.

 a. Construction Schedule: Review progress since the last Progress Meeting. Determine where each activity is in relation to the required Contractor's "Construction Schedule" and whether each activity is on time or ahead or behind Schedule. Determine how Work that is behind Schedule will be expedited; secure commitments from parties involved to do so. Discuss whether Schedule revisions are required to insure that current and subsequent activities will be completed within the Contract Time.

 b. Review the present and future needs of each entity present
4. Reporting: The Construction Administrator will distribute minutes of the meeting to each party present, promptly and before the next scheduled meeting, and to parties who should have been present.

5. A schedule of regular Project Meetings will be established at the Pre-construction Conference.

01300 SUBMITTALS

A. Summary

1. This Section includes administrative and procedural requirements for submittals required for performance of the Work, including but not limited to the following:
 a. Submittal Procedures.
 b. Submittal schedule.
 c. Daily Construction reports.
 d. Shop Drawings.
 e. Shop Drawings for Fire Protection Systems.
 f. Product Data.
 g. Samples.
 h. Quality assurance submittals.
 i. Architects Action.
 j. Submittals shall comply with all requirements in Division 1 Section 01631 “Equals and Substitutions”.
 k. Submittals shall comply with all requirements in Division 1 Section 01740 “Warrantees and Bonds”.
 l. Submittals shall comply with all requirements in Division 1 Section 01040 “Coordination”.
 m. Submittals shall comply with all requirements in Division 1 Section 01730 “Operation & Maintenance Manuals”.

B. Administrative Submittals: Refer to other Division 1 Sections and other Contract Documents for requirements for administrative submittals. Such submittals include, but are not limited to, the following:

1. Permits.
2. Applications for Payment.
3. Performance and payment bonds.
4. Contractor’s construction schedule.
5. Daily construction reports.
7. Insurance certificates.
8. List of subcontractors.
9. Subcontractors/Suppliers FEIN #’s and Connecticut tax registration #.

C. Related Sections: The following Sections contain requirements that relate to this Section:
1. Division 1 Section 01027 "Application for Payment" specifies requirements for submittal of the Schedule of Values.
2. Division 1 Section 01040 "Coordination" specifies requirements governing preparation and submittal of required Coordination Drawings.
3. Division 1 Section 01200 "Project Meetings" specifies requirements for submittal and distribution of meeting and conference minutes.
4. Division 1 Section 01310 “Construction Schedules”.
5. Division 1 Section 01315 "CPM Schedule" specifies requirements for contractor's schedule submittal.
6. Division 1 Section 01380 "Construction Photographs" specifies requirements for submittal of periodic construction photographs.
7. Division 1 Section 01400 "Quality Control" specifies requirements for submittal of inspection and test reports.
8. Division 1 Section 01631 "Equals and Substitutions" specifies requirements for submittal of requests to use products other than those specified.
9. Division 1 Section 01700 "Contract Closeout" specifies requirements for submittal of Project Record Documents and warranties at project closeout.
10. Division 1 Section 01740 “Warranties and Bonds”.

D. Definitions
1. Coordination Drawings show the relationship and integration of different construction elements that require careful coordination during fabrication or installation to fit in the space provided or to function as intended and as identified in the Specification Division 2 through 16.
2. Preparation of Coordination Drawings is specified in Division 1 Section "Coordination" and may include components previously shown in detail on Shop Drawings or Product Data.
3. Field samples are full-size physical examples erected on-site to illustrate finishes, coatings, or finish materials. Field samples are used to establish the standard by which the Work will be judged.
4. Mockups are full-size assemblies for review of construction, coordination, testing, or operation; they are not Samples.

E. Submittal Procedures
1. Coordination: Coordinate preparation and processing of submittals with performance of construction activities. Transmit each submittal sufficiently in advance of performance of related construction activities to avoid delay.
2. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
3. Coordinate transmittal of different types of submittals for related elements of the Work so processing will not be delayed by the need to review submittals concurrently for coordination.
 a. The Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until all related submittals are received.
 b. The Architect reserves the right to reject incomplete submitted packages.
4. Processing: To avoid the need to delay installation as a result of the time required to process submittals, allow sufficient time for submittal review, including time for resubmittals.
 a. Allow (2) two weeks for initial review. Allow additional time if the Architect must delay processing to permit coordination with subsequent submittals.
 b. If an intermediate submittal is necessary, process the same as the initial submittal.
 c. Allow (2) two weeks for reprocessing each submittal.
 d. No extension of Contract Time will be authorized because of failure to transmit submittals to the Architect sufficiently in advance of the Work to permit processing.

F. **Submittal Preparation**: Place a permanent label, title block or 8-1/2 inches x 11 inches cover page approved by the Architect, on each submittal for identification. Indicate the name of the entity that prepared each submittal on the label or title block.
 1. The minimum number of copies required for each submittal shall be at a minimum 7 copies or as determined otherwise at the pre-construction conference or by the Construction Administrator.
 2. Provide a space approximately 4 inches by 5 inches on the label, beside the title block or on the cover page on Shop Drawings to record the Contractor's review and approval markings and the action taken.
 3. Include the following information on the label for processing and recording action taken.
 a. Project Name and State of Connecticut Project Number.
 b. Date.
 c. Name and address of the Architect, Construction Administrator, and Owner Representative.
 d. Name and address of the Contractor.
 e. Name and address of the subcontractor.
 f. Name and address of the supplier.
 g. Name of the manufacturer.
 h. Number and title of appropriate Specification Section.
 i. Drawing number and detail references, as appropriate.
j. Indicate either initial or resubmittal.

k. Indicate deviations from Contract Documents.

l. Indicate if "equal" or "substitution".

G. Submittal Transmittal: Package each submittal appropriately for transmittal and handling. Transmit each submittal from the Contractor to the Architect using a transmittal form. Copy the Construction Administrator on the transmittal. The Architect will return all submittals to the Contractor after action is taken with a complete copy of the submittal package and one complete copy of the submittal package. The Architect will not accept submittals received from sources other than the Contractor.

1. On the transmittal, record relevant information and requests for data. On the form, or separate sheet, record deviations from Contract Document requirements, including variations and limitations. Include Contractor’s certification that information complies with Contract Document requirements.

H. Submittal Schedule

1. After development and review by the Owner and Architect acceptance of the Contractor’s Construction or CPM schedule prepare a complete schedule of submittals. Submit the schedule to the Construction Administrator within 30 days of Contract Award.

2. Coordinate Submittal Schedule with the list of subcontracts, Schedule of Values, and the list of products as well as the contractor’s Construction or CPM Schedule.

3. Prepare the schedule in chronological order. Provide the following information:
 a. Schedule date for the initial submittal.
 b. Related section number.
 c. Submittal category (Shop Drawings, Product Data, or Samples).
 d. Name of Subcontractor.
 e. Description of the part of Work covered.
 f. Scheduled date for resubmittal.
 g. Scheduled date for the Architect’s final release of approval.

I. Distribution: Following response to the initial submittal, print and distribute copies to the Construction Administrator, Architect, Owner, subcontractors, and other parties required to comply with submittal dates indicated. Post copies in the Project meeting room and field office.

1. When revisions are made, distribute to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in construction activities.

J. Schedule Updating: Revise the schedule after each meeting or activity where revisions
have been recognized or made. Issue the updated schedule concurrently with the report of each meeting.

K. Daily Construction Reports

1. Prepare a daily construction report recording the following information concerning events at the site, and submit duplicate copies to the Construction Administrator at weekly intervals:
 a. List of subcontractors at the site.
 b. Approximate count of personnel at the site.
 c. High and low temperatures, general weather conditions.
 d. Accidents and unusual events.
 e. Meetings and significant decisions.
 f. Stoppages, delays, shortages, and losses.
 g. Meter readings and similar recordings.
 h. List of equipment on site and identify if idle or in use.
 i. Orders and requests of governing authorities.
 j. Change Orders received, start and end dates.
 k. Services connected, disconnected.
 l. Equipment or system tests and startups.
 m. Partial Completion’s, occupancies.
 n. Substantial Completion’s authorized.
 o. Equals or Substitutions approved or rejected.

L. Shop Drawings

1. Submit newly prepared information drawn accurately to scale. Highlight, encircle, or otherwise indicate deviations from the Contract Documents. Do not reproduce Contract Documents or copy standard information as the basis of Shop Drawings. Standard information prepared without specific reference to the Project is not a Shop Drawing.

2. Shop Drawings include fabrication and installation Drawings, setting diagrams, schedules, patterns, templates and similar Drawings. Include the following information:
 a. Dimensions.
 b. Identification of products and materials included by sheet and detail number.
 c. Notation of coordination requirements.
 d. Notation of dimensions established by field measurement.
 e. Sheet Size: Except for templates, patterns and similar full-size Drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches but no larger than 36 by 48
inches.
g. Submit one (1) reproducible media and seven (7) prints as directed by the Construction Administrator. The Contractor's submittal shall identify the specification section and/or drawing number applicable to the submittal.
h. Details shall be large scale and/or full size.

3. The Contractor shall review the Shop Drawings, stamp with this approval, and submit them with reasonable promptness and in orderly sequence so as to cause no delay in his Work or in the Work of any subcontractor. Shop Drawings shall be properly identified as specified for item, material, workmanship, and project number. At the submission, the Contractor shall inform the Architect, in writing of any deviation in the shop drawings from the requirements of the Contract Documents.

4. The Architect will review and comment on shop drawings with reasonable promptness so as to cause no delay, but only for conformance with the design concept of the project and with the information given in the Contract Documents. Refer to Article 5 of General Conditions. Shop Drawings received by the Architect that indicate insufficient study of drawings and specifications, illegible portions or gross errors, will be rejected outright. Such rejections shall not constitute an acceptable reason for granting the Contractor additional time to perform the work.

5. The Contractor shall make any corrections required by the Architect and shall resubmit the required number of corrected copies of shop drawings until fully reviewed.

6. Upon final review submit four (4) additional prints, same as submitted, to the Construction Administrator for his use.

7. The Architect's review and comments on shop drawings shall not relieve the Contractor of responsibility for any deviation from the requirements of the Contract Documents.

8. Only final reviewed shop drawings are to be used on the project site.

9. The Work installed shall be reviewed in accordance with the shop drawings and the drawings and specifications. Final Review of the shop drawings by the Architect shall constitute acceptance by the State and the Architect of a variation or departure that is clearly identified. Final reviewed shop drawings shall not replace or be used as a vehicle to issue or incorporate change orders.

M. Shop Drawing for the Fire Protection Systems

1. Shop drawings for fire protection systems shall comply with all of the requirements in the section above “Shop Drawings” In addition Sprinkler system shop drawings and hydraulic calculations must be stamped by a professional engineer licensed in the state of Connecticut and must include the DPW project number. Two (2) sets of information [as noted in Division 1 “Submittals” Section 01300] shall be submitted to the State's Insurance Carrier (SIC), and one (1) set shall be submitted to a) the State Fire Marshals (SFM) office for projects exceeding statutory threshold limit or b) to DPW Code Unit for those projects which do not exceed statutory threshold limit.
STATE INSURANCE CARRIER (SIC):
FM
Global
Factory Mutual Insurance
Company P.O. Box 9102 500
River Ridge Drive Norwood, MA
02062
Tel: (781) 440-8000 or FAX (781) 440-8742
Contact: Costa Terzides (781) 440-8204 or Jeannette Dantona (781) 440-8245

<table>
<thead>
<tr>
<th>Exceeds Threshold</th>
<th>Does not exceed threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE FIRE MARSHALS (SFM):</td>
<td>DPW Codes Unit</td>
</tr>
<tr>
<td>Deputy State Fire Marshal</td>
<td>State Office Building - DPW</td>
</tr>
<tr>
<td>1111 Country Club Road, PO Box 2794</td>
<td>165 Capitol Avenue Room 280</td>
</tr>
<tr>
<td>Middletown, CT 06457</td>
<td>Hartford, CT 06106</td>
</tr>
<tr>
<td>Tel: (860) 685-8350</td>
<td>Ira Henowitz (860) 713 5708 or Lisa Humble (860) 713-5729</td>
</tr>
</tbody>
</table>

Before the shop drawings are submitted to SIC or Code (either SFM or DPW), the A/E and/or the A/E fire protection consultant must review the sprinkler design for compliance with the code and DPW requirements. SIC review comments will be addressed to the DPW Chief Engineer. The DPW Chief Engineer shall confirm to the A/E any changes required by SIC/SFM. The A/E is responsible for changes that result from the SIC and/or Code (SFM or DPW) required during construction.

The State Insurance Carrier (SIC) requires two- (2) weeks prior notice of a sprinkler system acceptance test.

N. Product Data

1. Collect Product Data into a single submittal for each element of construction or system. Product Data includes printed information, schedules, such as manufacturer's installation instructions, catalog cuts, standard color charts, roughing-in diagrams and templates, standard wiring diagrams, and performance curves.

2. Mark each copy to show applicable choices and options. Where printed Product Data includes information on several products that are not required, mark copies to indicate the applicable information. Include the following information:
 a. Manufacturer's printed recommendations.
 b. Compliance with trade association standards.
c. Compliance with recognized testing agency standards.

d. Application of testing agency labels and seals.

e. Notation of dimensions verified by field measurement.

f. Notation of coordination requirements.

3. Do not submit Product Data until compliance with requirements of the Contract Documents has been confirmed.

4. Preliminary Submittal: Submit a preliminary single copy of Product Data where selection of options is required.

5. Submittals: Submit 7 copies of each required submittal; submit 5 copies where required for maintenance manuals. The Architect will retain one and will return the other marked with action taken and corrections or modifications required.

 a. Unless noncompliance with Contract Document provisions is observed, the submittal may serve as the final submittal.

6. Distribution: Furnish copies of final submittal to installers, subcontractors, suppliers, manufacturers, fabricators, and others required for performance of construction activities. Show distribution on transmittal forms.

 a. Do not proceed with installation until a copy of Product Data is in the Installer's possession.

 b. Do not permit use of unmarked copies of Product Data in connection with construction.

O. Samples

1. Submit full-size, fully fabricated Samples cured and finished as specified and physically identical with the material or product proposed. Samples include partial sections of manufactured or fabricated components, cuts or containers of materials, color range sets, and swatches showing color, texture, and pattern.

2. Store, mount or display Samples on site in the manner to facilitate review of qualities indicated. Prepare Samples to match the Architect's sample. Include the following:

 a. Specification Section number and reference.

 b. Generic description of the Sample.

 c. Sample source.

 d. Product name or name of the manufacturer.

 e. Compliance with recognized standards.

 f. Availability and delivery time.

3. Submit Samples for review of size, kind, color, pattern, and texture. Submit Samples for a final check of these characteristics with other elements and a comparison of these characteristics between the final submittal and the actual component as delivered and
installed.

a. Where variation in color, pattern, texture, or other characteristic is inherent in the material or product represented, submit at least (3) three multiple units that show approximate limits of the variations.

b. Refer to other Specification Sections for requirements for Samples that illustrate workmanship, fabrication techniques, details of assembly, connections, operation, and similar construction characteristics.

c. Refer to other Sections for Samples to be returned to the Contractor for incorporation in the Work. Such Samples must be undamaged at time of use. On the transmittal, indicate special requests regarding disposition of Sample submittals.

d. Samples not incorporated into the Work, or otherwise designated as the Owner's property, are the property of the Contractor and shall be removed from the site prior to Substantial Completion.

4. Preliminary Submittals: Submit a full set of choices where Samples are submitted for selection of color, pattern, texture, or similar characteristics from a range of standard choices, unless otherwise noted in specification section.

a. The Architect will review and return preliminary submittals with the Architects notation, indicating selection and other action.

5. Submittals: Except for Samples illustrating assembly details, workmanship, fabrication techniques, connections, operation, and similar characteristics, submit (3) sets. The Architect will return one set marked with the action taken.

6. Maintain sets of Samples, as returned, at the Project Site, for quality comparisons throughout the course of construction.

a. Unless noncompliance with Contract Document provisions is observed, the submittal may serve as the final submittal.

b. Sample sets may be used to obtain final acceptance of the construction associated with each set.

7. Distribution of Samples: Prepare and distribute additional sets to subcontractors, manufacturers, fabricators, suppliers, installers, and others as required for performance of the Work. Show distribution on transmittal forms.

a. Field samples are full-size examples erected on-site to illustrate finishes, coatings, or finish materials and to establish the Project standard.

8. Comply with submittal requirements to the fullest extent possible. Process transmittal forms to provide a record of activity.

P. Quality Assurance Submittals

1. Submit quality-control submittals, including design data, certifications, manufacturer's instructions, manufacturer's field reports, and other quality-control submittals as required under other Sections of the Specifications.

2. Certifications: Where other Sections of the Specifications require certification that a
product, material, or installation complies with specified requirements, submit a notarized certification from the manufacturer certifying compliance with specified requirements.

a. Signature: Certification shall be signed by an officer of the manufacturer or other individual authorized to sign documents on behalf of the company.

3. Inspection and Test Reports: Requirements for submittal of inspection and test reports from independent testing agencies are specified in Division 1 Section "Quality Control."

Q. Architect’s Action

1. Except for submittals for the record or information, where action and return is required, the Architect will review each submittal, mark to indicate action taken, and return promptly.

a. Compliance with specified characteristics is the Contractor’s responsibility.

2. Action Stamp: The Architect will stamp each submittal with a uniform, action stamp. The Architect will mark the stamp appropriately to indicate the action taken, as follows:

a. Final Unrestricted Release: When the Architect marks a submittal "Approved for fabrication," the Work covered by the submittal may proceed provided it complies with requirements of the Contract Documents. Final payment depends on that compliance.

b. Final-But-Restricted Release: When the Architect marks a submittal "Incorporate Notations," the Work covered by the submittal may proceed provided it complies with notations or corrections on the submittal and requirements of the Contract Documents. Submit corrected copies for record. Final payment depends on that compliance.

c. Returned for Resubmittal: When the Architect marks a submittal "Rejected, or Revise and Resubmit," do not proceed with Work covered by the submittal, including purchasing, fabrication, delivery, or other activity. Revise or prepare a new submittal according to the notations; resubmit without delay. Repeat if necessary to obtain different action mark.

1) Do not use, or allow others to use, submittals marked "Rejected, or Revise and Resubmit" at the Project Site or elsewhere where Work is in progress.

2) Other Action: Where a submittal is for information or record purposes or special processing or other activity, the Architect will return the submittal marked "Action Not Required."

d. Unsolicited Submittals: The Architect will discard unsolicited submittals without action.
1. **Construction Schedule:** A method of planning and scheduling a construction project utilizing a horizontal bar chart with a separate bar for each major portion of the Work or operation to make the schedule an effective tool for planning and monitoring the progress of the work.

B. Quality Assurance: The Contractor's Consultant: Retain a consultant to provide planning, evaluating, and reporting by CPM scheduling.

1. **In-house Option:** The Owner may waive the requirement to retain a consultant if the Contractor can demonstrate that:
 a. The Contractor has the computer equipment required to produce construction schedules.
 b. The Contractor employs skilled personnel with experience in construction scheduling and reporting techniques.

2. **Program:** Use “Microsoft Project”, latest version.

3. **Standards:** Comply with procedures contained in AGC's "Construction Planning & Scheduling."

C. Construction Schedule Format:

1. **Format:** Utilize a horizontal bar chart (gantt) with a separate bar for each major portion of the Work or operation, identifying first work day of each week.

2. **Program:** Use Microsoft Project, latest version.

3. **Sequence of Listings:** Utilize the Table of Contents of this Project Manual and the chronological order of the start of each item of work.

4. **Scale and Spacing:** Provide space for notations and revisions.

5. **Sheet Size:** To be coordinated with Construction Administrator.

D. Content:

1. Show complete sequence of construction by activity, with dates beginning and completion of each element of construction.

2. Identify each item by specification section number.

3. Identify work of separate phases other and other logically grouped activities.

4. Show accumulated percentages of completion of each item, and total percentage of Work completed, as of the first day of each month.

5. Provide separate schedule of submittal dates for shop drawings, product data, and samples, Owner/Agency furnished products and any products identified as under Allowances, and dates reviewed submittals will be required from Architect/Engineer. Indicate decision dates for selection of finishes.

6. Indicate delivery dates for Owner/Agency furnished products and any products identified as under Allowances.

7. Coordinate content with Schedule of Values specified in Section 01027 “Application for Payment”.

8. Indicate critical path with original baseline indicated.
E. Submittals And Revisions To Schedules:
 1. Indicate progress of each activity to date of submittal, and projected completion date of each activity.
 2. Identify activities modified since previous submittal, major changes in scope, and other identifiable changes.
 3. Provide narrative report to define problem areas, anticipated delays, and impact on Schedule. Report corrective action taken, or proposed, and its effect.
 4. An initial bar graph (gantt) schedule is to be prepared by the General Contractor and submitted to the Construction Administrator within seven (7) Working calendar days of award of contract. This schedule is to cover all items of work from the start of the project up to the completion of the project. After review, resubmit required revised data within five (5) Working calendar days. This schedule must be revised monthly and when the actual schedule of significant items varies more than seven (7) Calendar days from the proposed schedule. The critical path with baseline must be indicated.
 5. Submit revised Construction Schedules each Application for Payment.
 6. Submit four (4) copies of the Construction Schedule to the Construction Administrator.

F. Distribution:
 1. Distribute copies of the Construction Schedules to Construction Administrator, Architect, Owner, Subcontractors, suppliers, and other concerned parties.
 2. Instruct recipients to promptly report, in writing, problem anticipated by projections indicated in schedules.

01380 CONSTRUCTION PHOTOGRAPHS

A. On the date the work is begun and every thirty (30) days thereafter (typically at the end of the month- until the work is at least 95 percent complete), the Contractor shall have photographs of the construction taken by a professional photographer or an individual approved by the Owner.

B. Photographs: Provide a digital camera to take (24) or more photos each time. Deliver 1 sets of photo files on CD-ROM and one set of prints to the Construction Administrator for the department. Label each CD-ROM with project name and the date the photographs were taken. With each submittal provide an index sheet of digital photos and where the photos were taken.

C. As photographs are a record of the work progress, they shall be taken each month, whether or not they show work done during the preceding month. Deliver digital photos to the Construction Administrator within 10 days of their taking.

01400 QUALITY CONTROL

A. Contractor Responsibilities: Unless otherwise indicated as the responsibility of another identified entity, the Owner, through the Construction Administrator, shall provide Fire Alarm Acceptance testing, inspections, tests, and other quality-control services specified elsewhere in the Contract Documents and required by authorities having jurisdiction. All
tests required by the individual specification sections are required to be scheduled and notification given to the Construction Administrator twenty-four (24), forty-eight (48) hours in advance to the test/inspection as applicable. Costs for these services are not included in the Contract Sum.

1. Where individual Sections specifically indicate that certain inspections, tests, and other quality-control services are the Contractor’s responsibility, the Contractor shall employ and pay a qualified independent testing agency to perform quality-control services. Costs for these services are included in the Contract Sum.

2. Where individual Sections specifically indicate that certain inspections, tests, and other quality-control services are the Owner's responsibility, the Owner will employ and pay a qualified independent testing agency to perform those services.

 a. Such services include Special Inspections as required by the latest adoption of the “Connecticut State building Code”.

 b. Where the Owner has engaged a testing agency for testing and inspecting part of the Work, and the Contractor is also required to engage an entity for the same or related element, the Contractor shall not employ the entity engaged by the Owner. The Owner will engage the services of a qualified Special Inspector for this project. The Special Inspector, as a representative of the Owner, shall document and confirm compliance with the provisions of the Connecticut State Building Code for Special Inspections.

 c. Materials and assemblers for this project will be tested and construction operations inspected as the work progresses. Failure to detect any defective work or material shall not in any way prevent later rejection when such defect is discovered nor shall it obligate the State for final acceptance.

 d. The Owner use of testing and inspection services shall in no way relieve the contractor of the responsibility to furnish materials and finished construction in full compliance with the Contract Documents and the Connecticut State Building Codes.

B. Retesting: The Contractor is responsible for retesting where results of inspections, tests, or other quality-control services prove unsatisfactory and indicate noncompliance with Contract Document requirements, regardless of whether the original test was Contractor's responsibility.

 1. The cost of retesting construction, revised or replaced by the Contractor, is the Contractor's responsibility where required tests performed on original construction indicated noncompliance with Contract Document requirements.

 2. The Owner will issue a credit change order to cover all costs incurred related to all re-tests/re-inspection due to non-compliance to the contract documents, including but not limited to the Owners costs and the Consultants costs.

C. Associated Services: Cooperate with agencies performing required inspections, tests, and similar services, and provide reasonable auxiliary services as requested. Notify the agency sufficiently in advance of operations to permit assignment of personnel. Auxiliary services required include, but are not limited to, the following:

 1. Provide access to the Work.
2. Furnish incidental labor and facilities necessary to facilitate inspections and tests.
3. Take adequate quantities of representative samples of materials that require testing or assist the agency in taking samples.
4. Provide facilities for storage and curing of test samples.
5. Deliver samples to testing laboratories.
6. Provide an approved design mix proposed for use for material mixes that require control by the testing agency.
7. Provide security and protection of samples and test equipment at the Project Site.

D. Duties of the Testing Agency: The independent testing agency engaged to perform inspections, sampling, and testing of materials and construction specified in individual Sections shall cooperate with the Construction Administrator, Architect and the Contractor in performance of the testing agency’s duties. The testing agency shall provide qualified personnel to perform required inspections and tests.

1. The testing agency shall notify the Construction Administrator and the Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
2. The testing agency is not authorized to release, revoke, alter, or enlarge requirements of the Contract Documents or approve or accept any portion of the Work.
3. The testing agency shall not perform any duties of the Contractor.

E. Owner will pay for the services of an independent testing agency laboratory to perform inspections, tests and other services required by the Specifications except as noted below, listed for which the Owner will issue a deduct change order to cover the cost associated with these tests:

1. When the Contractor notifies the Construction Administrator and/or Testing Agency less than twenty-four (24) hours before the expected time of testing.
2. When the Contractor requires testing for his own convenience.
3. When the Contractor schedules a test and is not ready for the required test.

F. Reports of test that are part of the submittal requirements which indicate compliance or non-compliance with the specified standard.

G. See also General Conditions Article 16 “Inspections and Tests”.

H. Fire Alarm/Acceptance Testing Procedures:

1. For buildings exceeding the threshold limit, the fire alarm testing shall be as the authority having jurisdiction shall dictate. This will be as determined by the State Fire Marshals Office.
2. For buildings that do not exceed the threshold limit, the fire alarm testing shall be as the authority having jurisdiction shall dictate. This will be determined by the Department of Public Works requirements as set below:
 a. Protective Signaling Systems:
 All protective signaling systems shall meet with acceptance testing requirements of
the applicable standards listed in Section 7-6.1.4, NFPA 101/1997 and NFPA 13/1999.

b. Prior Test Notification:

At least 5 working days prior to testing, the Fire Alarm Contractor shall notify (in writing) the following people of the proposed date the acceptance tests are to be performed (Also, see Part 2 of Certificate of Compliance).

- Department of Construction Services Team Representative
- General Contractor
- Engineer of Record
- Equipment Supplier Representative
- Sprinkler Contractor

c. Certificates of Compliance

1) A Fire Alarm System Inspection and Testing Certification and Description form shall be prepared for each system (See NFPA 72/1999 Chapter 7 and Figure 7-5.2.2).

2) Parts 1 and 3 through 9, shall be completed after the system is installed and the installation of the wiring has been checked. Every alarm device must also be pre-tested to ensure proper operation and correct annunciation at each remote annunciator and control panel. Part 1 of the form (Certification of System Installation) shall be signed by the fire alarm contractor. The signed and completed preliminary copies of the Certification form shall be forwarded to all parties along with the Prior Test Notification.

3) Part 2, of each applicable form, shall be completed after the operational tests have been completed.

4) After the completion of the operational acceptance tests and sign-off of test witness (with stipulations noted), final copies of the Certificates shall be forwarded to the Department of Construction Services Representatives.

d. Tests:

1) All tests shall be conducted in accordance with the Manufacturers Testing Recommendations.

2) All testing equipment, apparatus (i.e. sound level decibel meter, 2-way radio communication, test devices, ladders, tools, lighting, etc.) and personnel shall be supplied by the Fire Alarm Contractor and Sprinkler Contractor.

e. System Documentation:

Every system shall include the following documentation, which shall be delivered to the Department of Public Works Representatives upon final acceptance of the system. An owner's manual or manufacturer's installation instructions covering all system equipment, including the following:

1) A detailed narrative description of the system inputs, evacuation signaling, ancillary functions, annunciation, intended sequence of operations, expansion capability, application considerations, and limitations.

2) Operators instructions for basic systems operations including alarm
acknowledgment, system reset, interpreting system output (LED's CRT display, and printout), operation of manual evacuation signaling and ancillary function controls, changing printer paper, etc.

3) A detailed description of routine maintenance and testing as required and recommended and as would be provided under a maintenance contract, including testing and maintenance instructions for each type of device installed. This information should include:
 a) A listing of individual system components that require periodic testing and maintenance.
 b) Step by step instructions detailing the requisite testing and maintenance procedures and the intervals at which those procedures should be performed.
 c) A schedule that correlates the testing and maintenance procedures required by paragraph (2) above and with the listing required by paragraph (1) above.

4) Detailed troubleshooting instructions for each type of trouble condition recognized by the system, including opens, grounds, parity errors, "loop failures," etc. These instructions should include a list of all trouble signals, and step by step instructions describing how to isolate those problems and correct them (or call for service as appropriate).

5) A service directory, including a list of names and telephone numbers for those who should be called to service on the system.

f. As-Built Drawings:

 The Contractor will produce two sets of as-built drawings and specifications for the fire alarm system, indicating the location (and programmed address, if applicable) of all devices and appliances, the wiring sequences, wiring methods, connection of the components, and sequence of operation of the protective signaling system as installed, shall be given to DPW representatives. This shall be in Accordance with NFPA 72. Refer also to Section 01700 "Contract Closeout".

I. Submittals:

 1. Unless the Contractor is responsible for this service, the independent testing agency shall submit a certified written report, in duplicate, of each inspection, test, or similar service to the Construction Administrator. If the Contractor is responsible for the service, submit a certified written report, in duplicate, of each inspection, test, or similar service through the Contractor.

 2. Submit additional copies of each written report directly to the governing authority, when the authority so directs.

 3. Report Data: Written reports of each inspection, test, or similar service include, but are not limited to, the following:
 a. Date of issue.
 b. Project title and number.
c. Name, address, and telephone number of testing agency.
d. Dates and locations of samples and tests or inspections.
e. Names of individuals making the inspection or test.
f. Designation of the Work and test method.
g. Identification of product and Specification Section.
h. Complete inspection or test data.
i. Test results and an interpretation of test results.
j. Ambient conditions at the time of sample taking and testing.
k. Comments or professional opinion on whether inspected or tested Work complies with Contract Document requirements.
l. Name and signature of laboratory inspector.
m. Recommendations on re-testing.

J. Quality Assurance:
1. Qualifications for Service Agencies: Engage inspection and testing service agencies, including independent testing laboratories, that are pre-qualified as complying with the National Voluntary Laboratory Accreditation Program and that specialize in the types of inspections and tests to be performed.
a. Each independent inspection and testing agency engaged on the Project shall be authorized by authorities having jurisdiction to operate in the state where the Project is located.

K. Repair and Protection:
1. General: Upon completion of inspection, testing, sample taking and similar services, repair damaged construction and restore substrates and finishes. Comply with Contract Document requirements for Division 1 Section "Cutting and Patching."
2. Protect constructions exposed by or for quality-control service activities, and protect repaired construction.
3. Repair and protection is Contractor's responsibility, regardless of the assignment of responsibility for inspection, testing, or similar services.

01505 TEMPORARY ELECTRICITY AND LIGHTING

NOT USED

01510 TEMPORARY HEATING, COOLING AND VENTILATING AND LIGHTING

A. Provide temporary heat during construction for interior areas included in the Contract to counteract low temperatures or excessive dampness and, in any event, between October 15th and April 15th. Maintain during said period or periods until final completion of the
Contract, unless otherwise approved by the Owner in writing. Windows, doors, ventilators and similar openings shall be temporarily closed. Provide heat and ventilation to maintain specified conditions for construction operations and to protect materials and finishes from damage by temperature or humidity. The permanent heating system is not to be used for temporary heating unless approved, in writing, by the Owner. The Contractor shall pay costs. See individual Sections for temperature/humidity limits. Temporary heating methods shall comply with OSHA regulations and other applicable codes, statutes, rules and regulations and shall be approved by the Department of Construction Services.

B. Permanent air handling equipment, when used for temporary heating, shall be equipped with disposable "construction" filters. The construction filters shall have an average efficiency at least equal to the filters specified under Division 15, but not less than 30% when tested in accordance with ASHRAE 52-76. The filters shall have an average arrestance of not less than 90% efficiency on one (1) micron size particles. Before turning over the system for final acceptance, the contractor shall remove and dispose of the construction filters; spray clean the heating and cooling coils, and drain pans to "like new" condition; and install the filters specified in Division 15.

C. The General Contractor may use the existing heating system with temporary extensions, radiators or unit heaters, but such use is subject to the Owner's approval. Coordinate use of existing facilities with Owner. Provide additional, temporary extensions and units to satisfy the criteria given in the preceding paragraph. Owner will pay cost of energy used. Take measures to conserve energy. At the termination of construction, return the facilities to their original condition. Before operation of permanent facilities, verify that installation is approved for operation and that filters are in place.

D. Steam from the Agency's lines shall be metered and paid for by the Contractor at a price approved by the Agency and Department of Construction Services. The Contractor shall arrange with his Heating Subcontractor to install and maintain temporary piping, radiators, or unit heaters, reducing valves, steam traps and other necessary fittings and accessories. Traps shall be provided to prevent steam from entering main returns. The temporary layout shall meet the approval of the Architect/Engineer. Condensate meter (or meters) shall be installed to record usage of steam. (The following sentence shall be used when steam is supplied free: "Steam from the Agency's lines will be furnished to the Contractor without cost, but may be discontinued if use is unreasonable or wasteful"). At the termination of construction, return the facilities to their original condition.

01515 TEMPORARY TELEPHONE

A. General Contractor shall use a cellular phone. All calls will be paid by the Contractor.

01520 TEMPORARY WATER

A. Domestic hot water must be available during all periods of the project. Contactor to provide temporary means as required.
01525 TEMPORARY SANITARY FACILITIES

A. Designated existing toilets may be used during construction. It is the responsibility of the Contractor to maintain the facilities in a clean and sanitary condition and return them to their original condition after use. No loitering or smoking will be permitted in these areas.

01530 FIRE PROTECTION

A. The Contractor, during construction, shall be responsible for loss or damage by fire to the work of the Contract until completion. Any fire used within the structure for working purposes shall be extinguished when not in use. Bitumen or tar shall be melted on the ground only. No flammable material shall be stored in the structure in excess of amounts allowed by the authorities. No gasoline shall be stored in or close to the building at any time. The Contractor shall assign a responsible employee to be in charge of fire protection measures.

B. If an EPDM or other single-ply roof is included in the work that requires cleaning of mating surfaces of laps with gasoline, limit amount of gasoline on roof to 2 gallons which shall be in U.L. listed containers. Also provide one 30 B:C fire extinguisher within 75 feet of any point on the roof.

01535 CONSTRUCTION EQUIPMENT

A. The Contractor shall furnish tools, apparatus and appliances, hoists and/or cranes and power for same, scaffolding, runways, ladders, temporary supports and bracing and similar work or material necessary to insure convenience and safety in the execution of the Contract except where this is otherwise specified in any Specification Section. All such items shall meet the approval of the Department of Public Works but responsibility for design, strength and safety shall remain with the Contractor. All such items shall comply with Federal OSHA regulations and applicable codes, statutes, rules and regulations, including compliance with the requirements of the current edition of the "Manual of Accident Prevention in Construction" published by the A.G.C. and the standards of the State Labor Department.

B. Staging, exterior and interior, required for the execution of this Contract, shall be furnished, erected, relocated if necessary and removed by the General Contractor. Staging shall be maintained in a safe condition without charge to and for the use of all trades as needed.

01540 BARRIERS AND ENCLOSURES

A. Provide barriers to prevent public entry into construction areas and to protect existing facilities from damage by construction operations.

B. Provide a fence around construction site; equip with vehicular and pedestrian gates with locks.

C. Provide covered walkways as required by governing authorities for public rights-of-way and for public access to existing buildings.

D. Provide barriers around trees and plants designated to remain. Protect against vehicular
traffic, materials' dumping, chemically injurious materials, puddling or running water.

E. Provide temporary, insulated, weathertight closures at openings to the exterior to provide acceptable working conditions and protection for materials, to allow for temporary heating and to prevent entry of unauthorized persons. Provide doors with self-closing hardware and locks.

F. Barriers and enclosures shall be in conformance with code requirements. Do not block egress from occupied buildings unless necessary to further the work of the Contract. In this case, secure the Department's approval of an alternate egress plan.

G. See also General Conditions Article 19 “Protection of the Work, Persons and Property”.

01545 PROTECTION

A. Protect buildings, equipment, furnishings, grounds and plantings from damage. Any damage shall be repaired or otherwise made good at no expense to the State.

B. Provide protective coverings and barricades to prevent damage. The Contractor shall be held responsible for, and must make good at his own expense, any water or other type of damage due to improper coverings. Protect the public and building personnel from injury.

C. Provide temporary protection for installed products. Control traffic in immediate area to minimize damage.

D. Provide protective coverings for walls, projections, jambs, sills and soffits of openings. Protect finished floors and stairs from traffic, movement of heavy objects and storage. Prohibit traffic and storage on waterproofed and roofed surfaces and on lawn and landscaped areas.

E. Provide temporary partitions and ceilings to separate work areas from Owner-occupied areas to prevent penetration of dust and moisture into Owner-occupied areas and equipment. Erect framing and sheet materials with closed joints and sealed edges at intersections with existing surfaces.

F. See also General Conditions Article 19 “Protection of the Work, Persons and Property”.

01550 SECURITY

A. The Contractor shall be solely responsible for damage, loss or liability due to theft or vandalism.

01555 TRAFFIC WAYS

A. The Contractor may use on-site paved roads and parking areas but shall not encumber same or their access. Public highways shall not be blocked by standing trucks, parked cars, material storage, construction operations or in any other manner.

B. Public roads and existing paved roads, drives and parking areas on Owner's property shall be kept free from scrap or debris due to construction operations and any damage to their surface caused by the Contractor shall be repaired by him at his own expense.

C. If the work of the Contract affects public use of any street, road, highway or thoroughfare, the G. C. shall confer with the police authority having jurisdiction to determine if and how
many police are needed for public safety in addition to any barriers and signals that may be needed. The G.C. will be responsible for payment of any needed police services.

01560 TEMPORARY CONTROLS

A. **Temporary Environmental Controls:** Contractor is to provide the following controls.

1. Rodent and Pest Control: Before deep foundation work has been completed, retain a local exterminator or pest control company to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests. Employ this service to perform extermination and control procedures at regular intervals so the Project will be free of pests and their residues at materials.
2. Dust Control (construction and demolition).
3. Noise Control.
4. Erosion and Sediment Control.
5. Pollution Control.
6. Traffic Control.

01565 STORM WATER CONTROL – NOT USED

01570 CLEANING

A. Maintain areas under Contractor's control free of waste materials, debris and rubbish. Maintain in a clean and orderly condition.
B. Remove debris and rubbish from pipe chases, plenums, attics, crawl spaces and other closed or remote spaces before closing the space.
C. Periodically clean interior areas before start of surface finishing and continue cleaning on an as-needed basis.
D. Control cleaning operations so that dust and other particulates will not adhere to wet or newly-coated surfaces.
E. Remove waste materials, debris and rubbish from site daily and dispose of legally off-site. No scrap/debris shall remain inside the building or anywhere on site upon final acceptance of the project.
F. See also General Conditions Article 24 “Cleaning Up”.

01575 PROJECT SIGNS – NOT USED

01580 FIELD OFFICES AND SHEDS – NOT USED

01585 IDENTIFICATION BADGES

A. Identification Badges for Contractor's Personnel, Visitors & Parking Stickers:
1. The Contractor will provide each person working or visiting at the site with an identification badge, bearing the name of the Contractor and a number. As badges are assigned, a record shall be kept by the Contractor and given to the Construction Administrator and Agency Administrator. Update and correct the records of all badges issued on a semi-monthly basis.

2. Badges are to be worn on outer garment where visible at all times while at the construction site, return them to the Contractor's field office at the end of each day and pick them up there each morning.

3. All vehicles parking in the Contractor's parking lot and those used around the site require an ID sticker. They will be issued by the Agency. Each contractor shall apply for parking sticker through the Construction Administrator no more than semi-monthly and shall keep record of all stickers issued.

01600 MATERIALS AND EQUIPMENT CONTROLS

A. Materials and Equipment: Shall be delivered, stored and handled to prevent intrusion of foreign matter and damage by weather or breakage. Packaged materials shall be delivered and stored in original, unbroken packages.

1. Promptly inspect shipments to assure that products comply with requirements, that quantities are correct and products are undamaged.

2. Packages, materials and equipment showing evidence of damage will be rejected and replaced at no additional cost to the Owner.

B. Storage and Protection:

1. Store products in accordance with manufacturers' instructions with seals and labels intact and legible. Store sensitive products in weathertight enclosures; maintain within temperature and humidity range required by manufacturer.

2. For exterior storage of fabricated products, place on sloped supports above ground. Cover products subject to deterioration with impervious sheet covering; provide ventilation to avoid condensation.

3. Store loose granular material on solid surfaces in a well-drained area; prevent mixing with foreign matter.

4. Arrange storage to provide access for inspection. Periodically inspect to insure products are undamaged and are maintained under required conditions. Keep log showing date, time and problems, if any.

5. Stone, masonry units and similar materials shall be stored on platforms or dry skids and shall be adequately covered and protected against damage.

6. The Contractor shall prepare, as directed by the Owner, one area or space in the building for storage of State-owned equipment.

01631 EQUALS AND SUBSTITUTIONS

A. Definitions: Definitions in this Article do not change or modify the meaning of other terms used in the Contract Documents.
1 Equals or Substitutions General: Changes in products, materials, equipment, and methods of construction required by the Contract Documents proposed by the Contractor after award of the Contract.

2 Equal: Any deviation from the specification which is defined as follows: A replacement for the specified material, device, procedure, equipment, etc., which is recognized and accepted as substantially equal to the first listed manufacturer or first listed procedure specified, after review, by the Architect and may be rejected or approved at the sole discretion of the owner. All equals must be substantially equivalent to the first manufacturer or first procedure listed in the Specifications with reference to all of the following areas: the substance and function considering quality, workmanship, economy of operation, durability and suitability for purposes intended; size, rating and cost. The equal does not constitute a modification in the scope of Work, the Schedule or Architect/Engineer’s design intent of the specified material, device, procedure, equipment, etc.

3 Substitution: Any deviation from the specified requirements, which is defined as follows: A replacement for the specified material, device, procedure, equipment, etc., which is not recognized or accepted as equal to the first manufacturer or procedure listed in the Specification after review by the Architect and may be rejected or approved by the Owner. The Substitution is not equal to the specified requirement in comparison to the first manufacture or first procedure listed in the Specifications in one or more of the following areas: the substance and function considering quality, workmanship, economy of operation, durability and suitability for purposes intended; size; cost and rating. The Substitution constitutes a modification in the scope of Work, the Schedule or the Architect/Engineer’s design intent of the specified material, device, procedure, equipment, etc.

4 The following are not considered to be requests for Equals or Substitutions:
 a. Revisions to the Contract Documents requested by the Owner or Architect.
 b. Specified options of products and construction methods included in the Contract Documents.
 c. The Contractor’s determination of and compliance with governing regulations and orders issued by governing authorities having jurisdiction.

B. Submittals:

1. Equals and Substitution Request Submittals: The Owner will consider requests for equals or substitutions if received within time period designated in the General Conditions Article 15 “Materials; Standards”. Requests received more than the days specified in Article 15 after the start date of the contract will be rejected.
 a. The Contractor is required to prepare and submit 3 copies of the required data for the first manufacturer listed or procedure listed in the specifications section with reference to all of the following areas: the substance and function considering quality, workmanship, economy of operation, durability and suitability for purposes intended including the size, rating and cost. All submissions must include all the required data for the first listed manufacturer or procedure as specified, as well as the required data for the proposed Equal or Substitution. This will enable the Owner
and Architect to determine that the proposed Equal or Substitution is or is not substantially equal to the first listed manufacturer or procedure.

2. Identify the product or the fabrication or installation method to be replaced in each request. Include related Specification Section and Drawing numbers.

3. Provide complete documentation showing compliance with the requirements for equals or substitutions, and the following information, as appropriate on a “Substitution Request” form as required by the Owner:
 a. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by the Owner and separate contractors, that will be necessary to accommodate the proposed Equal or Substitution.
 b. A detailed comparison chart of significant qualities of the proposed substitution with those of the Work specified. Significant qualities may include elements, such as performance, weight, size, durability, and visual effect.
 c. Product Data, including Shop Drawings and descriptions of products and fabrication and installation procedures.
 d. Samples, where applicable or requested.
 e. A statement indicating the effect on the Contractor's Construction Schedule or CPM Schedule compared to the schedule without approval of the Equal or Substitution. Indicate the effect on overall Contract Time.
 f. Cost information, broken down, including a proposal of the net change, if any in the Contract Sum.
 g. The Contractor's certification that the proposed Equal or Substitution conforms to requirements in the Contract Documents in every respect and is appropriate for the applications indicated.
 h. The Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of the failure of the Equal or Substitution to perform adequately.

4. Architect's Action: If necessary, the Architect will request additional information or documentation for evaluation within one week of receipt of the original request for equal or substitution request. The Architect will notify the Construction Administrator who will notify the Owner of recommended acceptance or rejection of the proposed equal or substitution, within two (2) weeks of receipt of the request, or one (1) week of receipt of additional information or documentation, whichever is later. The Construction Administrator will give final acceptance or rejection by the Owner not less than one (1) week after notification.
 a. Any request deemed an "Equal" and accepted by the Construction Administrator, Architect, Owner, and Agency will result in written notification to the Contractor and will not be in the form of a change order for an "Equal".
 b. Any request deemed a "Substitution" and rejected or approved by Construction Administrator, Architect, and Owner may result in written notification to the Contractor and may be in the form of a change order if the “Substitution” is
C. Equal or Substitutions:

1. Conditions: The Architect will consider the Contractor’s request for Equal or Substitution of a product or method of construction when one or more of the following conditions are satisfied, as determined by the Architect. If the following conditions are not satisfied, the Architect will return the requests to the Construction Administrator without action except to record noncompliance with these requirements.
 a. The proposed request does not require extensive revisions to the Contract Documents.
 b. The proposed request is in accordance with the general intent of the Contract Documents.
 c. The proposed request is timely, fully documented, and/or properly submitted.
 d. The proposed request can be provided within the Contract Time. However, the Architect will not consider the proposed request if it is a result of the Contractor’s failure to pursue the Work promptly or coordinate activities properly.
 e. The proposed request will offer the Owner a substantial advantage, in cost, time, energy conservation, or other considerations, after deducting additional responsibilities the Owner must assume. However, if the proposed request requires the Owner to incur additional responsibilities, including but not limited to, additional compensation to the Architect for redesign and evaluation services, increased cost of other construction by the Owner or similar considerations, then the Owner will have just cause to reject the request for Equal or Substitution.
 f. The proposed request can receive the necessary approvals, in a timely manner, required by governing authorities having jurisdiction.
 g. The proposed request can be provided in a manner that is compatible with the Work as certified by the Contractor.
 h. The proposed request can be coordinated with the Work as certified by the Contractor.
 i. The proposed request can uphold the warranties required by the Contract Documents as certified by the Contractor.

2. The Contractor’s submission and the Architect’s review of Submittals, including but not limited to, Samples, Manufacturer’s Data, Shop Drawings, or other such items, which are not clearly identified as a request for an Equal or Substitution, will not be considered or accepted as a valid request for an Equal or Substitution, nor does it constitute an approval.

01650 STARTING OF SYSTEMS

A. General:

1. Coordinate schedule for start-up of various equipment and systems.
2. Provide written notification the Construction Administrator thirty (30) Calendar Days prior to start-up of each item.
3. Verify that each piece of equipment or system has been checked for proper lubrication,
drive rotation, belt tension, and control sequence for other conditions that may cause damage.

4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.

5. Verify in wiring and support components are complete and tested.

6. Execute the start-up under supervision of manufacturer’s representative, in accordance with manufacturer’s instructions.

7. When referenced in individual specification sections, require manufacturer to provide an authorized representative to be present at the site to inspect, check, and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.

8. Submit a written report in accordance Section 01400 “Quality Control” that the equipment or system has been properly installed and is functioning properly.

B. Demonstration and Instructions:

1. Demonstrate operation and maintenance of Products to Owner and Agency Personnel two (2) weeks prior to substantial completion.

2. Demonstrate Project equipment and instruct in a classroom environment at location designated by the Construction Administrator and instructed by a qualified manufacturer’s representative who is knowledgeable about the project.

3. For equipment or systems requiring seasonal operation perform demonstration for season within six (6) months.

4. Utilize operation and maintenance manuals as basis for instruction. Review contents of manual with Owner and Agency Personnel in detail to explain all aspects of operation and maintenance.

5. Demonstrate start-up, operation, control, adjustment, troubleshooting, servicing, and maintenance, and shutdown of each item at agreed upon scheduled time and at equipment or designated location.

6. Prepare and insert additional data in operations and maintenance manuals when need for additional data becomes apparent during demonstration.

C. Testing Adjusting, and Balancing:

1. The Contractor will employ and pay for the testing services of an independent consultant to verify the testing, adjusting, and balancing.

2. Reports will be submitted by the independent testing consultant to the Construction Administrator indicating observations and results of tests and indicating compliance or non-compliance with the requirements of the Contract Documents.

3. The Owner may employ and pay for the services of an independent consultant to verify testing, adjusting, and balancing which was performed by the Contractor.
A. Substantial Completion:

1. Preliminary Procedures: Before requesting inspection for Certification of Substantial Completion, complete the following. List exceptions in the request.

a. In the Application for Payment that coincides with, or first follows, the date Substantial Completion is claimed, show 100 percent completion for the portion of the Work claimed as substantially complete.

 1) Include supporting documentation for completion as indicated in these Contract Documents and a statement showing an accounting of changes to the Contract Sum.

 2) If 100 percent completion cannot be shown, include a list of incomplete items, the value of incomplete construction, and reasons the Work is not complete.

b. Advise the Owner of pending insurance changeover requirements.

c. Submit specific warranties, workmanship bonds, maintenance agreements, final certifications, and similar documents.

d. Obtain and submit releases enabling the Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.

e. Submit record drawings, maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.

f. Deliver tools, spare parts, extra stock, and similar items.

g. Make final changeover of permanent locks and transmit keys to the Owner. Advise the Owner's personnel of changeover in security provisions.

h. Demonstration, thru operation and testing, the functions of all systems and/or equipment to the satisfaction of the Owner for compliance to the contract. Complete testing of systems, and instruction of the Owner's operation and maintenance personnel. Discontinue and remove temporary facilities from the site, along with mockups, construction tools, and similar elements.

i. Complete final cleanup requirements, including touchup painting.

j. Touch up and otherwise repair and restore marred, exposed finishes.

k. DD Form 1354 Transfer and Acceptance of DoD Real Property.

l. NGB 593 Project Inspection Report.

2. Inspection Procedures: The Contract shall be ready and prepared when they request a Substantial Completion inspection. If the inspection reveals that the work is not complete, there are extensive punchlist items and as the items listed above are not complete, the Construction Administrator, Architect, and Owner will determine the inspection has failed.

3. The Contractor is responsible for all costs to re-inspect due to a failed inspection. The
Owner will issue a deduct change order to cover all costs for re-inspection.

a. The Architect will repeat inspection when requested and assured that the Work is substantially complete.

b. Results of the completed inspection will form the basis of requirements for final acceptance.

B. Final Acceptance:

1. Preliminary Procedures: Before requesting final inspection for certification of final acceptance and final payment, complete the following. List exceptions in the request.

 a. Submit the final payment request with releases and supporting documentation not previously submitted and accepted. Include insurance certificates for products and completed operations where required.

 b. Submit an updated final statement, accounting for final additional changes to the Contract Sum.

 c. Submit a certified copy of the Architect’s final inspection list of items to be completed or corrected, endorsed and dated by the Architect. The certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance and shall be endorsed and dated by the Architect.

 d. Submit final meter readings for utilities, a measured record of stored fuel, and similar data as of the date of Substantial Completion or when the Owner took possession of and assumed responsibility for corresponding elements of the Work.

 e. Submit consent of surety to Final Payment.

 f. Submit evidence of final, continuing insurance coverage complying with insurance requirements.

2. Reinspection Procedure: The Inspection Group will re-inspect the Work upon receipt of notice from the Construction Administrator that the Work, including inspection list items from earlier inspections, has been completed, except for items whose completion is delayed under circumstances acceptable to the Owner.

 a. Upon completion of reinspection, the Construction Administrator will prepare a certificate of final acceptance. If the Work is incomplete, the Construction Administrator will advise the Contractor of Work that is incomplete or of obligations that have not been fulfilled but are required for final acceptance.

C. As Built Document Submittals:

1. General: Do not use record documents for construction purposes. Protect Record Documents from deterioration and loss in a secure, fire-resistant location. Provide access to record documents for the Architect’s reference during normal working hours. Keep documents current; do not permanently conceal any work until required information has been recorded. Failure to keep documents current is sufficient cause to withhold progress payments.
a. The Contractor shall also hire the services of a Surveyor registered in the State of Connecticut to conduct a final survey to determine the location of exterior underground utility lines and to record the results, and update existing electronic media.

b. The record of exterior underground utilities shall be made at the time of installation on Mylar film drawing and AutoCAD (latest version) compatible disks. The drawing shall bear the seal of the Land Surveyor and a statement of accuracy.

2. **As-built Drawings:** The Contractor shall maintain one clean, complete undamaged set of blue or black line white-prints of Contract Drawings and Shop Drawings. Mark the set to show the actual installation where the installation varies substantially from the Work as originally shown. Mark which drawing is most capable of showing conditions fully and accurately. Where Shop Drawings are used, record a cross-reference at the corresponding location on the Contract Drawings. Give particular attention to concealed elements that would be difficult to measure and record at a later date.

a. Mark record sets with erasable pencil to distinguish between variations in separate categories of the Work.

b. Mark all new information that is not shown on Contract Drawings.

c. Note related change-order numbers where applicable.

d. Organize record drawing sheets into manageable sets. Bind sets with durable-paper cover sheets; print suitable titles, dates, and other identification on the cover of each set.

e. Upon completion of the work, the Contractor shall submit Record Drawings to the Construction Administrator for the Owner's Records who will pass them on to the Architect or Engineer for transferring the changes to the Record Drawing Mylar Tracings.

f. Submit electronic format data of all Coordination Drawings as required by the owner, at no additional cost.

g. Refer to Section 01400 “Quality Control” Section 1.3 for required as built drawings and specifications for fire alarm systems.

3. **Record Specifications:** The Contractor shall maintain one complete copy of the Project Manual, including Addenda. Include with the Project Manual one copy of other written construction documents, such as Change Orders and modifications issued in printed form during construction.

a. Mark these documents to show substantial variations in actual Work performed in comparison with the text of the Specifications and modifications.

b. Give particular attention to equals and substitutions and selection of options and information on concealed construction that cannot otherwise be readily discerned later by direct observation.

c. Note related record drawing information and Product Data.

d. Upon completion of the Work, submit record Specifications to the Construction Administrator for the Owner's records.
4. **Record Product Data:** The Contractor shall maintain one copy of each Product Data submittal.

Note related Change Orders and markup of record drawings and Specifications.

a. Mark these documents to show significant variations in actual Work performed in comparison with information submitted. Include variations in products delivered to the site and from the manufacturer's installation instructions and recommendations.

b. Give particular attention to concealed products and portions of the Work that cannot otherwise be readily discerned later by direct observation.

c. Upon completion of markup, submit complete set of Record Product Data to the Construction Administrator for the Owner's records.

5. **Record Sample Submitted:** Immediately prior to Substantial Completion, the Contractor shall meet with the Construction Administrator, Architect and the Owner's personnel at the Project Site to determine which Samples are to be transmitted to the Owner for record purposes. Comply with the Owner's instructions regarding delivery to the Owner's Sample storage area.

6. **Miscellaneous Record Submittals:** Refer to other Specification Sections for requirements of miscellaneous record keeping and submittals in connection with actual performance of the Work. Immediately prior to the date or dates of Substantial Completion, complete miscellaneous records and place in good order. Identify miscellaneous records properly and bind or file, ready for continued use and reference. Submit to the Construction Administrator for the Owner's records.

7. **Maintenance Manuals:** Organize operation and maintenance data into suitable sets of manageable size. Bind properly indexed data in individual, heavy-duty, 2-inch, 3-ring, vinyl-covered binders, with pocket folders for folded sheet information. Mark appropriate identification on front and spine of each binder according to section 01730 “Operations & Maintenance Data”. Included but not limited to the following types of information:

a. Emergency instructions.

b. Spare parts list.

c. Copies of warranties.

d. Wiring diagrams.

e. Recommended “turn-around” cycles.

f. Inspection procedures.

g. Shop Drawings and Product Data.

h. Fixture lamping schedule.
D. Closeout Procedures:

1. Operation and Maintenance Instructions: Arrange for each Installer of equipment that requires regular maintenance to meet with the Owner's personnel to provide instruction in proper operation and maintenance. Provide instruction by manufacturer's representatives if installers are not experienced in operation and maintenance procedures. Include a detailed review of the following items:
 a. Maintenance manuals.
 b. Record documents.
 c. Spare parts and materials.
 d. Tools.
 e. Lubricants.
 f. Fuels.
 g. Identification systems.
 h. Control sequences.
 i. Hazards.
 j. Cleaning.
 k. Warranties and bonds.
 l. Maintenance agreements and similar continuing commitments.

2. As part of instruction for operating equipment, demonstrate the following procedures:
 a. Startup.
 b. Shutdown.
 c. Emergency operations.
 d. Noise and vibration adjustments.
 e. Safety procedures.
 f. Economy and efficiency adjustments.
 g. Effective energy utilization.

E. Final Cleaning:

1. General: The General Conditions requires general cleaning during construction. Regular site cleaning is included in Division 1 Section 01570 “Cleaning”.

2. Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to the condition expected in a normal, commercial building cleaning and maintenance program. Comply with manufacturer's instructions. Complete the following cleaning operations before requesting inspection for Certification of Substantial Completion and Certification of Occupancy.
3. **Interior:**
 a. Remove labels that are not permanent labels.
 b. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other substances that are noticeable vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Remove paint spots; wash and polish glass.
 c. Clean exposed interior hard-surfaced finishes to a dust-free condition, free of stains, films, and similar foreign substances. Restore reflective surfaces to their original condition. Leave concrete floors broom clean. Vacuum carpeted surfaces.
 d. Wash washable surfaces of mechanical, electrical equipment and fixtures and replace filters, clean strainers on mechanical equipment. Remove excess lubrication and other substances. Clean plumbing fixtures to a sanitary condition. Clean light fixtures and lamps.
 e. Clean and polish finish hardware.
 f. Clean and polish tile and other glazed surfaces.
 g. Clean floors; wax and buff resilient tile. Clean vinyl or rubber base.
 h. Vacuum and/or dust walls, ceilings, lighting fixtures, ceiling diffusers and other wall and ceiling items.
 i. Remove defacements, streaks, fingerprints and erection marks.

4. **Exterior:**
 a. Clean the site, including landscape development areas, of rubbish, litter, and other foreign substances. Sweep paved areas broom clean; remove stains, spills, and other foreign deposits. Rake grounds that are neither paved nor planted, to a smooth, even-textured surface.
 b. Clean exposed exterior hard-surfaced finishes to a dust-free condition, free of stains, films, and similar foreign substances.
 c. Clean roofs, gutters and downspouts.
 d. Remove waste and surplus materials, rubbish and construction equipment and facilities from the site, and deposit it legally elsewhere.
 e. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other substances that are noticeable vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Remove paint spots; wash and polish glass.

5. **Pest Control:** Engage an experienced, licensed exterminator to make a final inspection and rid the work of rodents, insects, and other pests.

6. **Removal of Protection:** Remove temporary protection and facilities installed for protection of the Work during construction.

7. **Compliance:** Comply with regulations of authorities having jurisdiction and safety standards for cleaning. Do not burn waste materials. Do not bury debris or excess materials on the Owner’s property. Do not discharge volatile, harmful, or dangerous
materials into drainage systems. Remove waste materials from the site and dispose of lawfully.

a. Where extra materials of value remain after completion of associated Work, they become the Owner’s property. Dispose of these materials as directed by the Construction Administrator.

b. Leave building clean and ready for occupancy. If the Contractor fails to clean up, the Owner may do so, with the cost charged to the Contractor. The Owner will issue a credit change order to cover the costs.

01730 OPERATION AND MAINTENANCE DATA

A. The Contractor shall instruct the State’s designated personnel in the operation of new equipment and shall provide manuals and if required, provide video tapes of this basic maintenance of the equipment for training purposes. Provide qualified personnel for as long as necessary to instruct the State’s personnel.

B. Submit four copies of the manuals in 3-ring, loose-leaf notebooks to the Architect/Engineer for approval. Manuals may consist of plain paper copies of approved shop drawings and catalog cuts. Upon completion and approval, 3 copies will be forwarded to the State and one copy retained by the Architect/Engineer.

C. Manuals shall include:

1. Operating Procedures:
 a. Typewritten procedures for each mode of operation of each piece of equipment. Procedures shall indicate the status of each component of a system in each operating mode.
 b. Procedures shall include names, symbols, valve tags, circuit numbers, schematic wiring diagrams, locations of thermostats, manual starters, control cabinets and other controls of each system.

D. Emergency shut-down procedures for each piece of equipment or system, both automatic and manual, as appropriate.

1. Maintenance Schedule:
 a. Typewritten schedule describing manufacturers schedule of maintenance and maintenance procedures.

2. Catalog Cuts:
 a. To illustrate each piece of installed equipment, including options.
 b. Include equipment descriptions including physical, electrical and mechanical; performance characteristics; installation or erection diagrams.
 c. Include spare parts numbers and names, address and phone number of manufacturer; name, address and phone number of local representative or service department.
 d. Typewritten list of all subcontractors on the project, including name, address and
phone number of local representative or service department.

3. Manuals shall be indexed with dividers indicating each system or piece of equipment.

01740 Warranties and Guarantees

A. Disclaimers and Limitations: Manufacturer's disclaimers and limitations on product warranties do not relieve the Contractor of the warranty on the Work that incorporates the products. Manufacturer’s disclaimers and limitations on product warranties do not relieve suppliers, manufacturers, and subcontractors required to countersign special warranties with the Contractor.

B. Related Damages and Losses: When correcting failed or damaged warranted construction, remove and replace construction that has been damaged as a result of such failure or must be removed and replaced to provide access for correction of warranted construction.

C. Reinstatement of Warranty: When Work covered by a warranty has failed and been corrected by replacement or rebuilding, reinstate the warranty by written endorsement. The reinstated warranty shall be equal to the original warranty with an equitable adjustment for depreciation.

D. Replacement Cost: Upon determination that Work covered by a warranty has failed, replace or rebuild the Work to an acceptable condition complying with requirements of the Contract Documents. The Contractor is responsible for the cost of replacing or rebuilding defective Work regardless of whether the Owner has benefited from use of the Work through a portion of its anticipated useful service life.

E. Owner's Recourse: Expressed warranties made to the Owner are in addition to implied warranties and shall not limit the duties, obligations, rights, and remedies otherwise available under the law. Expressed warranty periods shall not be interpreted as limitations on the time in which the Owner can enforce such other duties, obligations, rights, or remedies.

1. **Rejection of Warranties:** The Owner reserves the right to reject warranties and to limit selection to products with warranties not in conflict with requirements of the Contract Documents.

F. Where the Contract Documents require a special warranty, or similar commitment on the Work or part of the Work, the Owner reserves the right to refuse to accept the Work, until the Contractor presents evidence that entities required to countersign such commitments are willing to do so.

G. The Contractor shall guarantee all materials and workmanship for a period of eighteen months from the date of acceptance of the Work. In addition, the Contractor shall furnish the warranties listed below. Submit four copies of each to the Construction Administrator in the supplier's standard form or in the form given below if there is no standard form available.

H. The Contractor shall guarantee all materials and workmanship for a period of eighteen months from the date of acceptance of the Work. In addition, the Contractor shall furnish the warranties listed below. Submit four copies of each to the Construction Administrator in the supplier's standard form or in the form given below if there is no standard form available.
available.
1. Section 223400 Fuel Fired Domestic Water Heater – 5 Years material and workmanship.
2. Section 235216 Condensing Boilers – 10 Years material and workmanship.

I. Submit certification that finish materials are fire rated as specified.
J. Form of Guarantees and Warranties:

Commissioner
Military Department
360 Broad Street Hartford,
Connecticut 06105 (Project Title and Number)

I (We) hereby guarantee and warranty

the ____________ work on the referenced project for a period of ____ years

from __________, 19__ against failures of workmanship and materials in

accordance with the requirements of Section ________, Page ______,

Paragraph ______, of the Specifications.

Signed __

3) General Contractor

(or authorized agent)

K. Bonds shall be by approved Surety Companies, made out to the Commissioner, Department of Public Works on companies’ standard form.

L. Guarantees, warranties or bonds supplied by Subcontractors, Suppliers or Manufacturers shall reference the project name, number, and location and be certified by the General Contractor to be for the product and installation on the project and must be countersigned by the General Contractor.
M. Submittals:

1. Submit written warranties prior to the date certified for Substantial Completion. If the Architect's Certificate of Substantial Completion designates a commencement date for warranties other than the date of Substantial Completion for the Work, or a designated portion of the Work, submit written warranties upon request of the Architect.

2. Forms for special warranties are included in this Section. Prepare a written document utilizing the appropriate form, ready for execution by the Contractor, or by the Contractor, subcontractor, supplier, or manufacturer. Submit a draft to the Owner, through the Construction Administrator, for approval prior to final execution.
 a. Refer to Divisions 2 through 17 Sections for specific content requirements and particular requirements for submitting special warranties.

3. Form of Submittal: At Final Completion compile 2 copies of each required warranty properly executed by the Contractor, or by the Contractor, subcontractor, supplier, or manufacturer. Organize the warranty documents into an orderly sequence based on the table of contents of the Project Manual.

4. Bind warranties and bonds in heavy-duty, commercial-quality, durable 3-ring, vinyl-covered loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2- by-11-inch paper.
 a. Provide heavy paper dividers with celluloid covered tabs for each separate warranty. Mark the tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product, and the name, address, and telephone number of the Installer.
 b. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project title or name, and name of the Contractor.
 c. When warranted construction requires operation and maintenance manuals, provide additional copies of each required warranty, as necessary, for inclusion in each required manual.

END OF DIVISION 1- GENERAL REQUIREMENTS
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

A. Project Identification: Boiler and Water Heater Replacement

B. Owner: Connecticut Military Department

C. Engineer Identification: The Contract Documents, dated January 9 2019, were prepared for this Project by Salamone and Associates, P.C.

D. Project Directory
 1. The Owner’s Representative is:
 Name: George E. Fulton
 Connecticut Military Department
 Address: 360 Broad Street, Hartford, CT
 Phone: 860-548-3274

 2. The Engineer is:
 Joseph Salamone
 Salamone & Associates, P.C.
 116 North Plains Industrial Road
 Wallingford, CT 06492
 (203) 281-6895

E. The Base Bid includes:
 1. Demolition of the boilers, burners, breeching, pumps, piping and water heater.
 2. New high efficiency, natural gas fired, condensing hot water boilers, base mounted pumps with VFDs and hot water generators for domestic hot water.
 3. Refinishing the boiler room ceilings, walls, floors, stairs etc.
 4. Removal of hazardous materials within the boiler room.

1.3 CONTRACT

A. Project will be constructed under a general construction contract.
1.4 USE OF PREMISES

A. Minimize damage to all access routes and restore damaged areas to their original conditions.

B. If removal of walls, fences, structures, utility lines, poles, guy wires or anchors, or other improvements is necessary for passage of the Contractor's equipment, restore to original condition. Notify the Engineer, the Owner, and all utilities of any intended modification or disruption to their property prior to the start of construction and cooperate with them in the scheduling and performing operations.

C. If, by direct negotiation and bargain with any land owner, lessee or tenant, the right has been secured to use more space or greater privileges in the space provided by the Owner for purposes incidental to the performance of the Work, furnish upon request to the Engineer proper evidence that such additional rights have been properly secured and assurance that no damage to or claim upon the Owner will arise there from. The Owner shall not be liable in any way for any expense incurred by securing any such right to use additional property.

D. The Contractor shall be responsible for and reimburse the Owner and others for any and all losses, damage or expense which the Owner or others may suffer, either directly or indirectly or through any claims of any person or party, for any trespass outside the spaces and rights-of-way provided by the Owner to the Contractor or any violation or disregard of the terms and conditions established for the use or occupancy of those rights or for negligence in the exercise of those rights. The Owner may retain or deduct from any sum or sums due or to become due to the Contractor such amount or amounts as may be proper to insure the Owner against loss or expense by reason of the failure of the Contractor to observe the limits and conditions of the rights-of-way and rights of access provided by the Owner.

1.5 WORK HOURS

Unless prior authorization has been given by the Owner, perform Work weekdays between the hours of 7 am and 3:30 pm.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PROJECT MEETINGS
A. Pre-construction Conference: Prior to the start of construction, attend mandatory pre-construction conference with the representatives of the Engineer, Owner and other interested parties. The time and place shall be arranged by the Owner.

B. Progress Meetings: During the progress of the Work, attend meetings with the Engineer and Owner to address scheduling and overall job coordination. The frequency of these meetings will be at the discretion of the Engineer and Owner but, no more frequently than weekly.

END OF SECTION 010100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and other Division-1 Specification Sections, apply to this Section.

1.2 WORK INCLUDED

A. Definition: "Cutting and patching" is hereby defined to include but is not necessarily limited to the cutting and patching of nominally completed and previously existing work, in order to accommodate the coordination of work, or the installation of other new work, or to uncover other work for access or inspection, or for similar purposes.

B. Demolition is recognized as an example of a related but separate category of work, which may or may not also require cutting and patching as defined in this Section; refer to Section 02072.

1.3 QUALITY ASSURANCE

A. Requirements for Structural Work: Do not cut and patch structural elements in a manner that would reduce their load-carrying capacity or load-deflection ratio.

1. Obtain Engineer's approval of the cutting and patching proposal before cutting and patching the following structural elements:

a. Bearing walls.
b. Structural concrete and concrete slabs.
c. Structural steel.
d. Lintels.
e. Structural decking.
f. Miscellaneous structural metals.
g. Exterior curtain wall construction.
h. Equipment supports

B. Visual Requirements: Do not cut and patch construction exposed on the exterior or in occupied spaces, in a manner that would, in the Engineer's opinion, reduce the building's aesthetic qualities, or result in visual evidence of cutting and patching. Remove and replace Work cut and patched in a visually unsatisfactory manner.
PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Except as otherwise indicated or approved by the Engineer, provide materials or cutting and patching which will result in equal or better work that the work being cut and patched, in terms of performance characteristics and including visual effect where applicable. Comply with requirements, and use materials identical with the original materials where feasible and where recognized that satisfactory results can be produced thereby.

PART 3 - EXECUTION

3.1 INSPECTION

A. Before cutting existing surfaces, examine surfaces to be cut and patched and conditions under which cutting and patching is to be performed. Take corrective action before proceeding, if unsafe or unsatisfactory conditions are encountered.

1. Before proceeding, meet at the site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

3.2 PREPARATION

A. Temporary Support: Provide temporary support to ensure structural integrity of the Work. Provide devices and methods to protect other portion of Project from damage.

B. Protection: Protect existing construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of the Project that might be exposed during cutting and patching operations.

C. Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.

D. Take all precautions necessary to avoid cutting existing pipe, conduit or ductwork serving the building, but scheduled to be removed or relocated until provisions have been made to bypass them.
E. Maintain excavations free of water.

3.3 CUTTING AND PATCHING

A. Execute cutting, fitting, and patching to complete Work.

B. Fit products together to integrate with other work.

C. Remove and replace defective or non-conforming work.

D. Provide openings in the Work for penetration of mechanical and electrical work.

3.4 PERFORMANCE

A. General: Employ skilled workmen to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time and complete without delay.

1. Cut existing construction to provide for installation of other components or performance of other construction activities and the subsequent fitting and patching required to restore surfaces to their original condition.

2. All cutting/coring of structural concrete and all concrete slabs shall be with permission of and in presence of Engineer. Existing slabs are post tension construction.

B. Cutting: Cut existing construction using methods least likely to damage elements to be retained or adjoining construction. Where possible review proposed procedures with the original installer; comply with the original installer's recommendations.

1. In general, where cutting is required use hand or small power tools designed for sawing or grinding, not hammering and chopping. Cut holes and slots neatly to size required with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.

2. To avoid marring existing finished surfaces, cut or drill from the exposed or finished side into concealed surfaces.

3. Cut through concrete and masonry using a cutting machine such as a carborundum saw or diamond core drill.

4. Comply with requirements of applicable Sections of Division-2 where cutting and patching requires excavating and backfilling.

5. By-pass utility services such as pipe or conduit, before cutting, where services are shown or required to be removed, relocated or abandoned. Cut-off pipe or
conduit in walls or partitions to be removed. Cap, valve or plug and seal the remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after by-passing and cutting.

C. Patching: Patch with durable seams that are as invisible as possible. Comply with specified tolerances.

1. Where feasible, inspect and test patched areas to demonstrate integrity of the installation.
2. Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.
3. Where removal of walls or partitions extends one finished area into another, patch and repair wall surfaces in the new space to provide an even surface of uniform color and appearance. Coordinate flooring with hazardous materials documents.
 a. Where patching occurs in a smooth painted surface, extend final paint coat over entire unbroken containing the patch, after the patched area has received primer and second coat.

4. Patch, repair or rehang existing ceilings as necessary to provide an even plane surface of uniform appearance.

D. Plaster Installation: Comply with manufacturer's instructions and install thickness and coats as indicated.

1. Unless otherwise indicated provide 3-coat Work.
2. Finish gypsum plaster with smooth-troweled finish. Sand lightly to remove trowel marks and arises.
3. Cut, patch, point-up and repair plaster to accommodate other construction and to restore cracks, dents and imperfections.

3.5 CLEANING

A. Thoroughly clean areas and spaces where cutting and patching is performed or used as access. Remove completely paint, mortar, oils, putty and items of similar nature. Thoroughly clean piping, conduit and similar features before painting or other finishing is applied. Restore damaged pipe covering to its original condition.

END OF SECTION - 01045
03 01 00 – CONCRETE WORK

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Description of work - the extent of concrete work is shown on the Drawings.

1.2 REFERENCES

A. State of Connecticut, Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction Form 814.

B. American Concrete Institute Standard 301 (ACI 301).

1.3 SUBMITTALS

A. Submit reinforcing steel shop drawings, as required by paragraph 5.1.1 of ACI 301.

B. Submit mix design and test results conforming to the requirements of paragraph 3.8 of ACI 301.

C. Submit five (5) copies of manufacturer's data on manufactured products for Engineer's approval.

1.4 QUALITY ASSURANCE

A. Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for the proper performance of the work of this section.

B. Form 814 and ACI 301 shall be used as standards for the work described herein and related work shown on the Drawings.

1. Work of this section shall conform to the requirements of DOT Form 814, Section 4.01.01 to 4.01.03, Concrete Pavement.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Base course materials shall be Grade A broken or crushed stone conforming to the requirements of DOT Form 814, Section M.02.01.

B. Concrete - Composition of Concrete Mix shall conform to the requirements of DOT Form 814, Section M.03.01 for Class A and shall be 4000 lb. strength, 6% + 1 1/2% air content, maximum 2 1/2” slump.

C. Admixtures - Air Entraining additives shall conform to the requirements of DOT Form 814, Section M.03.01-9.

D. Reinforcing Steel - shall be Grade 60 and shall conform to the requirements of DOT Form 814, Section M.06.01-1.

E. Welded Steel Wire Fabric shall conform to the requirements of DOT Form 814, Section M.06.01-3.

F. Anchor bolts shall be ASTM A 307, galvanized.

G. Curing Materials shall conform to the requirements of DOT Form 814, Section M.03.01-10.

2.2 EQUIPMENT

A. Provide all equipment required to properly perform the work of this section.

PART 3 - EXECUTION

3.1 FORMWORK ERECTION

A. Verify lines, levels, and measurement before proceeding with formwork.

B. Hand trim sides and bottom of earth forms; remove loose dirt.

C. Align form joints.

D. Coordinate work of other Sections and refer to Drawings in forming and setting openings, slots, recesses, chases, sleeves, bolts, anchors, and other inserts.
3.2 REINFORCEMENT

A. Place, support, and secure reinforcement against displacement.

B. Locate reinforcing splices as indicated on Drawings.

3.3 PLACING CONCRETE

A. Preparation
 1. Remove foreign matter accumulated in the forms.
 2. Rigidly close openings left in the formwork.
 3. Wet wood forms sufficiently to tighten up cracks. Wet other materials sufficiently to maintain workability of the concrete.
 4. Use only clean tools.

B. Conveying
 1. Perform concrete placing at such a rate that concrete which is being integrated with fresh concrete is still plastic.
 2. Deposit concrete as nearly as practicable in its final location so as to avoid separation due to rehandling and flowing.
 3. Do not use concrete which becomes non-plastic and unworkable, or does not meet required quality control.
 4. Remove rejected concrete from the job site.

C. Placing Concrete Slabs
 1. Deposit and consolidate concrete slabs in a continuous operation, within limits of construction joints.
 2. Bring slab surfaces to the correct level with a straight edge, and then strike off.
 3. Use bullfloats or darbies to smooth the surface, leaving the surface free from bumps and hollows.
 4. Do not sprinkle water on the plastic surface. Do not disturb the slab surface prior to start of finishing operations.

3.4 CONSOLIDATION

A. General
 1. Consolidate each layer of concrete immediately after placing, by the use of internal concrete vibrators supplemented by hand spading, rodding, or tamping.
 2. Do not vibrate forms or reinforcement.
 3. Do not use vibrators to transport concrete inside the forms.
3.5 CURING AND PROTECTION

A. Beginning immediately after placement, protect concrete from premature drying, excessively hot and cold temperatures, and mechanical injury.

B. Preservation of Moisture
 1. Unless otherwise directed by the Engineer, apply one of the following procedures to concrete not in contact with forms, immediately after completion of placement and finishing:
 a. Ponding or continuous sprinkling.
 b. Application of absorptive mats or fabric kept continuously wet.
 c. Application of sand kept continuously wet.
 d. Application of waterproof sheet materials specified in Part 2 of this Section.
 e. Application of other moisture-retaining covering as approved by the Engineer.
 2. Where forms are exposed to the sun, minimize moisture loss by keeping the forms wet until they can be removed safely.
 3. Cure concrete by preserving moisture as specified above for at least seven days.

C. Protection from Mechanical Injury
 1. During the curing period, protect the concrete from damaging mechanical disturbances such as heavy shock, load stresses, and excessive vibration.
 2. Protect finished concrete surfaces from damage from construction equipment, materials, and methods, by application of curbing procedures, and by rain and running water.
 3. Do not load self-supporting structures in such a way as to overstress the concrete.
 4. Minimum strengths of concrete to be reached before weight-supporting formwork and shoring may be removed:
 a. Formwork not supporting concrete (such as sides of beams, walls, columns, or similar parts of the work) may be removed after cumulatively curing at not less than 50 degrees F for 24 hours after placing concrete, provided concrete is sufficiently hard to not be damaged by form removal operations, and provided that curing and protecting operations are maintained.

3.6 REMEDIAL WORK

A. Repair or replace deficient work as directed by the Engineer and at no additional cost to the Owner.
03 30 53 – MISCELLANEOUS CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cast-in-place concrete, including reinforcement, concrete materials, mixture design, placement procedures, and finishes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Other Action Submittal:
 1. Design Mixtures: For each concrete mixture.

1.4 QUALITY ASSURANCE

A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

B. Comply with the following sections of ACI 301, unless modified by requirements in the Contract Documents:
 1. "General Requirements."
 2. "Formwork and Formwork Accessories."
 3. "Reinforcement and Reinforcement Supports."
 4. "Concrete Mixtures."
 5. "Handling, Placing, and Constructing."

C. Comply with ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

PART 2 - PRODUCTS

2.1 FORMWORK

A. Furnish formwork and formwork accessories according to ACI 301.
2.2 STEEL REINFORCEMENT

 A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

 B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

2.3 CONCRETE MATERIALS

 A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source throughout Project:
 1. Portland Cement: ASTM C 150, Type I/II. Supplement with the following:
 a. Fly Ash: ASTM C 618, Class C or F.

 B. Normal-Weight Aggregate: ASTM C 33, graded, 3/4-inch nominal maximum aggregate size.

 C. Water: ASTM C 94/C 94M.

2.4 ADMIXTURES

 A. Air-Entraining Admixture: ASTM C 260. Concrete for slabs and equipment pads shall not be air entrained.

 B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.

2.5 CURING MATERIALS

 A. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

 B. Water: Potable.

 C. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

2.6 CONCRETE MIXTURES

 A. Comply with ACI 301 requirements for concrete mixtures.
Normal-Weight Concrete: Prepare design mixes, proportioned according to ACI 301, as follows:
1. Minimum Compressive Strength: 4000 psi at 28 days.
2. Maximum Water-Cementitious Materials Ratio: 0.45.
3. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
4. Slump Limit: 4 inches, plus or minus 1 inch.
5. Air Content: Maintain within range permitted by ACI 301. Do not allow air content of trowel-finished floor slabs to exceed 3 percent.

2.7 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
1. When air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK

A. Design, construct, erect, brace, and maintain formwork according to ACI 301.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 STEEL REINFORCEMENT

A. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.4 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
B. Construction Joints: Locate and install so strength and appearance of concrete are
not impaired, at locations indicated or as approved by Engineer.

C. Isolation Joints: Install joint-filler strips at junctions with slabs-on-grade and vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 1. Extend joint fillers full width and depth of joint, terminating flush with finished concrete surface, unless otherwise indicated.

3.5 CONCRETE PLACEMENT

A. Comply with ACI 301 for placing concrete.

B. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.

C. Do not add water to concrete during delivery, at Project site, or during placement.

D. Consolidate concrete with mechanical vibrating equipment.

E. Equipment Bases and Foundations:
 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 2. Construct concrete bases 6 inches high unless otherwise indicated; and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
 3. Minimum Compressive Strength: 4000 psi at 28 days.
 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete substrate.
 6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for properattachment to supported equipment.

3.6 FINISHING FORMED SURFACES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defective areas repaired and patched. Remove fins and other projections exceeding 1/2 inch.
 1. Apply to concrete surfaces not exposed to public view.
3.7 FINISHING UNFORMED SURFACES

A. General: Comply with ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Screed surfaces with a straightedge and strike off. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane before excess moisture or bleedwater appears on surface.
 1. Do not further disturb surfaces before starting finishing operations.

C. Float Finish: Apply float finish to surfaces indicated, to surfaces to receive trowel finish, and to floor and slab surfaces to be covered with fluid-applied or sheet waterproofing, fluid-applied or direct-to-deck-applied membrane roofing, or sand-bed terrazzo.

D. Nonslip Broom Finish: Apply a nonslip broom finish to surfaces indicated and to exterior concrete platforms, steps, and ramps. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route.

3.8 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and with ACI 301 for hot-weather protection during curing.

B. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

C. Curing Methods: Cure formed and unformed concrete for at least seven days by one or a combination of the following methods:
 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoad areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests: Perform according to ACI 301.
 1. Testing Frequency: One composite sample shall be obtained for each day's pour of each concrete mix exceeding 5 cu. yd. but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.

3.10 REPAIRS

A. Remove and replace concrete that does not comply with requirements in this Section.

END OF SECTION 033053
07 84 13 – PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

B. Firestopping, materials and installation details shall be project and application specific and shall form an effective barrier against the spread of fire while maintaining the integrity of fire rated and smoke tight construction. Systems shall be used for sealing through-penetrations of Fire Rated Assemblies and unrated smoke-tight assemblies.

C. Coordination firestopping and penetration requirements with the work of all other divisions.

1.3 SUBMITTALS

A. Drawings: For each unique situation, submit Manufacturer's detail drawings and applicable UL or FM system numbers for Firestop Systems to be installed.

B. Installation Instructions: For 2 Hr., 1 Hr., and 20 Min. smoke barrier, submit Manufacturer's installation instructions for each unique Firestop System to be installed.

C. Product Data: Submit Manufacturer's printed data sheet for all products used in the Firestop System, a recommendation shall be obtained from the Manufacturer, in writing, for the specific application.

D. Manufacturer's Letters: For installations or configurations not covered by a Firestop System, a recommendation shall be obtained from the Manufacturer, in writing, for the specific application.

E. Contractor Experience: Contractor shall show evidence of having previously
firestopped similar types of construction.

1.4 INFORMATIONAL SUBMITTALS

A. Installer Certificates: From Installer indicating penetration firestopping has been installed in compliance with requirements and manufacturer's written recommendations.

B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for penetration firestopping.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Experienced personnel in installing penetration firestopping similar in material, design, and extent required for this project. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements.

B. Firestopping products shall be UL listed and approved for intended application and use.

C. Example/Mock-Up: For each unique situation, prepare job site example/mock-up of typical Firestop Systems proposed for use in the project. Approved mock-ups will be left in place as part of the finished project and will constitute the quality standard for the remaining work.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping when ambient or substrate temperatures are outside limits permitted by penetration firestopping manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping per manufacturer's written instructions using natural means to ventilate or, where this is inadequate, forced-air circulation.

C. Do not proceed with installation of Firestop Systems when job site conditions are outside the limits permitted by the Manufacturer.

D. Do not use materials that show signs of damage.

E. Do not use materials that are beyond their shelf life.
1.7 DELIVERY, STORAGE AND HANDLING

A. Delivery: Deliver materials to the site in Manufacturer's original, unopened containers with labels indicating brand and type, and bearing UL label.

B. Storage: Store materials in accordance with the Manufacturer's directions and recommendations.

C. Material Safety Data Sheets will be available on the job site for all materials. Follow Manufacturer’s guidelines for use and handling.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping is installed according to specified requirements.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping.

1.9 SEQUENCING AND SCHEDULING

A. Pre-Installation Conference: Convene a pre-installation conference to establish procedure to maintain optimum working conditions and to coordinate this work with related and adjacent work.

B. Sequence: Perform work of this and other sections in proper sequence to prevent damage to the Firestop Systems and to ensure that their installation will occur prior to enclosing or concealing work.

C. Install all Firestop Systems after voids and joints are prepared sufficiently to accept the applicable Firestop System.

D. Do not cover Firestop Systems until they have been properly inspected and accepted by the authority having jurisdiction and Engineer.

1.10 WARRANTIES

A. Contractor shall warrant the Firestop Systems, where installed in conformance with the listed Firestop System and the Manufacturer’s recommendations. Contractor shall repair or replace, within one year, any systems not properly installed.

PART 2 - PRODUCTS
2.1 MANUFACTURERS

A. Manufacturers: Subject to meeting all firestop system requirements provide one of the following:
 1. Hilti, Inc.
 2. 3M Fire Protection Products.
 3. Approved equal.

2.2 PENETRATION FIRESTOPPING

A. Provide penetration firestopping that is produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

C. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

D. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 1. Sealants: 250 g/L.
 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 3. Sealant Primers for Porous Substrates: 775 g/L.

E. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping manufacturer and approved by qualified testing and inspecting agency for firestopping indicated.
 1. Permanent forming/damming/backing materials, including the following:

__
2. Slag-wool-fiber or rock-wool-fiber insulation.

b. Sealants used in combination with other forming/damming/backing materials to prevent leakage of fill materials in liquid state.

c. Fire-rated form board.

d. Fillers for sealants.

2. Temporary forming materials.

5. Steel sleeves.

2.3 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer metallic sleeve lined with an intumescent strip, a radial extended flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced elastomeric sheet bonded to galvanized-steel sheet.

E. Intumescent Putties: Nonhardening dielectric, water-resistant putties containing no solvents, inorganic fibers, or silicone compounds.

F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers, and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed,
expand and cure in place to produce a flexible, nonshrinking foam.

J. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below:

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces, and nonsag formulation for openings in vertical and sloped surfaces, unless indicated firestopping limits use of nonsag grade for both opening conditions.

2.4 MIXING

A. For those products requiring mixing before application, comply with penetration firestopping manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Clean out openings immediately before installing penetration firestopping to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping.

2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping. Remove loose particles remaining from cleaning operation.

3. Remove laitance and form-release agents from concrete.
B. Priming: Prime substrates where recommended in writing by manufacturer using that manufacturer’s recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

C. Masking Tape: Use masking tape to prevent penetration firestopping from contacting adjoining surfaces that will remain exposed on completion of the Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove stains. Remove tape as soon as possible without disturbing firestopping's seal with substrates.

3.3 INSTALLATION

A. General: Install penetration firestopping to comply with manufacturer’s written installation instructions and published drawings for products and applications indicated.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestopping.

C. Install fill materials for firestopping by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

A. Contractor shall inspect firestopping and shall not enclose work until the authority having jurisdiction has inspected the work.

B. Where deficiencies are found or penetration firestopping is damaged or removed because of testing, repair or replace penetration firestopping to comply with requirements.

C. Proceed with enclosing penetration firestopping with other construction only after
inspection reports are issued and installations comply with requirements.

3.5 CLEANSING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping is without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping and install new materials to produce systems complying with specified requirements.

3.6 PENETRATION FIRESTOPPING SCHEDULE

A. The fire ratings of the assemblies throughout the building are specifically indicated on the architectural drawings

B. Provide firestopping of the following assemblies unless indicated otherwise:
 1. Floor/ceiling assemblies - 1 HOUR.
 2. Stair tower enclosures - 2 HOURS.
 3. Storage room - 1 HOUR
 4. Boiler and Mechanical Rooms - 1 HOUR
 5. Electrical Rooms & Data Closets - 1 HOUR
 6. Egress Corridors – 1 HOUR

C. Firestopping materials/construction shall maintain the fire rating of the wall/floor assembly being penetrated and ensure smoke tight construction.

D. Smoke tight construction shall be treated as one-hour rated construction for the purpose of properly applying firestopping materials in accordance with manufacturer’s instructions.

END OF SECTION 078413
PART 1 - GENERAL

1.1 SCOPE

A. Provide all materials, labor equipment and services necessary to perform all caulking and related work as required by the Contract Drawings and/or specified herein.

1.2 SUBMITTALS

A. Samples and manufacturer's literature of materials proposed for use shall be submitted for acceptance by the Engineer.

1.3 DELIVERY AND STORAGE

A. All materials shall be delivered in unopened containers, with labels intact, denoting appropriate warnings, storage conditions and usage instructions.

PART 2 - PRODUCTS

2.1 CAULKING AND RELATED MATERIALS

A. Caulking shall be a two component, premium grade polyurethane-base, elastomeric sealant. Sealant shall be compatible with the corresponding substrate and finish material.

B. Depth of joints shall be as recommended by the sealant manufacturer.

C. Backer rod shall be as recommended by the sealant manufacturer. Material shall be approximately 30% greater than width of joint in which it is installed.

D. Bond breaker strips of polyethylene film or equal shall be used wherever recommended by the sealant manufacturer.

E. Primer or conditioner shall be used where required in accordance with the recommendations of the sealant manufacturer.
PART 3 – EXECUTION

3.1 JOINT PREPARATION

A. Joints shall be dry and made thoroughly free of all dust, dirt and other loose material, oil, grease, water, previous coatings, and other foreign substances before primer or sealant are to be applied.

B. The sides of joints shall be primed when so recommended by the manufacturer of the sealant.

C. Joints shall have an approved backing or filler material (as described in Part 2) installed to allow for the proper depth of sealant. The joint backer material shall be installed under compression of approximately 30%.

3.2 APPLICATION

A. Sealant shall be handled and applied in strict accordance with the approved manufacturers instructions.

B. Sealant shall be applied under sufficient pressure to completely fill the joint to the back up material; using a caulking gun with a nozzle of proper width to fit the joint.

C. All joints and spaces shall be completely filled with caulking forming neat, smooth and uniform beads. All joints shall be tooled as required to eliminate air pockets and to ensure contact of the sealant with the sides of the joint. Use appropriate tool to provide a smooth, neat appearing finish.

D. Where necessary to keep adjacent surface clean and free from excess sealant material, the edges of joints shall be protected with masking tape. Tape shall be removed immediately upon completion of caulking work.

E. Upon completion of the work, any joint that is not entirely filled shall be roughened or cut out and resealed properly, and the exposed surfaces tooled smooth.

3.3 CLEANING

A. All soiling of adjacent surfaces shall be cleaned immediately as the work progresses, including any smears, droppings or misplaced sealant, and all work shall be left in a neat, clean condition upon completion.

END OF SECTION - 07920
09 90 00 - PAINTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Work entails all items shown on the contract drawings including but not limited to:

 1. Prime and paint trim, walls, ceilings as indicated on contract drawings.

1.2 QUALITY ASSURANCE

A. Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for proper performance of the work of this Section.

B. Paint coordination:

 1. Provide finish coats which are compatible with the prime coats actually used.

 2. Furnish information on the characteristics of the specific finish materials to assure that compatible prime coats are used.

1.3 SUBMITTALS

A. Submit manufacturer's literature for all products.

1.4 JOB CONDITIONS

A. Do not apply solvent-thinned paints when the temperature of surfaces to be painted and the surrounding air temperatures are below 45 degrees F, unless otherwise permitted by the manufacturers' printed instructions.

B. Weather conditions:

 1. Do not apply paint in snow, rain, fog, or mist; or when the relative humidity exceeds 85%; or to damp or wet surfaces, unless otherwise permitted by the manufacturer's printed instructions.
2. Applications may be continued during inclement weather only within the temperature limits specified by the paint manufacturer as being suitable for use during application and drying periods.

PART 2 - PRODUCTS

2.1 PAINT MATERIALS

A. Acceptable materials:
 1. Sherwin Williams, or approved equal.

B. Undercoats and thinners:
 1. Provide undercoat paint produced by the same manufacturer as the finish coat.
 2. Use only the thinners recommended by the paint manufacturer, and use only to the recommended limits.
 3. Insofar as practicable, use undercoat, finish coat, and thinner material as parts of a unified system of paint finish.

2.2 COLOR

A. Colors are to be selected by the Owner.

2.3 APPLICATION EQUIPMENT

A. For application of the approved paint, use only such equipment as is recommended for application of the particular paint by the manufacturer of the particular paint.

B. Prior to use of application equipment, verify that the proposed equipment is actually compatible with the material to be applied, and that integrity of the finish will not be jeopardized by use of the proposed equipment.
2.4 OTHER MATERIALS

A. Provide other materials, not specifically described but required for a complete and proper installation, as selected by the Contractor subject to the approval of the Engineer.

PART 3 - EXECUTION

3.1 SURFACE CONDITIONS

A. Examine the areas and conditions under which work of this Section will be performed. Correct conditions detrimental to timely and proper completion of the Work. Do not proceed until unsatisfactory conditions are corrected.

3.2 MATERIALS PREPARATION

A. General:

1. Mix and prepare paint materials in strict accordance with the manufacturers' recommendations.

2. When materials are not in use, store in tightly covered containers.

3. Maintain containers used in storage, mixing, and application of paint in a clean condition, free from foreign materials and residue.

B. Stirring:

1. Stir materials before application, producing a mixture of uniform density.

2. Do not stir into the material any film which may form on the surface, but remove the film and, if necessary, strain the material before using.

C. Ventilation

1. Provide adequate ventilation in all areas to be painted to satisfaction of Owner.
3.3 SURFACE PREPARATION

A. General:

1. Perform preparation and cleaning procedures in strict accordance with the paint manufacturers' recommendations.

2. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall onto wet newly painted surfaces.

B. Preparation of surfaces to be painted:

1. Thoroughly clean surfaces until free from dirt, oil, grease, and any other materials which may effect the bond of the paint.

2. Remove all loose paint (where applicable) by sanding. Surfaces shall be approved by the Engineer as to the acceptability and completeness of the rust removal.

3. Allow to dry thoroughly before application of paint.

C. Preparation of Gypsum Board Surfaces:

1. Surfaces must be clean and dry.

2. Screw heads must be spackled.

3. Joints must be taped and covered with joint compound.

4. Spackled nail heads and tape joints must be sanded smooth and all dust removed prior to paint application.

3.4 PAINT APPLICATION

A. General:

1. Sand and dust between coats to remove defects visible to the unaided eye from a distance of five feet.
B. Drying:

1. Allow sufficient drying time between coats, modifying the period as recommended by the material manufacturer to suit adverse weather conditions.

C. Brush applications:

1. Brush out and work the brush coats onto the surface in an even film.

2. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, and other surface imperfections will not be acceptable.

END OF SECTION – 099000
SECTION 22 11 13 - WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Requirements of the following Division 23 Sections apply to this section:
 1. "Common Work Results for HVAC."
 2. "Hangers and Supports for HVAC Pipe and Equipment."

1.2 SUMMARY

A. This Section includes domestic cold water, hot water, fittings, and specialties within the building.

1.3 DEFINITIONS

A. Water Distribution Pipe: A pipe within the building or on the premises that conveys water from the water service pipe or meter to the points of usage.

B. Water Service Pipe: The pipe from the water main or other source of potable water supply to the water distributing system of the building served.

C. Pipe sizes used in this Specification are nominal pipe size (NPS).

1.4 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract.
 1. Product data for each piping specialty meter and valve specified.
 2. Test reports specified in Part 3 of this Section.

1.5 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with the provisions of the following codes:
 1. ASME B31.9 "Building Services Piping" for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Store pipe in a manner to prevent sagging and bending.

1.7 SEQUENCING AND SCHEDULING

A. Coordinate the installation of pipe sleeves for foundation wall penetrations.

1.8 EXTRA MATERIALS

A. Maintenance Stock: Furnish one valve key for each key-operated wall hydrant, fixture supply, or faucet installed.

PART 2 - PRODUCTS

2.1 PIPE AND TUBE MATERIALS, GENERAL

A. Pipe and Tube: Refer to Part 3, Article "Application, General," for identification of systems where the below materials are used.

B. Copper Tube: ASTM B 88, Type L Water Tube, drawn temper.

C. Copper Tube: ASTM B88, Type K water tube, annealed temper.

2.2 FITTINGS

A. Wrought Copper Solder-Joint Fittings: ANSI B16.22, streamlined pattern.

B. Wrought Copper and Bronze Grooved-End Fittings: ASTM B 75 Tube and ASTM B 584 Bronze Castings.

C. Bronze Flanges: ANSI B16.24, Class 150, raised ground face, bolt holes spot faced.

E. Dielectric Unions: Threaded, solder, or grooved-end connections as required to suit application; constructed to isolate dissimilar metals, prevent galvanic action, and prevent corrosion.
F. Grooved mechanical joint pipe and fittings will be allowed for condensate water and chilled water.

G. Do not use sheet metal sleeves through outside walls. Sleeves shall conform to ASTM A 120. Provide leak protection at outside walls.

2.3 JOINING MATERIALS

A. Solder Filler Metal: ASTM B 32, 95-5 Tin-Antimony.

B. Brazing Filler Metals: AWS A5.8, BCuP Series.

C. Gasket Material: Thickness, material, and type suitable for fluid to be handled and design temperatures and pressures.

2.4 GENERAL-DUTY VALVES

A. General-duty valves (i.e., gate, globe, check, and ball, valves) are specified in Division 23 Section "Valves." Special duty valves are specified below by their generic name; refer to Part 3 Article "Valve Application" for specific uses and applications for each valve specified.

2.5 SPECIAL DUTY VALVES

A. Balance Cocks: 400 psi WOG, 2 piece bronze, ball valve, handle, memory stop, with solder-end connections.

2.6 PIPING SPECIALTIES

A. Y-type Strainers: Cast-iron body, epoxy coated 125 psi flanges, removable cover with blow down tapping removable noncorrosive perforated strainer having 1/8 inch perforations.

B. Water mixing valves shall be of the thermostatic type with liquid filled thermal motor. It shall have bronze body construction with replaceable corrosion resistant components. Valve construction shall employ a sliding piston control mechanism. Sliding piston and liners shall be of stainless steel material. Valve shall come equipped with union end stop and check inlets with removable stainless steel strainers. Valve shall provide protection against hot or cold supply line failure and the thermostat failure.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine rough-in requirements for plumbing fixtures and other equipment with water connections to verify actual locations of piping connections prior to installation.

3.2 PIPE APPLICATIONS

A. Install Type L, drawn copper tube with wrought copper fittings and solder joints for pipe sizes 4 inches and smaller, above ground, within building. Install Type K, annealed temper copper tube for pipe sizes 4 inches and smaller, with minimum number of brazed joints, below ground.

3.3 PIPING INSTALLATION

A. General Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of the piping systems. Location and arrangement of piping layout take into consideration pipe sizing and friction loss, expansion, pump sizing, and other design considerations. So far as practical, install piping as indicated.

B. Use fittings for all changes in direction and branch connections.

C. Install exposed piping at right angles or parallel to building walls. Diagonal runs are not permitted unless expressly indicated.

D. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.

E. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.

F. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1-inch clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.

G. Locate groups of pipes parallel to each other, spaced to permit applying full insulation and servicing of valves.
H. Install drains at low points in mains, risers, and branch lines consisting of a tee fitting, 3/4-inch ball valve, and short 3/4-inch threaded nipple and cap.

I. Exterior Wall Penetrations: Seal pipe penetrations through exterior walls with sleeves and mechanical sleeve seals. Pipe sleeves smaller than 6 inches shall be galvanized steel pipe; pipe sleeves 6 inches and larger shall be galvanized steel sheet metal.

J. Fire Barrier Penetrations: Where pipes pass through fire-rated walls, partitions, ceilings, and floors, maintain the fire-rated integrity. Refer to Division 7 for special sealers and materials.

K. Install piping level with no pitch.

L. Expansion loops shall be provided in hot water piping. Expansion joints are to be avoided.

M. Certified welders are required for High Temperature Water (HTW) work on high-pressure work.

3.4 HANGERS AND SUPPORTS

A. General: Hanger, support, and anchor devices conforming to MSS SP-69 are specified in Division 23 Section "Hangers and Supports for HVAC Pipe and Equipment." Conform to the table below for maximum spacing of supports:

B. Pipe Attachments: Install the following:

1. Adjustable steel clevis hangers, MSS Type 1, for individual horizontal runs.
2. Riser Clamp to support vertical runs.

C. Install hangers for individual horizontal piping with the following maximum spacing and minimum rod sizes:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3/4</td>
<td>6</td>
<td>3/8</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3/8</td>
</tr>
<tr>
<td>1-1/4</td>
<td>6</td>
<td>3/8</td>
</tr>
</tbody>
</table>
D. Support vertical copper tube at each floor.

3.5 PIPE AND TUBE JOINT CONSTRUCTION

A. Soldered Joints: Comply with the procedures contained in the AWS "Soldering Manual."

B. Brazed Joints: Comply with the procedures contained in the AWS "Brazing Manual."

1. **CAUTION:** Remove stems, seats, and packing of valves and accessible internal parts of piping specialties before soldering and brazing.
2. Fill the tubing and fittings during soldering and brazing with an inert gas (nitrogen or carbon dioxide) to prevent formation of scale.
3. Heat joints to proper and uniform temperature.

C. Flanged Joints: Align flange surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.

3.6 VALVE APPLICATIONS

A. General-Duty Valve Applications: The Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

2. Throttling duty: Use globe, ball, and butterfly valves.

3.7 INSTALLATION OF VALVES

A. Sectional Valves: Install sectional valves on each branch and riser, close to main, where branch or riser serves 2 or more plumbing fixtures or equipment connections and elsewhere as indicated.

B. Shutoff Valves: Install shutoff valves on inlet of each plumbing equipment item, on each supply to each plumbing fixture, all branch lines and risers and elsewhere as
indicated. For shutoff valves 2 inches and smaller, use gate or ball valves; for shutoff
valves 2-1/2 inches and larger, use gate valves.

C. Drain Valves: Install drain valves on each plumbing equipment item, located to drain
equipment completely for service or repair. Install drain valves at the base of each
riser, at low points of horizontal runs, and elsewhere as required to drain distribution
piping system completely. For drain valves 2 inches and smaller, use gate or ball
valves.

D. Check Valves: Install swing check valves on discharge side of each pump and
elsewhere as indicated.

E. Balance Cocks: Install in each hot water recirculating loop, discharge side of each
pump, and elsewhere as indicated.

3.8 INSTALLATION OF PIPING SPECIALTIES

A. Install backflow preventers at each connection to mechanical equipment and systems
and in compliance with the plumbing code and authority having jurisdiction. Locate
in same room as equipment being connected. Install air gap fitting and pipe relief
outlet drain without valves to nearest floor drain.

B. Install water hammer arrestors for each flush valve. Size in accordance with
manufacturer's instructions.

3.9 EQUIPMENT CONNECTIONS

A. Piping Runouts to Fixtures: Provide hot and cold water piping runouts to fixtures of
sizes indicated, but in no case smaller than required by plumbing code.

B. Mechanical Equipment Connections: Connect hot and cold water piping system to
mechanical equipment as indicated. Provide shutoff valve and union for each
connection; provide drain valve on drain connection.

3.10 FIELD QUALITY CONTROL

A. Inspections: Inspect water distribution piping as follows:

1. Do not enclose, cover, or put into operation water distribution piping system
until it has been inspected and approved by the authority having jurisdiction.
2. During the progress of the installation, notify the plumbing official having
jurisdiction at least 24 hours prior to the time such inspection must be made.
Perform tests specified below in the presence of the plumbing official.
a. Rough-in Inspection: Arrange for inspection of the piping system before concealed or closed in after system is roughed in and prior to setting fixtures.

b. Final Inspection: Arrange for a final inspection by the plumbing official to observe the tests specified below and to ensure compliance with the requirements of the plumbing code.

3. Reinspections: Whenever the plumbing official finds that the piping system will not pass the test or inspection, make the required corrections and arrange for reinspection by the plumbing official.

4. Reports: Prepare inspection reports signed by the plumbing official.

B. Test water distribution piping as follows:

1. Test for leaks and defects all new water distribution piping systems and parts of existing systems that have been altered, extended or repaired. If testing is performed in segments, submit a separate report for each test, complete with a diagram of the portion of the system tested.

2. Leave uncovered and unconcealed all new, altered, extended, or replaced water distribution piping until it has been tested and approved. Expose all such work for testing that has been covered or concealed before it has been tested and approved.

3. Cap and subject the piping system to a static water pressure of 50 psig above the operating pressure without exceeding the pressure rating of the piping system materials. Isolate the test source and allow to stand for 4 hours. Leaks and loss in test pressure constitute defects that must be repaired.

4. Repair all leaks and defects with new materials and retest system or portion thereof until satisfactory results are obtained.

5. Prepare reports for all tests and required corrective action.

3.11 ADJUSTING AND CLEANING

A. Clean and disinfect water distribution piping as follows:

1. Purge all new water distribution piping systems and parts of existing systems that have been altered, extended, or repaired prior to use.

2. Use the purging and disinfecting procedure proscribed by the authority having jurisdiction or, in case a method is not prescribed by that authority, the procedure described in the International Plumbing Code.

 a. Submit water samples in sterile bottles to the authority having jurisdiction. Repeat the procedure if the biological examination made by the authority shows evidence of contamination.
B. Prepare reports for all purging and disinfecting activities.

3.12 COMMISSIONING

A. Fill the system. Check that the system is completely full of water.

B. Before operating the system, perform these steps:
 1. Close drain valve, hydrants, and hose bibs.
 2. Open valves to full open position.
 3. Remove and clean strainers.
 5. Lubricate pump motors and bearings.

END OF SECTION 22 11 13
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes distribution piping systems for natural gas and manufactured gas within the building and extending from the point of delivery to the connections with gas utilization devices. Piping materials and equipment specified in this Section include:

1. Pipes, fittings, and specialties;
2. Special duty valves.

B. This Section does not apply to LP-gas piping; industrial gas applications using such gases as acetylene and acetylenic compounds, hydrogen, ammonia, carbon monoxide, oxygen and nitrogen; gas piping, meters, gas pressure regulators and other appurtenances used by the serving gas supplier in distribution of gas.

C. Gas pressures for systems specified in this section are limited to 5 psig.

D. Products installed but not furnished under this Section include gas meters which will be provided by the utility company, to the site, ready for installation. The following is the name of the utility company:

Company: Southern CT Gas Company

1.2 DEFINITIONS

A. Pipe sizes used in this Specification are Nominal Pipe Size (NPS).

B. Gas Distribution Piping: A pipe within the building which conveys gas from the point of delivery to the points of usage.

C. Gas Service Piping: The pipe from the gas main or other source of supply including the meter, regulating valve, or service valve to the gas distribution system of the building served.

D. Point of Delivery is the outlet of the service meter assembly, or the outlet of the service regulator (service shutoff valve when no meter is provided).
1.3 SUBMITTALS

A. Product data for each gas pipe, piping specialty and special duty valves. Include rated capacities of selected models, furnished specialties and accessories, and installation instructions.

B. Maintenance data for gas specialties and special duty valves, for inclusion in operating and maintenance manual.

C. Welders' qualification certificates, certifying that welders comply meet the quality requirements specified under "Quality Assurance" below.

D. Test reports specified in Part 3 below.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Installation and replacement of gas piping, gas utilization equipment or accessories, and repair and servicing of equipment shall be performed only by a qualified installer. The term qualified is defined as experienced in such work (experienced shall mean having a minimum of 5 previous projects similar in size and scope to this project), familiar with precautions required, and has complied with the requirements of the authority having jurisdiction. Upon request, submit evidence of such qualifications to the Engineer.

B. Qualifications for Welding Processes and Operators: Comply with the requirements of ASME Boiler and Pressure Vessel Code, "Welding and Brazing Qualification."

C. Regulatory Requirements: Comply with the requirements of the following codes:

1. NFPA 54 - National Fuel Gas Code, for gas piping materials and components, gas piping installations, and inspection, testing, and purging of gas piping systems.
2. International Plumbing and Mechanical Code.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and legally dispose of liquid from drips in existing gas piping and handle cautiously to avoid spillage or ignition. Notify the gas supplier. Handle flammable liquids used by the installer with proper precautions, and do not leave on the premises from the end of one working day to the beginning of the next.
1.6 SEQUENCING AND SCHEDULING

A. Notification of Interruption of Service: Except in the case of an emergency, notify all affected users when the gas supply is to be turned off.

B. Work Interruptions: When interruptions in work occur while repairs or alterations are being made to an existing piping system, leave the system in safe condition.

C. Coordinate the installation of pipe sleeves for foundation wall penetrations.

1.7 EXTRA MATERIALS

A. Valve Wrenches: Furnish to Owner, with receipt, 2 valve wrenches for each type of gas valve installed, requiring same.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering gas piping system products which may be incorporated in the work include, but are not limited to, the following:

1. Gas Cocks:
 a. Jenkins Bros.
 b. Lunkenheimer Co.
 c. NIBCO, Inc.
 d. Powell Co.
 e. Stockham.

2.2 PIPE AND TUBING MATERIALS

A. General: Refer to Part 3, Article "PIPE APPLICATION" for identification of systems where the below specified pipe and fitting materials are used.

B. Steel Pipe: ASTM A 53, Schedule 40, seamless, black steel pipe, beveled ends.

2.3 FITTINGS

B. Steel Fittings: ASTM A 234, seamless or welded, for welded joints.

C. Steel Flanges and Flanged Fittings: ANSI B16.5, including bolts, nuts, and gaskets of the following material group, end connection and facing:

2. End Connections: Butt Welding.
3. Facings: Raised face.

2.4 JOINING MATERIALS

A. Gasket Material: thickness, material, and type suitable for gas to be handled, and for design temperatures and pressures.

2.5 PIPING SPECIALTIES

A. Unions: ANSI B16.39, Class 150, black malleable iron; female pattern; brass to iron seat; ground joint.

2.6 VALVES

A. General duty valves (i.e., gate, globe, check, ball, and butterfly valves) are specified in Division 23 Section "General Duty Valves." Special duty valves are specified in this Article by their generic name. Refer to Part 3 below, Article "VALVE INSTALLATION" for specific uses and applications for each valve specified.

B. Gas Cocks 2 Inch and Smaller: 150 psi WOG, bronze body, straightaway pattern, square head, threaded ends.

C. Gas Cocks 2-1/2 Inch and Larger: MSS SP-78; 175 psi, lubricated plug type, semi-steel body, single gland, wrench operated, flanged ends.

PART 3 - EXECUTION

3.1 PREPARATION
A. **Precautions:** Before turning off the gas to the premises, or section of piping, turn off all equipment valves. Perform a leakage test as specified in "FIELD QUALITY CONTROL" below, to determine that all equipment is turned off in the piping section to be affected.

B. Conform with the requirements in NFPA 54, for the prevention of accidental ignition.

3.2 PIPE APPLICATIONS

A. Install steel pipe with threaded joints and fittings for 2 inch and smaller, and with welded joints for 2-1/2 inch and larger.

3.3 PIPING INSTALLATIONS

A. **General:** Conform to the requirements of NFPA 54 - National Fuel Gas Code.

B. **Locations and Arrangements:** Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. Design locations and arrangements of piping take into consideration pipe sizing, flow direction, slope of pipe, expansion, and other design considerations. So far as practical, install piping as indicated.

C. Install pipe sleeve and seals at foundation and basement wall penetrations, as specified in Division 23.

D. Seal pipe penetrations of fire barriers using fire barrier penetration sealers specified in Division 7 Section "Joint Sealers."

E. **Drips and Sediment Traps:** Install a drip leg at points where condensate may collect, at the outlet of the gas meter, and in a location readily accessible to permit cleaning and emptying. Do not install drips where condensate is likely to freeze.

1. Construct drips and sediment traps using a tee fitting with the bottom outlet plugged or capped. Use a minimum of 3 pipe diameters in length for the drip leg. Use same size pipe for drip leg as the connected pipe.

F. Use fittings for all changes in direction and all branch connections.

G. Install exposed piping at right angles or parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.
H. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.

I. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.

J. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1" clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.

K. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install gas piping at a uniform grade of 1/4 inch in 15 feet, upward to risers, and from the risers to the meter, or service regulator when meter is not provided, or the equipment.

M. Make reductions in pipe sizes using eccentric reducer fittings installed with the level side down.

N. Connect branch outlet pipes from the top or sides of horizontal lines, not from the bottom.

O. Hanger, supports, and anchors are specified in Division 23 Section "Common Work Results for HVAC." Conform to the table below for maximum spacing of supports:

1. **Steel Pipe:**

<table>
<thead>
<tr>
<th>SIZE (NPS)</th>
<th>SPACING IN FEET</th>
<th>MIN. ROD SIZE IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 to 1-1/4</td>
<td>12</td>
<td>3/8</td>
</tr>
<tr>
<td>1-1/2 to 4 (horizontal)</td>
<td>12</td>
<td>1/2</td>
</tr>
<tr>
<td>vertical every floor level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P. Install unions in pipes 2 inch and smaller, adjacent to each valve, at final connections each piece of equipment, and elsewhere as indicated. Unions are not required on flanged devices.
Q. Install flanges on valves, apparatus, and equipment having 2-1/2 inch and larger connections.

3.4 PIPE JOINT CONSTRUCTION

A. Welded Joints: Comply with the requirements in ASME Boiler and Pressure Vessel Code, Section IX.

B. Threaded Joints: Conform to ANSI B1.20.1, tapered pipe threads for field cut threads. Join pipe, fittings, and valves as follows:

1. Note the internal length of threads in fittings or valve ends, and proximity of internal seat or wall, to determine how far pipe should be threaded into joint. Refer to NFPA 54, for guide for number and length of threads for field threading steel pipe.
2. Align threads at point of assembly.
3. Apply appropriate tape or thread compound to the external pipe threads.
4. Assemble joint to appropriate thread depth. When using a wrench on valves place the wrench on the valve end into which the pipe is being threaded.
5. Damaged Threads: Do not use pipe with threads which are corroded, or damaged. If a weld opens during cutting or threading operations, that portion of pipe shall not be used.

C. Flanged Joints: Align flanges surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly to appropriate torque specified by the bolt manufacturer.

3.5 VALVE APPLICATIONS

A. General: The Drawings indicate valve types, locations, and arrangements.

B. Shut-off duty: Use gas cocks specified in Part 2 above.

3.6 VALVE INSTALLATIONS

A. Install valves in accessible locations, protected from physical damage. Tag valves with a metal tag attached with a metal chain indicating the piping systems supplied.
B. Install a gas cock upstream of each gas pressure regulator. Where two gas pressure regulators are installed in series in a single gas line, a manual valve is not required at the second regulator.

C. Install pressure relief or pressure limiting devices so they can be readily operated to determine if the valve is free; so they can be tested to determine the pressure at which they will operate; and examined for leakage when in the closed position.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Install gas cock upstream and within 6 feet of gas appliance. Install a union or flanged connection downstream from the gas cock to permit removal of controls.

B. Sediment Traps: Install a tee fitting with the bottom outlet plugged or capped as close to the inlet of the gas appliance as practical. Drip leg shall be a minimum of 3 pipe diameters in length.

3.8 ELECTRICAL BONDING AND GROUNDING

A. Install above ground portions of gas piping systems, upstream from equipment shutoff valves electrically continuous and bonded to a grounding electrode in accordance with NFPA 70 - "National Electrical Code."

B. Do not use gas piping as a grounding electrode.

C. Conform to NFPA 70 - "National Electrical Code," for electrical connections between wiring and electrically operated control devices.

3.9 FIELD QUALITY CONTROL

A. Piping Tests: Inspect, test, and purge natural gas systems in accordance with NFPA 54, and local utility requirements.

END OF SECTION 23 11 23
23 05 00 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

A. General: Materials and methods for performance of all mechanical work.

B. Provide complete and operational mechanical systems including, but not limited to, all required materials, parts, equipment, labor, tools, and accessories.

1.2 SUMMARY

A. This Section includes general administrative and procedural requirements for mechanical installations.

1. Codes & standards.
2. Submittals.
3. Quality control.
4. Permits, fees, and inspections.
5. Schedule and sequence.
6. Project and site conditions.
7. Delivery, storage, and handling.
8. Record documents.
10. Warranties and guaranties.
12. Mechanical installations.
13. Cutting, patching, and firestopping.

1.3 CODES AND STANDARDS

A. Except as modified by governing codes, comply with applicable provisions and recommendations of the following:

1. ANSI Standards.
2. Owner's Insurance Company.

1.4 SUBMITTALS
A. Increase, by the quantity listed below, the number of mechanical related shop drawings, product data, and samples submitted, to allow for required distribution.

2. Product Data: 1 additional copy of each item.
3. Samples: 1 addition as set.

B. Additional copies may be required by individual sections of these Specifications.

C. Shop Drawings:

1. Submit for review, detailed shop drawings and product data of all the equipment and material required to complete the work. No material or equipment may be delivered to the jobsite or installed until accepted shop drawings for the particular material or equipment have been approved by the Owner or his authorized representative.
2. Failure to submit shop drawings in ample time for checking will not entitle Contractor to claim extension of Contract time, or increase in contract cost.
3. The proposed piping layout for the Boiler system is required.
4. The proposed ductwork layout for the RTUs/AHUs is required.

D. Tests & Certificates:

1. As specified in other sections.

1.5 QUALITY ASSURANCE

A. Drawings:

1. Drawings are diagrammatic. They indicate the general arrangement of systems and work included in the contract. Drawings are not to be scaled. Site and Architectural drawings and details shall be examined for exact location of fixtures and equipment. Where they are not definitely located, this information shall be obtained from the Owner or authorized representative.

2. Surveys and Measurements:
 a. Before submitting bid, visit site, become familiar with conditions under which work will be installed. Contractor will be held responsible for assumptions, omissions, and errors made as a result of failure to become familiar with site and contract documents.
b. Base all measurements, both horizontal and vertical, from established bench marks. All work shall agree with established lines and levels. Verify all measurements at site and check the correctness of same.

c. Notify the Engineer promptly of discrepancies between actual measurements and those indicated, which prevents following good practice or intent of drawings and specifications. Do not proceed with work until Contractor has received instructions from Engineer.

B. Labor:

1. Cooperation with Other Trades:
 a. Give full cooperation to other trades; furnish in writing to General Contractor, with copies to the Engineer, information necessary to permit the work of all trades to be installed satisfactorily and with the least possible interference or delay.
 b. Where work will be installed in close proximity to, or will interfere with work of other trades, assist in working out space conditions to make a satisfactory adjustment. If directed by the Engineer, prepare composite working drawings and sections at a suitable scale not less than 1/4" = 1'0", clearly showing how work is to be installed in relation to the work of other trades. If work under this division is installed before coordinating with other trades, or to cause any interference with work of other trades, make necessary changes to correct the condition without additional cost.
 c. Furnish to other trades all necessary templates, patterns, setting plans, and shop details for the proper installation of work and for the purpose of coordinating adjacent work.

2. Materials & Workmanship:
 a. Materials and apparatus required for the work shall be new and of first class quality. Furnished, delivered, erected, connected and finished in every detail. Select and arrange to fit properly into the building spaces. Where no specific kind or quality of material is given, furnish first class standard article as accepted by Engineer.
 b. Furnish the services of an experienced superintendent who shall be in constant charge of the work, together with skilled craftsmen and labor required to unload, transfer, erect, connect-up, adjust, start, operate, and test each system.
 c. All equipment and materials to be installed with the acceptance of the Engineer in accordance with the recommendations of the manufacturer.
This includes the performance of such test as the manufacturer recommends.

3. Protection of Materials:
 a. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.

 b. Welding: Before any welding is performed, submit a copy of the Welding Procedure Specification (WPS) together with the Procedure Qualification Record a required by Section IX of the ASME Boiler and Pressure Vessel Code.

 1) Before any welder performs any welding, submit a copy of the Manufacturer’s Record of Welder or Welding Operator Qualification Tests as required by Section IX of the ASME Boiler and Pressure Vessel Code. The letter or symbol (as shown on the qualification test form) shall be used to identify the work of that welder and shall be affixed, in accordance with appropriate construction code, to each completed weld.

 2) The types and extent of non-destructive examinations required for pipe welds are shown in Table 136.4 of the Code for Pressure Piping, ASNI/ASME B31.1.

 c. Manufacturer’s Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Engineer prior to the installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.

1.6 PERMITS, FEES, & INSPECTIONS

 A. Give all necessary notices, obtain and pay for all permits, and pay all government sales taxes, fees, and other costs, including utility connections or extensions in connection with work. File necessary approvals of governmental departments having jurisdiction. Obtain required certificates of inspection for work and deliver a copy to the Owner or his authorized representative before requesting acceptance for final payment.
1.7 **SCHEDULE & SEQUENCE**

A. Temporary Services:

1. Refer to the General Conditions and Special Conditions for a full description of the temporary services to be provided.

B. Temporary Openings:

1. Ascertain from examination of the drawings any special temporary openings in the building required for the admission of apparatus provided under this Division. Notify the Owner accordingly. Contractor shall assume all costs of providing such openings thereafter.

C. Sequencing:

1. Contractor shall coordinate sequence of work with owner's representative.

1.8 **PROJECT & SITE CONDITIONS**

A. Cutting, Patching, and Firestopping:

1. Furnish all cutting, drilling and patching. Furnish sketches showing the locations and sizes of openings, chases, etc., required for the installation of work. Furnish the Contractor with an approximation of the number and size of openings, chases, etc., required.

B. Waterproofing:

1. Where any work pierces existing waterproofing, re-waterproof. The method of installation to be reviewed by Owner or his authorized representative before work is done. Furnish all sleeves, caulking, and flashing required to make openings watertight.

C. Fireproofing:

1. Where any work penetrates a fire rated assembly, provide UL listed, firestopping with hourly rating equal to that of the penetrated assembly. Fireproofing shall be compatible with the pipe or equipment doing the penetration so that fire rating of the assembly is maintained.

1.9 **DELIVERY, STORAGE, & HANDLING**
A. Delivery & Receipt:

1. Contractor is responsible for the delivery and storage of all materials, parts, equipment, etc. required for this project.

B. Storage:

1. The Contractor shall store all material, parts, and equipment required for this project in accordance with supplier's and manufacturer's recommendations, and Owner's requirements.

C. Handling, Hoisting, Rigging, & Scaffolding:

1. Furnish all scaffolding, rigging, hoisting, and services necessary for erection and delivery into the premises of any equipment and apparatus furnished under this Division. Remove same from premises when no longer required.

1.10 RECORD DOCUMENTS

A. Maintain at the job site a record set of drawings on which any changes in location of equipment, piping, ducts, valves, cleanouts, panels, and major conduits shall be recorded. These shall be clearly marked on a clean set of prints at the completion of work for record drawings and turned over to the Owner.

B. Prepare record documents in accordance with the requirements below:

1. Mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, tanks, etc.). Valve location diagrams, complete with valve tag chart.
2. Equipment locations (exposed and concealed), dimensioned from prominent building lines.
3. Approved substitutions, Contract Modifications, and actual equipment and materials installed.

1.11 OPERATION & MAINTENANCE MANUALS FOR MECHANICAL SYSTEMS

1. Provide a master index at beginning of Manual showing items included. Use plastic tab indexes for sections of Manual.

2. First section shall consist of name, address, and phone number of Architect, Mechanical & Electrical Engineers, General Contractor and Mechanical, Plumbing, Sheet Metal, Refrigeration, Temperature Control & Electrical Contractors. Also include a complete list of equipment installed with name, address, and phone number of vendor.

3. Provide section for each type of item of equipment.

4. Submit three copies of Operation & Maintenance Manual to Engineer for his approval. Use one of these approved copies during final inspection and leave with building maintenance personnel.

B. Include descriptive literature (Manufacturer's catalog data) of each manufactured item. Literature shall show capacities and size of equipment used and be marked indicating each specific item with applicable data underlined.

C. Operating instructions shall include:

1. General description of each mechanical system.

2. Step by step procedure to follow in putting each piece of mechanical equipment into operation.

3. Provide schematic control diagrams for each separate fan system, refrigeration system, heating system, control panel, etc. Each diagram shall show locations of start-stop switches, insertion thermostats, room thermostats, thermometers, firestats, pressure gauges, automatic valves, and refrigeration accessories. Mark correct operating setting for each control instrument on these diagrams.

4. Provide diagram for electrical control system showing wiring of related electrical control items such as firestats, fuses, interlock, electrical switches, and relays.

5. Provide drawing of each temperature control panel system.

D. Prepare maintenance manuals to include the following information for equipment items:

1. Manufacturer's maintenance equipment installed in Project. Instructions shall include name of vendor, installation instructions, parts numbers & lists, operation instructions of equipment and maintenance & lubrication instructions.

2. Summary list of mechanical equipment requiring lubrication showing name of equipment, location and type, and frequency of lubrication.
3. List of mechanical equipment used indicating name, model, serial number, and name plate data of each item together with number and name associated with each system item.

4. List spare parts and quantities to be maintained in ready inventory at project site.

5. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.

6. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

7. Servicing instructions and lubrication charts and schedules.

E. Air Balance and Water Balance Test Run Reports

1.12 WARRANTIES AND GUARANTIES

A. Guarantee all material and workmanship under this Division for a period of one year, from the date of final acceptance by the Owner.

B. During guarantee period, all defects developing through materials and/or workmanship shall be replaced immediately without expense to the owner. Make such repairs or replacements to the satisfaction of the Owner.

PART 2 - PRODUCTS

1.1 ACCEPTABLE MANUFACTURERS

A. As specified under other related sections.

B. As specified on drawings.

1.2 MATERIALS

A. As specified under other related sections.

B. As specified on drawings.

1.3 EQUIPMENT DEVIATIONS
A. Where the Contractor proposed to use an item of equipment other than that specified or detailed on the drawings which requires the redesign of the structure, partitions, foundations, piping, wiring or any other part of the mechanical layout, all such redesign, and all new drawings and detailing required therefore, shall be prepared at the Contractor's expense and are subject to the review and approval of the Engineer. Owner reserves the right to have the Engineer prepare any redesign work.

B. Where such accepted deviation requires a different quantity and arrangement of materials or equipment from that specified or indicated on the drawings, the Contractor will provide additional equipment and materials required at no additional cost to the Owner.

C. When equipment or methods deviate from original plans or specifications, the Contractor must submit a written request to deviate to the Engineer. At a minimum the request will address the following:

- equipment which is different than specified
- name and data related to the proposed deviation
- reason for deviation
- advantageous or disadvantageous to the Owner
- credit or increase in cost to the Owner
- guarantees or warranties offered (if any)
- acceptance of liability for equivalent performance.

1.4 MANUFACTURER’S IDENTIFICATION

A. Attach manufacturer's nameplate, name, trademark and address permanently to equipment and material furnished under this Division. Nameplate of a Contractor or Distributor is not acceptable.

1.5 ELECTRICAL REQUIREMENTS

A. Motors:

1. Electric motors furnished as a component part of equipment furnished under this Division shall conform to the requirements of IEEE, NEMA, UL, ANSI C50, and ANSI CI. Motors to be suitable for required load, duty voltage, phase, frequency, service and location.
2. Motors to be suitable for continuous duty at rated horsepower with temperature rise not to exceed 40°C for drip-proof motors, 50°C for splash-proof motors, and 55°C for totally enclosed motors. Motors to be capable of withstanding momentary overloads of 25 percent without injurious overheating.

3. Motors to have nameplates giving Manufacturer's name, serial number, horsepower, speed and current characteristics.

4. Motor leads shall be permanently identified and supplied with connectors.

5. Each motor to be selected for quiet operation in accordance with NEMA standards.

B. Motor Starters:

1. Electric motor starters shall conform to requirements of IEEE, NEMA, UL, ANSI, CI and shall be suitable for the required load, duty, voltage, phase, frequency, service, and location.

2. When interlocking or automatic control of single phase motors is required, motors to be furnished with full voltage, across-the-line starters.

C. Connections:

1. All wiring to be furnished and installed under Division 16.

2. Power wiring to be furnished and installed complete from power source to motor or equipment junction box, including power wiring through the starters. Starters not factory mounted on equipment shall be furnished and installed under Division 16.

1.6 MECHANICAL REQUIREMENTS

A. Bases & Supports:

1. Provide necessary foundations, supports, pads, bases and piers required for equipment, tanks, and other equipment furnished under this Division. Submit drawings to Engineer for review before purchase, fabrication, or construction.

2. Construction of foundations, supports, pads, bases, and piers where mounted on the floor to be of the same materials and same quality of finish as the adjacent surrounding flooring material.

B. Lubrication:
1. Lubricate all equipment having moving parts and requiring lubrication according to manufacturer's recommendations prior to testing and operation. Equipment discovered to have been operated before lubrication is subject to rejection and replacement at no cost to the Owner.

C. Accessibility:

1. Be responsible for the sufficiency of the size of shafts and chases, adequate clearance in double partitions and hung ceilings for proper installation of work. Cooperate with the Contractor and other contractors whose work is in the same space. Advise the Contractor of requirements. Such spaces and clearances shall be kept to the minimum size required.

2. Locate all equipment which requires servicing in fully accessible positions. Equipment shall include but not be limited to, valves, traps, clean-outs, motors, controllers, switchgear, and drain points. Any change shall be submitted to the Owner or his authorized representative for review.

D. Connection to Existing Structures:

1. Before cutting, drilling, attaching, or any work involving building elements, coordinate work with others and Owner to avoid damage to building elements.

1.7 FIRESTOPPING

A. Firestopping shall be UL listed, and tested in accordance with ASTM E814, E119, and E84.

B. Hourly rating shall be equal to that of the assembly being penetrated.

C. Firestopping shall be compatible with pipe or equipment penetrating the assembly fire rating of the assembly must be maintained.

PART 3 - EXECUTION

1.1 ROUGH-IN

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment specifications for rough-in requirements.
1.2 MECHANICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of mechanical systems, materials, and equipment. Comply with the following requirements:

1. Coordinate mechanical systems, equipment, and materials installation with other building components.
2. Verify all dimensions by field measurements.
3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for mechanical installations.
4. Coordinate the installation of required supporting devices and sleeves to be set in structural components, as they are constructed.
5. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work.
6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
7. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
8. Install systems, materials, and equipment to conform with approved submittal data, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Engineer.
9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.
10. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.
11. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

1.3 CUTTING, PATCHING, AND FIRESTOPPING

A. General: Perform cutting and patching in accordance with the following requirements apply:
1. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

B. Perform cutting, fitting, and patching of mechanical equipment and materials required to:

1. Remove and replace defective Work.
2. Remove and replace Work not conforming to requirements of the Contract Documents.
3. Remove samples of installed Work as specified for testing.
4. Install equipment and materials in existing structures.
5. Upon written instructions from the Engineer, uncover and restore Work to provide for Engineer observation of concealed Work.

C. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including but not limited to removal of mechanical piping, heating units, plumbing fixtures and trim, and other mechanical items made obsolete by the Work.

D. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

1. Patch finished surfaces and building components using materials specified for the original installation and experienced Installers. Installers' qualifications refer to the materials and methods required for the surface and building components being patched.

E. Firestop all pipe and equipment that penetrates fire rated assembly. Follow manufacturer's instructions to provide fire rating equal to that of the assembly.

1.4 FIELD QUALITY CONTROL

A. Perform field tests as specified under other sections.

B. Arrange for local inspection authorities to inspect work performed prior to burial, closing-in behind wall and above ceiling or encase in concrete. Also arrange for final inspection of work and obtain Final Inspection Certificate before final inspection by Owner or his representative.

1.5 PAINTING
A. Materials shipped to the job site under this Division to have prime coat and standard manufacturer's finish.

1.6 TESTING & BALANCING: See Section 230593

1.7 EQUIPMENT IDENTIFICATION

A. Valves charts and tags

1. All valves shall be provided with valve tags secured to the valve stems or handles with brass chains or S hooks. Tags shall be based on Seton Nameplate Co. (Numbers and letter identification shall indicate service where valve is located. Tags shall be 1-3/8" diameter.

2. Furnish two (2) valve charts, one framed under glass and one unframed copy for record files. Charts shall indicate system designation, valve number, service, and location of valve. Use actual room names on charts.

1.8 CLEANING

A. Any part of a system stopped by foreign matter after being placed in operation, to be disconnected, cleaned, and reconnected to locate and remove obstructions. Work damaged in the course of removing obstructions will be repaired or replaced at no additional cost to the Owner.

B. Cap all pipes to protect against entrance of foreign matter.

C. Remove rubbish, debris, and excess materials. Remove oil and grease stains on floor areas.

END OF SECTION 230500
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Selective removal and disposal of existing HVAC equipment, ductwork, piping and controls as shown or otherwise indicated on the drawings.

B. Disconnect and cap existing fuel oil piping. Owner is responsible for abandonment of existing fuel oil storage tank, containment piping and leak/inventory system.

C. Retain portions of the HVAC system and/or turn over to the owner for reuse as shown or otherwise indicated on the drawings.

D. Coordinate removals with existing conditions, new work, work from other divisions and the owner.

E. The Contractor shall be responsible for removal, and unless otherwise indicated, the disposal of Mercury prior to demolition or general renovation, from all areas as where renovation or demolition operations will disturb the material. Typically Mercury is found in wall-mounted thermostats, thermometers of wall mounted thermostats, and in mercoid witches, manometers, etc. for various HVAC equipment and devices.

F. The Contractor shall be responsible for coordinating the activities of all trades to prevent the above mentioned materials from being disposed of as general waste. All costs associated with separating the above mentioned hazardous materials, including fines for illegal transport or disposal, are the responsibility of the Contractor.

G. Draining of liquid charged systems including hydronic hot/chilled water systems and removal of oils and heat transfer fluids/liquids that are potentially hazardous from site.

1.2 PROJECT CONDITIONS

A. Contractor shall coordinate any and all disruption of utilities with the owner in writing 2 weeks prior to dismantling, disconnecting or shutdown of any utility serving the building.
B. Contractor shall maintain operation of the heating system throughout the entire school/heating season – September 15 through May 10. Do not remove existing heating system if new system will not be operational at beginning of heating season.

1.3 QUALITY ASSURANCES

A. Only the best of workmanship in accordance with present standards and generally accepted construction practices will be acceptable. Any work which the workmanship is judged by the Engineer to be below the present standards or generally accepted construction practices shall be replaced with properly done work at the Contractor's expense.

1.4 SITE CONDITIONS

A. The Drawings shall be taken in a sense as diagrammatic. Locations of mechanical and electrical equipment are not intended to show every offset and fitting, nor every obstruction difficulty that may be encountered.

B. It is the responsibility of the Contractor to inspect all work areas for mercury sources, and to notify all workmen of the importance of proper handling of materials containing mercury.

C. It is the responsibility of the Contractor to inspect and identify any and all liquids requiring drainage and to understand where and how liquids may be drained.

1.5 PROJECT CONTROL

A. The Contractor shall ensure no debris from demolition or construction remains at the close of each workday and that work areas adjacent to the work area are maintained in a safe and useable condition.

B. The Contractor shall ensure that no hazardous materials are stored on site. All drums and containers used as required by these specifications shall be removed from site at the close of each workday and areas adjacent to the work area are maintained in a safe and useable condition.

1.6 SEQUENCING AND SCHEDULING

A. All piping to be completely drained prior to commencing demolition.
B. All power to equipment being removed shall be disconnected by electrical contractor prior to commencing demolition.

C. Schedule and coordinate demolition with new construction to minimize frequency and duration of work in occupied areas.

D. Coordinate with the removal of hazardous materials to ensure demolition work is executed smoothly without frequent interruptions and to minimize frequency and duration of work in occupied areas.

E. Coordinate demolition work with the owner and building occupants to minimize disruption to building occupants.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Provide all necessary materials and equipment, labor and training to perform the work of this section.

2.2 WASTE CONTAINERS

A. Waste containers shall meet EPA and local standards.

2.3 EQUIPMENT

A. Provide all tools and equipment necessary to perform the work of this section.

PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify field conditions prior to commencing work. Report discrepancies to Engineer before disturbing existing installation.

B. Beginning of demolition means installer accepts existing conditions.
C. Premature or excessive demolition or failure to retain components of the existing systems shall result in the Contractor providing replacement at no additional cost to the Owner.

D. Failure to complete new heating system in time for the opening of school means Contractor shall reinstall existing system in part or totally or provide temporary heat, as required, to maintain 70 deg F in the building. The Contractor shall perform demolition in a manner which preserves to the greatest possible extent the facility to re-establish the heating system, until the operation of the new system is a certainty for the subsequent heating season.

3.2 MERCURY

A. Mercury may be found in wall mounted thermostats, thermometers of wall mounted thermostats or in mercoyd switches, manometers, etc. for HVAC equipment. Inspect all work areas for the presence of mercury sources. Remove (intact) all equipment that contains mercury without exposing the mercury to atmosphere.

B. Place all mercury containing materials in EPA approved drums with locking tops for recycling or disposal. Pad the drums to prevent the spillage of mercury. Provide drums, EPA labels and delivery services to an EPA approved recycling facility or landfill for all steel drums that contain mercury.

C. If mercury is spilled from its enclosure onto furnishings, floors or any open area of the building, the Contractor shall hire a professional toxic spill company to come and properly remove the mercury. All costs related to a mercury spill are the responsibility of the Contractor.

3.3 DRAINING OF HYDRONIC SYSTEMS

A. Drain hydronic systems to sanitary only after inspecting drain water for undue amounts of sludge, oil or other contaminants that could be considered hazardous or toxic.

B. Hydronic systems may not be drained to storm sewer systems, storm drains, ponds, streams or to grade.

C. Any potentially hazardous liquids such as oil or chemicals, either found inside equipment or distribution systems shall be drained into EPA approved drums with
locking tops for recycling or disposal. Cover the drums to prevent spillage. Provide drums, EPA labels and delivery services to an EPA approved recycling facility or landfill.

3.4 PREPARATION

A. Drain piping as described above.

B. Disconnect electrical power as described above.

3.5 REMOVAL

A. Remove and dispose of existing mechanical materials and equipment as shown on Drawings; subject to the limitations described elsewhere in the Contract Documents.

B. Coordinate demolition of existing equipment with all other subcontractors to avoid any conflicts which may affect safety, cost to the owner, or schedule.

3.6 CLEANING AND REPAIR

A. Clean and repair existing materials and equipment which remain, or are to be reused, and are being addressed by the modifications indicated by the Contract Documents.

END OF SECTION 230510
23 05 19 – METERS AND GUAGES FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermometers.
 2. Gages.
 3. Test plugs.

B. Related Sections:
 1. Division 23 Section 23 21 13 "Hydronic Piping".

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.

B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.

B. Shop Drawings: Schedule for thermometers and gages, indicating manufacturer's number, scale range, location and application for each.

C. Product Certificates: For each type of thermometer and gage, signed by product manufacturer.

D. Pressure gauges shall be calibrated in units of pounds per square inch (psi). Thermometers shall be calibrated in units of degrees of Fahrenheit.
PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft
 2. Palmer - Wahl Instruments Inc.
 3. Trerice, H. O. Co.
 4. Weiss Instruments, Inc.
 5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

2.2 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

A. Case: Chrome-plated brass, 9 inches long.

B. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.

C. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

D. Window: Glass.

E. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

F. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.

G. Accuracy: Plus or minus 1 percent of range, or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 THERMOWELLS

A. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.4 PRESSURE GAGES – LIQUID FILLED

A. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
1. Case: Liquid-filled type, drawn steel or cast aluminum 6-inch diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Window: Glass.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.

B. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Syphons: NPS 1/4 coil of brass tubing with threaded ends.
3. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.5 TEST PLUGS

A. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.

B. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

C. Core Inserts: One or two self-sealing rubber valves.

1. Insert material for air, water, oil, or gas service at 20 to 200 deg F shall be CR.
2. Insert material for air or water service at minus 30 to plus 275 deg F shall be EPDM.

PART 3 – EXECUTION

3.1 APPLICATIONS
A. Install liquid-in-glass thermometers and pressure gauges in piping as shown on the drawings.

B. Provide the following temperature ranges for thermometers:
 1. Heating Hot Water: 30 to 240 deg F, with 2-degree scale divisions.

C. Provide the following ranges for pressure gauges:
 1. Operating pressure shall be mid-span reading, 2 psi scale divisions.

3.2 INSTALLATIONS

A. Install pressure gages where shown or otherwise indicated by the Contract Documents.

B. Install thermometers where shown or otherwise indicated by the Contract Documents. Install direct-mounting thermometers and adjust vertical and tilted positions.

C. Install thermowells with socket extending one-third of diameter of pipe and in vertical position in piping tees where thermometers are indicated.

D. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.

E. Install needle-valve and snubber fitting in piping for each pressure gage for fluids (except steam).

F. Install test plugs in tees in piping.

3.3 CONNECTIONS

A. Install gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.

3.4 ADJUSTING

A. Adjust faces of gages to proper angle for best visibility.

END OF SECTION 230519
23 05 23 - GENERAL DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to this section.

B. Requirements of the following Division 23 Sections apply to this section:
 1. "Common Work Results for HVAC"

1.2 SUMMARY

A. This Section includes general duty valves common to most mechanical piping systems.
 1. Special purpose valves are specified in individual piping system specifications.

1.3 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.

B. Product data, including body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions.

1.4 QUALITY ASSURANCE

A. Single Source Responsibility: Comply with the requirements specified in Division 1 Section "MATERIALS AND EQUIPMENT."

B. American Society of Mechanical Engineers (ASME) Compliance: Comply with ASME B31.9 for building services piping and ASME B31.1 for power piping.

C. Manufacturers Standardization Society of the Valve and Fittings Industry (MSS) Compliance: Comply with the various MSS Standard Practices referenced.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Preparation For Transport: Prepare valves for shipping as follows:

1. Ensure valves are dry and internally protected against rust and corrosion.
2. Protect valve ends against damage to threads, flange faces, and weld-end preps.
3. Set valves in best position for handling. Set globe and gate valves closed to prevent rattling; set ball and plug valves open to minimize exposure of functional surfaces; set butterfly valves closed or slightly open; and block swing check valves in either closed or open position.

B. Storage: Use the following precautions during storage:

1. Do not remove valve end protectors unless necessary for inspection; then reinstall for storage.
2. Protect valves from weather. Store valves indoors. Maintain valve temperature higher than the ambient dew point temperature. If outdoor storage is necessary, support valves off the ground or pavement in watertight enclosures.

PART 2 - PRODUCTS

1.1 MANUFACTURERS

A. Available Manufacturers:

1. Engineer approved equal

1.2 VALVE FEATURES, GENERAL

A. Valve Design: Rising stem or rising outside screw and yoke stems as indicated.

1. Nonrising stem valves may be used where indicated.

2. Chain-wheel operators for valves shall be located in a place where they will not interfere with normal access and shall be restrained at wall or column if necessary.
B. Pressure and Temperature Ratings: As required to suit system pressures and temperatures.

C. Sizes: Same size as upstream pipe, unless otherwise indicated.

D. Operators: Provide the following special operator features:
 1. Handwheels, fastened to valve stem, for valves other than quarter turn.
 2. Lever handles, on quarter-turn valves 6-inch and smaller, except for plug valves.

E. Extended Stems: Where insulation is indicated or specified, provide extended stems arranged to receive insulation.

F. Bypass and Drain Connections: Comply with MSS SP-45 bypass and drain connections.

G. End Connections: As indicated in the valve specifications.
 a. Caution: Where soldered end connections are used, use solder having a melting point below 840 deg F for gate, globe, and check valves; below 421 deg F for ball valves.

H. 2” and Larger: Shall be of the ASA 300-pound class, cast steel body, 13% Cr. Stainless steel trim, flanged at connections to equipment, butt-weld at other than equipment connections, bored to match outside diameter of pipe.

I. 1-1/2” and Smaller: Shall be of ASA 600-pound class, cast steel or forged carbon steel, socket weld pattern, 13% Cr. Stainless steel trim, bored to match inside diameter of pipe.
Do not use expansion compensators on High Temperature Water (HTW) and medium Temperature Water (MTW). Use expansion bends (calculated) for all pipe flexibility situations.

1.3 GATE VALVES

A. Gate Valves: Shall be solid wedge with stainless steel wedge or wedge faces, stainless steel seat rings. Stainless steel bonnet bushings and beveled collar on valve stem for back seating. Provide braided Teflon impregnated backing rings in a large, deep stuffing box suitable for high temperature water service. Insert at bottom of stuffing box to serve as base for packing. Packing glands shall be non-corrosive and shall have bolted gland flange with minimum of 2 eyebolts. Valves, with their bypasses, need to be installed for proper operating access.

1. Gate Valves 1-1/2” and Smaller: Provide with a minimum of 4 packing rings.

2. Gate Valves 2” and Larger: Provide with minimum of 6 packing rings.

3. Gate Valves 6” and Larger: Provide with a minimum of 6 packing rings. Provide forged steel, globe valve bypass, minimum 3/4”. Provide with tapered roller or ball bearing yokes and button-type grease gun fittings and adapters to allow charging a reservoir with valve lubricant.

4. Gate Valves 6” and Larger: Provide with a minimum of 6 packing rings. Provide forged steel, globe valve bypass, minimum 3/4”. Provide with tapered roller or ball bearing yokes. Provide with bevel gear operators, clockwise rotation to close, lamented lubricating fittings and approved grease seals.

1.4 BALL VALVES

A. Ball Valves, 1 Inch and Smaller: Rated for 150 psi saturated steam pressure, 400 psi WOG pressure; two-piece construction; with bronze body conforming to ASTM B 62, standard (or regular) port, chrome-plated brass ball, replaceable "Teflon" or "TFE" seats and seals, blowout-proof stem, and vinyl-covered steel handle. Provide solder ends for domestic hot and cold water service; threaded ends for heating hot water.

B. Ball Valves, 1-1/4-Inch to 2-Inch: Rated for 150 psi saturated steam pressure, 400 psi WOG pressure; 3-piece construction; with bronze body conforming to ASTM B 62, conventional port, chrome-plated brass ball, replaceable "Teflon" or "TFE" seats and
seals, blowout proof stem, and vinyl-covered steel handle. Provide solder ends for domestic hot and cold water service; threaded ends for heating hot water.

1.5 PLUG VALVES

A. Plug Valves, 2-Inch and Smaller: Rated at 150 psi WOG; bronze body, with straightaway pattern, square head, and threaded ends.

B. Plug Valves, 2-1/2-Inch and Larger: MSS SP-78; rated at 175 psi WOG; lubricated plug type, with semisteel body, single gland, wrench operated, and flanged ends.

1.6 GLOBE VALVES

A. Globe and Angle Valves: Shall be of the cast plug disc with bevel seat, separately screwed or pressed in disc and seat rings, long disc locknut, port opening full pipe diameter. Provide stainless steel seat ring and disc: stainless steel bonnet bushing and beveled collar for back seating. Provide braided, Teflon impregnated packing rings in a large, deep stuffing box suitable for high temperature water service. Insert at bottom of stuffing box to serve as base packing. Packing glands shall be noncorrosive and shall have bolted gland flange with minimum of 2 eyebolts. Valves with their bypasses shall be installed for proper operating access.

1. Globe & Angle Valves 1-1/2” and Smaller: Shall have minimum of 4 packing rings.

2. Globe & Angle Valves 2” and Larger: Shall have minimum of 6 packing rings. Valves shall have forged steel, globe valve bypass; button-type grease gun fitting and adapters to allow charging a reservoir and valve lubricant tapered roller or ball bearing yokes.

3. Globe & Angle Valves 6” and Larger: Shall have a minimum of 6 packing rings. Valves shall have forged steel, globe valve bypass; button-type grease gun fittings and adapters to allow charging a reservoir and valve lubricant tapered roller or ball bearing yokes.

4. Globe & Angle Valves 8” and Larger: Shall have a minimum of 6 packing rings. Valves shall have forged steel, globe valve bypass; button-type grease gun fittings and adaptors to allow charging a reservoir with valve lubricant; and tapered roller or ball bearing yokes. Shall be equipped with impactor or hammer-blow hand wheel.
5. **Acceptable manufacturers:** Crane, Edwards, Powell and Vogt.

1.7 BUTTERFLY VALVES

A. **Butterfly Valves, 2-1/2-Inch and Larger:** MSS SP-67; rated at 200 psi; cast-iron body conforming to ASTM A 126, Class B. Provide valves with field replaceable EPDM sleeve, nickel-plated ductile iron disc (except aluminum bronze disc for valves installed in condenser water piping), stainless steel stem, and EPDM O-ring stem seals. Provide lever operators with locks.

B. **Shall be Lug type, with memory stop and shall have EPDM (or better) seats.**

1.8 CHECK VALVES

E. **Check Valves:** Shall be horizontal swing check, 300 lb. cast steel, with 13% Cr. Stainless steel disc, disc face barrel type seat rings. Provide full port opening. Disc and seat shall be removable without removing vaavle from line.

1. **Acceptable manufactures:** Crane, Powell and Vogt.

2.9 GAGE AND INSTRUMENT VALVES

A. **Gage and Instrument Valves:** Shut-off valves for pressure gages and instrument isolating valves shall be of te “barstock” construction, with stainless steel body and stainless steel plug type disc integral with stem. Ends shall be I.P.S. screwed. Rating be 600 psi at 750°F. Valves shall be as manufactured by Ashcroft, Crane or Stockholm.

2.10 BLOWDOWN VALVES

A. **Blowdown Valves:** Blowdown valves for cascades, expansion drums, hot water generators shall be unit-tandem type valves, consisting of one hardseat and one seatless valve in one common steel body to conform to the ASME Boiler Code. Valves shall be rates at 400 psig and suitable for pressures to 665psig. Valves shall have welding ends and allow steel trim. Provide units as manufactured by Donald Miller, Newco or Yarnall-Waring.
2.11 NEEDLE VALVES

A. Needle Valves: For high temperature water, convectors shall be of “barstock” construction with stainless steel body and stainless steel plug type disc integral with stem. Ends be I.P.S. screwed. Rating shall be 600 psig at 750° F. Provide units as manufactured by Crane, Hammond, Powell or Stockholm.

2.12 DRAIN AND VENT VALVES

I. Drain and Vent Valves: Drain and vent valves shall be ASA 600-pound class 1 forged steel glove or angle valves, as specified above. Drain valves need to be sized and shown on the Drawings. Unless otherwise required, vent valves shall be ½” size.

2.13 CONTROL VALVES

J. Control Valves: flanged 300 lb. Cast steel, 316 stainless trim, Fisher Type ES body with pneumatic 667 actuator. Valves 1-1/2” should not require a positioner; valves larger than 1-1/2” should have a positioner. Use equal percentage contour plug. Preliminary sizing shall be based on 20-psi minimum pressure differential. Valves shall be capable of closing off against a 100-psi pressure difference.

PART 3 - EXECUTION

1.1 EXAMINATION

A. Examine valve interior through the end ports for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks used to prevent disc movement during shipping and handling.

B. Actuate valve through an open-close and close-open cycle. Examine functionally significant features, such as guides and seats made accessible by such actuation. Following examination, return the valve closure member to the shipping position.

C. Examine threads on both the valve and the mating pipe for form (i.e., out-of-round or local indentation) and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size, material composition suitable for service, and freedom from defects and damage.
E. Prior to valve installation, examine the piping for cleanliness, freedom from foreign materials, and proper alignment.

F. Replace defective valves with new valves.

1.2 VALVE ENDS SELECTION

A. Select valves with the following ends or types of pipe/tube connections:

1. Copper Tube Size, 2-Inch and Smaller: Solder ends, except provide threaded ends for heating hot water and low-pressure steam service.
2. Steel Pipe Sizes, 2-Inch and Smaller: threaded ends.

1.3 VALVE INSTALLATIONS

A. General Application: Use gate, ball, and butterfly valves as indicated.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves and unions for each fixture and item of equipment arranged to allow equipment removal without system shutdown. Unions are not required on flanged devices.

D. Install valves in horizontal piping with stem at the center of the pipe.

E. Install valves in a position to allow full stem movement.

F. Installation of Check Valves: Install for proper direction of flow as follows:

1. Swing Check Valves: Horizontal position with hinge pin level.

1.4 SOLDER CONNECTIONS

A. Cut tube square and to exact lengths.

B. Clean end of tube to depth of valve socket with steel wool, sand cloth, or a steel wire brush to a bright finish. Clean valve socket in same manner.
C. Apply proper soldering flux in an even coat to inside of valve socket and outside of tube.

D. Open gate and globe valves to full open position.

E. Remove the cap and disc holder of swing check valves having composition discs.

F. Insert tube into valve socket, making sure the end rests against the shoulder inside valve. Rotate tube or valve slightly to ensure even distribution of the flux.

G. Apply heat evenly to outside of valve around joint until solder will melt upon contact. Feed solder until it completely fills the joint around tube. Avoid hot spots or overheating valve. Once the solder starts cooling, remove excess amounts around the joint with a cloth or brush.

1.5 THREADED CONNECTIONS

A. Note the internal length of threads in valve ends, and proximity of valve internal seat or wall, to determine how far pipe should be threaded into valve.

B. Align threads at point of assembly.

C. Apply appropriate tape or thread compound to the external pipe threads (except where dry seal threading is specified).

D. Assemble joint, wrench tight. Wrench on valve shall be on the valve end into which the pipe is being threaded.

1.6 FLANGED CONNECTIONS

A. Align flange surfaces parallel.

B. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.

C. For dead-end service, butterfly valves require flanges both upstream and downstream for proper shutoff and retention.

1.7 FIELD QUALITY CONTROL
A. Tests: After piping systems have been tested and put into service, but before final adjusting and balancing, inspect valves for leaks. Adjust or replace packing to stop leaks; replace valves if leak persists.

1.8 ADJUSTING AND CLEANING

A. Cleaning: Clean mill scale, grease, and protective coatings from exterior of valves and prepare valves to receive finish painting or insulation.

1.9 VALVE PRESSURE/TEMPERATURE CLASSIFICATION SCHEDULES

VALVES, 2-INCH AND SMALLER

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>GATE</th>
<th>GLOBE</th>
<th>BALL</th>
<th>CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Hot Water</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

VALVES, 2-1/2-INCH AND LARGER

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>GATE</th>
<th>GLOBE</th>
<th>BUTTERFLY</th>
<th>CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Hot Water</td>
<td>125</td>
<td>125</td>
<td>200</td>
<td>125</td>
</tr>
</tbody>
</table>

END OF SECTION 230523
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawing and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

B. Requirements of the following Division 23 Sections apply to this section:

1. "Common Work Results for HVAC."

1.2 SUMMARY

A. This section includes the following:

1. Horizontal-piping hangers and supports.
2. Vertical-piping clamps.
3. Hanger-rod attachments.
4. Building attachments.
5. Saddles and shields.
6. Spring hangers and supports.
7. Miscellaneous materials.
8. Equipment supports.

B. Related sections: The following sections contain requirements that relate to this section:

1. Division 23 Section "HVAC Piping Insulation"

1.3 DEFINITIONS

A. Terminology used in this section is defined in MSS SP-90.

1.4 SUBMITTALS

A. General: Submit the following in accordance with conditions of contract and Division specification sections.

1. Product data, including installation instructions for each type of support and anchor. Submit pipe hanger and support schedule showing Manufacturer's
figure number, size, location, and features for each required pipe hanger and support.

2. Product certificates signed by the manufacturer of hangers and supports certifying that their products meet the specified requirements.

3. Assembly-type shop drawings for each type of support and anchor, indicating dimensions, weights, required clearances, and methods of assembly of components.

1.5 QUALITY ASSURANCE

A. Qualify welding processes and welding operators in accordance with AWS D1.1 "Structural Welding Code - Steel."

 1. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

B. Regulatory Requirements: Comply with applicable plumbing code pertaining to product materials and installation of supports and anchors.

PART 2 - PRODUCTS

1.1 MANUFACTURED UNITS

A. Hangers and support components shall be factory fabricated of materials, design, and manufacturer complying with MSS SP-58 and MSS SP-69.

 1. Pipe attachments shall have nonmetallic coating for electrolytic protection where attachments are in direct contact with copper tubing.

1.2 MISCELLANEOUS MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36.
PART 3 - EXECUTION

1.1 EXAMINATION

A. Examine states and conditions under which supports and anchors are to be installed. Do not proceed with installing until unsatisfactory conditions have been corrected.

1.2 INSTALLATION OF HANGERS AND SUPPORTS

A. General: Install hangers, supports, clamps and attachments to support piping properly from building structure; comply with MSS SP-69 and SP-89. Install supports with maximum spacings complying with Boca Plumbing and Mechanical Codes. Where piping of various sizes is supported together by trapeze hangers, space hangers for smallest pipe size or install intermediate supports for smaller diameter pipe as specified above for individual pipe hangers.

B. Install building attachments within concrete or to structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, expansion joints, and at changes in direction of piping.

C. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

D. Install hangers and supports to allow controlled movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends and similar units.

E. Load Distribution: Install hangers and supports so that piping live and dead loading and stresses from movement will not be transmitted to connected equipment.

F. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes, and so that maximum pipe deflections allowed by ASME B31.9 Building Services Piping Code is not exceeded.

G. Insulated Piping: Comply with the following installation requirements.

H. All piping with insulation shall be supplied with saddles and rigid insulation at pipe hanger locations.
1. Shields: Install protective shields MSS Type 40 on cold water piping that has vapor barrier. Shields shall span an arc of 180 degrees and shall have dimensions in inches not less than the following:

<table>
<thead>
<tr>
<th>NPS</th>
<th>LENGTH</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 THROUGH 3-1/2</td>
<td>12</td>
<td>0.048</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>0.060</td>
</tr>
</tbody>
</table>

2. Insert material shall be at least as long as the protective shield.

3. Thermal Hanger Shields: Install where indicated, with insulation of same thickness as piping.

1.3 METAL FABRICATION

A. Cut, drill, and fit miscellaneous metal fabrications for pipe anchors and equipment supports. Install and align fabricated anchors in indicated locations.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 for procedures of manual shielded metal-arc welding, appearance and quality of welds made, methods used in correcting welding work, and the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so that no roughness shows after finishing, and so that contours welded surfaces to match adjacent contours.

1.4 ADJUSTING

A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

END OF SECTION 230529
23 05 48 - VIBRATION/SEISMIC CONTROLS FOR HVAC AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. The work of this section includes but is not limited to the following:

1. Vibration isolation elements.
2. Equipment isolation bases.
3. Piping flexible connections.
4. Seismic restraints for isolated and non-isolated mechanical and electrical items.

1.2 REFERENCES

B. NFPA 13 - Installation of Sprinkler Systems.
D. Mason Industries, Inc. Seismic Restraint Guidelines

1.3 QUALIFICATIONS

A. Qualifications: Only firms having five years experience designing and manufacturing seismic devices shall be capable of work in this specification.

1.4 SUBMITTALS

A. The submittal material shall include copies of descriptive data for all products and materials including but not limited to the following:

1. Descriptive Data:

 a. Catalog cuts and data sheets.
 b. An itemized list showing the items to be isolated and/or seismically restrained, product type or model number to be used and loading and deflection data.
 c. Seismic restraint calculations.
d. (Structural or civil engineer’s State of Connecticut professional engineer’s seal verifying design and calculations for seismic restraining system used.)

2. Shop Drawings:

 a. Drawings showing equipment base construction for each machine, including dimensions, structural member sizes, and support point locations.
 b. Drawings showing methods of suspension, support guides for conduit, piping and ductwork.
 c. Drawings showing methods for isolation of conduits, pipes and ductwork penetrating walls and floor slabs.
 d. Concrete and steel details for bases including anchor bolt locations.
 e. Number location of seismic restraints and anchors for each piece of equipment.
 f. Specific details of restraints including anchor bolts for mounting and maximum loading at each location, for each piece of equipment and/or pipe and duct

1.5 GENERAL (MANUFACTURER) RESPONSIBILITIES

A. Design Builder shall have the following responsibilities:

 1. Determine vibration isolation and seismic restraint sizes and locations per specifications.
 2. Provide and install isolation systems and seismic restraints as scheduled or specified.
 4. Provide installation instructions, drawings and field supervision to assure proper installation and performance.
 5. Substitution of “Internally Isolated” mechanical equipment in lieu of the specified isolation of this section may be acceptable provided that all specified deflections and stamped seismic calculations are supplied by the equipment manufacturer.

1.6 PROJECT RECORD DOCUMENTS

A. Record actual locations and installation of vibration isolators and seismic restraints including attachment points.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Mason Industries Inc. models listed below.

2.2 SEISMIC RESTRAINT TYPES

A. General: Installations shall be designed to safely accept external forces of one-half “G” load in any direction for all rigidly supported equipment without failure and permanent displacement of the equipment. Life safety equipment such as (fire pumps, sprinkler piping and emergency generators) shall be capable of safely accepting external forces up to one “G” load in any direction without permanent displacement of the supported equipment. Seismic restraints shall not short circuit vibration isolation systems or transmit objectionable vibration or noise.

B. Type II (snubber): Each corner of side shall incorporate a seismic restraint having a minimum 5/8” thick resilient pad limit stops working in all directions. Restraints shall be made of plate, structural members, or square metal tubing concentric within a welded assembly incorporated resilient pads. Angle bumpers are not acceptable. System to be field bolted or welded to a deck with 1 G acceleration capability. Mason Type Z-1011 and Z-1225.

C. Type III (cable braces): Metal cable type with approved end fastening devices to equipment and structure. System to be field bolted to deck or overhead structural members using two sided beam clamps to steel or appropriately designed insert for concrete. All parts of system including cables, clamps, excluding fastenings are to be single vendor furnished to assure seismic compliance. Mason Type SCB.

D. Type V: Non-isolated equipment to be field bolted or welded (powder shots not acceptable) to resist seismic forces unless under 100 lb. Shear force required. Mason Type SAS, SAB.

2.3 VIBRATION ISOLATION - GENERAL

A. Vibration Isolation shall control excessive noise and vibration in the building due to the operation of machinery or equipment, and/or due to interconnected piping, ductwork, or conduit. (The installation of all vibration isolation units, and associated hangers and bases, shall be under the direct supervision of the vibration isolation
manufacturer’s representative.)

B. All vibration isolators shall have either known non-deflected heights or calibration markings so that, after adjustment, when carrying their load, the deflection can be verified.

C. All isolators shall operate in the linear portion of their load versus deflection curve. Load versus deflection curves shall be furnished by the manufacturer and must be linear over a deflection range of not less than 50% above the design deflection.

D. The theoretical vertical natural frequency for each support point, bases upon load per isolator and isolator stiffness, shall not differ from the design objectives for the equipment as a whole by more than +/- 10%.

E. All neoprene mountings shall have a Shore hardness of 30 to 60 +/- 5, after minimum aging of 20 days or corresponding oven aging.

2.4 VIBRATION ISOLATOR TYPES:

A. Type E: Elastomer hanger rod isolators:

1. Molded unit type neoprene element with projecting bushing lining rod clearance hole.
2. Neoprene element to be minimum 1-3/4” thick.
3. Steel retainer box encasing neoprene mounting.
4. Clearance between mounting hanger rod and neoprene bushing shall be minimum of 1/8”.
5. Minimum static deflection of 0.35”.
6. When used in conjunction with seismic bracing, seismic restraint Type III shall be installed.
7. Mason Type HD.

B. Type F: Combination spring/elastomer hanger rod isolators:

2. Characteristics of spring and neoprene as described in Type A and Type E isolators.
3. When used in conjunction with seismic bracing, seismic restraint Type III shall
be installed.
4. Mason Type DNHS.

C. Type G: Pad type elastomer mountings:

1. ¾” Minimum thickness.
2. 50 PSI maximum loading.
3. Waffled design.
4. Deflection per pad thickness.
5. Galvanized steel plate between multiple layers or pad thickness.
6. Suitable bearing plate to distribute load.
7. Mason Type Super W.

D. Type H: Grommet type elastomer bushings:

1. One piece molded bridge bearing neoprene.
2. Washer / bushing shall surround the anchor bolt.
3. Flat washer face to avoid metal to metal contact.
4. Mason type HG.

E. Type K: Pipe Anchors: All-directional acoustical pipe anchor consisting of a telescopic arrangement of two sizes of steel tubing separated by a minimum one-half inch thickness of heavy-duty neoprene and duck or neoprene isolation material. Vertical restraints shall be provided by similar material arranged to prevent vertical travel in either direction.

Allowable loads on the isolation material travel in either direction. Allowable loads on the isolation material shall not exceed 500 psi and the design shall be balanced for equal resistance in any direction. Isolation to be bolted or welded depending on structure. Mason Type ADA.

2.5 EQUIPMENT BASES

A. Integral Structural Steel Base, Type B-1:

1. Reinforced as required to prevent base flexure at start-up and misalignment of drive and driven units. Centrifugal fan bases complete with motor slide rails.
2. Drills for drive and driven unit mounting template.
3. Must be utilized with seismic restraint Type I, II, or IV.
4. Mason Type M, WFB.
B. Concrete Inertia Base, Type B-2:

1. Vibration isolator manufacturer shall furnish rectangular structural concrete forms for floating foundation. Bases for split case pumps shall be large enough to provide support for suction and discharge base ells. The base depth shall be a minimum of 1/10 of the longest dimension of the base but not less than 6” or greater than 14”. Forms shall include minimum concrete reinforcement consisting of ½” bars or angles welded in place in 6” centers running both ways in a layer 1-1/2” above the bottom and a top layer of reinforcing steel as above for all bases exceeding 120” in one direction. Isolators shall be set into pocket housings which are an integral part of the base construction and set at the proper height to maintain a 1” clearance below the base. Bases shall be furnished with templates and anchor bolt sleeves as part of this system.

2. Must be utilized with seismic restraint Type I, II or IV.

3. Mason Type K, BMK.

C. Isolated Curb, Type B-3:

1. Curb mounted rooftop equipment shall be mounted on structural spring isolation curbs that directly sit on roof construction and are flashed and waterproofed into roof’s membrane waterproofing system. Manufacturer’s curb shall not be used.

2. All spring locations shall have removable waterproof covers to allow for spring adjustment and/or removal.

3. Curbs shall have a provision for an optional sound barrier kit.

4. All spring mounts shall be as Isolator Type A.

5. Curbs shall have static deflection as detailed on the isolation / seismic schedule.

6. Curbs shall be rated for 1 G of acceleration and shall be wind restrained for 110 mph wind loads.

7. Curbs shall have California OSHPD approval.

8. Sound barrier package, SBC-3. Two layers of waterproof sheetrock shall be supplied and installed by Design Builder.

9. Curbs to be welded to building steel or bolted to concrete decks to attain acceleration criteria.

10. Mason Type RSC.

D. Roof Isolation Rail System, Type B-4: Rooftop fans, condensing units, exterior ducted handling units, etc., shall be installed on continuous equipment support piers which
shall combine a regular equipment support and an isolation system into one assembly. The system shall be designed with 2” or 3” static deflection steel springs which are both adjustable, removable, and interchangeable after equipment has been installed. The system shall maintain the same operating and installed height both with and without the equipment load and shall be fully restrained during wind load conditions allowing no more than ¼” motion in any direction. The isolation pier shall be designed to accept the membrane waterproofing. The entire assembly shall be cold spray galvanized or plastic coated. System design permits minimum 1 G of acceleration. Curbs to be welded to building steel or bolted to concrete decks to attain acceleration criteria. Mason Industries Model RSR.

E. Non-isolated seismic roof curbs, Type B-5:

1. Curb sections shall be either structural steel channels or 12GA. sheet metal
2. Field assembled joints shall include a minimum of 2 rows of three bolts at each connection.
3. Curb to have a factory installed wood nailer.
4. System to be bolted or welded to deck.
5. System shall be designed for minimum 1/2G. of acceleration.
6. Mason Type RRC.

F. Dunnage steel mounted rooftop equipment. Type B-6:

1. Rooftop equipment shall be mounted on structural tubular steel boxed rail assembly.
2. Tubular steel rails shall be attached to seismic rated spring vibration isolators.
3. Isolators shall be bolted or welded to dunnage steel to meet seismic criteria of 1/2G acceleration.
4. Entire assembly shall be hot dipped galvanized.
5. Mason Type RSLR.

2.6 FLEXIBLE CONNECTORS

A. Elastomer Type FC-1:

1. Manufactured of Kevlar reinforcement and EPDM, both molded and cured with hydraulic presses.
2. Straight connectors to have two spheres reinforced with a molded-in external ductile iron ring between spheres.
3. Elbows shall be long radius type.
4. Rated 250 psi at 170 degrees F. Dropping in a straight line to 170 psi at 250 degrees F for sizes 1-1/2” to 12” elbows. Elbows shall be rated no less than 90% of straight connections.

5. Sizes 10” to 12” to employ control cables with neoprene end fittings isolation from anchor plates by means of ½” bridge bearing neoprene bushings.

6. Minimum safety factor, 4:1 at maximum pressure ratings.

7. Systems bolted to victaulic type couplings or gate, butterfly, or check valves to have a minimum 5/8” flange spacer installed between conductor and coupling on flange.

8. Submittals to include test reports.

9. Mason Type Safeflex SFDEJ.

B. Flexible Stainless Hose, Type FC-2:

1. Type 321 stainless steel braided flexible metal hose.

2. 2” pipe size and smaller: threaded carbon steel fittings.

3. 1-1/2” pipe size and larger: Class 150 carbon steel flanges.

4. Suitable for operating pressure with 4:1 minimum safety factor.

5. Flexible Metal Hose Company type DFC and MFC.

C. Unbraided Exhaust Hose, Type FC-3:

1. Low pressure stainless steel annularly corrugated.

2. Fitted with flanged ends.

3. Maximum temperature 1,500 degrees F.

4. Mason Type SDL-RF.

PART 3 - EXECUTION

3.1 GENERAL SEISMIC RESTRAINT REQUIREMENTS

A. Install seismic restraints in accordance with manufacturers recommendations.

B. Seismic restraining system Type III: Install taut for non-isolated equipment and slack with ½” cable deflection for isolated systems.

C. Seismically restrain all piping, conduit and ductwork with Type III or Type V seismic restraint in accordance with guidelines outlined below. Restraints which are to be used in conjunction with vibration isolators shall be Type III.
1. Carbon steel piping shall be braced at maximum 40’ intervals and at turns of more than 4’. Lateral bracing at maximum 80’ intervals. No-hub piping to be braced at maximum 20” intervals or maximum 40" using 1/2 G acceleration rated couplings.

2. Ductwork shall be braced at maximum 30’ and at every turn and duct run end. Lateral bracing at maximum 60’.

D. Equipment mounted on housekeeping pads: Pads shall be properly doweled or expansion shielded to deck to meet acceleration criteria. Mason Type HPA.

E. Seismic Restraints are not required for the following:

1. Piping in boiler or mechanical rooms or penthouses less than 1-1/4” O.D. except gas piping and fire protection piping.
2. Piping in other areas less than 2-1/2” O.D., except gas piping and fire protection piping.
3. Ducts which have a cross sectional area less than 6 square feet.
4. All piping suspended by individual hanger 12” or less in length from the top of the pipe to the bottom of the support for the hanger, except gas piping and fire protection piping.
5. Fire protection feed mains and cross mains suspended by individual hangers 6” or less in length from the top of the pipe to the bottom of the support for the hanger.
6. All top supported ducts suspended by hangers 12” or less in length from the top of the duct to the bottom of the support for the hanger.
7. Electrical conduit less than 1-1/2” I.D.

F. (Chimneys and stacks passing through floors are to be bolted at each floor level or secured above and below each floor with riser clamps.)

G. (Chimneys and stacks running horizontally to be braced every 30’ with Type III restraining system.)

H. For overhead supported equipment, over stress of the building structure must not occur. Bracing can occur from:

1. Flanges to structural beams.
2. Upper or lower truss chords in bar joist construction at panel points.
3. Cast-in-place inserts or drilled and shielded inserts in concrete structures.
I. Building seismic expansion joints: Install hinged joints at piping crossing expansion joints and anchor the piping either side per the detail provided on the contract drawings. Anchors on each end are to be capable of accepting 1.5 times the operating pressure multiplied by the projected area of the pipe. Offset shall be accomplished by the annular motion of a double sphere connector (TYPE FC-1) bolted to each end of an intermediate steel pipe. Bracket each joint with hinged steel connections. Hinges shall have a pin / slot assembly on both sides. The completed assembly shall be Mason Type Safeflex SFDEJ-HE.

3.2 GENERAL VIBRATION ISOLATION REQUIREMENTS

A. Install isolators in accordance with manufacturer’s recommendations. Vibration isolators shall not cause any change of position resulting in stresses or misalignment.

B. Mechanical equipment shall be isolated from the building structure by means of noise and vibration isolators.

C. Each fan and motor assembly shall be supported on a single structural steel frame (where noted on the isolation and seismic schedule). Flexible duct connections shall be provided at inlet and discharge ducts.

D. Provide pairs of horizontal limit springs (Thrust restraints) on fans with more than 6.0 inch static pressure, and on hanger supported, horizontally mounted axial fans where indicated.

E. Provide resiliently mounted equipment, piping, and ductwork with seismic snubbers. Each inertia base shall have minimum of four seismic snubbers located close to isolators. Snub equipment designated for post disaster use to 0.05 inch (1.5 mm) maximum clearance. Other snubbers shall have clearance between 0.15 inch (4 mm) and 0.25 inch (7 mm).

F. Installation of piping vibration isolators:

1. All piping, except fire protection standpipe systems, is included under this section.
2. Vibration isolators shall be installed on all piping outside the shafts as follows:
 a. Piping in boiler or mechanical rooms.
 b. Piping where exposed on roof.
c. Piping connected to rotating equipment and pressure reducing stations.

3. Horizontal suspended pipe 2” and smaller and all steam piping shall be suspended by Type E isolator with a minimum 3/8” deflection. Water pipe larger than 2” shall be supported by Type C or Type F isolator with minimum 1” whichever is greater.

4. Horizontal pipe floor supported at slab shall be supported via Type A with a minimum static deflection of 1” or same deflection as isolated equipment to which pipe connects, whichever is greater.

5. Vertical riser pipe supports under 2” diameter shall utilize Type G isolation pads.

6. Vertical riser guides, if required, shall avoid direct contact of piping with building.

7. Pipe anchors or guides, where required, shall utilize resilient pipe anchors, Mason Industries Type ADA, or equivalent, to avoid direct contact of piping with building.

8. Isolated piping which requires sway bracing shall utilize two neoprene elements, Type G to accommodate tension and compression forces.

9. Pipe extension and alignment connectors: Provide connectors at riser takeoffs, cooling and heating coils, and elsewhere as required, to accommodate thermal expansion and misalignment.

G. Pipe Isolation Schedule

<table>
<thead>
<tr>
<th>PIPE SIZE - INCH (MM)</th>
<th>ISOLATED DISTANCE FROM EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25)</td>
<td>120 diameters (3.0m)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>90 diameters (4.5m)</td>
</tr>
<tr>
<td>3 (80)</td>
<td>80 diameters (6.0m)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>75 diameters (7.5m)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>60 diameters (9.0m)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>60 diameters (12.0m)</td>
</tr>
<tr>
<td>10 (250)</td>
<td>54 diameters (13.5m)</td>
</tr>
<tr>
<td>12 (300)</td>
<td>50 diameters (15.0m)</td>
</tr>
<tr>
<td>16 (400)</td>
<td>45 diameters (18.0m)</td>
</tr>
<tr>
<td>24 (600)</td>
<td>38 diameters (23.0m)</td>
</tr>
</tbody>
</table>

3.3 EQUIPMENT INSTALLATION

A. Requirements for installation on concrete inertia bases shall be as follows:
1. Minimum operating clearance between concrete inertia and base and housekeeping pad or floor shall be 1”.
2. The equipment structural steel or concrete inertia base shall be placed in position and supported temporarily by blocks or shims, as appropriate, prior to the installation of the machine or isolators.
3. The isolators shall be installed without raising the machine and frame assembly.
4. After the entire installation is complete and under full operational load, the isolators shall be adjusted so that the load is transferred from the blocks to the isolators. When all isolators are properly adjusted, the blocks or shims shall be barely free and shall be removed.
5. Install equipment with flexibility in wiring connection.
6. Verify that all installed isolator and mounting systems permit equipment motion in all directions. Adjust or provide additional resilient restraints to flexibly limit start-up equipment lateral motion to ¼”.
7. Prior to start-up, clean out all foreign matter between bases and equipment. Verify that there are no isolation short circuits in the base, isolators, or seismic restraints.

3.4 INSPECTION

A. Upon completion of the installation of all vibration isolation and seismic restraints, the manufacturer’s local representative shall visit the project jobsite, visibly inspect all installations and report, in writing, any and all deficiencies from the specifications. Any additional corrective measures required to put the system in total compliance shall be the responsibility of the installing Design Builder.
Vibration Isolation and Seismic Restraint Schedule

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>BASE</th>
<th>ISOLATOR</th>
<th>SEISMIC RESTRAINT</th>
<th>DEFLECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1,2,3</td>
<td>B-2</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL DOMESTIC WATER HEATERS</td>
<td></td>
<td></td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>ALL INLINE PUMPS</td>
<td></td>
<td>E</td>
<td>III</td>
<td>.35</td>
</tr>
<tr>
<td>ALL EXPANSION TANKS</td>
<td>B-2</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL BASEMOUNTED PUMPS</td>
<td>B-2</td>
<td>A/FC-1</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>ALL UNIT HEATERS</td>
<td></td>
<td>E</td>
<td>III</td>
<td>.35</td>
</tr>
</tbody>
</table>

END OF SECTION 230548
PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. Identification devices specified in this section include the following:

5. Plastic Duct Markers.
6. Valve Tags.
7. Valve Schedule Frames.
10. Plasticized Tags.

B. Mechanical identification furnished as part of factory-fabricated equipment, is specified as part of equipment assembly in other Division-15 sections.

C. Refer to other Division-23 sections for identification requirements at central-station mechanical control center; not work of this section.

D. Refer to Division-26 sections for identification requirements of electrical work; not work of this section.

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of identification devices of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. ANSI Standards: Comply with ANSI A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

1.3 SUBMITTALS:
A. Product Data: Submit manufacturer's technical product data and installation instructions for each identification material and device required.

B. Samples: Submit samples of each color, lettering style and other graphic representation required for each identification material or system.

C. Schedules: Submit valve schedule for each piping system, typewritten and reproduced on 8-1/2" x 11" bond paper. Tabulate valve number, piping system, system abbreviation (as shown on tag), location of valve (room or space), and variations for identification (if any). Mark valves which are intended for emergency shut-off and similar special uses, by special "flags", in margin of schedule. In addition to mounted copies, furnish extra copies for Maintenance Manuals as specified in Division 1.

D. Maintenance Data: Include product data and schedules in maintenance manuals; in accordance with requirements of Division 1.

PART 2 - PRODUCTS

1.1 ACCEPTABLE MANUFACTURERS:

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering mechanical identification materials:

1. Engineer approved equal.

1.2 MECHANICAL IDENTIFICATION MATERIALS:

A. General: Provide manufacturer's standard products of categories and types required for each application as referenced in other Division-15 sections. Where more than single type is specified for application, selection is Installer's option, but provide single selection for each product category.

1.3 PAINTED IDENTIFICATION MATERIALS:

A. Stencils: Standard fiberboard stencils, prepared for required applications with letter sizes generally complying with recommendations of ANSI A13.1 for piping and similar applications, but not less than 1-1/4" high letters for ductwork and not less than 3/4" high letters for access door signs and similar operational instructions.
B. Stencil Paint: Standard exterior type stenciling enamel; black, except as otherwise indicated; either brushing grade or pressurized spray-can form and grade.

C. Identification Paint: Standard identification enamel of colors indicated or, if not otherwise indicated for piping systems, comply with ANSI A13.1 for colors.

1.4 PLASTIC PIPE MARKERS:

A. Snap-On Type: Provide manufacturer’s standard pre-printed, semi-rigid snap-on, color-coded pipe markers, complying with ANSI A13.1

B. Pressure-Sensitive Type: Provide manufacturer’s standard pre-printed, permanent adhesive, color-coded, pressure-sensitive vinyl pipe markers, complying with ANSI A13.1

C. Insulation: Furnish 1” thick molded fiberglass insulation with jacket for each plastic pipe marker to be installed on uninsulated pipes subjected to fluid temperatures of 125 degrees F (52 degrees C) or greater. Cut length to extend 2” beyond each end of plastic pipe marker.

D. Small Pipes: For external diameters less than 6” (including insulation if any), provide full-band pipe markers, extending 360 degrees around pipe at each location, fastened by one of the following methods:

 1. Snap-on application of pre-tensioned semi-rigid plastic pipe marker.
 2. Adhesive lap joint in pipe marker overlap.
 3. Laminated or bonded application of pipe marker to pipe (or insulation).
 4. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 3/4” wide; full circle at both ends of pipe marker, tape lapped 1-1/2”.

E. Large Pipes: For external diameters of 6” and larger (including insulation if any), provide either full-band or strip-type pipe markers, but not narrower than 3 times letter height (and of required length), fastened by one of the following methods:

 1. Laminated or bonded application of pipe marker to pipe (or insulation).
 2. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 1-1/2” wide; full circle at both ends of pipe marker, tape lapped 3”.
 3. Strapped-to-pipe (or insulation) application of semi-rigid type, with manufacturer’s standard stainless steel bands.
F. Lettering: Manufacturer's standard pre-printed nomenclature which best describes piping system in each instance, as selected by Owner/Owner’s Representative in cases of variance with names as shown or specified.

G. Lettering: Comply with piping system nomenclature as specified, scheduled or shown, and abbreviate only as necessary for each application length.

1. Arrows: Print each pipe marker with arrows indicating direction of flow, either integrally with piping system service lettering (to accommodate both directions), or as a separate unit of plastic.

1.5 PLASTIC TAPE:

A. General: Provide manufacturer's standard color-coded pressure-sensitive (self-adhesive) vinyl tape, not less than 3 mils thick.

B. Width: Provide 1-1/2" wide tape markers on pipes with outside diameters (including insulation, if any) of less than 6", 2-1/2" wide tape for larger pipes.

C. Color: Comply with ANSI A13.1, except where another color selection is indicated.

D. Any existing tape, which is encountered, removed or disturbed during excavation, shall be replaced in conformance with items above and to the approval of the Construction Administrator prior to backfilling.

1.6 UNDERGROUND-TYPE PLASTIC LINE MARKER:

A. General: Manufacturer's standard permanent, bright-colored, continuous-printed plastic tape, intended for direct-burial service; not less than 6" wide x 4 mils thick. Provide tape with printing which most accurately indicates the type of service of buried pipe.

1. Provide multi-ply tape consisting of solid aluminum foil core between 2-layers of plastic tape.

1.7 VALVE TAGS:

A. Brass Valve Tags: Provide 19-gage polished brass valve tags with stamp-engraved piping system abbreviation in 1/4" high letters and sequenced valve numbers 1/2" high, and with 5/32" hole for fastener.
1. Provide 1-1/2" diameter tags, except as otherwise indicated.
2. Provide size and shape as specified or scheduled for each piping system.
3. Fill tag engraving with black enamel.

B. Plastic Laminate Valve Tags: Provide manufacturer's standard 3/32" thick engraved plastic laminate valve tags, with piping system abbreviation in 1/4" high letters and sequenced valve numbers 1/2" high, and with 5/32" hole for fastener.

1. Provide 1-1/2" sq. black tags with white lettering, except as otherwise indicated.
2. Provide size, shape and color combination as specified or scheduled for each piping system.

C. Plastic Valve Tags: Provide manufacturer's standard solid plastic valve tags with printed enamel lettering, with piping system abbreviation in approximately 3/16" high letters and sequenced valve numbers approximately 3/8" high, and with 5/32" hole for fastener.

1. Provide 1-1/8" sq. white tags with black lettering.
2. Provide size, shape and color combination as specified or scheduled for each piping system.

D. Valve Tag Fasteners: Provide manufacturer's standard solid brass chain (wire link or beaded type), or solid brass S-hooks of the sizes required for proper attachment of tags to valves, and manufactured specifically for that purpose.

E. Access Panel Markers: Provide manufacturer's standard 1/16" thick engraved plastic laminate access panel markers, with abbreviations and numbers corresponding to concealed valve. Include 1/8" center hole to allow attachment.

1.8 VALVE SCHEDULE FRAMES:

A. General: For each page of valve schedule, provide glazed display frame, with screws for removable mounting on masonry walls. Provide frames of finished hardwood or extruded aluminum, with SSB-grade sheet glass.

1.9 ENGRAVED PLASTIC-LAMINATE SIGNS:

A. General: Provide engraving stock melamine plastic laminate, complying with FS L-P-387, in the sizes and thicknesses indicated, engraved with engraver's standard letter style of the sizes and wording indicated, black with white core (letter color)
except as otherwise indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.

B. Thickness: 1/16", except as otherwise indicated.

C. Thickness: 1/8", except as otherwise indicated.

D. Thickness: 1/16" for units up to 20 sq. in. or 8" length; 1/8" for larger units.

E. Fasteners: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate the substrate.

1.10 PLASTIC EQUIPMENT MARKERS:

A. General: Provide manufacturer's standard laminated plastic, color coded equipment markers. Conform to the following color code:

1. Yellow: Heating equipment and components.
2. Blue: Equipment and components that do not meet any of the above criteria.
3. For hazardous equipment, use colors and designs recommended by ANSI A13.1.

B. Nomenclature: Include the following, matching terminology on schedules as closely as possible:

1. Name and plan number.
2. Equipment service.
3. Design capacity.
4. Other design parameters such as pressure drop, entering and leaving conditions, rpm, etc.

C. Size: Provide approximate 2-1/2" x 4" markers for control devices, dampers, and valves; and 4-1/2" x 6" for equipment.

1.11 PLASTICIZED TAGS:

A. General: Manufacturer's standard pre-printed or partially pre- printed accident-prevention tags, of plasticized card stock with matt finish suitable for writing, approximately 3-1/4" x 5-5/8", with brass grommets and wire fasteners, and with appropriate pre-printed wording including large-size primary wording (as examples; DANGER, CAUTION, DO NOT OPERATE).
1.12 LETTERING AND GRAPHICS:

A. General: Coordinate names, abbreviations and other designations used in mechanical identification work, with corresponding designations shown, specified or scheduled. Provide numbers, lettering and wording as indicated or, if not otherwise indicated, as recommended by manufacturers or as required for proper identification and operation/maintenance of mechanical systems and equipment.

1. Multiple Systems: Where multiple systems of same generic name are shown and specified, provide identification which indicates individual system number as well as service (as examples; Boiler No. 3, Air Supply No. 1H, Standpipe F12).

PART 3 - EXECUTION

1.1 GENERAL INSTALLATION REQUIREMENTS:

A. Coordination: Where identification is to be applied to surfaces which require insulation, painting or other covering or finish, including valve tags in finished mechanical spaces, install identification after completion of covering and painting. Install identification prior to installation of acoustical ceilings and similar removable concealment.

1.2 DUCTWORK IDENTIFICATION:

A. General: Identify air supply, return, exhaust, intake and relief ductwork with duct markers; or provide stenciled signs and arrows, showing ductwork service and direction of flow, in black or white (whichever provides most contrast with ductwork color).

B. Location: In each space where ductwork is exposed, or concealed only by removable ceiling system, locate signs near points where ductwork originates or continues into concealed enclosures (shaft, underground or similar concealment), and at 50' spacings along exposed runs.

C. Access Doors: Provide duct markers or stenciled signs on each access door in ductwork and housings, indicating purpose of access (to what equipment) and other maintenance and operating instructions, and appropriate safety and procedural information.
D. Concealed Doors: Where access doors are concealed above acoustical ceilings or similar concealment, plasticized tags may be installed for identification in lieu of specified signs, at Installer’s option.

1.3 PIPING SYSTEM IDENTIFICATION:

A. General: Install pipe markers of one of the following types on each system indicated to receive identification, and include arrows to show normal direction of flow:

1. Stenciled markers, including color-coded background band or rectangle, and contrasting lettering of black or white. Extend color band or rectangle 2" beyond ends of lettering.
2. Stenciled markers, with lettering color complying with ANSI A13.1.
3. Plastic pipe markers, with application system as indicated under "Materials" in this section. Install on pipe insulation segment where required for hot non-insulated pipes.
4. Stenciled markers, black or white for best contrast, wherever continuous color-coded painting of piping is provided.

B. Locate pipe markers and color bands as follows wherever piping is exposed to view in occupied spaces, machine rooms, accessible maintenance spaces (shafts, tunnels, plenums) and exterior non-concealed locations.

1. Near each valve and control device.
2. Near each branch, excluding short take-offs for fixtures and terminal units; mark each pipe at branch, where there could be question of flow pattern.
3. Near locations where pipes pass through walls or floors/ceilings, or enter non-accessible enclosures.
4. At access doors, manholes and similar access points which permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced intermediately at maximum spacing of 50’ along each piping run, except reduce spacing to 25’ in congested areas of piping and equipment.
7. On piping above removable acoustical ceilings, except omit intermediately spaced markers.

1.4 VALVE IDENTIFICATION:

B. General: Provide valve tag on every valve, cock and control device in each piping system; exclude check valves, valves within factory-fabricated equipment units, plumbing fixture faucets, convenience and lawn-watering hose bibs, and shut-off
valves at plumbing fixtures, HVAC terminal devices and similar rough-in connections of end-use fixtures and units. List each tagged valve in valve schedule for each piping system.

1. Tagging Schedule: Comply with requirements of "Valve Tagging Schedule" at end of this section.

C. Mount valve schedule frames and schedules in machine rooms where indicated or, if not otherwise indicated, where directed by Architect/Engineer.

1. Where more than one major machine room is shown for project, install mounted valve schedule in each major machine room, and repeat only main valves which are to be operated in conjunction with operations of more than single machine room.

1.5 MECHANICAL EQUIPMENT IDENTIFICATION:

A. General: Install engraved plastic laminate sign or plastic equipment marker on or near each major item of mechanical equipment and each operational device, as specified herein if not otherwise specified for each item or device. Provide signs for the following general categories of equipment and operational devices:

1. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
2. Meters, gages, thermometers and similar units.
3. Fans, blowers, primary balancing dampers.
4. trainers, filters and similar equipment.

B. Optional Sign Types: Where lettering larger than 1" height is needed for proper identification, because of distance from normal location of required identification, stenciled signs may be provided in lieu of engraved plastic, at Installer's option.

C. Lettering Size: Minimum 1/4" high lettering for name of unit where viewing distance is less than 2'-0", 1/2" high for distances up to 6'-0", and proportionately larger lettering for greater distances. Provide secondary lettering of 2/3 to 3/4 of size of the principal lettering.

D. Text of Signs: In addition to name of identified unit, provide lettering to distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.
E. Optional Use of Plasticized Tags: At Installer's option, where equipment to be identified is concealed above acoustical ceilings or similar concealment, plasticized tags may be installed within concealed space to reduce amount of text in exposed sign (outside concealment).

1. Operational valves and similar minor equipment items located in non-occupied spaces (including machine rooms) may, at Installer's option, be identified by installation of plasticized tags in lieu of engraved plastic signs.

1.4 ADJUSTING AND CLEANING:

A. Adjusting: Relocate any mechanical identification device which has become visually blocked by work of this division or other divisions.

B. Cleaning: Clean face of identification devices, and glass frames of valve charts.

1.5 EXTRA STOCK:

A. Furnish minimum of 5% extra stock of each mechanical identification material required, including additional numbered valve tags (not less than 3) for each piping system, additional piping system identification markers, and additional plastic laminate engraving blanks of assorted sizes.

1. Where stenciled markers are provided, clean and retain stencils after completion of stenciling and include used stencils in extra stock, along with required stock of stenciling paints and applicators.

END OF SECTION 230553
23 05 93 - TESTING, ADJUSTING AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:
 A. Drawings and general provisions of Contract, including General and Supplementary Conditions apply to work of this section.

1.2 SUMMARY:
 A. This Section specifies the requirements and procedures total mechanical systems testing, adjusting, and balancing. Requirements include measurement and establishment of the fluid quantities of the mechanical systems as required to meet design specifications, and recording and reporting the results.

 B. Test, adjust, and balance the following mechanical systems:
 1. Provide pre-balance readings/report on all existing hydronic pumps.
 2. Provide post-balance readings/report on all proposed hydronic systems;
 4. Verify temperature control system operation.

1.3 DEFINITIONS:
 A. Systems testing, adjusting, and balancing is the process of checking and adjusting all the building environmental systems to produce the design objectives. It includes:
 1. the balance of water distribution;
 2. adjustment of total system to provide design quantities;
 3. electrical measurement;
 4. verification of performance of all equipment and automatic controls;
 5. sound and vibration measurement.

 B. Test: To determine quantitative performance of equipment.

 C. Adjust: To regulate the specified fluid flow rate and air patterns at the terminal equipment (e.g., reduce fan speed, throttling).

 D. Balance: To proportion flows within the distribution system (submains, branches, and terminals) according to specified design quantities.
E. Procedure: Standardized approach and execution of sequence of work operations to yield reproducible results.

F. Report forms: Test data sheets arranged for collecting test data in logical order for submission and review. These data should also form the permanent record to be used as the basis for required future testing, adjusting, and balancing.

G. Terminal: The point where the controlled fluid enters or leaves the distribution system. These are supply inlets on water terminals, supply outlets on air terminals, return outlets on water terminals, and exhaust or return inlets on air terminals such as registers, grilles, diffusers, louvers, and hoods.

H. Main: pipe containing the system's major or entire fluid flow.

I. Submain: pipe containing part of the systems' capacity and serving two or more branch mains.

J. Branch main: pipe serving two or more terminals.

K. Branch: pipe serving a single terminal.

1.4 SUBMITTALS:

A. Agency Data:

1. Submit proof that the proposed testing, adjusting, and balancing agency meets the qualifications specified below.

B. Engineer and Technicians Data:

1. Submit proof that the Test and Balance Engineer assigned to supervise the procedures, and the technicians proposed to perform the procedures meet the qualifications specified below.

C. Procedures and Agenda: Submit a synopsis of the testing, adjusting, and balancing procedures and agenda proposed to be used for this project.

D. Maintenance Data: Submit maintenance and operating data that include how to test, adjust, and balance the building systems. Include this information in maintenance data specified in Section 230500.
E. Sample Forms: Submit sample forms, if other than those standard forms prepared by the NEBB are proposed.

F. Certified Reports: Submit testing, adjusting, and balancing reports bearing the seal and signature of the Test and Balance Engineer. The reports shall be certified proof that the systems have been tested, adjusted, and balanced in accordance with the referenced standards; are an accurate representation of how the systems have been installed; are a true representation of how the systems are operating at the completion of the testing, adjusting, and balancing procedures; and are an accurate record of all final quantities measured, to establish normal operating values of the systems. Follow the procedures and format specified below:

1. Draft reports: Upon completion of testing, adjusting, and balancing procedures, prepare draft reports on the approved forms. Draft reports may be handwritten, but must be complete, factual, accurate, and legible. Organize and format draft reports in the same manner specified for the final reports. Submit 2 complete sets of draft reports. Only 1 complete set of draft reports will be returned.

2. Final Report: Upon verification and approval of draft reports, prepare final reports, type written, and organized and formatted as specified below. Submit 2 complete sets of final reports.

3. Report Format: Report forms shall be those standard forms prepared by the referenced standard for each respective item and system to be tested, adjusted, and balanced. Bind report forms complete with schematic systems diagrams and other data in reinforced, vinyl, three-ring binders. Provide binding edge labels with the project identification and a title descriptive of the contents. Divide the contents of the binder into the below listed divisions, separated by divider tabs:
 a. General Information and Summary
 b. Air Systems
 c. Temperature Control Systems

4. Report Contents: Provide the following minimum information, forms and data:
 a. General Information and Summary: Inside cover sheet to identify testing, adjusting, and balancing agency, Contractor, Owner, Architect, Engineer, and Project. Include addresses, and contact names and telephone numbers. Also include a certification sheet containing the seal and name address, telephone number, and signature of the Certified Test and Balance Engineer. Include in this division a listing of the instrumentations used for the procedures along with the proof of calibration.
 b. The remainder of the report shall contain the appropriate forms containing as a minimum, the information indicated on the standard report forms
prepared by the AABC and NEBB, for each respective item and system. Prepare a schematic diagram for each item of equipment and system to accompany each respective report form.

G. Calibration Reports: Submit proof that all required instrumentation has been calibrated to tolerances specified in the referenced standards, within a period of six months prior to starting the project.

1.5 QUALITY ASSURANCE:

A. Agency Qualifications:

1. Employ the services of an independent testing, adjusting, and balancing agency meeting the qualifications specified below, to be the single source of responsibility to test, adjust, and balance the building mechanical systems identified above, to produce the design objectives. Services shall include checking installations for conformity to design, measurement and establishment of the fluid quantities of the mechanical systems as required to meet design specifications, and recording and reporting the results.

2. The independent testing, adjusting, and balancing agency certified by National Environmental Balancing Bureau (NEBB) in those testing and balancing disciplines required for this project, and having at least one Professional Engineer registered in the State in which the services are to be performed, certified by NEBB as a Test and Balance Engineer.

B. Codes and Standards:

1. NEBB: "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."

1.6 PROJECT CONDITIONS:

A. Systems Operation: Systems shall be fully operational prior to beginning procedures. Verify with engineer prior to commencing of testing.

1.7 SEQUENCING AND SCHEDULING:

A. Test, adjust and balance hydronic systems at least a period of operation at outside conditions within 5 deg. F wet bulb temperature of maximum summer design
condition, and within 10 deg. F dry bulb temperature of minimum winter design condition. Take final temperature readings during seasonal operation.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

1.1 PRELIMINARY PROCEDURES FOR AIR SYSTEM BALANCING:

A. Before operating the system, perform these steps:

1. Obtain design drawings and specifications and become thoroughly acquainted with the design intent.
2. Obtain copies of approved shop drawings of hydronic system layout and temperature control diagrams.
3. Compare design to installed equipment and field installations.
4. Adjust circuit setters.
5. Calibrate pumps.
6. Prepare schematic diagrams of system "as-built" piping layouts to facilitate reporting.

1.2 MEASUREMENTS:

A. Provide all required instrumentation to obtain proper measurements, calibrated to the tolerances specified in the referenced standards. Instruments shall be properly maintained and protected against damage.

B. Provide instruments meeting the specifications of the referenced standards.

C. Use only those instruments which have the maximum field measuring accuracy and are best suited to the function being measured.

D. Apply instrument as recommended by the manufacturer.

E. Use instruments with minimum scale and maximum subdivisions and with scale ranges proper for the value being measured.
F. When averaging values, take a sufficient quantity of readings which will result in a repeatability error of less than 5 percent. When measuring a single point, repeat readings until 2 consecutive identical values are obtained.

G. Take all reading with the eye at the level of the indicated value to prevent parallax.

H. Use pulsation dampeners where necessary to eliminate error involved in estimating average of rapidly fluctuation readings.

I. Take measurements in the system where best suited to the task.

1.3 PERFORMING TESTING, ADJUSTING, AND BALANCING:

A. Perform testing and balancing procedures on the existing hydronic system (all pumps) and proposed hydronic system (boilers, pumps, etc) in accordance with the detailed procedures outlined in the referenced standards.

B. Cut insulation and piping for installation of test probes to the minimum extent necessary to allow adequate performance of procedures.

C. Patch insulation and housings, using materials identical to those removed.

D. Seal piping, and test for and repair leaks.

E. Seal insulation to re-establish integrity of the vapor barrier.

F. Mark equipment settings, including damper control positions, valve indicators, fan speed control levers, and similar controls and devices, to show final settings. Mark with paint or other suitable, permanent identification materials.

G. Retest, adjust, and balance systems subsequent to significant system modifications, and resubmit test results.

1.4 RECORD AND REPORT DATA:

A. Record all data obtained during testing, adjusting, and balancing in accordance with, and on the forms recommended by the referenced standards, and as approved on the sample report forms.

B. Prepare report of recommendations for correcting unsatisfactory mechanical performances when system cannot be successfully balanced.
1.5 DEMONSTRATION:

A. Training:

1. Train the Owner's maintenance personnel on troubleshooting procedures and testing, adjusting, and balancing procedures. Review with the Owner's personnel, the information contained in the Operating and Maintenance Data specified in Section 230500.

2. Schedule training with Owner through the Engineer with at least 7 days prior notice.

END OF SECTION 230593
SECTION 23 07 19
HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

B. Division-23 sections, apply to work of this section.

1.2 DESCRIPTION OF WORK

A. Extent of mechanical insulation required by this section is indicated by requirements of this section.

B. Types of mechanical insulation specified in this section include the following:

1. HVAC Piping Systems Insulation:
 a. Fiberglass.

C. Refer to Division-23 section "Supports and Anchors" for protection saddles, protection shields, and thermal hanger shields; not work of this section.

1.3 QUALITY ASSURANCE

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of mechanical insulation products, of types and sizes required, whose products have been in satisfactory use in similar services for not less than 3 years.

B. Installer's Qualifications: Firm with at least 5 years successful installation experience on projects with mechanical insulations similar to that required for this project.

C. Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics and adhesives) with flame-spread index of 25 or less, and smoke-developed index of 50 or less, as tested by ASTM E 84 (NFPA 255) method.

D. All insulation shall conform to Connecticut State Model Energy Code or requirements for DoD Buildings, whichever is more stringent.

1.4 SUBMITTALS
A. Product Data: Submit manufacturer's technical product data and installation instructions for each type of mechanical insulation. Submit schedule showing manufacturer's product number, k-value, thickness, and furnished accessories for each mechanical system requiring insulation.

B. Maintenance Data: Submit maintenance data and replacement material lists for each type of mechanical insulation. Include this data and product data in maintenance manual.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver insulation, coverings, cements, adhesives, and coatings to site in containers with manufacturer's stamp or label, affixed showing fire hazard indexes of products.

B. Protect insulation against dirt, water, and chemical and mechanical damage. Do not install damaged or wet insulation; remove from project site.

PART 2 - PRODUCTS

1.1 ACCEPTABLE MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the work include, but are not limited to, the following:

B. Manufacturer: Subject to compliance with requirements, provide products of one of the following:

1. Owens Corning
2. Johns Manville
3. Knauf

1.2 PIPING INSULATION MATERIALS

A. Fiberglass Piping Insulation: ASTM C 547, Class 1 unless otherwise indicated. K-factor maximum of 0.25 at 75 degrees F.

B. Jackets for Piping Insulation: ASTM C 921, Type I (vapor barrier) for piping with temperatures below ambient, Type II for piping with temperatures above ambient.
1. Encase pipe fittings insulation with one-piece premolded PVC fitting covers, fastened as per manufacturer's recommendations.

C. Bands, Wires, and Cement: As recommended by insulation manufacturer for applications indicated. Staples are not acceptable for installation.

D. Adhesives, Sealers, and Protective Finishes: As recommended by insulation manufacturer for applications indicated.

E. Mineral wool and calcium silicate may be considered for high temperature (greater than 300°F) service insulation.

PART 3 - EXECUTION

1.1 INSPECTION

A. Examine areas and conditions under which mechanical insulation is to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

1.2 HVAC PIPING SYSTEM INSULATION

A. Cold Piping (40 degrees F (4.4 degrees C) to ambient):

1. Application Requirements: Insulate the following cold HVAC piping systems:

 a. Air conditioner condensate drain piping.

2. Insulate each piping system specified above with one of the following types and thicknesses of insulation:

 a. Fiberglass: Provide thickness as required per most current IECC standards.

B. Hot Low Pressure Piping (to 250 degrees F (121 degrees C)):

1. Application Requirements: Insulate the following hot low pressure HVAC piping systems (steam piping up to 15 psi, water piping up to 250 degrees F (121 degrees C).

 a. HVAC hot water supply and return piping.
b. Hot gas refrigerant piping.

2. Insulate each piping system specified above with one of the following types and thicknesses of insulation:

 a. Fiberglass: Provide thickness as required per most current IECC standards.

1.4 INSTALLATION OF PIPING INSULATION

A. General: Install insulation products in accordance with manufacturer's written instructions, and in accordance with recognized industry practices to ensure that insulation serves its intended purpose. All proposed piping shall be insulated.

B. Install insulation materials with smooth and even surfaces. Insulate each continuous run of piping with full-length units of insulation, with a single cut piece to complete run. Do not use cut pieces or scraps abutting each other.

C. Clean and dry pipe surfaces prior to insulating. Butt insulation joints firmly together to ensure a complete and tight fit over surfaces to be covered.

D. Maintain integrity of vapor-barrier jackets on pipe insulation, and protect to prevent puncture or other damage.

E. Cover valves, fittings and similar items in each piping system with equivalent thickness and composition of insulation as applied to adjoining pipe run. Install factory molded, precut or job fabricated units (at Installer's option) except where specific form or type is indicated.

F. Extend piping insulation without interruption through walls, floors and similar piping penetrations, except where otherwise indicated.

G. Butt pipe insulation against pipe hanger insulation inserts. For hot pipes, apply 3" wide vapor barrier tape or band over the butt joints. For cold piping apply wet coat of vapor barrier lap cement on butt joints and seal joints with 3" wide vapor barrier tape or band.

H. All “raw” ends of insulation shall be sealed.

I. High temperature hot water insulation below grade shall consist of a “Kayo” type hard insulation (concrete and perlite mix with a “K” factor of .58), calcium silicate, or Foamglass. Either choice should be wrapped with visqueen.
1.5 PROTECTION AND REPLACEMENT

A. Replace damaged insulation which cannot be repaired satisfactorily, including units with vapor barrier damage and moisture saturated units.

B. Protection: Insulation Installer shall advise Contractor of required protection for insulation work during remainder of construction period, to avoid damage and deterioration.

END OF SECTION 230719
PART 1 GENERAL

1.1 Products Furnished but Not Installed under This Section
 A. None

1.2 Products Installed but Not Furnished under This Section
 A. None

1.3 Products Not Furnished or Installed under but Integrated with the Work of This Section
 A. None

1.4 Related Sections
 A. The General Conditions of the Contract, Supplementary Conditions, and General Requirements are part of this specification and shall be used in conjunction with this section as part of the contract documents.

 B. The following sections constitute related work:
 1. Section 23 05 00 - Common Work Results for HVAC
 2. Section 26 05 00 - Common Work Results for Electrical
 3. Section 26 20 00 - Low Voltage Electrical Transmission
 4. Section 26 29 00 - Low-Voltage Controllers (Motor Controllers and VFD Drives)

1.5 Description
 A. General: This will be an extension of the existing Automated Logic® building automation system. New programming and graphics will be uploaded to the CT MIL/ALC Server in Hartford. The control system shall consist of a high-speed, peer-to-peer network of DDC controllers, a control system server, and a web-based operator interface.

 B. System software shall be based on a server/thin client architecture, designed around the open standards of web technology. The control system server shall be accessed using a
Web browser over the control system network, the owner's local area network, and (at the owner's discretion) over the Internet.

The intent of the thin-client architecture is to provide operators complete access to the control system via a Web browser. No special software other than a web browser shall be required to access graphics, point displays, and trends, configure trends, configure points and controllers, or to download programming into the controllers.

C. System shall use the BACnet protocol for communication to the operator workstation or web server and for communication between control modules. I/O points, schedules, setpoints, trends and alarms specified in 23 09 93 – “Sequence of Operations for HVAC Controls” shall be BACnet objects.

1.6 Approved Control system Manufacturer

A. Automated Logic

1. Contact Joe Furman (203) 410-5432

B. Owner/Engineer approved equal.

1.7 Quality Assurance

A. Installer and Manufacturer Qualifications

1. Installer shall have an established working relationship with Control System Manufacturer.

2. Installer shall have successfully completed Control System Manufacturer’s control system training. Upon request, Installer shall present record of completed training including course outlines.

1.8 Codes and Standards

A. Work, materials, and equipment shall comply with the most restrictive of local, state, and federal authorities' codes and ordinances or these plans and specifications. As a minimum, the installation shall comply with the current editions in effect 30 days prior to the receipt of bids of the following codes:

1. National Electric Code (NEC)

2. International Building Code (IBC)
a. Section 719 Ducts and Air Transfer Openings
b. Section 907 Fire Alarm and Detection Systems
c. Section 909 Smoke Control Systems
d. Chapter 28 Mechanical

3. International Mechanical Code (IMC)

1.9 System Performance

A. Performance Standards. System shall conform to the following minimum standards over network connections. Systems shall be tested using manufacturer’s recommended hardware and software for operator workstation (server and browser for web-based systems).

1. Graphic Display. A graphic with 20 dynamic points shall display with current data within 10 sec.

2. Graphic Refresh. A graphic with 20 dynamic points shall update with current data within 8 sec. and shall automatically refresh every 15 sec.

3. Configuration and Tuning Screens. Screens used for configuring, calibrating, or tuning points, PID loops, and similar control logic shall automatically refresh within 6 sec.

4. Object Command. Devices shall react to command of a binary object within 2 sec. Devices shall begin reacting to command of an analog object within 2 sec.

5. Alarm Response Time. An object that goes into alarm shall be annunciated at the workstation within 45 sec.

6. Program Execution Frequency. Custom and standard applications shall be capable of running as often as once every 5 sec. Select execution times consistent with the mechanical process under control.

7. Performance. Programmable controllers shall be able to completely execute DDC PID control loops at a frequency adjustable down to once per sec. Select execution times consistent with the mechanical process under control.
8. Multiple Alarm Annunciation. Each workstation on the network shall receive alarms within 5 sec of other workstations.

9. Reporting Accuracy. System shall report values with minimum end-to-end accuracy listed in Table 1.

10. Control Stability and Accuracy. Control loops shall maintain measured variable at setpoint within tolerances listed in Table 2.
Table-1
Reporting Accuracy

<table>
<thead>
<tr>
<th>Measured Variable</th>
<th>Reported Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Temperature</td>
<td>±0.5ºC (±1ºF)</td>
</tr>
<tr>
<td>Ducted Air</td>
<td>±0.5ºC (±1ºF)</td>
</tr>
<tr>
<td>Outside Air</td>
<td>±1.0ºC (±2ºF)</td>
</tr>
<tr>
<td>Dew Point</td>
<td>±1.5ºC (±3ºF)</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>±0.5ºC (±1ºF)</td>
</tr>
<tr>
<td>Delta-T</td>
<td>±0.15º (±0.25ºF)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>±5% RH</td>
</tr>
<tr>
<td>Water Flow</td>
<td>±2% of full scale</td>
</tr>
<tr>
<td>Airflow (terminal)</td>
<td>±10% of full scale (see Note 1)</td>
</tr>
<tr>
<td>Airflow (measuring stations)</td>
<td>±5% of full scale</td>
</tr>
<tr>
<td>Airflow (pressurized spaces)</td>
<td>±3% of full scale</td>
</tr>
<tr>
<td>Air Pressure (ducts)</td>
<td>±25 Pa (±0.1 in. w.g.)</td>
</tr>
<tr>
<td>Air Pressure (space)</td>
<td>±3 Pa (±0.01 in. w.g.)</td>
</tr>
<tr>
<td>Water Pressure</td>
<td>±2% of full scale (see Note 2)</td>
</tr>
<tr>
<td>Electrical</td>
<td>±1% of reading (see Note 3)</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>±5% of reading</td>
</tr>
<tr>
<td>Carbon Dioxide (CO2)</td>
<td>±50 ppm</td>
</tr>
</tbody>
</table>

Note 1: Accuracy applies to 10%–100% of scale

Note 2: For both absolute and differential pressure

Note 3: Not including utility-supplied meters

Table 2
Control Stability and Accuracy

<table>
<thead>
<tr>
<th>Controlled Variable</th>
<th>Control Accuracy</th>
<th>Range of Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pressure</td>
<td>±50 Pa (±0.2 in. w.g.)</td>
<td>0–1.5 kPa (0–6 in. w.g.)</td>
</tr>
<tr>
<td></td>
<td>±3 Pa (±0.01 in. w.g.)</td>
<td>-25 to 25 Pa (-0.1 to 0.1 in. w.g.)</td>
</tr>
<tr>
<td>Airflow</td>
<td>±10% of full scale</td>
<td></td>
</tr>
<tr>
<td>Space Temperature</td>
<td>±1.0ºC (±2ºF)</td>
<td></td>
</tr>
<tr>
<td>Duct Temperature</td>
<td>±1.5ºC (±3ºF)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>±5% RH</td>
<td></td>
</tr>
<tr>
<td>Fluid Pressure</td>
<td>±10 kPa (±1.5 psi)</td>
<td>MPA (1–150 psi)</td>
</tr>
<tr>
<td></td>
<td>±250 Pa (±1.0 in. w.g.)</td>
<td>0–12.5 kPa (0–50 in. w.g.) differential</td>
</tr>
</tbody>
</table>
1.10 Submittals

A. Product Data and Shop Drawings: Meet requirements of Section 01 30 00 on Shop Drawings, Product Data, and Samples. In addition, the contractor shall provide shop drawings or other submittals on hardware, software, and equipment to be installed or provided. No work may begin on any segment of this project until submittals have been approved for conformity with design intent. Provide drawings as AutoCAD compatible files on magnetic or optical disk (file format: .DWG, .DXF, .VSD, or comparable) and three 11” x 17” prints of each drawing. When manufacturer’s cutsheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawing shall clearly reference the specification and/or drawing that the submittal is to cover. General catalogs shall not be accepted as cutsheets to fulfill submittal requirements. Select and show submittal quantities appropriate to scope of work. Submittal approval does not relieve Contractor of responsibility to supply sufficient quantities to complete work. Submittals shall be provided within 12 weeks of contract award. Submittals shall include:

1. DDC System Hardware
 a. A complete bill of materials to be used indicating quantity, manufacturer, model number, and relevant technical data of equipment to be used.
 b. Manufacturer’s description and technical data such as performance curves, product specifications, and installation and maintenance instructions for items listed below and for relevant items not listed below:
 i. Direct digital controllers (controller panels)
 ii. Transducers and transmitters
 iii. Sensors (including accuracy data)
 iv. Actuators
 v. Valves
 vi. Relays and switches
 vii. Control panels
 viii. Power supplies
ix. Batteries

x. Wiring

c. Wiring diagrams and layouts for each control panel. Show termination numbers.

d. Schematic diagrams for all field sensors and controllers. Provide floor plans of all sensor locations and control hardware. Riser diagrams showing control network layout, communication protocol, and wire types.

2. Central System Hardware and Software

a. A complete bill of material of equipment used indicating quantity, manufacturer, model number, and relevant technical.

b. Manufacturer’s description and technical data such as product specifications and installation and maintenance instructions for items listed below and for relevant items furnished under this contract not listed below:

i. web server

ii. Monitors

iii. Keyboards

iv. Power supplies

v. Battery backups

vi. Interface equipment between CPU or server and control panels

vii. Operating System software

viii. Operator interface software

ix. Color graphic software

x. Third-party software

c. Schematic diagrams for all control, communication, and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers’ model numbers and functions. Show interface wiring to control system.
d. Network riser diagrams of wiring between central control unit and control panels.

3. Controlled Systems

a. Riser diagrams showing control network layout, communication protocol, and wire types.

b. A schematic diagram of each controlled system. The schematics shall have all control points labeled with point names shown or listed. The schematics shall graphically show the location of all control elements in the system.

c. A schematic wiring diagram of each controlled system. Label control elements and terminals. Where a control element is also shown on control system schematic, use the same name.

d. An instrumentation list (Bill of Materials) for each controlled system. List each control system element in a table. Show element name, type of device, manufacturer, model number, and product data sheet number.

e. A mounting, wiring, and routing plan-view drawing. The design shall take into account HVAC, electrical, and other systems’ design and elevation requirements. The drawing shall show the specific location of all concrete pads and bases and any special wall bracing for panels to accommodate this work.

f. A complete description of the operation of the control system, including sequences of operation. The description shall include and reference a schematic diagram of the controlled system.

g. A point list for each control system. List I/O points and software points specified in Section 23 09 93. Indicate alarmed and trended points.

4. Quantities of items submitted shall be reviewed but are the responsibility of the Contractor.

5. A description of the proposed process along with all report formats and checklists to be used in Section 23 09 23 Article3.17(Control System Demonstration and Acceptance).

6. BACnet Protocol Implementation Conformance Statement (PICS) for each submitted type of controller and operator interface.

B. Schedules
1. Within one month of contract award, provide a schedule of the work indicating the following:
 a. Intended sequence of work items
 b. Start date of each work item
 c. Duration of each work item
 d. Planned delivery dates for ordered material and equipment and expected lead times
 e. Milestones indicating possible restraints on work by other trades or situations

2. Monthly written status reports indicating work completed and revisions to expected delivery dates. Include updated schedule of work.

C. Project Record Documents. Upon completion of installation, submit three copies of record (as-built) documents. The documents shall be submitted for approval prior to final completion and shall include:

1. Project Record Drawings. As-built versions of submittal shop drawings provided as AutoCAD compatible files on magnetic or optical media (file format: .DWG, .DXF, .VSD, or comparable) and as 11" x 17" prints.

2. Testing and Commissioning Reports and Checklists. Completed versions of reports, checklists, and trend logs used to meet requirements of Section 23 09 23 Article3.17(Control System Demonstration and Acceptance).

4. As-built versions of submittal product data.

5. Names, addresses, and telephone numbers of installing contractors and service representatives for equipment and control systems.

6. Operator’s manual with procedures for operating control systems: logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing setpoints and variables.
7. Programming manual or set of manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.

8. Engineering, installation, and maintenance manual or set of manuals that explains how to design and install new points, panels, and other hardware; how to perform preventive maintenance and calibration; how to debug hardware problems; and how to repair or replace hardware.

9. Documentation of programs created using custom programming language including setpoints, tuning parameters, and object database. Electronic copies of programs shall meet this requirement if control logic, setpoints, tuning parameters, and objects can be viewed using furnished programming tools.

10. Graphic files, programs, and database on magnetic or optical media.

11. List of recommended spare parts with part numbers and suppliers.

12. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.

13. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation or web server software, and graphics software.

14. Licenses, guarantees, and warranty documents for equipment and systems.

15. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.

D. Training Materials: Provide course outline and materials for each class at least six weeks before first class. Training shall be furnished via instructor-led sessions, computer-based training, or web-based training. Engineer will modify course outlines and materials if necessary to meet Owner’s needs. Engineer will review and approve course outlines and materials at least three weeks before first class.

1.11 Warranty

A. Warrant work as follows:
1. Warrant labor and materials for specified control system free from defects for a period of 12 months after final acceptance. Control system failures during warranty period shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner. Respond during normal business hours within 24 hours of Owner’s warranty service request.

2. Work shall have a single warranty date, even if Owner receives beneficial use due to early system start-up. If specified work is split into multiple contracts or a multi-phase contract, each contract or phase shall have a separate warranty start date and period.

3. If the engineer determines that equipment and systems operate satisfactorily at the end of final start-up, testing, and commissioning phase, the engineer will certify in writing that control system operation has been tested and accepted in accordance with the terms of this specification. Date of acceptance shall begin warranty period.

4. Provide updates to operator workstation or web server software, project-specific software, graphic software, database software, and firmware that resolve the contractor-identified software deficiencies at no charge during warranty period. If available, Owner can purchase in-warranty service agreement to receive upgrades for functional enhancements associated with above-mentioned items. Do not install updates or upgrades without Owner’s written authorization.

5. Exception: Contractor shall not be required to warrant reused devices except those that have been rebuilt or repaired. Installation labor and materials shall be warranted. Demonstrate operable condition of reused devices at time of Engineer’s acceptance.

1.12 Ownership of Proprietary Material

A. Project-specific software and documentation shall become Owner’s property. This includes, but is not limited to:

1. Graphics

2. Record drawings

3. Database

4. Application programming code

5. Documentation
1.13 Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet Interoperability</td>
<td>A BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBS are combined to build the BACnet functional requirements for a device in a BACnet/BACnet Standard.</td>
</tr>
<tr>
<td>Building Blocks (BIBB)</td>
<td>BACnet communication requirements as defined by the latest version of ASHRAE/ANSI 135 and approved addenda.</td>
</tr>
<tr>
<td>Control Systems Server</td>
<td>A computer(s) that maintain(s) the systems configuration and programming database.</td>
</tr>
<tr>
<td>Controller</td>
<td>Intelligent stand-alone control device. Controller is a generic reference to building controllers, custom application controllers, and application specific controllers.</td>
</tr>
<tr>
<td>Direct Digital Control</td>
<td>Microprocessor-based control including Analog/Digital conversion and program logic.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Bi-directional protocol translator connecting control systems that use different communication protocols.</td>
</tr>
<tr>
<td>Local Area Network</td>
<td>Computer or control system communications network limited to local building or campus.</td>
</tr>
<tr>
<td>Master-Slave/Token Passing</td>
<td>Data link protocol as defined by the BACnet standard.</td>
</tr>
<tr>
<td>Point-to-Point</td>
<td>Serial communication as defined in the BACnet standard.</td>
</tr>
<tr>
<td>Primary Controlling LAN</td>
<td>High speed, peer-to-peer controller LAN connecting BCs and optionally AACs and ASCs. Refer to System Architecture</td>
</tr>
<tr>
<td>Protocol Implementation Conformance Statement</td>
<td>A written document that identifies the particular options specified by BACnet that are implemented in a device.</td>
</tr>
<tr>
<td>Router</td>
<td>A device that connects two or more networks at the network.</td>
</tr>
<tr>
<td>Wiring</td>
<td>Raceway, fittings, wire, boxes and related items.</td>
</tr>
</tbody>
</table>
PART 2: PRODUCTS

2.1 Materials

A. Use new products the manufacturer is currently manufacturing and selling for use in new installations. Do not use this installation as a product test site unless explicitly approved in writing by Owner. Spare parts shall be available for at least five years after completion of this contract.

2.2 Communication

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135, BACnet.

B. Install new wiring and network devices as required to provide a complete and workable control network.

C. Use existing Ethernet backbone for network segments marked "existing" on project drawings.

D. Each controller shall have a communication port for temporary connection to a laptop computer or other operator interface. Connection shall support memory downloads and other commissioning and troubleshooting operations.

E. Internetwork operator interface and value passing shall be transparent to internetwork architecture.

1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, and control algorithms shall be viewable and editable from each internetwork controller.

2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute control strategies specified in Section 23 09 93. An authorized operator shall be able to edit cross-controller links by typing a standard object address or by using a point-and-click interface.
F. Workstations, Building Control Panels, and Controllers with real-time clocks shall use the BACnet Time Synchronization service. System shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight saving and standard time as applicable.

G. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring.

2.3 Operator Interface

4 Not Applicable - Existing

2.4 Controller Software

A. Furnish the following applications for building and energy management. All software application shall reside and operate in the system controllers. Applications shall be editable through operator workstation, web browser interface, or engineering workstation.

B. System Security. See Paragraph 2.3.E.5 (Security) and Paragraph 2.3.E.14.c.iii (Operator Activity).

C. Scheduling. Provide the capability to execute control functions according to a user created or edited schedule. Each schedule shall provide the following schedule options as a minimum:

1. Weekly Schedule. Provide separate schedules for each day of the week. Each schedule shall be able to include up to 5 occupied periods (5 start-stop pairs or 10 events).

2. Exception Schedules. Provide the ability for the operator to designate any day of the year as an exception schedule. Exception schedules may be defined up to a year in advance. Once an exception schedule has executed, the system shall discard and replace the exception schedule with the standard schedule for that day of the week.

3. Holiday Schedules. Provide the capability for the operator to define up to 24 special or holiday schedules. These schedules will be repeated each year. The operator shall be able to define the length of each holiday period.

D. System Coordination. Operator shall be able to group related equipment based on function and location and to use these groups for scheduling and other applications.
E. Binary Alarms. Each binary object shall have the capability to be configured to alarm based on the operator-specified state. Provide the capability to automatically and manually disable alarming.

F. Analog Alarms. Each analog object shall have both high and low alarm limits. The operator shall be able to enable or disable these alarms.

G. Alarm Reporting. The operator shall be able to determine the action to be taken in the event of an alarm. An alarm shall be able to start programs, print, be logged in the event log, generate custom messages, and display on graphics.

H. Remote Communication. System shall automatically contact operator workstation or server on receipt of critical alarms. If no network connection is available, system shall use a modem connection.

I. Maintenance Management. The system shall be capable of generating maintenance alarms when equipment exceeds adjustable runtime, equipment starts, or performance limits. Configure and enable maintenance alarms as specified in 23 09 93 (Sequences of Operation).

J. Sequencing. Application software shall sequence boilers, and pumps as specified in Section 23 09 93 (Sequences of Operation).

K. PID Control. System shall provide direct- and reverse-acting PID (proportional-integral-derivative) algorithms. Each algorithm shall have anti-windup and selectable controlled variable, setpoint, and PID gains. Each algorithm shall calculate a time-varying analog value that can be used to position an output or stage a series of outputs. The calculation interval, PID gains, and other tuning parameters shall be adjustable by a user with the correct security level.

L. Staggered Start. System shall stagger controlled equipment restart after power outage. Operator shall be able to adjust equipment restart order and time delay between equipment restarts.

M. Energy Calculations.

1. The system shall accumulate and convert instantaneous power (kW) or flow rates (L/s [gpm]) to energy usage data.

2. The system shall calculate a sliding-window average (rolling average). Operator shall be able to adjust window interval to 15 minutes, 30 minutes, or 60 minutes.
N. Anti-Short Cycling. All binary output objects shall be protected from short cycling by means of adjustable minimum on-time and off-time settings.

O. On and Off Control with Differential. Provide an algorithm that allows a binary output to be cycled based on a controlled variable and a setpoint. The algorithm shall be direct-acting or reverse-acting.

P. Runtime Totalization. Provide software to totalize runtime for each binary input and output. Operator shall be able to enable runtime alarm based on exceeded adjustable runtime limit. Configure and enable runtime totalization and alarms as specified in Section 23 09 93 (Sequence of Operations).

2.5 Controllers

A. General. Provide an adequate number of Building Controllers (BC), Advanced Application Controllers (AAC), Application Specific Controllers (ASC), Smart Actuators (SA), and Smart Sensors (SS) as required to achieve performance specified in Section 23 09 23 Article 1.9 (System Performance). Every device in the system which executes control logic and directly controls HVAC equipment must conform to a standard BACnet Device profile as specified in ANSI/ASHRAE 135, BACnet Annex L. Unless otherwise specified, hardwired actuators and sensors may be used in lieu of BACnet Smart Actuators and Smart Sensors.

B. BACnet.

2. Advanced Application Controllers (AACs). Each AAC shall conform to BACnet Advanced Application Controller (B-AAC) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-AAC in the BACnet Testing Laboratories (BTL) Product Listing.

3. Application Specific Controllers (ASCs). Each ASC shall conform to BACnet Application Specific Controller (B-ASC) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-ASC in the BACnet Testing Laboratories (BTL) Product Listing.

4. Smart Sensors (SSs). Each SS shall conform to BACnet Smart Sensor (B-SS) device profile as specified in ANSI/ASHRAE 135, BACnet Annex L and shall be listed as a certified B-SS in the BACnet Testing Laboratories (BTL) Product Listing.
5. **BACnet Communication.**

 a. Each BC shall reside on or be connected to a BACnet network using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing.

 b. BACnet routing shall be performed by BCs or other BACnet device routers as necessary to connect BCs to networks of AACs and ASCs.

 c. Each AAC shall reside on a BACnet network using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol with BACnet/IP addressing, or it shall reside on a BACnet network using the ARCNET or MS/TP Data Link/Physical layer protocol.

 d. Each ASC shall reside on a BACnet network using the ARCNET or MS/TP Data Link/Physical layer protocol.

 e. Each SA shall reside on a BACnet network using the ARCNET or MS/TP Data Link/Physical layer protocol.

 f. Each SS shall reside on a BACnet network using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol with BACnet/IP addressing, or it shall reside on a BACnet network using ARCNET or MS/TP Data Link/Physical layer protocol.

C. **Communication**

1. **Service Port.** Each controller shall provide a service communication port for connection to a Portable Operator’s Terminal. Connection shall be extended to space temperature sensor ports where shown on drawings.

2. **Signal Management.** BC and ASC operating systems shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and to allow for central monitoring and alarms.

3. **Data Sharing.** Each BC and AAC shall share data as required with each networked BC and AAC.

4. **Stand-Alone Operation.** Each piece of equipment specified in Section 23 09 93 shall be controlled by a single controller to provide stand-alone control in the event of communication failure. All I/O points specified for a piece of equipment shall be integral to its controller. Provide stable and reliable stand-alone control using default values or other method for values normally read over the network such as
outdoor air conditions, supply air or water temperature coming from source equipment, etc.

D. Environment. Controller hardware shall be suitable for anticipated ambient conditions.

1. Controllers used outdoors or in wet ambient conditions shall be mounted in waterproof enclosures and shall be rated for operation at -29°C to 60°C (-20°F to 140°F).

2. Controllers used in conditioned space shall be mounted in dust-protective enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).

E. Keypad. Provide a local keypad and display for each BC and AAC. Operator shall be able to use keypad to view and edit data. Keypad and display shall require password to prevent unauthorized use. If the manufacturer does not normally provide a keypad and display for each BC and AAC, provide the software and any interface cabling needed to use a laptop computer as a Portable Operator’s Terminal for the system.

F. Real-Time Clock. Controllers that perform scheduling shall have a real-time clock.

G. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to a field-removable modular terminal strip or to a termination card connected by a ribbon cable. Each BC and AAC shall continually check its processor and memory circuit status and shall generate an alarm on abnormal operation. System shall continuously check controller network and generate alarm for each controller that fails to respond.

H. Memory.

1. Controller memory shall support operating system, database, and programming requirements.

2. Each BC and AAC shall retain BIOS and application programming for at least 72 hours in the event of power loss.

3. Each ASC and SA shall use nonvolatile memory and shall retain BIOS and application programming in the event of power loss. System shall automatically download dynamic control parameters following power loss.

I. Immunity to Power and Noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
J. Transformer. ASC power supply shall be fused or current limiting and shall be rated at a minimum of 125% of ASC power consumption.

2.6 Input and Output Interface

A. General. Hard-wire input and output points to BCs, AACs, ASCs, or SAs.

B. Protection. All input points and output points shall be protected such that shorting of the point to itself, to another point, or to ground shall cause no damage to the controller. All input and output points shall be protected from voltage up to 24 V of any duration, such that contact with this voltage will cause no controller damage.

C. Binary Inputs. Binary inputs shall allow the monitoring of ON/OFF signals from remote devices. The binary inputs shall provide a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against contact bounce and noise. Binary inputs shall sense dry contact closure without application of power external to the controller.

D. Pulse Accumulation Inputs. Pulse accumulation inputs shall conform to binary input requirements and shall also accumulate up to 10 pulses per second.

E. Analog Inputs. Analog inputs shall allow the monitoring of low-voltage (0–10 Vdc), current (4–20 mA), or resistance (thermistor or RTD) signals. Analog inputs shall be compatible with and field configurable to commonly available sensing devices.

F. Binary Outputs. Binary outputs shall provide for ON/OFF operation or a pulsed low-voltage signal for pulse width modulation control. Binary outputs on Building Controllers shall have three-position (on-off-auto) override switches and status lights. Outputs shall be selectable for normally open or normally closed operation.

G. Analog Outputs. Analog outputs shall provide a modulating signal for the control of end devices. Outputs shall provide either a 0–10 Vdc or a 4–20 mA signal as required to properly control output devices. Each Building Controller analog output shall have a two-position (auto-manual) switch, a manually adjustable potentiometer, and status lights. Analog outputs shall not drift more than 0.4% of range annually.

H. Tri-State Outputs. Control three-point floating electronic actuators without feedback with tri-state outputs (two coordinated binary outputs). Tri-State outputs may be used to provide analog output control in zone control and terminal unit control applications such as VAV terminal units, duct-mounted heating coils, and zone dampers.
I. Universal Inputs and Outputs. Inputs and outputs that can be designated as either binary or analog in software shall conform to the provisions of this section that are appropriate for their designated use.

J. System Object Capacity. The system size shall be expandable to at least twice the number of input/output objects required for this project. Additional controllers (along with associated devices and wiring) shall be all that is necessary to achieve this capacity requirement. The operator interfaces installed for this project shall not require any hardware additions or software revisions in order to expand the system.

2.7 Power Supplies and Line Filtering

A. Power Supplies. Control transformers shall be UL listed. Furnish Class 2 current-limiting type or furnish over-current protection in primary and secondary circuits for Class 2 service in accordance with NEC requirements. Limit connected loads to 80% of rated capacity.

1. DC power supply output shall match output current and voltage requirements. Unit shall be full-wave rectifier type with output ripple of 5.0 mV maximum peak-to-peak. Regulation shall be 1.0% line and load combined, with 100-microsecond response time for 50% load changes. Unit shall have built-in over-voltage and over-current protection and shall be able to withstand 150% current overload for at least three seconds without trip-out or failure.

 a. Unit shall operate between 0°C and 50°C (32°F and 120°F). EM/RF shall meet FCC Class B and VDE 0871 for Class B and MILSTD 810C for shock and vibration.

 b. Line voltage units shall be UL recognized and CSA listed.

B. Power Line Filtering.

1. Provide internal or external transient voltage and surge suppression for workstations and controllers. Surge protection shall have:

 a. Dielectric strength of 1000 V minimum

 b. Response time of 10 nanoseconds or less

 c. Transverse mode noise attenuation of 65 dB or greater

 d. Common mode noise attenuation of 150 dB or greater at 40–100 Hz

2.8 Auxiliary Control Devices
A. Motorized Control Dampers, unless otherwise specified elsewhere, shall be as follow.

1. Type. Control dampers shall be the parallel or opposed-blade type as specified below or as scheduled on drawings.
 a. Outdoor and return air mixing dampers and face-and-bypass dampers shall be parallel-blade and shall direct airstreams toward each other.
 b. Other modulating dampers shall be opposed-blade.
 c. Two-position shutoff dampers shall be parallel- or opposed-blade with blade and side seals.

2. Frame. Damper frames shall be 2.38 mm (13 gauge) galvanized steel channel or 3.175 mm (⅛ in.) extruded aluminum with reinforced corner bracing.

3. Blades. Damper blades shall not exceed 20 cm (8 in.) in width or 125 cm (48 in.) in length. Blades shall be suitable for medium velocity (10 m/s [2000 fpm]) performance. Blades shall be not less than 1.5875 mm (16 gauge).

4. Shaft Bearings. Damper shaft bearings shall be as recommended by manufacturer for application, oil impregnated sintered bronze, or better.

5. Seals. Blade edges and frame top and bottom shall have replaceable seals of butyl rubber or neoprene. Side seals shall be spring-loaded stainless steel. Blade seals shall leak no more than 50 L/s∙m² (10 cfm per ft²) at 1000 Pa (4 in. w.g.) differential pressure. Blades shall be airfoil type suitable for wide-open face velocity of 7.5 m/s (1500 fpm).

6. Sections. Individual damper sections shall not exceed 125 cm × 150 cm (48 in. × 60 in.). Each section shall have at least one damper actuator.

7. Modulating dampers shall provide a linear flow characteristic where possible.

8. Linkages. Dampers shall have exposed linkages.

B. Electric Damper and Valve Actuators.

1. Stall Protection. Mechanical or electronic stall protection shall prevent actuator damage throughout the actuator’s rotation.

2. Spring-return Mechanism. Actuators used for power-failure and safety applications shall have an internal mechanical spring-return mechanism or an uninterruptible power supply (UPS).
3. Signal and Range. Proportional actuators shall accept a 0–10 Vdc or a 0–20 mA control signal and shall have a 2–10 Vdc or 4–20 mA operating range. (Floating motor actuators may be substituted for proportional actuators in terminal unit applications as described in paragraph 2.6H.)

4. Wiring. 24 Vac and 24 Vdc actuators shall operate on Class 2 wiring.

5. Manual Positioning. Operators shall be able to manually position each actuator when the actuator is not powered. Non-spring-return actuators shall have an external manual gear release. Spring-return actuators with more than 7 N·m (60 in.-lb) torque capacity shall have a manual crank.

C. Control Valves.

1. Control valves shall be two-way or three-way type for two-position or modulating service as shown.

2. Close-off (differential) Pressure Rating: Valve actuator and trim shall be furnished to provide the following minimum close-off pressure ratings:
 a. Water Valves:
 i. Two-way: 150% of total system (pump) head.
 ii. Three-way: 300% of pressure differential between ports A and B at design flow or 100% of total system (pump) head.
 b. Steam Valves: 150% of operating (inlet) pressure.

 a. Body and trim style and materials shall be in accordance with manufacturer’s recommendations for design conditions and service shown, with equal percentage ports for modulating service.
 b. Sizing Criteria:
 i. Two-position service: Line size.
 ii. Two-way modulating service: Pressure drop shall be equal to twice the pressure drop through heat exchanger (load), 50% of the pressure difference between supply and return mains, or 5 psi, whichever is greater.
iii. Three-way modulating service: Pressure drop equal to twice the pressure drop through the coil exchanger (load), 35 kPa (5 psi) maximum.

iv. Valves ½ in. through 2 in. shall be bronze body or cast brass ANSI Class 250, spring-loaded, PTFE packing, quick opening for two-position service. Two-way valves to have replaceable composition disc or stainless steel ball.

v. Valves 2½ in. and larger shall be cast iron ANSI Class 125 with guided plug and PTFE packing.

c. Water valves shall fail normally open or closed, as scheduled on plans, or as follows:

i. Water zone valves—normally open preferred.

ii. Heating coils in air handlers—normally open.

iii. Chilled water control valves—normally closed.

iv. Other applications—as scheduled or as required by sequences of operation.

D. Binary Temperature Devices.

1. Low-Voltage Space Thermostats. Low-voltage space thermostats shall be 24 V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed setpoint adjustment, 13°C–30°C (55°F–85°F) setpoint range, 1°C (2°F) maximum differential, and vented ABS plastic cover.

2. Line-Voltage Space Thermostats. Line-voltage space thermostats shall be bimetal-actuated, open-contact type or bellows-actuated, enclosed, snap-switch type or equivalent solid-state type, with heat anticipator, UL listing for electrical rating, concealed setpoint adjustment, 13°C–30°C (55°F–85°F) setpoint range, 1°C (2°F) maximum differential, and vented ABS plastic cover.

3. Low-Limit Thermostats. Low-limit airstream thermostats shall be UL listed, vapor pressure type. Element shall be at least 6 m (20 ft) long. Element shall sense temperature in each 30 cm (1 ft) section and shall respond to lowest sensed temperature. Low-limit thermostat shall be manual reset only.

E. Temperature Sensors.
1. Type. Temperature sensors shall be Resistance Temperature Device (RTD) or thermistor.

2. Duct Sensors. Duct sensors shall be single point or averaging as shown. Averaging sensors shall be a minimum of 1.5 m (5 ft) in length per 1 m² (10 ft²) of duct cross-section.

3. Immersion Sensors. Provide immersion sensors with a separable stainless steel well. Well pressure rating shall be consistent with system pressure it will be immersed in. Well shall withstand pipe design flow velocities.

4. Space Sensors. Space sensors shall have setpoint adjustment, override switch, display, and communication port as shown.

F. Flow Switches. Flow-proving switches shall be paddle (water service only) or differential pressure type (air or water service) as shown. Switches shall be UL listed, SPDT snap-acting, and pilot duty rated (125 VA minimum).

1. Paddle switches shall have adjustable sensitivity and NEMA 1 enclosure unless otherwise specified.

2. Differential pressure switches shall have scale range and differential suitable for intended application and NEMA 1 enclosure unless otherwise specified.

G. Relays.

1. Control Relays. Control relays shall be plug-in type, UL listed, and shall have dust cover and LED “energized” indicator. Contact rating, configuration, and coil voltage shall be suitable for application.

2. Time Delay Relays. Time delay relays shall be solid-state plug-in type, UL listed, and shall have adjustable time delay. Delay shall be adjustable ±100% from setpoint shown. Contact rating, configuration, and coil voltage shall be suitable for application. Provide NEMA 1 enclosure for relays not installed in local control panel.

H. Override Timers.

1. Unless implemented in control software, override timers shall be spring-wound line voltage, UL Listed, with contact rating and configuration required by
application. Provide 0–6 hour calibrated dial unless otherwise specified. Flush
mount timer on local control panel face or where shown.

I. Current Transmitters.

1. AC current transmitters shall be self-powered, combination split-core current
transformer type with built-in rectifier and high-gain servo amplifier with 4–20 mA
two-wire output. Full-scale unit ranges shall be 10 A, 20 A, 50 A, 100 A, 150 A, and
200 A, with internal zero and span adjustment. Unit accuracy shall be ±1% full-scale
at 500 ohm maximum burden.

2. Transmitter shall meet or exceed ANSI/ISA S50.1 requirements and shall be
UL/CSA recognized.

3. Unit shall be split-core type for clamp-on installation on existing wiring.

J. Current Transformers.

1. AC current transformers shall be UL/CSA recognized and shall be completely
encased (except for terminals) in approved plastic material.

2. Transformers shall be available in various current ratios and shall be selected for
±1% accuracy at 5 A full-scale output.

3. Use fixed-core transformers for new wiring installation and split-core
transformers for existing wiring installation.

K. Voltage Transmitters.

1. AC voltage transmitters shall be self-powered single-loop (two-wire) type, 4–20
mA output with zero and span adjustment.

2. Adjustable full-scale unit ranges shall be 100–130 Vac, 200–250 Vac, 250–330
Vac, and 400–600 Vac. Unit accuracy shall be ±1% full-scale at 500 ohm maximum
burden.

3. Transmitters shall meet or exceed ANSI/ISA S50.1 requirements and shall be
UL/CSA recognized at 600 Vac rating.

L. Voltage Transformers.

1. AC voltage transformers shall be UL/CSA recognized, 600 Vac rated, and shall
have built-in fuse protection.
2. Transformers shall be suitable for ambient temperatures of 4°C–55°C (40°F–130°F) and shall provide ±0.5% accuracy at 24 Vac and 5 VA load.

3. Windings (except for terminals) shall be completely enclosed with metal or plastic.

M. Power Monitors.

1. Selectable rate pulse output for kWh reading, 4–20 mA output for kW reading, N.O. alarm contact, and ability to operate with 5.0 amp current inputs or 0–0.33 volt inputs.

2. 1.0% full-scale true RMS power accuracy, +0.5 Hz, voltage input range 120–600 V, and auto range select.

4. NEMA 1 enclosure.

5. Current transformers having a 0.5% FS accuracy, 600 VAC isolation voltage with 0–0.33 V output. If 0–5 A current transformers are provided, a three-phase disconnect/shorting switch assembly is required.

N. Hydronic Flowmeters

1. Insertion-Type Turbine Meter

 a. Dual counter-rotating axial turbine elements, each with its own rotational sensing system, and an averaging circuit to reduce measurement errors due to swirl and flow profile distortion. Single turbine for piping 2 inches and smaller. Flow sensing turbine rotors shall be non-metallic and not impaired by magnetic drag.

 b. Insertion type complete with ‘hot-tap’ isolation valves to enable sensor removal without water supply system shutdown.

 c. Sensing method shall be impedance sensing (non magnetic and non photoelectric)

 d. Volumetric accuracy

 i. ± 0.5% of reading at calibrated velocity

 ii. ± 1% of reading from 3 to 30 ft/s (10:1 range)
iii. ± 2% of reading from 0.4 to 20 ft/s (50:1 range)

e. Each sensor shall be individually calibrated and tagged accordingly against the manufacturer’s primary standards which must be accurate to within 0.1% of flow rate and traceable to the National Institute of Standards and Technology (NIST).

f. Maximum operating pressure of 400 psi and maximum operating temperature of 200°F continuous (220°F peak).

g. All wetted metal parts shall be constructed of 316 stainless steel.

h. Analog outputs shall consist of non interactive zero and span adjustments, a DC linearly of 0.1% of span, voltage output of 0-10 Vdc, and current output of 4-20 mA.

2. Magnetic Flow-Tube Type Flowmeter

a. Sensor shall be a magnetic flowmeter, which utilizes Faraday’s Law to measure volumetric fluid flow through a pipe. The flowmeter shall consist of two elements, the sensor and the electronics. The sensor shall generate a measuring signal proportional to the flow velocity in the pipe. The electronics shall convert this EMF into a standard current output.

b. Electronic replacement shall not affect meter accuracy (electronic units are not matched with specific sensors).

c. Four-wire, externally powered, magnetic type flow transmitter with adjustable span and zero, integrally mounted to flow tube. Output signal shall be a digital pulse proportional to the flow rate (to provide maximum accuracy and to handle abrupt changes in flow). Standard 4-20 mA or 0-10 Vdc outputs may be used provided accuracy is as specified.

d. Flow Tube:

 i. ANSI class 150 psig steel

 ii. ANSI flanges

 iii. Protected with PTFE, PFA, or ETFE liner rated for 245°F minimum fluid temperature

e. Electrode and grounding material
316L Stainless steel or Hastelloy C

Electrodes shall be fused to ceramic liner and not require o-rings.

f. Electrical Enclosure: NEMA 4, 7

g. Approvals:

i. UL or CSA

ii. NSF Drinking Water approval for domestic water applications

h. Performance

i. Accuracy shall be ±0.5% of actual reading from 3 to 30 ft/s flow velocities, and 0.015 ft/s from 0.04 to 3 ft/s.

ii. Stability: 0.1% of rate over six months.

iii. Meter repeatability shall be ±0.1% of rate at velocities > 3 ft/s.

3. Magnetic Insertion-Type Flowmeter

a. Magnetic Faraday point velocity measuring device.

b. Insertion type complete with hot-tap isolation valves to enable sensor removal without water supply system shutdown.

c. 4-20 mA transmitter proportional to flow or velocity.

d. Accuracy: larger of 1% of reading and 0.2 ft/s.

e. Flow range: 0.2 to 20 ft/s, bidirectional.

f. Each sensor shall be individually calibrated and tagged accordingly against the manufacturer’s primary standards which must be accurate to within 0.1% of flow rate and traceable to the National Institute of Standards and Technology (NIST).

4. Vortex Sheding Flowmeter

a. Output: 4-20 mA, 0-10 Vdc, 0-5 Vdc.

c. Wetted Parts: Stainless Steel.
d. Housing: NEMA 4X.

e. Turndown: 25:1 minimum.

f. Accuracy: 0.5% of calibrated span for liquids, 1% of calibrated span for steam and gases.

g. Body: Wafer style or ANSI flanged to match piping specification.

5. Transit-Time Ultrasonic Flowmeter

 a. Clamp-On transit-time ultrasonic flowmeter

 b. Wide-Beam transducer technology

 c. 4-20 mA transmitter proportional to flow or velocity.

 d. Accuracy: 0.5% of reading in range 1 to 30 ft/s, 0.001 ft/s sensitivity.

O. Thermal Energy Meters

 1. Matched RTD, solid state, or thermistor temperature sensors with a differential temperature accuracy of ±0.15°F.

 2. Flow meter: See "Hydronic Flowmeters" section.

 3. Unit accuracy of ±1% factory calibrated, traceable to NIST with certification.

 4. NEMA 1 enclosure.

 5. Panel mounted display.

 6. UL listed.

 7. Isolated 4–20 ma signals for energy rate and supply and return temperatures and flow.

P. Current Switches.

 1. Current-operated switches shall be self-powered, solid-state with adjustable trip current. Select switches to match application current and DDC system output requirements.

Q. Pressure Transducers.

 1. Transducers shall have linear output signal and field-adjustable zero and span.
2. Transducer sensing elements shall withstand continuous operating conditions of positive or negative pressure 50% greater than calibrated span without damage.

3. Water pressure transducer diaphragm shall be stainless steel with minimum proof pressure of 1000 kPa (150 psi). Transducer shall have 4–20 mA output, suitable mounting provisions, and block and bleed valves.

4. Water differential pressure transducer diaphragm shall be stainless steel with minimum proof pressure of 1000 kPa (150 psi). Over-range limit (differential pressure) and maximum static pressure shall be 2000 kPa (300 psi). Transducer shall have 4–20 mA output, suitable mounting provisions, and 5-valve manifold.

R. Differential Pressure Switches. Differential pressure switches (air or water service) shall be UL listed, SPDT snap-acting, pilot duty rated (125 VA minimum) and shall have scale range and differential suitable for intended application and NEMA 1 enclosure unless otherwise specified.

S. Pressure-Electric (PE) Switches.

1. Shall be metal or neoprene diaphragm actuated, operating pressure rated for 0–175 kPa (0–25 psig), with calibrated scale minimum setpoint range of 14–125 kPa (2–18 psig) minimum, UL listed.

2. Provide one- or two-stage switch action (SPDT, DPST, or DPDT) as required by application. Electrically rated for pilot duty service (125 VA minimum) and/or for motor control.

3. Switches shall be open type (panel-mounted) or enclosed type for remote installation. Enclosed type shall be NEMA 1 unless otherwise specified.

4. Each pneumatic signal line to PE switches shall have permanent indicating gauge.

T. Occupancy Sensors. Occupancy sensors shall utilize Passive Infrared (PIR) and/or Microphonic Passive technology to detect the presence of people within a room. Sensors shall be mounted as indicated on the approved drawings. The sensor output shall be accessible by any lighting and/or HVAC controller in the system. Occupancy sensors shall be capable of being powered from the lighting or HVAC control panel, as shown on the drawings. Occupancy sensor delay shall be software adjustable through the user interface and shall not require manual adjustment at the sensor.

U. Local Control Panels.
1. All indoor control cabinets shall be fully enclosed NEMA 1 construction with (hinged door) key-lock latch and removable subpanels. A single key shall be common to all field panels and subpanels.

2. Interconnections between internal and face-mounted devices shall be prewired with color-coded stranded conductors neatly installed in plastic troughs and/or tie-wrapped. Terminals for field connections shall be UL listed for 600 volt service, individually identified per control/interlock drawings, with adequate clearance for field wiring. Control terminations for field connection shall be individually identified per control drawings.

3. Provide ON/OFF power switch with overcurrent protection for control power sources to each local panel.

2.9 Wiring and Raceways

A. General. Provide copper wiring, plenum cable, and raceways as specified in applicable sections of Division 26.

B. Insulated wire shall use copper conductors and shall be UL listed for 90°C (200°F) minimum service.

2.10 Fiber Optic Cable System

A. Optical Cable. Optical cables shall be duplex 900 mm tight-buffer construction designed for intra-building environments. Sheath shall be UL listed OFNP in accordance with NEC Article 770. Optical fiber shall meet the requirements of FDDI, ANSI X3T9.5 PMD for 62.5/125mm.

B. Connectors. Field terminate optical fibers with ST type connectors. Connectors shall have ceramic ferrules and metal bayonet latching bodies.
PART 3: EXECUTION

3.1 Examination

A. The contractor shall inspect the site to verify that equipment may be installed as shown. Any discrepancies, conflicts, or omissions shall be reported to the engineer for resolution before rough-in work is started.

B. The contractor shall examine the drawings and specifications for other parts of the work. If head room or space conditions appear inadequate—or if any discrepancies occur between the plans and the contractor’s work and the plans and the work of others—the contractor shall report these discrepancies to the engineer and shall obtain written instructions for any changes necessary to accommodate the contractor’s work with the work of others. Any changes in the work covered by this specification made necessary by the failure or neglect of the contractor to report such discrepancies shall be made by—and at the expense of—this contractor.

3.2 Protection

A. The contractor shall protect all work and material from damage by his/her work or employees and shall be liable for all damage thus caused.

B. The contractor shall be responsible for his/her work and equipment until finally inspected, tested, and accepted. The contractor shall protect any material that is not immediately installed. The contractor shall close all open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

3.3 Coordination

A. Site

1. Where the mechanical work will be installed in close proximity to, or will interfere with, work of other trades, the contractor shall assist in working out space conditions to make a satisfactory adjustment. If the contractor installs his/her work before coordinating with other trades, so as to cause any interference with work of other trades, the contractor shall make the necessary changes in his/her work to correct the condition without extra charge.
2. Coordinate and schedule work with other work in the same area and with work dependent upon other work to facilitate mutual progress.

B. Submittals. See Section 23 09 23 Article 1.10 (Submittals).

C. Test and Balance.

1. The contractor shall furnish a single set of all tools necessary to interface to the control system for test and balance purposes.

2. The contractor shall provide training in the use of these tools. This training will be planned for a minimum of 4 hours.

3. In addition, the contractor shall provide a qualified technician to assist in the test and balance process, until the first 20 terminal units are balanced.

4. The tools used during the test and balance process will be returned at the completion of the testing and balancing.

D. Coordination with controls specified in other sections or divisions. Other sections and/or divisions of this specification include controls and control devices that are to be part of or interfaced to the control system specified in this section. These controls shall be integrated into the system and coordinated by the contractor as follows:

1. All communication media and equipment shall be provided as specified in Section 23 09 23 Article 2.2 (Communication).

2. Each supplier of a controls product is responsible for the configuration, programming, start up, and testing of that product to meet the sequences of operation described in Section 23 09 93.

3. The contractor shall coordinate and resolve any incompatibility issues that arise between control products provided under this section and those provided under other sections or divisions of this specification.

4. The contractor is responsible for providing all controls described in the contract documents regardless of where within the contract documents these controls are described.
5. The contractor is responsible for the interface of control products provided by multiple suppliers regardless of where this interface is described within the contract documents.

3.4 General Workmanship

A. Install equipment, piping, and wiring/raceway parallel to building lines (i.e. horizontal, vertical, and parallel to walls) wherever possible.

B. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.

C. Install equipment in readily accessible locations as defined by Chapter 1 Article 100 Part A of the National Electrical Code (NEC).

D. Verify integrity of all wiring to ensure continuity and freedom from shorts and grounds.

E. All equipment, installation, and wiring shall comply with industry specifications and standards for performance, reliability, and compatibility and be executed in strict adherence to local codes and standard practices.

3.5 Field Quality Control

A. All work, materials, and equipment shall comply with rules and regulations of applicable local, state, and federal codes and ordinances as identified in Section 23 09 23 Article 1.8 (Codes and Standards).

B. Contractor shall continually monitor the field installation for code compliance and quality of workmanship.

C. Contractor shall have work inspection by local and/or state authorities having jurisdiction over the work.

3.6 Existing Equipment

A. Wiring. Interconnecting control wiring shall be removed and shall become the property of the contractor unless specifically noted or shown to be reused.

B. Repair. Unless otherwise directed, the contractor is not responsible for repair or replacement of existing energy equipment and systems, valves, dampers, or actuators. Should the contractor find existing equipment that requires maintenance, the engineer is to be notified immediately.
C. Indicator Gauges. Where these devices remain and are not removed, they must be made operational and recalibrated to ensure reasonable accuracy.

D. Electronic Sensors and Transmitters. Remove and deliver existing sensors and transmitters to Owner.

E. Controllers and Auxiliary Electronic Devices. Remove and deliver existing controllers and auxiliary electronic devices to Owner.

F. Control Valves. Replace existing control valves with new. Deliver removed control valves to Owner.

G. Existing System Operating Schedule. Existing mechanical system may be disabled during this work.

H. The scheduling of fans through existing or temporary time clocks or control system shall be maintained throughout the DDC system installation.

I. Install control panels where shown.

J. Modify existing starter control circuits, if necessary, to provide hand-off-auto control of each controlled starter. If new starters or starter control packages are required, these shall be included as part of this contract.

K. Patch holes and finish to match existing walls.

3.7 Wiring

A. All control and interlock wiring shall comply with national and local electrical codes, and Division 26 of this specification, Where the requirements of this section differ from Division 26, the requirements of this section shall take precedence.

B. All NEC Class 1 (line voltage) wiring shall be UL listed in approved raceway according to NEC and Division 26 requirements.

C. All low-voltage wiring shall meet NEC Class 2 requirements. Low-voltage power circuits shall be subfused when required to meet Class 2 current limit.

D. Where NEC Class 2 (current-limited) wires are in concealed and accessible locations, including ceiling return air plenums, approved cables not in raceway may be used provided that cables are UL listed for the intended application.
E. All wiring in mechanical, electrical, or service rooms – or where subject to mechanical damage – shall be installed in raceway at levels below 3 m (10ft).

F. Do not install Class 2 wiring in raceways containing Class 1 wiring. Boxes and panels containing high-voltage wiring and equipment may not be used for low-voltage wiring except for the purpose of interfacing the two (e.g. relays and transformers).

G. Do not install wiring in raceway containing tubing.

H. Where Class 2 wiring is run exposed, wiring is to be run parallel along a surface or perpendicular to it and neatly tied at 3 m (10 ft) intervals.

I. Where plenum cables are used without raceway, they shall be supported from or anchored to structural members. Cables shall not be supported by or anchored to ductwork, electrical raceways, piping, or ceiling suspension systems.

J. All wire-to-device connections shall be made at a terminal block or terminal strip. All wire-to-wire connections shall be at a terminal block.

K. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.

L. Maximum allowable voltage for control wiring shall be 120 V. If only higher voltages are available, the contractor shall provide step-down transformers.

M. All wiring shall be installed as continuous lengths, with no splices permitted between termination points.

N. Install plenum wiring in sleeves where it passes through walls and floors. Maintain fire rating at all penetrations.

O. Size of raceway and size and type of wire type shall be the responsibility of the contractor in keeping with the manufacturer’s recommendations and NEC requirements, except as noted elsewhere.

P. Include one pull string in each raceway 2.5 cm (1 in.) or larger.

Q. Use color-coded conductors throughout with conductors of different colors.

R. Control and status relays are to be located in designated enclosures only. These enclosures include packaged equipment control panel enclosures unless they also contain Class 1 starters.
S. Conceal all raceways except within mechanical, electrical, or service rooms. Install raceway to maintain a minimum clearance of 15 cm (6 in.) from high-temperature equipment (e.g. steam pipes or flues).

T. Secure raceways with raceway clamps fastened to the structure and spaced according to code requirements. Raceways and pull boxes may not be hung on flexible duct strap or tie rods. Raceways may not be run on or attached to ductwork.

U. Adhere to this specification's Division 26 requirements where raceway crosses building expansion joints.

V. Install insulated bushings on all raceway ends and openings to enclosures. Seal top end of vertical raceways.

W. The contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.

X. Flexible metal raceways and liquid-tight flexible metal raceways shall not exceed 1 m (3 ft) in length and shall be supported at each end. Flexible metal raceway less than ½ in. electrical trade size shall not be used. In areas exposed to moisture, including chiller and boiler rooms, liquid-tight, flexible metal raceways shall be used.

Y. Raceway must be rigidly installed, adequately supported, properly reamed at both ends, and left clean and free of obstructions. Raceway sections shall be joined with couplings (according to code). Terminations must be made with fittings at boxes, and ends not terminating in boxes shall have bushings installed.

3.8 Communication Wiring

A. The contractor shall adhere to the items listed in the "Wiring" article in Part 3 of the specification.

B. All cabling shall be installed in a neat and workmanlike manner. Follow manufacturer's installation recommendations for all communication cabling.

C. Do not install communication wiring in raceways and enclosures containing Class 1 or other Class 2 wiring.

D. Maximum pulling, tension, and bend radius for the cable installation, as specified by the cable manufacturer, shall not be exceeded during installation.
E. Contractor shall verify the integrity of the entire network following cable installation. Use appropriate test measures for each particular cable.

F. When a cable enters or exits a building, a lightning arrester must be installed between the lines and ground. The lighting arrester shall be installed according to manufacturer’s instructions.

G. All runs of communication wiring shall be unspliced length when that length is commercially available.

H. All communication wiring shall be labeled to indicate origination and destination data.

I. Grounding of coaxial cable shall be in accordance with NEC regulations article on "Communications Circuits, Cable, and Protector Grounding."

J. BACnet MS/TP communications wiring shall be installed in accordance with ASHRAE/ANSI Standard 135. This includes but is not limited to:
 1. The network shall use shielded, twisted-pair cable with characteristic impedance between 100 and 120 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot.)
 2. The maximum length of an MS/TP segment is 1200 meters (4000 ft) with AWG 18 cable. The use of greater distances and/or different wire gauges shall comply with the electrical specifications of EIA-485.
 3. The maximum number of nodes per segment shall be 32, as specified in the EIA 485 standard. Additional nodes may be accommodated by the use of repeaters.
 4. An MS/TP EIA-485 network shall have no T connections.

3.9 Fiber Optic Cable

A. Maximum pulling tensions as specified by the cable manufacturer shall not be exceeded during installation. Post-installation residual cable tension shall be within cable manufacturer's specifications.

B. All cabling and associated components shall be installed in accordance with manufacturers' instructions. Minimum cable and unjacketed fiber bend radii, as specified by cable manufacturer, shall be maintained.

3.10 Installation of Sensors
A. Install sensors in accordance with the manufacturer's recommendations.

B. Mount sensors rigidly and adequately for environment within which the sensor operates.

C. Room temperature sensors shall be installed on concealed junction boxes properly supported by wall framing.

D. All wires attached to sensors shall be sealed in their raceways or in the wall to stop air transmitted from other areas from affecting sensor readings.

E. Low-limit sensors used in mixing plenums shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip. Provide 3 m (1 ft) of sensing element for each 1 m² (1 ft²) of coil area.

F. All pipe-mounted temperature sensors shall be installed in wells. Install liquid temperature sensors with heat-conducting fluid in thermal wells.

G. Install outdoor air temperature sensors on north wall, complete with sun shield at designated location.

H. Smoke detectors, freezestats, high-pressure cut-offs, and other safety switches shall be hard-wired to de-energize equipment as described in the sequence of operation. Switches shall require manual reset. Provide contacts that allow DDC software to monitor safety switch status.

3.11 Flow Switch Installation

A. Use correct paddle for pipe diameter.

B. Adjust flow switch according to manufacturer's instructions.

3.12 Actuators

A. General. Mount and link control damper actuators according to manufacturer's instructions.

1. To compress seals when spring-return actuators are used on normally closed dampers, power actuator to approximately 5° open position, manually close the damper, and then tighten the linkage.

2. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed positions.
3. Provide all mounting hardware and linkages for actuator installation.

B. Electric/Electronic

1. **Dampers:** Actuators shall be direct mounted on damper shaft or jackshaft unless shown as a linkage installation. For low-leakage dampers with seals, the actuator shall be mounted with a minimum 5° travel available for tightening the damper seal. Actuators shall be mounted following manufacturer’s recommendations.

2. **Valves:** Actuators shall be connected to valves with adapters approved by the actuator manufacturer. Actuators and adapters shall be mounted following the actuator manufacturer’s recommendations.

3.13 Warning Labels

A. Permanent warning labels shall be affixed to all equipment that can be automatically started by the control system.

1. Labels shall use white lettering (12-point type or larger) on a red background.

2. Warning labels shall read as follows.

C A U T I O N

This equipment is operating under automatic control and may start or stop at any time without warning. Switch disconnect to "Off" position before servicing.

B. Permanent warning labels shall be affixed to all motor starters and control panels that are connected to multiple power sources utilizing separate disconnects.

1. Labels shall use white lettering (12-point type or larger) on a red background.

2. Warning labels shall read as follows.

C A U T I O N

This equipment is fed from more than one power source with separate disconnects. Disconnect all power sources before servicing.
3.14 Identification of Hardware and Wiring

A. All wiring and cabling, including that within factory-fabricated panels shall be labeled at each end within 5 cm (2 in.) of termination with control system address or termination number.

B. Permanently label or code each point of field terminal strips to show the instrument or item served.

C. Identify control panels with minimum 1 cm (½ in.) letters on laminated plastic nameplates.

D. Identify all other control components with permanent labels. All plug-in components shall be labeled such that label removal of the component does not remove the label.

E. Identify room sensors related to terminal boxes or valves with nameplates.

F. Manufacturers' nameplates and UL or CSA labels shall be visible and legible after equipment is installed.

G. Identifiers shall match record documents.

3.15 Controllers

A. Provide a separate controller for each HVAC system. A DDC controller may control more than one system provided that all points associated with the system are assigned to the same DDC controller. Points used for control loop reset, such as outside air or space temperature, are exempt from this requirement.

B. Building Controllers and Custom Application Controllers shall be selected to provide the required I/O point capacity required to monitor all of the hardware points listed in Section 23 09 93 (Sequences of Operation).

3.16 Programming

A. Provide sufficient internal memory for the specified sequences of operation and trend logging.

B. Point Naming. Name points as shown on the equipment points list provided with each sequence of operation. See Section 23 09 93 (Sequences of Operation). If character limitations or space restrictions make it advisable to shorten the name, the abbreviations given in Appendix B to Section 23 09 93 may be used. Where multiple points with the same
name reside in the same controller, each point name may be customized with its associated Program Object number. For example, "Zone Temp 1" for Zone 1, "Zone Temp 2" for Zone 2.

C. Software Programming.

1. Provide programming for the system and adhere to the sequences of operation provided. All other system programming necessary for the operation of the system, but not specified in this document, also shall be provided by the contractor. Embed into the control program sufficient comment statements to clearly describe each section of the program. The comment statements shall reflect the language used in the sequences of operation. Use the appropriate technique based on the following programming types:

 a. Text-based:
 i. Must provide actions for all possible situations
 ii. Must be modular and structured
 iii. Must be commented

 b. Graphic-based:
 i. Must provide actions for all possible situations
 ii. Must be documented

 c. Parameter-based:
 i. Must provide actions for all possible situations
 ii. Must be documented.

D. Operator Interface.

1. Standard Graphics. Provide graphics for all mechanical systems and floor plans of the building. This includes each chilled water system, hot water system, chiller, boiler, air handler, and all terminal equipment. Point information on the graphic displays shall dynamically update. Show on each graphic all relevant input and output points for that equipment. Also show relevant calculated points such as setpoints. As a minimum, show on each equipment graphic the input and output
points and relevant calculated points as indicated on the applicable Points List in Section 23 09 93.

2. The contractor shall provide all the labor necessary to install, initialize, start up, and troubleshoot all operator interface software and its functions as described in this section. This includes any operating system software, the operator interface database, and any third-party software installation and integration required for successful operation of the operator interface.

3.17 Control System Checkout and Testing

A. Startup Testing. All testing listed in this article shall be performed by the contractor and shall make up part of the necessary verification of an operating control system. This testing shall be completed before the owner’s representative is notified of the system demonstration.

1. The contractor shall furnish all labor and test apparatus required to calibrate and prepare for service of all instruments, controls, and accessory equipment furnished under this specification.

2. Verify that all control wiring is properly connected and free of all shorts and ground faults. Verify that terminations are tight.

3. Enable the control systems and verify calibration of all input devices individually. Perform calibration procedures according to manufacturers’ recommendations.

4. Verify that all binary output devices (relays, solenoid valves, two-position actuators and control valves, magnetic starters, etc.) operate properly and that the normal positions are correct.

5. Verify that all analog output devices (I/Ps, actuators, etc.) are functional, that start and span are correct, and that direction and normal positions are correct. The contractor shall check all control valves and automatic dampers to ensure proper action and closure. The contractor shall make any necessary adjustments to valve stem and damper blade travel.

6. Verify that the system operation adheres to the sequences of operation. Simulate and observe all modes of operation by overriding and varying inputs and schedules. Tune all DDC loops.

7. Alarms and Interlocks:
a. Check each alarm separately by including an appropriate signal at a value that will trip the alarm.

b. Interlocks shall be tripped using field contacts to check the logic, as well as to ensure that the fail-safe condition for all actuators is in the proper direction.

c. Interlock actions shall be tested by simulating alarm conditions to check the initiating value of the variable and interlock action.

3.18 Control System Demonstration and Acceptance

A. Demonstration.

1. Prior to acceptance, the control system shall undergo a series of performance tests to verify operation and compliance with this specification. These tests shall occur after the Contractor has completed the installation, started up the system, and performed his/her own tests.

2. The tests described in this section are to be performed in addition to the tests that the contractor performs as a necessary part of the installation, start-up, and debugging process and as specified in the "Control System Checkout and Testing" article in Part 3 of this specification. The engineer will be present to observe and review these tests. The engineer shall be notified at least 10 days in advance of the start of the testing procedures.

3. The demonstration process shall follow that approved in Part 1, "Submittals." The approved checklists and forms shall be completed for all systems as part of the demonstration.

4. The contractor shall provide at least two persons equipped with two-way communication and shall demonstrate actual field operation of each control and sensing point for all modes of operation including day, night, occupied, unoccupied, fire/smoke alarm, seasonal changeover, and power failure modes. The purpose is to demonstrate the calibration, response, and action of every point and system. Any test equipment required to prove the proper operation shall be provided by and operated by the contractor.

5. As each control input and output is checked, a log shall be completed showing the date, technician's initials, and any corrective action taken or needed.

7. Demonstrate compliance with sequences of operation through all modes of operation.

8. Demonstrate complete operation of operator interface.

9. Additionally, the following items shall be demonstrated:
 a. DDC loop response. The contractor shall supply trend data output in a graphical form showing the step response of each DDC loop. The test shall show the loop’s response to a change in set point, which represents a change of actuator position of at least 25% of its full range. The sampling rate of the trend shall be from 10 seconds to 3 minutes, depending on the speed of the loop. The trend data shall show for each sample the set point, actuator position, and controlled variable values. Any loop that yields unreasonably under-damped or over-damped control shall require further tuning by the Contractor.

 b. Demand limiting. The contractor shall supply a trend data output showing the action of the demand limiting algorithm. The data shall document the action on a minute-by-minute basis over at least a 30-minute period. Included in the trend shall be building kW, demand limiting set point, and the status of sheddable equipment outputs.

 c. Optimum start/stop. The contractor shall supply a trend data output showing the capability of the algorithm. The change-of-value or change-of-state trends shall include the output status of all optimally started and stopped equipment, as well as temperature sensor inputs of affected areas.

 d. Interface to the building fire alarm system.

 e. Operational logs for each system that indicate all set points, operating points, valve positions, mode, and equipment status shall be submitted to the architect/engineer. These logs shall cover three 48-hour periods and have a sample frequency of not more than 10 minutes. The logs shall be provided in both printed and disk formats.

10. Any tests that fail to demonstrate the operation of the system shall be repeated at a later date. The contractor shall be responsible for any necessary repairs or revisions to the hardware or software to successfully complete all tests.
B. Acceptance.

1. All tests described in this specification shall have been performed to the satisfaction of both the engineer and owner prior to the acceptance of the control system as meeting the requirements of completion. Any tests that cannot be performed due to circumstances beyond the control of the contractor may be exempt from the completion requirements if stated as such in writing by the engineer. Such tests shall then be performed as part of the warranty.

2. The system shall not be accepted until all forms and checklists completed as part of the demonstration are submitted and approved as required in Part 1, "Submittals."

3.19 Cleaning

A. The contractor shall clean up all debris resulting from his/her activities daily. The contractor shall remove all cartons, containers, crates, etc., under his/her control as soon as their contents have been removed. Waste shall be collected and placed in a designated location.

B. At the completion of work in any area, the contractor shall clean all work, equipment, etc., keeping it free from dust, dirt, and debris, etc.

C. At the completion of work, all equipment furnished under this section shall be checked for paint damage, and any factory-finished paint that has been damaged shall be repaired to match the adjacent areas. Any cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

3.20 Training

A. Provide training for a designated staff of Owner’s representatives. Training shall be provided via self-paced training, web-based or computer-based training, classroom training, or a combination of training methods.

B. Training shall enable students to accomplish the following objectives.

1. Day-to-day Operators:
 a. Proficiently operate the system
 b. Understand control system architecture and configuration
c. Understand DDC system components

d. Understand system operation, including DDC system control and optimizing routines (algorithms)

e. Operate the workstation and peripherals

f. Log on and off the system

g. Access graphics, point reports, and logs

h. Adjust and change system set points, time schedules, and holiday schedules

i. Recognize malfunctions of the system by observation of the printed copy and graphical visual signals

j. Understand system drawings and Operation and Maintenance manual

k. Understand the job layout and location of control components

l. Access data from DDC controllers and ASCs

m. Operate portable operator's terminals

2. Advanced Operators:

a. Make and change graphics on the workstation

b. Create, delete, and modify alarms, including annunciation and routing of these

c. Create, delete, and modify point trend logs and graph or print these both on an ad-hoc basis and at user-definable time intervals

d. Create, delete, and modify reports

e. Add, remove, and modify system's physical points

f. Create, modify, and delete programming

g. Add panels when required

h. Add operator interface stations

i. Create, delete, and modify system displays, both graphical and others
j. Perform DDC system field checkout procedures
k. Perform DDC controller unit operation and maintenance procedures
l. Perform workstation and peripheral operation and maintenance procedures
m. Perform DDC system diagnostic procedures
n. Configure hardware including PC boards, switches, communication, and I/O points
o. Maintain, calibrate, troubleshoot, diagnose, and repair hardware
p. Adjust, calibrate, and replace system components

3. System Managers/Administrators:
 a. Maintain software and prepare backups
 b. Interface with job-specific, third-party operator software
 c. Add new users and understand password security procedures

C. Organize the training into sessions or modules for the three levels of operators listed above. (Day-to-Day Operators, Advanced Operators, System Managers and Administrators). Students will receive one or more of the training packages, depending on knowledge level required.

D. Provide course outline and materials according to the "Submittals" article in Part 1 of this specification. Provide one copy of training material per student.

E. The instructor(s) shall be factory-trained and experienced in presenting this material.

F. Classroom training shall be done using a network of working controllers representative of installed hardware.

3.21 Sequences of Operation

A. See Section 23, Appendix A (Sequences of Operation, With Points Lists).

3.22 Control Valve Installation
A. Valve submittals shall be coordinated for type, quantity, size, and piping configuration to ensure compatibility with pipe design.

B. Slip-stem control valves shall be installed so that the stem position is not more than 60 degrees from the vertical up position. Ball type control valves shall be installed with the stem in the horizontal position.

C. Valves shall be installed in accordance with the manufacturer’s recommendations.

D. Control valves shall be installed so that they are accessible and serviceable and so that actuators may be serviced and removed without interference from structure or other pipes and/or equipment.

E. Isolation valves shall be installed so that the control valve body may be serviced without draining the supply/return side piping system. Unions shall be installed at all connections to screw-type control valves.

F. Provide tags for all control valves indicating service and number. Tags shall be brass, 1.5 inch in diameter, with ¼ inch high letters. Securely fasten with chain and hook. Match identification numbers as shown on approved controls shop drawings.

3.23 Control Damper Installation

A. Damper submittals shall be coordinated for type, quantity, and size to ensure compatibility with sheet metal design.

B. Duct openings shall be free of any obstruction or irregularities that might interfere with blade or linkage rotation or actuator mounting. Duct openings shall measure ¼ in. larger than damper dimensions and shall be square, straight, and level.

C. Individual damper sections, as well as entire multiple section assemblies, must be completely square and free from racking, twisting, or bending. Measure diagonally from upper corners to opposite lower corners of each damper section. Both dimensions must be within 0.3 cm (1/8 in.) of each other.

D. Follow the manufacturer’s instructions for field installation of control dampers. Unless specifically designed for vertical blade application, dampers must be mounted with blade axis horizontal.

E. Install extended shaft or jackshaft according to manufacturer’s instructions. (Typically, a sticker on the damper face shows recommended extended shaft location. Attach shaft on labeled side of damper to that blade.)
F. Damper blades, axles, and linkage must operate without binding. Before system operation, cycle damper after installation to ensure proper operation. On multiple section assemblies, all sections must open and close simultaneously.

G. Provide a visible and accessible indication of damper position on the drive shaft end.

H. Support ductwork in area of damper when required to prevent sagging due to damper weight.

I. After installation of low-leakage dampers with seals, caulk between frame and duct or opening to prevent leakage around perimeter of damper.

3.24 Packaged Equipment Controls

A. General. The electronic controls packaged with any equipment furnished under this contract shall communicate with the building direct digital control (DDC) system. The DDC system shall communicate with these controls to read the information and change the control setpoints as shown in the points list, sequences of operation, and control schematics. The information to be communicated between the DDC system and these controls shall be in the standard object format as defined in ANSI/ASHRAE Standard 135 (BACnet). Controllers shall communicate with other BACnet objects on the internetwork using the Read (Execute) Property service as defined in Clause 15.5 of Standard 135.

B. Distributed Processing. The controller shall be capable of stand-alone operation and shall continue to provide control functions if the network connection is lost.

C. I/O Capacity. The controller shall contain sufficient I/ O capacity to control the target system.

D. The Controller shall have a physical connection for a laptop computer or a portable operator’s tool.

E. Environment. The hardware shall be suitable for the anticipated ambient conditions.
 1. Controllers used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at 40°C to 60°C (40°F to 140°F).
 2. Controllers used in conditioned space shall be mounted in dust-proof enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
F. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field removable, modular terminal strips or to a termination card connected by a ribbon cable.

G. Memory. The Controller shall maintain all BIOS and programming information in the event of a power loss for at least 30 days.

H. Power. Controller shall be able to operate at 90% to 110% of nominal voltage rating.

I. Transformer. Power supply for the Controller must be rated at minimum of 125% of ASC power consumption and shall be fused or current limiting type.

3.25 Start-Up and Checkout Procedures

A. Start up, check out, and test all hardware and software and verify communication between all components.

1. Verify that all control wiring is properly connected and free of all shorts and ground faults. Verify that terminations are tight.

2. Verify that all analog and binary input/output points read properly.

3. Verify alarms and interlocks.

4. Verify operation of the integrated system.

END OF SECTION 230923
23 09 93 – SEQUENCES OF OPERATION

Boiler Manager

Hot Water System - Boiler Manager - Run Conditions:
The hot water system shall be enabled by the existing BAS system to run whenever
the outside air temperature is less than 54°F (adj.).
To prevent short cycling, the boiler manager shall run for and be off for minimum
adjustable times (both user definable).
Each boiler shall run subject to its own internal safeties and controls.
Boiler Staging - Three Equal Sized Hot Water Boilers Running in Parallel:
This section refers to the staging and sequencing of each boiler "train". The sequence
of operation for each individual boiler and its associated support equipment (such as
pumps) are not included in this section.
The controller shall stage the boilers on in sequence to maintain the hot water
supply temperature where:

- Main hot water supply temperature is measured at a point leaving the boiler
 plant and entering the facility. This point shall be downstream and common
to all boilers.

The boiler controller shall determine the discharge water setpoint based on an
outdoor air reset temperature and shall stage the boilers on in sequence to
meet rising heating demand and dropping main hot water supply temperature
where:

The following setpoints are recommended values. All setpoints shall be field
adjusted during the commissioning period to meet the requirements of actual field
conditions.

The lead boiler train shall run anytime the boiler manager is enabled. Additional
boilers shall stage on as follows. To prevent short cycling, there shall be a user
definable (adj.) delay between stages, and each stage shall have a user definable
(adj.) minimum runtime.
Second Boiler:
Stage ON if hot water supply temperature drops below setpoint of 160°F for a period of 15 minutes (adj.)
Stage OFF if hot water supply temperature rises above setpoint by 40°F

Third Boiler:
Stage ON if hot water supply temperature drops below setpoint of 150°F for a period of 15 minutes (adj.)
Stage OFF if hot water supply temperature rises above setpoint by 40°F

The boiler staging order shall be user definable. The designated lead boiler (user definable) shall rotate upon one of the following conditions (user selectable):
• manually through a software switch
• if boiler runtime (adj.) is exceeded
• daily, weekly or monthly

Each boiler shall run subject to its own internal safeties and controls. On failure of any boiler, the failed boiler shall be "removed" from operation and the next available piece of equipment as defined by the user shall be staged on in its place.

Alarms shall be provided as follows:
• Boiler1 Failure: Commanded on, but the status is off.
• Boiler2 Failure: Commanded on, but the status is off.
• Boiler3 Failure: Commanded on, but the status is off.

<table>
<thead>
<tr>
<th>Point Name</th>
<th>Hardware Points</th>
<th>Software Points</th>
<th>Show On Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI</td>
<td>AO</td>
<td>BI</td>
</tr>
<tr>
<td>Main Hot Water Return Temp</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Hot Water Supply Temp</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Air Temp</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler System Enable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 1 Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Name</td>
<td>AI</td>
<td>AO</td>
<td>BI</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Boiler 2 Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 3 Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hardware (5) **Total Software (4)**
Boiler Interface

Boiler Interface Monitor:
Current boiler status and operating conditions will be monitored through its communications interface port. The interface will monitor and trend the points as shown on the Points List.

<table>
<thead>
<tr>
<th>Point Name</th>
<th>Hardware Points</th>
<th>Software Points</th>
<th>Show On Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burner Cycles</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hot Water Return Temp</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hot Water Supply Temp</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>HW Supply Temp Setpoint</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Operating Hours</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Operating Pressure</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Operating Temp</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Boiler Status</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hot Water Flow Status</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Totals</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Total Hardware (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Software (16)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hot Water Loop Pumps

Hot Water Pump Run Conditions:
The hot water pumps shall be enabled when the outside air temperature is < 54°F (adj.).

The pumps shall run for freeze protection anytime outside air temperature is < 38°F (adj.).

To prevent short cycling, the pumps shall run for and be off for minimum adjustable times (both user definable).

Hot Water Pump Lead/Lag Operation:
The two variable speed hot water pumps shall operate in a lead/lag fashion.

- The lead pump shall run first.
- On failure of the lead pump, the lag pump shall run and the lead pump shall turn off.
- On decreasing hot water differential pressure, the lag pump shall stage on and run in unison with the lead pump to maintain hot water differential pressure setpoint.

The designated lead pump shall rotate upon one of the following conditions (user selectable):

- manually through a software switch
- if pump runtime (adj.) is exceeded
- daily, weekly or monthly

Alarms shall be provided as follows:

- **Hot Water Pump 1 / Hot Water Pump 2**
 - Failure: Commanded on, but the status is off.
 - Running in Hand: Commanded off, but the status is on.
 - Runtime Exceeded: Status runtime exceeds a user definable limit.
 - VFD Fault.

Hot Water Differential Pressure Control:
The controller shall measure hot water differential pressure and modulate the hot water pump VFDs in sequence to maintain its hot water differential pressure setpoint.
The following setpoints are recommended values. All setpoints shall be field adjusted during the commissioning period to meet the requirements of actual field conditions.

The controller shall modulate hot water pump speeds to maintain a hot water differential pressure of 12lbf/in\(^2\) (adj.). The VFDs minimum speed shall not drop below 20% (adj.).

On dropping hot water differential pressure, the VFDs shall stage on and run to maintain setpoint as follows:
- The controller shall modulate the lead VFD to maintain setpoint.
- If the lead VFD speed is greater than a setpoint of 90% (adj.), the lag VFD shall stage on.
- The lag VFD shall ramp up to match the lead VFD speed and then run in unison with the lead VFD to maintain setpoint.

On rising hot water differential pressure, the VFDs shall stage off as follows:
- If the VFDs speeds drops back to 60% (adj.) below setpoint, the lag VFD shall stage off.
- The lead VFD shall continue to run to maintain setpoint.

Alarms shall be provided as follows:
- High Hot Water Differential Pressure: If 25% (adj.) greater than setpoint.
- Low Hot Water Differential Pressure: If 25% (adj.) less than setpoint.

Hot Water Temperature Monitoring:
The following temperatures shall be monitored:
- Hot water supply.
- Hot water return.

Alarms shall be provided as follows:
- High Hot Water Supply Temp: If the hot water supply temperature is greater than 200°F (adj.).
- Low Hot Water Supply Temp: If the hot water supply temperature is less than 100°F (adj.).
<table>
<thead>
<tr>
<th>Point Name</th>
<th>Hardware Points</th>
<th>Software Points</th>
<th>Show On Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI</td>
<td>AO</td>
<td>BI</td>
</tr>
<tr>
<td>Hot Water Return Temp</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hot Water Supply Temp</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>HW Pump 1 Start/Stop</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>HW Pump 2 Start/Stop</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>HW Pump 1 Control Signal</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 2 Control Signal</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 1 Feedback</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 2 Feedback</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>HW Pump 1 Alarm</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 2 Alarm</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Air Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Hot Water Supply Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Water Pump 1 Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 1 Running in Hand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 1 Runtime Limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Water Pump 2 Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 2 Running in Hand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Pump 2 Runtime Limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Hot Water Supply Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total Hardware (10)</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total Software (23)</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Domestic Hot Water Generator

DHW Generator - Run Conditions:
The domestic hot water generator shall be enabled to run based on maintaining the DHW Tank Temperature setpoint. The DHW generator shall run subject to its own internal safeties and controls. Monitor DHW Supply Temperature.

Circulation Pump:
The circulation pump shall run anytime the DHW generator is called to run and shall have a user definable (adj.) delay on stop.

Alarms shall be provided as follows:
- Circulation Pump Failure: Commanded on, but the status is off.
- Circulation Pump Running in Hand: Commanded off, but the status is on.
- Circulation Pump Runtime Exceeded: Status runtime exceeds user defined limit.

Domestic Hot Water Tank Temperature Setpoint:
The DHW Generator shall maintain a domestic hot water tank temperature setpoint as determined by its own internal controls (provided by others).

Alarms shall be provided as follows:
- High Primary DHW Tank Temp: If greater than 140°F (adj.).
- Low Primary DHW Tank Temp: If less than 100°F (adj.).

<table>
<thead>
<tr>
<th>Point Name</th>
<th>Hardware Points</th>
<th>Software Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI</td>
<td>AO</td>
</tr>
<tr>
<td>DHW Tank Temperature</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DHW Water Supply Temperature</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Circulation Pump Status</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Circulation Pump Start/Stop</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Outside Air Temp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulation Pump Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulation Pump Running in Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total Hardware (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Software (16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit Heater

Run Conditions - Scheduled:
The unit shall run according to a user definable time schedule in the following modes:
- Occupied Mode: The unit shall maintain a heating setpoint of 70°F (adj.).
- Unoccupied Mode (night setback): The unit shall maintain a heating setpoint of 65°F (adj.).

Alarms shall be provided as follows:
- Low Zone Temp: If the zone temperature is less than the heating setpoint by a user definable amount (adj.).

Zone Setpoint Adjust:
The occupant shall be able to adjust the zone temperature heating and cooling setpoints at the zone sensor.

Fan:
The fan shall run anytime the zone temperature drops below heating setpoint, unless shutdown on safeties.

Heating Coil Valve:
The controller shall measure the zone temperature and open the heating coil valve to maintain its heating setpoint.

The heating shall be enabled whenever:
- Outside air temperature is less than 65°F (adj.).
- AND the zone temperature is below heating setpoint.
- AND the fan is on.

<table>
<thead>
<tr>
<th>Hardware Points</th>
<th>Software Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Name</td>
<td>AI</td>
</tr>
<tr>
<td>Zone Temp</td>
<td>x</td>
</tr>
</tbody>
</table>
Hardware Points

<table>
<thead>
<tr>
<th>Point Name</th>
<th>AI</th>
<th>AO</th>
<th>BI</th>
<th>BO</th>
<th>AV</th>
<th>BV</th>
<th>Loop</th>
<th>Sched</th>
<th>Trend</th>
<th>Alarm</th>
<th>Show On Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Start/Stop</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Heating Valve</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Heating Setpoint</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td>Low Zone Temp</td>
<td></td>
</tr>
</tbody>
</table>

Totals

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hardware (3)</td>
<td></td>
</tr>
<tr>
<td>Total Software (5)</td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION 230993
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following types of HVAC pumps:
 1. Basemounted pumps.
 2. Inline circulator pumps.

1.2 SUBMITTALS

A. Product data including certified performance curves of selected models indicating selected pump's operating point, weights (shipping, installed, and operating), furnished specialties, and accessories.

B. Shop drawings showing layout and connections for HVAC pumps. Include setting drawings with templates, and directions for installation of foundation bolts and other anchorages.

C. Wiring diagrams detailing wiring for power, signal, and control systems, differentiating between manufacturer-installed wiring and field-installed wiring.

D. Maintenance data for HVAC pumps for inclusion in Operating and Maintenance Manual specified in Division 1 and Division 23 Section "Basic Mechanical Requirements."

1.3 QUALITY ASSURANCE

A. Hydraulic Institute Compliance: Design, manufacture, and install HVAC pumps in accordance with "Hydraulic Institute Standards."

B. National Electrical Code Compliance: Provide components complying with NFPA 70 "National Electrical Code."

C. UL Compliance: Provide HVAC pumps which are listed and labeled by UL, and comply with UL Standard 778 "Motor Operated Water Pumps."

D. NEMA Compliance: Provide electric motors and components that are listed and labeled NEMA.

E. Single Source Responsibility: Obtain HVAC pumps from a single manufacturer.
F. Design Criteria: The Drawings indicate sizes, profiles, connections, and dimensional requirements of HVAC pumps, and are based on the specific manufacturer types and models indicated. Pumps having equal performance characteristics by other manufacturers may be considered, provided deviations in dimensions and profiles and efficiencies do not change the design concept or intended performance as judged by the Architect.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Store pumps in a dry location.

B. Retain shipping flange protective covers and protective coatings during storage.

C. Protect bearings and couplings against damage from sand, grit, and other foreign matter.

D. For storage times greater than 5 days, dry internal parts with hot air or a vacuum-producing device to avoid rusting internal parts. Upon drying, coat internal parts with a protective liquid, such as light oil, kerosene, or antifreeze. Dismantle bearings and couplings, dry and coat them with an acid-free heavy oil, and then tag and store in dry location.

E. Comply with Manufacturer's rigging instructions for handling.

PART 2 - PRODUCTS

1.1 MANUFACTURERS

A. Available Products: Subject to compliance with requirements, products which may be incorporated in the Work include, but are limited to, the following:

1. Bell and Gossett

2. Taco

3. Armstrong

1.2 PUMPS, GENERAL

A. Pumps and Circulators: Factory-assembled and factory-tested. Fabricate casings to allow
removal and replacement of impellers without necessity of disconnecting piping. Type, sizes, and capacities shall be as indicated.

B. Preparation for Shipping: After assembly and testing, clean flanges and exposed machined metal surfaces and treat with an anticorrosion compound. Protect flanges, pipe openings, and nozzles.

C. Motors: Motor shall be a synchronous, permanent-magnet (PM) motor and tested with the pump as one unit. Conventional induction motors will not be acceptable. Each motor shall have an Integrated Variable Frequency Drive tested as one unit by the manufacturer. Integrated motor protection shall be verified by UL to protect the pump against over/under voltage, over temperature of motor and/or electronics, over current, locked rotor and dry run (no load condition). Pump shall have MODBUS or BACnet connections built into the VFD as standard options. Analog inputs, such as 0-10V and 4-20mA, are standard inputs built into the VFD.

D. Efficiency: "Energy Efficient" motors shall have a minimum efficiency as indicated in accordance with IEEE Standard 112, Test Method B. If efficiency is not specified, motor shall have a higher efficiency than the "average standard industry motors," in accordance with IEEE Standard 112, Test Method B.

1. Motor Frame: NEMA Standard 48 or 54; use pump manufacturer's standard.

E. Apply factory finish paint to assembled, tested units prior to shipping.

F. Use mechanical seals where choice is available. Use cyclone separator type seal waste cleaning device on all pumps that can be equipped with it (generally on all double suction pumps).

G. Acceptable manufacturers include Aurora, Armstrong or B&G.

H. Selection should be made for high efficiency. Consideration of life cycle cost study of variable speed pumping should be made. Efficiency ratings must meet or exceed Connecticut Light and Power required levels.

1.3 BASE-MOUNTED, SEPARATELY-COUPLLED, END-SUCTION PUMPS

A. General Description: Pumps shall be base-mounted, centrifugal, separately-coupled,
end-suction, single-stage, bronze-fitted, radially split case design, and rated for 175 psig working pressure and 225 deg F continuous water temperature.

B. Casings Construction: Cast iron, with flanged piping connections, and threaded gage tappings at inlet and outlet flange connections.

C. Impeller Construction: Statically and dynamically balanced, closed, overhung, single-suction, fabricated from cast bronze conforming to ASTM B 584, keyed to shaft and secured by a locking capscrew.

D. Wear Rings: Replaceable, bronze.

E. Pump Shaft and Sleeve Bearings: Steel shaft, with bronze sleeve.

F. Seals: Provide mechanical or stuffing box seals in strict accordance with pump manufacturer’s recommendations based on fluid temperature and PH levels, system operating pressure and fluid chemical treatment.

1. Mechanical seals consisting of carbon steel rotating ring, stainless steel spring, ceramic seat, and EPT/Tungsten carbide seals.

2. Seals: Stuffing box consisting of a minimum of 4 rings of graphite impregnated braided yarn with a bronze lantern ring between center 2 graphite rings, and a bronze packing gland.

G. Pump Couplings: Flexible, capable of absorbing torsional vibration and shaft misalignment; complete with metal coupling guard.

H. Mounting Frame: Factory-welded frame and cross members, fabricated of steel channels and angles conforming to ASTM B 36. Fabricate for mounting pump casing, coupler guard, and motor. Grind welds smooth prior to application of factory finish. Motor mounting holes for field-installed motors shall be field-drilled.

I. Motor: Secured to mounting frame with adjustable alignment on mounting frame.

 PART 3 - EXECUTION

1.1 EXAMINATION
A. Examine areas, equipment foundations, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of HVAC pumps.

B. Examine rough-in for piping systems to verify actual locations of piping connections prior to installation.

C. Examine equipment foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Do not proceed until unsatisfactory conditions have been corrected.

1.2 INSTALLATION

D. General: Comply with the manufacturer’s written installation and alignment instructions.

E. Install pumps in locations and arranged to provide access for periodic maintenance, including removal of motors, impellers, couplings, and accessories.

F. Support pumps and piping separately so that the weight of the piping system does not rest on the pump.

G. Suspend inline pumps using althread hanger rod and vibration isolation hangers of sufficient size to support the weight of the pump independent from the piping system.

E. Limit speed to 1750 RPM. Any handling High Temperature Water (HTW) shall be selected with the Agency Maintenance Manager’s input. Industrial pumps may be required.

F. For small flows and low heads, in-line circulators “paddle wheels” may be used, this application is limited to zoned residential-type (or similar) systems and may include systems intended to prevent cold freeze-up. Typical limits are 80 GPM at 25 feet TDH.

G. Base-mounted close coupled and separately controlled, end suction pumps shall be used when flows are between 100 and 500 GPM. The suction connection should be less than 4”. Close-coupled pump should not exceed 10 HP and should not exceed 15HP for the separately coupled pump. Base mount or separately coupled pumps should be of the back pullout type.

H. Base-mounted, separately coupled double-suction, horizontal split-case type pumps
should be used for connections 4” and larger.

I. Vibration control is usually not needed when pumps are mounted on basement slab. All vibration controls need to be carefully examined. Pads, isolated from slab may be acceptable. Inertia blocks need to be considered when the pump room is below an acoustically important room. Flexible connectors should also be minimized in use.

1.3 ALIGNMENT

A. Align pump and motor shafts and piping connections.

1. Adjust alignment of pump and motor shafts for angular and parallel alignment by one of the two methods specified in the Hydraulic Institute "Centrifugal Pumps - Instructions for Installation, Operation and Maintenance."

2. Alignment tolerances shall meet manufacturer’s recommendations.

1.4 CONNECTIONS

A. General: Install valves that are same size as the piping connecting the pump.

B. Install suction and discharge pipe sizes equal to or greater than the diameter of the pump nozzles.

C. Install a nonslam check valve and globe valve on the discharge side of inline pumps.

D. Install a triple-duty valve on the discharge side of base-mounted, end-suction pumps.

E. Install a gate valve and strainer on the suction side of inline pumps.

F. Install a pump suction diffuser and gate valve on the suction side of base-mounted, end-suction pumps.

G. Install flexible connectors on the suction and discharge side of each base-mounted pump. Install flexible connectors between the pump casing and the discharge valves, and upstream from the pump suction diffuser.

H. Install pressure gages on the suction and discharge of each pump at the integral
pressure gage tappings provided.

I. Install temperature and pressure gage connector plugs in suction and discharge piping around pump. Temperature and pressure gage connector plugs are specified in Division 15 Section "Meters and Gages."

J. Electrical wiring and connections are specified in Division 16 sections.

K. Control wiring and connections are specified in other Division 15 sections.

1.5 FIELD QUALITY CONTROL

A. Check suction lines connections for tightness to avoid drawing air into the pump.

1.6 COMMISSIONING

A. Final Checks Before Start-Up: Perform the following preventative maintenance operations and checks before start-up:

1. Lubricate oil-lubricated bearings.
2. Remove grease-lubricated bearing covers and flush the bearings with kerosene and thoroughly clean. Fill with new lubricant in accordance with the manufacturer's recommendations.
3. Disconnect coupling and check motor for proper rotation. Rotation shall match direction of rotation marked on pump casing.
4. Check that pump is free to rotate by hand. For pumps handling hot liquids, pump shall be free to rotate with the pump hot and cold. If the pump is bound or even drags slightly, do not operate the pump until the cause of the trouble is determined and corrected.

B. Starting procedure for pumps with shutoff power not exceeding the safe motor power:

1. Prime the pump, opening the suction valve, closing the drains, and prepare the pump for operation.
2. Open the valve in the cooling water supply to the bearings, where applicable.
3. Start the motor.
4. Open the discharge valve slowly.
5. Observe the leakage from the stuffing boxes and adjust the sealing liquid valve for proper flow to ensure the lubrication of the packing. Do not tighten the gland immediately, but let the packing run in before reducing the leakage through the
stuffing boxes.

6. Check the general mechanical operation of the pump and motor.
7. Close the recirculating line valve once there is sufficient flow through the pump to prevent overheating.

C. If the pump is to be started against a closed check valve with the discharge gate valve open, the steps are the same, except that the discharge gate valve is opened some time before the motor is started.

D. Refer to Division 23 Section "Testing, Adjusting, and Balancing" for detailed requirements for testing, adjusting, and balancing hydronic systems.

END OF SECTION 232000
23 21 13 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Scope: Extent of hydronic piping, fittings, valves and accessories is indicated on the drawings, in schedules and by the requirements of this Section.

B. Types: Types of hydronic piping systems specified in this Section include the following:

1. Heating water supply and return.

C. Related Sections: Refer to other Division 23 sections for the following:

1. Meters and Gauges.
2. Supports and Anchors.
3. Mechanical Insulation.
4. Firestopping.
5. Testing, Adjusting, and Balancing.
6. Valves

1.2 QUALITY ASSURANCE

A. Codes and Standards: Provide piping conforming to the requirements of the following:

1. American National Standards Institute (ANSI):
 a. B16.3 Malleable Iron Threaded Fittings
 b. B16.5 Pipe Flanges and Flanged Fittings
 c. B16.9 Factory-Made Wrought Steel Buttwelding Fittings
 d. B16.11 Forged Steel Fittings, Socket-Welding and Threaded
 e. B16.18 Cast Copper Alloy Solder Joint Pressure Fittings
 f. B16.22 Wrought Copper and Copper Alloy Solder Joint Pressure Fittings
 g. B16.39 Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300
 h. B31 Code for Pressure Piping
 i. B31.1 Power Piping
2. American Society of Mechanical Engineers (ASME): Installation of piping shall conform to the requirements of ANSI B31.1 "Power Piping."

 b. A 53 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded Seamless
 e. A 183 Standard Specification for Carbon Steel Track Bolts and Nuts
 g. A 194/A 194M Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High-Pressure and High-Temperature Service
 h. A 307 Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength
 i. A 536 Standard Specifications for Ductile Iron Castings
 j. B 16 Standard Specification for Free-Cutting Brass Rod, Bar and Shapes for Use in Screw Machines
 k. B 32 Standard Specification for Solder Metal
 l. B 61 Standard Specification for Steam or Valve Bronze Castings
 m. B 62 Standard Specification for Composition Bronze or Ounce Metal Castings
 n. B 88 Standard Specification for Seamless Copper Water Tube
 o. D 2000 Standard Classification System for Rubber Products in Automotive Applications

Materials.

B. Qualification of Welders: Welders performing work under this Contract shall be certified and qualified in accordance with tests prescribed by the National Certified Welding Bureau (NCWB) or by other approved test procedures using methodology and procedures covered in the ASME Boiler and Pressure Vessel Code, Section IX, "Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators."

1. Submit for approval the names, identification, and welder's assigned number, letter or symbol of welders assigned to this project.
2. The assigned identification symbol shall be used to identify the work of each welder and shall be indelibly stamped immediately upon completion of each weld.
3. Welders shall be tested and certified for all positions.
4. Submit identifying stencilled test coupons made by each operator.
5. Any or all welders may be required to retake welding certification tests without additional expense.
6. When so requested, a welder shall not be permitted to work as a welder on this project until he has been recertified in accordance with NCWB.
7. Recertification of the welder shall be made after the welder has taken and passed the required tests.
8. Where piping 1-1/2 inches and smaller is butt or socket welded, submit 3 samples of test welds for approval.

1.3 SUBMITTALS

A. Product Data: Submit manufacturer's standard technical product data indicating conformance to the stipulated reference specifications, construction materials, construction details, and test and operating pressures. Submit manufacturer's product data on the following:

1. Pipe materials.
2. Unions and flanges.
3. Welding fittings.
4. Valves.
5. Strainers.
1.4 STORAGE AND PROTECTION

A. Storage: Store piping on the project site so as to preclude the entrance of construction dirt and debris into the open ends of piping. Do not install piping fouled with construction dirt.

B. Storage of Fittings: Store fittings under cover, protected from construction dirt and rain.

C. Storage of Valves: Store valves under cover with blind or protective wood flanges secured to valve openings. Valves fouled with construction dirt shall be removed from the project site and replaced with new.

1.5 OPERATION AND MAINTENANCE DATA

A. Submit operations and maintenance data, including manufacturer’s descriptive literature, installation instructions, operating instructions and maintenance and repair data.

1.6 WARRANTY

A. Brass fittings and accessories will have a 5 year warranty.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Pipe 2-1/2-inch Diameter and Smaller: Provide piping as follows:

1. Copper, Type K or L, conforming to ASTM B 88.

B. Pipe 3 inches Diameter and Larger: Provide piping as follows:

1. Schedule 40 black steel conforming ASTM A 53 or A 106.
2. Use A 53 or A 106 for expansion loops, expansion bends or stresses in excess of 12,000 psig.

2.2 PIPE FITTINGS: 125 PSIG MAXIMUM WORKING PRESSURE
A. Fittings 2-inch and Smaller: Pipe fittings for piping 2 inches and smaller shall be tested and permanently stamped for 125 psig water working pressure and conform to the following:

1. Provide threaded cast iron elbows, tees, caps and plugs conforming to ANSI B16.4, Class 125.
2. Threaded galvanized malleable iron elbows, tees, plugs and caps conforming to ANSI B16.3, Class 150.
3. Provide cast iron flanges conforming to ANSI B16.1, Class 125.
4. Provide galvanized malleable iron unions, with bronze facings conforming to ANSI B16.39.
5. Provide bolts and nuts conforming to ASTM A 307, Grade B up to 125 pounds per square inch working pressure.

B. Fittings 2-1/2-inch Diameter and Larger: For working pressures not exceeding 125 psig water pressure provide fittings as follows:

1. Provide butt welding tees long radius pattern, long radius elbows and caps conforming to ANSI B16.9, each stamped by the manufacturer for conformance and working pressure.
2. Provide steel flanges conforming to ANSI B16.5, standard or welding neck pattern.
3. Provide cast iron flanged tees, flanged long radius elbows, flanged reducers and blank flanges conforming to ANSI B16.1, 125 psig class.

C. Fittings for Copper Pipe: Provide fittings for copper piping 2-1/2-inch diameter and smaller as follows:

1. Provide cast or wrought copper solder joint fittings conforming to ANSI B16.18 or ANSI B16.22. Solder shall be composition ASTM B 32 Grade 95TA, Tin-Antimony or ASTM B 32 95TS Silver Solder.
2. The use of lead-tin solder is not permitted.

D. Fittings

1. Fittings will be constructed from brass.
2. Fittings will be selected from the BRHC Product Catalog.
3. All fittings will meet the dimensional requirements for copper sweat and pipe threads in accordance with ASME B16.22 and B1.20.
4. Sweat fittings will be made up with solder that meets the requirements of ASTM B32-95b
5. Installation accessories will not conflict with local building codes.
2.3 **SHAPED NIPPLES**

A. **Welded Shaped Nipples:** On hydronic piping systems operating at less than 125 pounds per square inch water working pressure, factory made shaped welding nipples may be used under the following conditions:
 1. Thickness of the fitting at any point shall not be less than the thickness of adjacent piping.
 2. Tapping holes shall be drilled or ground smooth and of a diameter to match nipple bell.
 3. Branch pipe diameter does not exceed 50 percent of the diameter of the main.
 4. Field cut pipe or standard threaded coupling will not be permitted.

2.4 **STRAINERS**

A. **Types:** Provide strainers of the "Y" or basket types as indicated on the drawings or required to suit the field conditions.

B. **Strainers 1-1/2-Inch Diameter and Smaller:** Provide strainers with bronze bodies conforming to ASTM B 62, Grade C or cast iron bodies conforming to ASTM A 126, Class B.
 1. End connections shall be threaded.
 2. Screens shall be 18-8 stainless steel with 1/32-inch diameter perforations or openings.

C. **Strainers 2-Inch and Larger:** Provide strainers with cast iron bodies conforming ASTM A 126, Class B with flanged end connections.
 1. Screens shall be bronze, monel metal or 18-8 stainless steel.
 2. Sizes 2-inch to 6-inch shall have 1/16-inch diameter perforations.
 3. Sizes 8-inch to 12-inch shall have 1/8-inch diameter perforations.
 4. Sizes larger than 12-inch shall have 5/32-inch diameter perforations.

D. **Design Pressure:** Provide strainers designed for 125 pounds per square inch working pressure on systems less than 125 pounds per square inch.

E. **Strainer Free Area:** The free area of each strainer screen shall be not less than three times the area of the strainer inlet pipe.

F. **Drain Valves:** For each strainer 1-1/2-inch diameter and larger, provide a
plugged minimum 1/2-inch diameter gate or ball valve, bronze body, working pressure to match the strainer, threaded with a plugged outlet.

2.5 BALANCING DEVICES

A. Types: Wherever "Balancing Valves", "Balancing Cocks", or similar words are used on the Contract Drawings, provide globe valves, resilient face eccentric plug valves, multi-purpose plug valves or butterfly valves for balancing purposes.

B. Butterfly Valves: Provide butterfly valves conforming to MSS SP 67 with single flange or lug type end connections which will anchor the valve body in place when either one or the adjacent flanged connection is unbolted.

C. Ball Valves: Provide ball valves conforming to MSS SP 72.

1. Provide one piece bodies on sizes 1-inch and smaller.
2. Provide top entry or split body type on sizes 1-1/2-inch and larger.

D. Locking Device: On each balancing valve size 1-1/2-inch and larger provide a locking device, with indicator, to secure the valve in the balanced position. If standard with the manufacturer, the locking device may be arranged so that the valve may be closed and then returned to its original balanced position.

E. Stems and Hand Operators: Design valves with stems and hand operators of sufficient length to project outside of 2-inch thick insulation. Indicators and locking devices shall be exposed.

F. Precision Plug Valve: In lieu of other balancing valves specified, at the Contractor's option precision all brass or bronze plug valves may be furnished.

1. Provide internal "O" ring or teflon seals to prevent leakage.
2. Machined orifice or low loss Venturi shall be calibrated and provided with four laminated pressure-flow charts for any valve position between fully opened and fully closed.
3. Provide a calibrated plate and pointer mounted on the valve to indicate the degree of valve opening.
4. Provide a quick disconnect gauge connection of bronze or stainless steel.

G. Balancing Fittings: On pipe sizes 3/4-inch diameter and smaller, provide balancing fittings on runouts to fan coil units, fin tube radiation, convectors and reheat coils.
1. Fittings shall be of the combination balancing and shut-off type with the balancing device positioned by an Allen set screw or other approved method which permits closing of the valves without disturbing its balanced position.

2. Bodies may be of the globe or "Y" type with contour flow plug or approved equivalent.

3. Provide a graduated dial or other device to indicate the valve setting.

4. Gland shall permit packing under pressure.

5. Materials and construction shall be as specified for water valves sizes 1-1/2-inch and smaller.

6. On sizes 3/4-inch and smaller ends may be sweat or compression type.

H. Circuit setters provide on return piping as required. Typical.

2.6 PIPE ANCHORS

A. General: Provide pipe anchors where indicated on the drawings or where required to restrain the movement of piping systems.

1. See Section,"Supports and Anchors"

2. Anchors shall be suitable for the location of installation and shall be designed to withstand all forces and movements acting on the anchor.

3. Design anchors with a safety factor of four.

4. Anchor vertical piping with steel clamps welded to the piping and secured to the wall or floor construction.

2.7 CONTROLS

A. Controls will be approved by local codes.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Sizes: Provide piping systems of sizes indicated on the drawings. Systems shall be installed complete.

B. Codes: Install piping systems in conformance with ANSI B31.
C. Expansion: Install piping to allow for expansion and contraction of the piping systems. Provide offsets and swing joint connections at coils, pumps and other equipment to eliminate undue strain to the equipment connections.

1. Connect flanges and tack weld piping systems in place before full circumferential welds are made.
2. Springing of piping at equipment connections will not be permitted.
3. The use of "cold-spring" is not permitted.

D. Branch Connections: Branch connections to up feed systems shall be made at the top or at a 45 degree angle above the centerline. Branch connections for down feed systems shall be made at the bottom or at a 45 degree angle below the centerline.

E. Pitch: Install water piping with a pitch or slope of not less than 1-inch in 40 feet.

1. Provide 3/4-inch diameter plugged drain valves at each low point in mechanical rooms.

F. High Points: At each high point of the piping system provide a 3/8-inch diameter plugged globe valve.

1. Where high points are located in an inaccessible position, provide a 3/8-inch diameter bleed line from the high point of the piping system and extend to an approved location, with access. Anchor bleed piping and provide 3/8-inch diameter globe valve.

G. Vibration and Flexibility: Support, anchor, and guide piping systems to preserve piping flexibility and the isolation effects of sound and vibration isolation hangers.

H. Welding: Conform to the welding and welder qualification requirements of "Quality Assurance" paragraph of this Section.

2. Perform welding in ambient temperatures above 0 degrees F.
3. Ream and clean ends of piping.
5. Use welding pipe clamps on piping 4-inch diameter and larger, and verify
alignment before welding.

3.2 CLEANING

A. Pipe Exterior: Wash and wipe pipe exterior to remove construction dirt, loose scale and flux.

B. Pipe Interior: Flush pipe interior with clean water. Continue flushing until the piping system runs clean. After flushing inspect strainer screens, refrigeration machine water boxes, piping low points, and tank drains to determine the presence of construction debris. If debris is found, disassemble equipment and remove debris. Reflush the system and re-inspect.

1. Do not operate pumps until system has been cleaned and flushed.

3.3 TESTING

A. 125-Pound Systems: Test hydronic piping systems at not less than 150 pounds per square inch gauge or 1-1/2 times the maximum working pressure of devices connected to the piping system, whichever is greater, measured at the low point of the system.

B. Test Procedures: Test system as follows:

1. Gauge safety valves during testing.
2. Fill the system and remove all air. Apply test pressure when water and ambient temperature are approximately equal and constant.
3. Maintain test pressure for one hour without adding any additional fluid to the system.
4. If the system shows loss in pressure, determine and repair leaks and retest the system. System shall show no loss in pressure for one hour.
5. Leaks in screw fittings shall be corrected by remaking the joints.
6. Leaks in welded joints shall be cut out and rewelded. Caulking will not be permitted.
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Expansion tanks.
B. Air vents.
C. Air separators.
D. Strainers.
E. Combination pump discharge valves (triple duty valves).
F. Relief valves.
G. Balance valves.
H. Pump suction fittings.
I. Filter Feeder.

1.2 RELATED WORK

A. Section 23 21 13 - Hydronic Piping.

1.3 REFERENCES

1.4 REGULATORY REQUIREMENTS

A. Conform to ANSI/ASME Boilers and Pressure Vessels Code Section 8D for manufacture of tanks.

1.5 QUALITY ASSURANCE

A. Manufacturer: For each product specified, provide components by same manufacturer throughout.

1.6 SUBMITTALS

A. Product data.
B. Include component sizes, rough-in requirements, service sizes, and finishes. Include product description, model, and dimensions.
C. Submit operation and maintenance data.
PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS - HYDRONIC SPECIALTIES

A. Bell and Gossett
B. Taco
C. Armstrong

2.2 DIAPHRAGM-TYPE COMPRESSION TANKS

A. Construction: Welded steel, tested and stamped in accordance with Section 8D of ANSI/ASME Code; supplied with National Board Form U-1, rated for working pressure of 125 psig, with flexible EPDM diaphragm sealed into tank, and steel legs or saddles.
B. Accessories: Pressure gage and air-charging fitting, tank drain; precharge to 12 psig.

2.3 AIR VENTS

A. Manual Type: Short vertical sections of 2 inch (50 mm) diameter pipe to form air chamber, with 1/8 inch (3 mm) brass needle valve at top of chamber.
B. Float Type: Brass or semi-steel body, copper float, stainless steel valve and valve seat; suitable for system operating temperature and pressure; with isolating valve.

2.4 AIR SEPARATORS

A. Combination Air Separators/Strainers: Steel, tested and stamped in accordance with Section 8D of ANSI/ASME Code, for 125 psig operating pressure, with stainless steel integral strainer with 3/16 inch perforations, tangential inlet and outlet connections, and internal stainless steel air collector tube.

2.5 STRAINERS

A. Size 2 inch (50 mm) and Under: Screwed brass or iron body for 175 psig working pressure, Y pattern with 1/32 inch stainless steel perforated screen.
B. Size 2-1/2 inches to 4-inch: Flanged iron body for 175 psig working pressure, Y pattern with 3/64 inch stainless steel perforated screen.
C. Size 5 inches and Larger: Flanged iron body for 175 psig working pressure, basket pattern with 1/8-inch stainless steel perforated screen.
D. Equip all strainers with 1/2-inch ball valve and hose bib for blowdown.

2.6 COMBINATION PUMP DISCHARGE VALVES (TRIPLE DUTY VALVES)

A. Valves: Straight or angle pattern, flanged cast-iron valve body with bolt-on bonnet for 175 psig operating pressure, non-slam check valve with spring-loaded bronze disc and seat, stainless steel stem, and calibrated adjustment permitting flow regulation.

2.7 RELIEF VALVES

A. Bronze body, teflon seat, stainless steel stem and springs, automatic, direct pressure actuated, capacities ASME certified and labeled. Provide capacity as scheduled, indicated or corresponding to the required relief valve capacity of the equipment served.

2.8 BALANCE VALVES (4 Inches and Smaller)

A. Calibrated, balance valve with precision machined orifice, readout valves equipped with integral check valves and gasketed caps, calibrated nameplate and indicating pointer.

2.9 BALANCE VALVES (greater than 4")

A. Balancing valves, where indicated in piping larger than 4 inches, shall consist of a combination of a butterfly valve for throttling and an orifice type flow meter. Where means of throttling already exists, such as combination valves at pump outlets, omit the butterfly valve.

B. Cast iron, wafer type, orifice insert flow meter for 250 psig working pressure, with read-out valves equipped with integral check valves with gasketed caps.

C. Portable meter consisting of case containing one, 3 percent accuracy pressure gage with 0 to 60 feet pressure range two, 3 percent accuracy pressure gages with 0-135 inches and 0-60 feet pressure ranges for 125 psig maximum working pressure, color coded hoses for low and high pressure connections, and connectors suitable for connection to read-out valves.

2.10 PUMP SUCTION FITTINGS

A. Fitting: Angle pattern, cast-iron body, threaded for 2 inch and smaller, flanged for 2-1/2 inch and larger, rated for 175 psig working pressure, with inlet vanes, cylinder strainer with 3/16 inch diameter openings, disposable fine mesh strainer to fit over
cylinder strainer, and permanent magnet located in flow stream and removable for cleaning.

B. Accessories: Adjustable foot support, blowdown tapping in bottom, gage tapping in side.

PART 3 – EXECUTION

3.1 INSTALLATION AND APPLICATION

A. Install specialties in accordance with manufacturer's instructions to permit intended performance.

B. Support tanks inside building from building structure in accordance with manufacturer's instructions.

C. Where large air quantities can accumulate, provide enlarged air collection standpipes.

D. Provide manual air vents at system high points, and as indicated.

E. Provide air separator on suction side of system circulation pump and connect to expansion tank.

F. Provide valved drain and hose connection on strainer blowdown connection.

G. Provide combination pump discharge valve on discharge side of pump.

H. Provide balancing valves on water outlet from terminal heating units.

I. Provide relief valves on pressure tanks, low pressure side of reducing valves, heat exchangers, and expansion tanks.

J. Select system relief valve capacity so that it is greater than make-up pressure reducing valve capacity. Select equipment relief valve capacity not to exceed rating of connected equipment.

K. Where one line vents several relief valves, make cross-sectional area equal to sum of individual vent areas.

L. Provide pump suction fitting on suction side of base mounted centrifugal pumps. Remove temporary strainers after cleaning systems.

M. Support pump suction fittings with floor mounted pipe and flange supports.

END OF SECTION 232114
23 52 16 – HIGH EFFICIENCY BOILERS

PART 1 GENERAL

1.1 **SUMMARY**

 A. Section Includes:

 1. High Efficiency Condensing Boilers.

1.2 **REFERENCES**

 A. ETL

 B. American Society of Mechanical Engineers:

 1. ASME Section IV - Boiler and Pressure Vessel Code - Heating Boilers
 2. ASME CSD-1 – Controls and Safety Devices for Automatically Fired Boilers

 C. Hydronics Institute:

 D. National Fire Protection Association:

1.3 **SUBMITTALS**

 A. In accordance with Contract Specifications.

 B. Product Data: Submit capacities and accessories included with boiler. Include general layout, dimensions, size and location of water, fuel, electric, air inlet and vent connections, electrical characteristics, weight and mounting loads. Provide wiring diagrams that are specific to this project.

 C. Manufacturer's Installation Instructions: Submit assembly, support details, connection requirements, and include start-up instructions.
1.4 WORK INCLUDED

A. Furnish and install Firetube gas fired hot water boilers of the size, capacity and quantity as shown on the contract drawings. Include individual hot water circulating pumps as shown on the Plans and as Scheduled.

B. Each boiler shall have a self-contained controls and safety devices and shall be capable of independent operation.

C. Each boiler shall comply with the energy efficiency requirements of the latest edition of the ASHRAE 90.1 Standard and the minimum efficiency requirements of the latest edition of the AHRI BTS-2000 Standard as defined by the Department of Energy in 10 CFR Part 431.86. The boiler shall be certified for indoor installation. All boilers shall be installed in accordance with local, State, and Federal codes.

D. Contractor shall obtain Certificate of boiler inspection after boiler installation has been completed and shall pay fees associated with such inspection. After receipt of certificate of Inspection, Installing Contractor shall furnish a suitable glass front frame in which to place said certificate. Frame, with Inspection certificate inserted therein, shall then be placed on or posted in a suitable location within the Boiler room in which the new Boilers have been installed.

E. Contractor shall obtain from Boiler Manufacturer Form H-2 Manufacturers Data Report for Firetube Boilers as required by the Provisions of the ASME Code Rules, Section IV and shall transmit to the Owner after Boiler installation for Record Purposes.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum ten (10) years of documented experience.

1.6 REGULATORY REQUIREMENTS

A. Electrical components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Boilers shall have been Certified in accordance with ANSI Z21.13 test standard; ASHRAE 90.1 Standard and ASHRAE 103 Standard; American National Standard/CSA Standard for Gas-Fired Low Pressure Steam and Hot Water Boilers; ANSI

C. Commercial Boiler efficiency Certification Program AHRI Directory of Certified AHRI Certified Ratings list of Boilers that have earned the AHRI Certified mark. Boiler manufacturer shall be required to provide the Certified Reference Number and Approved Status under the previously specified performance criteria at Submittal Stage.

D. State Building Code, 780 CMR 1305.2.5 Heating System Controls; and Table 1305.3.3.(5) Standard Rating Conditions and Minimum Performance Gas and Oil fired Steam and Hot Water Boilers.

E. Where reference is made to one of the above standards, the revision in effect at the time of bid opening shall apply.

F. Emissions shall conform to South Coast Air Quality Management District specifications. Boiler shall have an independent laboratory rating for Oxides of Nitrogen (NOx) to meet the requirements of South Coast Air Quality Management District in Southern California and the requirements of Texas Commission on Environmental Quality. The Manufacturer shall verify proper operation of the burner, all controls and the heat exchanger by connection to water and venting for a factory fire test prior to shipping.

G. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.

H. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

I. Boiler shall be AHRI Certified to 96% Thermal Efficiency, with Oxides of Nitrogen (NOx) less than 20 ppm corrected to 3% O2. Boiler shall produce less than 50 Db sound reading at 100% rate of fire. Control system shall comply with UL/CSD-1/GE-GAP criteria.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Install factory assembled packaged boiler carefully to prevent damage, breaking and scoring. Do not install damaged components; replace with new.
B. Comply with manufacturer’s rigging and moving instructions for unloading boilers, and moving them to final location.

1.8 WARRANTY

A. Leakage and Materials: Heat Exchangers on stainless fire-tube boilers have a ten (10) year limited warranty effective 60 days from the date of manufacture as determined by the serial number.

B. All equipment shall be guaranteed against defects in materials and workmanship for a period of 12 months from the date of start-up, or 18 months from the date of shipment, whichever comes first. The warranty shall include parts inly to repair or replace all defective parts and material at no charge to the owner.

C. Installation shall be guaranteed free from defective materials and workmanship for a period of (1) year from date of acceptance by the Owner. Any repairs required during guarantee period shall be done by the Contractor at his own expense.

1.9 FIELD MEASUREMENTS

A. Verify field measurements prior to installation.

1.10 START-UP OF EQUIPMENT

A. Operating and Maintenance Instructions are to be furnished with each unit.

B. The boiler shall be factory assembled and fire tested requiring only connections to the water circulating system (supply & return), fuel, electrical power, exhaust vent and air inlet (as specified/shown in contract drawings).

C. Factory-authorized representatives shall perform start-up service on each unit.

1.11 MAINTENANCE SERVICE

A. Furnish service and maintenance of boiler for one (1) year from owner’s acceptance.

B. Maintenance service shall be performed by qualified personnel under supervision of or trained by the manufacturer’s representative.
2.1 MANUFACTURERS

A. Lochinvar

B. Engineer approved Equal

2.2 STAINLESS STEEL BOILER

A. Furnish and install in accordance with plans and specifications including manufacturer’s recommendations, state and local codes with capacity as scheduled on the contract drawings and specifications.

B. Direct-Vent sealed combustion, Boiler shall be factory assembled and fire-tested fire-tube condensing boiler with counter-flow heat exchanger sealed pressure-tight, built on a steel base, including insulated metal jacket, flue gas vent, combustion air intake connections, water supply and return connections, condensate drain connections and controls. Multiple pressure vessels in a single enclosure are not acceptable.

C. Boiler shall require only connection to the water circulating system, fuel/electric utilities, condensate drain and flue gas vent. Heat exchanger shall be constructed of 316L stainless steel. Water-tube, Aluminum or Copper tube boilers, or Boilers with secondary heat exchangers are not equivalent and shall not be considered acceptable.

D. Boiler shall be able to operate in a full-flow system or a variable flow system using variable frequency drives on the system pumps, without requiring the use of a three-way valves or primary/secondary piping loops. Boiler heat exchanger shall be designed for a single-pass water flow to limit the water side pressure drops.

E. Boiler shall bear the ASME “H” stamp for 160 PSI working pressure and shall be National Board listed where applicable. There shall be no banding material, bolts, gaskets or “O” rings in the header configuration. Each 316L stainless steel combustion chamber shall be designed to drain condensation to the bottom of the heat exchanger assembly. The condensate collection basin shall be constructed of welded 316L stainless steel. A built-in trap shall allow condensation to drain from the collection basin.

F. Boiler shall be equipped with a variable frequency drive blower motor. Burner shall be a premix design, constructed of high temperature stainless steel with a woven metal fiber outer covering to provide full modulating firing rate with a turndown ratio of (17:1) (20:1) and discharge into a positive pressure vent.
Boiler efficiency shall increase with decreasing load (output), while maintaining setpoint. Boiler shall have been BTS-2000 tested to an AHRI Certified thermal efficiency of 96%.

G. Burner shall be metal-fiber mesh covering a stainless steel body with spark ignition and flame rectification. All burner material exposed to the combustion zone shall be of stainless steel construction. There shall be no moving parts within the burner itself. Burner shall produce not more than 50-dBA sound reading at full firing rate.

H. Boiler shall be supplied with a combination gas control valve that includes dual safety shutoff valves and a pressure regulator in a single body gas valve designed using negative pressure regulation and equipped with a pulse width modulation blower system, to precisely control the fuel/air mixture to provide modulating boiler firing rates for maximum efficiency. The Boiler shall operate in a safe condition at derated output with gas supply pressures between 4.00” Ins. w.c. and 14” Ins. w.c. inlet gas pressure. If inlet gas pressure exceeds 13” W.C., a 100% lock-up type gas pressure regulator of adequate size shall be installed in gas supply piping and adjusted to prevent pressure in excess of 13” W.C.

I. Boiler shall be constructed with a heavy gauge steel jacket assembly, primed and pre-painted on both sides. The combustion chamber shall be sealed and completely enclosed, independent of the outer jacket assembly, so that integrity of the outer jacket does not affect a proper seal. A flame observation pert shall be provided.

J. Each Boiler shall be equipped with: temperature/pressure gauge; a system supply water temperature sensor; tank sensor; high limit temperature control with manual reset; outlet water temperature sensor with a dual thermistor to verify accuracy; return water temperature sensor; outdoor air temperature sensor; flue temperature sensor; probe type low water cut off with manual reset and a condensate trap for the heat exchanger condensate drain; ASME certified pressure relief valve set for 80 PSI; Combustion air inlet filter and dirty filter switch.

K. Probe LWCO shall incorporate a Burner circuit test switch that, when depressed, will test out the control circuit by dropping out the Burner if the circuit is properly wired. Boiler shall fitted with either a float type or a probe type LWCO located above the lowest safe permissible water level established by the Boiler manufacturer. LWCO shall be UL listed and FM approved, suitable for commercial hydronic heating service at 80 PSI.

L. A coil type boiler or water-tube boiler with heat input greater than 200,000
BTU’s/hr requiring forced circulation to prevent overheating of the coils or tubes shall have a flow sensing device installed in the outlet piping in lieu of the low water fuel cutoff required in 522 CMR 5.07 (15)(a) to automatically cut off the fuel supply when the circulating flow is interrupted.

M. This Contractor shall furnish and install a condensate neutralizing box complete with limestone granules shipped loose for field installation. Furnish and install a condensate trap assembly if a condensate collection tray is not provided by the Boiler manufacturer. The tap allows condensate to drain from sump while retaining flue gases in the boiler. The trap has factory installed overflow switch, which shuts down the boiler in the event the drain line becomes obstructed, preventing proper condensate removal. Extend drain piping from boiler to acid neutralization kit and to suitable floor drain in mechanical rooms.

N. If the point of condensate disposal is above the trap, a condensate pump shall be required to move the condensate to the drain. If overflow from the pump would result in property damage, select a pump with an overflow switch. Wire this switch in series with installer provided external high limit, to shut off boiler, and, if desired, in series with installer supplied alarm, to trigger an alarm in the event of an overflow.

O. Gas Train
1. Gas train shall be ETL and CSD-1 compliant.
2. Pilot gas valve and pilot gas pressure regulator.
3. Main air-gas ratio valve shall have 2 safety valves in one body and also include the main gas regulator.
4. Leak test valve downstream of gas valve.
5. Low gas pressure switch.

2.3 COMPUTERIZED BOILER CONTROL

A. The factory mounted and wired control system (BMCS) shall incorporate a high resolution LED display for boiler set-up, boiler status, and boiler diagnostics. All components shall be easily accessed and serviceable from the front and top of
the jacket.

B. Factory installed Boiler Management Control System (BMCS) shall be provided with password security, outdoor air reset, pump delay with freeze protection, pump exercise, ramp delay featuring six steps, domestic hot water prioritization with limiting capabilities, USB drive for simple uploading of parameters and a PC port connection for connection to a local computer for programming and trending. A secondary operating control that is field mounted or inside the appliance is not acceptable. The boiler shall have alarm contacts for any failure, runtime contacts and data logging of runtime at given modulation rates, ignition attempts and ignition failures. The boiler shall have a built-in “Cascade” with leader redundancy to sequence and rotate while maintaining modulation of up to eight boilers of different Btu inputs without utilization of an external controller. The internal “Cascade” function shall be capable of lead-lag, efficiency optimization, Hybrid plant front-end loading, and rotation of lead boiler every 24 hours. The boiler shall be capable of controlling an isolation valve during heating operation and rotation of open valves in standby operation for full flow applications. The control shall be equipped to communicate via BACnet MSTP communications. All components shall be easily accessed and serviceable from the front of the jacket.

C. The control system shall monitor both boiler lockout and limit circuits to automatically skip over those boilers that are powered down for maintenance, tripped or otherwise will not start. The control system shall be fully integrated into the Boiler Cabinet and incorporate single and multiple boiler control logic, inputs, outputs and communication interfaces. Using parameter menu selections, the control system shall allow the boiler to respond to remote system water temperature and outside air temperatures and warm weather shut down or building automation system remote start/stop commands.

D. A 0-10 VDC output signal shall control a variable speed boiler pump (pump to be offered by manufacturer) to keep a fixed delta T across the boiler regardless of the modulation rates. The boiler shall have the capability to receive 0-10 VDC input signal from a variable speed system pump to anticipate changes in system heat load in order to prevent flow related issues such as erratic temperature cycling.

2.4 ELECTRICAL REQUIREMENTS

A. All Boiler room wiring from the main disconnect switch panel to all Boiler controls, Boiler Circulators, system circulators, Limit circuit, Operating controls,
gas valves and actuators, switches and additional control devices shall be furnished and installed under this section of the work by the HVAC Subcontractor and shall conform to the job standards as established by Division 16 Sections.

B. Single-Point Field Power Connection: Factory installed and wired switches, motor controller, transformers and other electrical devices necessary shall provide a single-point field power connection to boiler.

C. Boiler Circuit shall be taken from a two-wire branch circuit, one side grounded, not exceeding 150 Volts, line to line. All safety control switching shall be accomplished in the hot ungrounded conductor and through the 24V low voltage wiring provided by the Boiler manufacturer and in accordance with the manufacturer’s instructions and recommendations.

D. Control system wiring shall comply with ASME CSD-1 requirements and 522 CMR 5.07 (19). Fuse protection for the control circuit shall be provided. A manually operated remote heating plant shut-down switch shall be furnished and installed just outside the Boiler room door and shall be marked for easy identification. If there is more than one (1) Boiler room door, there shall be a switch located at each door. Shutdown switches must be wired to disconnect all power to the Boiler controls.

E. Each Boiler shall be equipped with two terminal strips for electrical connections as follows:

2. A high voltage terminal strip shall be provided for Supply voltage. Supply voltage shall be 120 volt/60 hertz/ single phase on all models. The high voltage terminal strip plus integral relays are provided for independent pump control of the System pump, the Boiler pump and the Domestic Hot Water pump.

2.5 VENTING KITS
A. Listed special Gas Vents: All products furnished under this Section shall conform to the requirement of the National Fuel Gas Code, ANSI Z223.1/NFPA-54 where applicable and shall comply with and be listed to UL 1738, the U.S. Standard for Venting Systems for Gas-Burning Appliances, Category II, III and IV and ULC-S636-95, the Canadian Standard for Type BH gas vent systems. Components coming in direct contact with products of combustion shall carry the appropriate UL or ULC. PVC, CPVC, PPS Polypropylene shall be ULC-S636 Certified for use as a flue gas vent system.

B. Combustion-Air Intake: PVC.

C. Approved Vent: CPVC.

2.6 Hot Water Generators

A. The Water to Water Generator System shall be equal to Lochinvar. The hot water generator shall be constructed of a vertical storage tank. The interior of the storage tank shall be glass lined and fired to 1600 degrees F to ensure a molecular fusing of glass and steel and furnished with magnesium anode(s) to provide protection against corrosion.

B. The storage tank shall be constructed in accordance with the ASME Boiler and Pressure Vessel Code requirements, stamped and registered with the National Board of Boiler and Pressure Vessel Inspectors. The storage tank shall have a 125 psi (optional 150 psi) working pressure and be supplied with an ASME temperature and pressure relief valve. The storage tank shall be furnished with a factory installed heavy steel jacket finished with a baked acrylic enamel finish.

C. The storage tank shall be completely encased in a minimum of 2” thick, high density polyurethane foam insulation to meet the energy efficiency requirements of the latest edition of the ASHRAE 90.1 Standard. The tank shall be supplied with a drain valve and lifting lugs. The tank includes water recirculation piping with a pump and a ¾” drain connection.

D. The tube bundle heating element shall be constructed and stamped according to section VIII of ASME code. The tube bundles shall be constructed of 3/4” O.D. 20 GA. deoxidized drawn copper tubing. A .75 amp @ 115 volt, 60 Hz, 1/25 HP integral bronze circulator pump with copper soldered recirculation line shall be provided. The heating coils shall be installed in the tank by bolted connection to the collar flange and tube head.

E. Provide Optional Tube Bundle Construction: Double Wall, Control Package: The
PART 3 EXECUTION

3.1 INSTALLATIONS

A. Boiler Pumps shall be installed with manufacturer’s recommendations, Contract Drawings, and reviewed submittals.

B. Pumps shall be installed so as to ensure easy accessibility for service or removal and replacement of all components such as, but not limited to, impellers, motors, drive couplings, bearings, strainers, other pump appurtenances, isolators, and flex connections.

C. Install circulator, including all valves, strainer and accessories on each boiler as may be required.

D. The Contractor shall properly protect all equipment to prevent damage from water, dirt, etc. Protection shall include temporary plastic wrap to keep equipment in original factory condition.

E. Install in accordance with NFPA 54 and NFPA 58.

F. Provide connections to the natural gas service connection in accordance with NFPA 54, AGA Z223.1 and NFPA 58. Pipe all gas train vents to the outdoors in accordance with all local and State codes. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.

G. Provide hydronic piping connections, valves, fittings and accessories as indicated.

H. CAT IV boilers require special gas venting. Use only the vent materials, listed manufacturers, and methods specified within the Boiler manufacturer’s Installation and Operation Manual.

I. Connect each Cat-IV direct-vent appliance’s flue outlet with a continuous Boiler
manufacturer’s approved vent system to the vent termination outside the building. The vertical vent shall be routed through the designated vertical chase. All system components shall be listed to UL or ULC standard and supplied from the same manufacturer. Maximum exposure of CAT IV vent pipe shall be limited to not more than 60” Ins. exposure to outdoor environment.

J. Pipe water relief valves to nearest floor drain.

K. Provide complete electrical connections to all boilers.

L. Install electrical devices furnished with boiler but not specified to be factory mounted.

M. Install control wiring to filed-mounted electrical devices.

N. Pipe condensing boiler/vent condensate connections to condensate neutralization tank. Neutralization tank shall be piped to the nearest floor drain.

3.2 START-UP

A. Installing Contractor shall supervise all phases of Boiler installation, pressure testing, startup, and training of operating personnel. Installing Contractor shall also provide all installation verification inspections, system functional and safety operational test, and heating system capacity verification tests. Hydrostatic test. Repair leaks and retest until no leaks exist.

B. Installing Contractor shall include, as part of his Contract, all charges and cost for Boiler testing, start-up, checkout, adjusting, filed and State inspections, including service contracts for systems and equipment as here-in-after specified. Provide signed documentation to the Awarding Authority for completion of specified procedures.

C. The Boiler manufacturer’s Representative shall provide the initial start-up, final adjusting and testing of the Boiler and controls in the presence of the Consulting Engineer, ATC/DDC start up representative and the Owners operating personnel. State Gas inspector, and gas company representative shall also be in attendance as may be required by 248 CMR 7.00. Boiler manufacturer’s representative shall also provide raining of the Boilers and Controls and in boiler carte and maintenance to Owners Operating Personnel.

D. Initial start-up, testing and adjustment shall comply with all applicable Local and State Regulations and requirements. Start up and final adjustment shall be in accordance with the Boiler manufacturer’s start-up instructions Test and adjust
Boiler for maximum efficiency. Test and adjust combustion controls, and boiler controls for proper operation and maximum system efficiency. Check and adjust initial operating set points and high and low limit safety set points of fuel supply, water level and water temperature. Set field-adjustable switches and circuit-breaker trip ranges as indicated. Replace damaged or malfunctioning controls and equipment in accordance with the manufacturer’s requirements.

E. Purging of the Boilers, and all required tests for proper venting. Start up technician shall determine the presence and proper function of draft interlock switches or spill switches as may be required by Code and in accordance with the Plumbing Engineers design.

F. At time and date of original start up, provide instruction to the Owners operating personnel in the procedures to resolve a “Lockout” condition. At this time, operating personnel shall also be instructed in the operation and routine management of the Burner and safety controls. The Owner shall arrange to have personnel who require training to be present during the original lgithoff. in addition, manufacturer’s representative shall provide a training session for the Owners operating personnel at a later date prior to Owners Final Acceptance. Installing Contractor to coordinate time and ate of additional training.

G. Boiler combustion shall be tested and adjusted utilizing electronic combustion instruments to verify that the boiler is operating within acceptable tolerances of the factory fire test report, with a print-out copy submitted to the Engineer. A written report of the start-up, including the factors of the factory fire test, and the factory of the start-up, shall also be furnished to the Engineer.

H. Final acceptance of the Heating system installed within this scope of work shall be contingent on passing a satisfactory system pressure test, mechanical performance test and heating function test to determine that the system will perform according to the contract requirements. The above test shall be witnessed by the Engineer and the Owner at his option and acceptance will only be granted in writing by the Owner after receipt of certification from the Engineer that the design criteria have been met.

I. Installing Contractor shall guarantee the entire installation for a period of One (1) years from the date of Owner Acceptance and beneficial usage by the Owner and Date of Final Payment. Installing contractor shall, upon completion of the installation, make available to the Owner an annual service agreement covering all labor and material required to efficiently maintain the boilers for first year of operation.

END OF SECTION 235216
26 05 00 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this and the other sections of Division 26.

1.2 SUMMARY

A. This Section includes general administrative, procedural, and other requirements for electrical installations. The following requirements are included in this Section to expand the requirements specified in other Divisions.

1. Submittals.
2. Quality control.
3. Definitions and abbreviations.
4. Scheduling.
5. Coordination drawings.
6. Record documents.
7. Maintenance manuals.
8. Delivery, storage, and handling.
10. Rough-ins.
11. Electrical installations.
12. Permits and instructions.
13. Field quality control.
14. Protection.
145. Additional work.
156. Electrical schedules.
17. Cutting and patching.

1.3 SUBMITTALS

A. General: Follow the procedures specified in Division 1.

B. Increase, by the quantity listed below, the number of electrical related shop drawings, product data, and samples submitted, to allow for required distribution plus two copies of each submittal required, which will be retained by the Electrical Consulting Engineer.
1. Shop Drawings - Initial Submittal: 1 additional blue- or black-line prints.
2. Shop Drawings - Final Submittal: 1 additional blue- or black-line prints.
3. Product Data: 1 additional copy of each item.
4. Samples: 1 addition as set.

C. Additional copies may be required by individual sections of these Specifications.

1.4 QUALITY CONTROL

A. Functional and Operational Test Procedure:
1. Test procedure to completely test all systems as to their functional and sequential operation.
2. Submit two (2) draft copies for review before conducting test.
3. Certify that the test procedure was used and testing completed, and that all systems are operational and functioning properly.
4. Submit certified Test Procedure for review prior to the date of final inspection.
5. Systems to be covered by test procedure:
 a. Power Distribution
 b. Lighting systems including general lighting
 c. Emergency lighting systems
 d. Fire Alarm Systems
 e. Elevator Recall and Shunt Trip systems
 f. Standby generator and automatic transfer switch

B. Other Tests and Certifications for:
1. Grounding System: As specified under Section 260526.

1.5 DEFINITIONS AND ABBREVIATIONS

A. Electrical Definitions: As defined by NEC, Article 100.

B. The term "indicated" shall mean "as shown on contract documents (specifications, drawings, and related attachments)".

C. The term "provide" shall mean "to furnish, install and connect completely".

D. The term "size" shall mean one or more of the following: "length, current and voltage rating, number of poles, NEMA size, and other similar electrical characteristics".
1.6 SCHEDULING

A. Coordinate electrical work with other divisions of this project.

B. Coordinate electrical work with Owner.

C. The building shall be continuously occupied during construction and the Contractor shall not cause any interruption of electrical services without prior authorization from the Owner. Written requests for approval for planned shutdowns or interruption of Owner's electrical services or equipment shall be made a minimum of seven (7) days prior to the start of the requested shut periods.

D. All interruptions of electrical service to the building shall take place on weekends. Shutdowns may commence on Friday evening at 6:00 pm. Electrical service must be restored to building by 6:00 am Monday. Contractor shall install all equipment, components, wiring, conduit, etc. as possible prior to shutdown. Contractor shall provide all material and labor to complete all shutdown work within the allotted shutdown time frame.

D. Written notification for on site training of Owner's personnel shall be made one (1) week prior to the start of the requested training period.

1.7 COORDINATION DRAWINGS

A. Prepare coordination drawings in accordance with Division 1 to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of electrical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of major raceway systems, equipment, and materials. Include the following:
 a. Clearances for servicing equipment, including space for equipment disassembly required for periodic maintenance.
 b. Fire-rated wall and floor penetrations.
 c. Equipment connections and support details.
2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

1.8 RECORD DOCUMENTS

A. Prepare record documents in accordance with the requirements in Division 1. In addition to the requirements specified in Division 1, indicate installed conditions for:

1. Major raceway systems, size and location, for both exterior and interior; locations of control devices; distribution and branch electrical circuitry; and fuse and circuit breaker size and arrangements.

2. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

3. Approved substitutions, Contract Modifications, and actual equipment and materials installed.

1.9 MAINTENANCE MANUALS

A. Prepare maintenance manuals in accordance with Division 1. In addition to the requirements specified in Division 1, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.

2. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.

3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

4. Servicing instructions and lubrication charts and schedules.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.
2.1 ACCEPTABLE MANUFACTURERS

A. Unless otherwise indicated, all electrical equipment has been based on General Electric products.

B. As specified under other RELATED SECTIONS. Comparable manufacturers which may be utilized are the following:
 1. Eaton Corp.
 2. Siemens
 3. Schneider Electric (Square D)

C. As specified on Drawings.

2.2 MATERIAL

A. General:
 1. Unless otherwise indicated, all raceways for service, feeders, branch and control wiring are RSC or IMC. See Section 26 05 33.
 2. Unless otherwise indicated, wiring to equipment and motors shall be installed in liquid tight flexible conduit, or in interior locations in flexible metal conduit, with a maximum length of six (6) feet.
 3. Unless otherwise indicated, all conductors to be copper THHN/THWN-2.
 4. Unless otherwise indicated, all outlet and switch boxes to be cast iron with threaded hubs.
 5. In interior protected locations, where recessed in ceiling and walls, outlet and switch boxes may be stamped steel.
 6. Unless otherwise indicated, provide heavy duty grade, 20 ampere, receptacles and switches. Plates shall be 302 stainless steel, satin finish. Plates for surface mounted interior boxes may be stamped steel. Plates exposed to weather or water to be metal, weatherproof type. Receptacles, switches and associated cover plates color by Architect/Owner.

B. As specified under RELATED SECTIONS.

C. As specified on Drawings.

2.3 EQUIPMENT

A. General:
1. Unless otherwise indicated, externally operated safety switches are unfused, solid neutral, heavy duty, and selected to meet the load requirements.

B. As specified under RELATED SECTIONS.

C. As specified on Drawings.

2.4 FABRICATION

A. General:
 1. Unless otherwise indicated, all enclosures are NEMA Type 1. NEMA Type 3R shall be used for wet/damp locations.

B. As specified under RELATED SECTIONS.

C. As specified on Drawings.

PART 3 - EXECUTION

3.1 ROUGH-IN

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment specifications in Divisions 2 through 16 for rough-in requirements.

C. Contractor is to provide connections, both power and control as noted, for kitchen equipment. Kitchen equipment indicated on drawings is to be supplied by others. Division 16 shall coordinate the respective installations with the supplier and agency.

3.2 ELECTRICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of electrical systems, materials, and equipment. Comply with the following requirements:
 1. Coordinate electrical systems, equipment, and materials installation with other building components. Electrical plans and details do not show all interferences and conditions, visible and/or hidden, that may exist. Before selecting material and equipment, and proceeding with work, inspect areas where material and equipment are to be installed to insure suitability, and check needed space for
placements, clearances and interconnections. Before cutting or drilling into building elements inspect and layout work to avoid damaging structural elements or building utilities.

2. Electrical plans, details, and diagrams show the general location and arrangement of electrical systems. They are diagrammatic and do not show all conduit bodies, connectors, bends, fittings, hangers, and additional pull and junction boxes which the Contractor must provide to complete the electrical system.

3. Verify all dimensions by field measurements.

4. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for electrical installations.

5. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.

6. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building. Verify dimensional constraints of building door openings and passageways, and the maximum floor loadings, for the movement of selected material and equipment. Order equipment and material, broken down as may be required, to meet these constraints.

7. Measurement from above finished floor (AFF) shall be taken from the finished floor surface to the top of wall receptacles and switch boxes, to the centerline of wall lighting outlet boxes, to the top of wall mounted equipment enclosures, to the centerline of top most switch handle, or to the lowest surface of ceiling lighting fixtures and other ceiling mounted equipment.
 a. Unless otherwise indicated, wall switch boxes shall be 44 inches AFF. Refer to Architectural drawings.
 b. Unless otherwise indicated, receptacle boxes shall be 18 inches AFF.
 Receptacle mounted above counter and at furniture locations shall be coordinated with architectural elements. Coordinate with Architect. Refer to Architectural drawings.
 c. Verify connection mounting heights with kitchen equipment.
 d. Surface raceway heights shall be coordinated with Architectural requirements.

8. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible. Switch and receptacle heights shall meet handicap accessible code requirements.

9. Coordinate connection of electrical systems with incoming utilities and services. Comply with requirements of governing regulations, power,
telephone, and data service companies, and controlling agencies. Provide required connection for each service. Provide power connection to equipment. Coordinate with other Divisions.

10. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Engineer.

11. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.

12. Conduit Sizing:
 a. Unless otherwise indicated, conduit size for indicated conductor shall be based on Chapter 9 of NEC.
 b. Conduit: 1/2 inch minimum size.

13. Install electrical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations. Measure and locate placement of equipment and materials in relation to building structure and surfaces, and between equipment to be installed and wired. Maintain required minimum access spacing for equipment and enclosures.

14. Install access panel or doors where units are concealed behind finished surfaces. Access panels and doors are specified elsewhere.

15. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

16. Unless otherwise noted, individual raceway runs are required for each kitchen equipment component. Connection shall be routed down existing walls exposed, concealed in new walls, and/or under slab to the respective area as noted.

3.3 PERMITS AND INSPECTIONS

A. Obtain and pay for all required permits and arrange for all required inspections in accordance with state and local governing authorities.

B. Final Electrical Inspection Certificate from inspection agency or governing authority.
3.4 FIELD QUALITY CONTROL

A. Perform field tests as specified under other electrical sections.

B. Arrange for local Inspection Authorities to inspect work performed prior to burial, closing-in behind wall and above ceiling, or encased in concrete. Also arrange for final inspection of work and obtain Final Inspection Certificate before final inspection of work by Owner or his representative.

3.5 PROTECTION

A. Protect personnel from coming in contact with live parts.

B. During remodeling or alteration work, maintain fire ratings of walls, floors and ceilings when work is left unattended.

C. Protect from damage and theft equipment and materials provided or supplied by others in accordance with manufacturer's recommendation and warranties, and with electrical standards and practices.

3.6 ADDITIONAL WORK

A. Provide temporary electric service power outlets and lighting during construction.

3.7 ELECTRICAL SCHEDULES

A. As specified in related sections or shown on drawings.

3.8 CUTTING AND PATCHING

A. General: Perform cutting and patching in accordance with Division 1. In addition to the requirements specified in Division 1, the following requirements apply:

1. Perform cutting, fitting, and patching of electrical equipment and materials required to:
 a. Uncover Work to provide for installation of ill-timed Work.
 b. Remove and replace defective Work.
 c. Remove and replace Work not conforming to requirements of the Contract Documents.
 d. Remove samples of installed Work as specified for testing.
 e. Install equipment and materials in existing structures.
f. Upon written instructions from the Engineer, uncover and restore Work to provide for Engineer observation of concealed Work.

2. Cut, remove, and legally dispose of selected electrical equipment, components, and materials as indicated, including but not limited to removal of electrical items indicated to be removed and items made obsolete by the new Work.

3. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

4. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

5. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

6. Patch existing finished surfaces and building components using new materials matching existing materials and experienced Installers. Installers' qualifications refer to the materials and methods required for the surface and building components being patched.

7. Patch finished surfaces and building components using new materials specified for the original installation and experienced Installers. Installers' qualifications refer to the materials and methods required for the surface and building components being patched.

END OF SECTION 260500
26 05 01 - COMMON WORK RESULTS FOR ELECTRICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

B. Requirements specified in other Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes limited scope general construction materials and methods for application with electrical installations as follows:
 1. Miscellaneous metals for support of electrical materials and equipment.
 2. Fire rated wood grounds, nailers, blocking, fasteners, and anchorage for support of electrical materials and equipment.
 3. Joint sealers for sealing around electrical materials and equipment; and for sealing penetrations in fire and smoke barriers, floors, and foundation walls.
 4. Access panels and doors in walls, ceilings, and floors for access to electrical materials and equipment.

1.3 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.

B. Product data for the following products:
 1. Access panels and doors.
 2. Joint sealers.

C. Shop drawings detailing fabrication and installation for metal fabrications, and wood supports and anchorage for electrical materials and equipment.

D. Coordination drawings for access panel and door locations in accordance with Division 16 Section "Basic Electrical Requirements."

E. Samples of joint sealer, consisting of strips of actual products showing full range of colors available for each product.
F. Welder certificates, signed by Contractor, certifying that welders comply with requirements specified under "Quality Assurance" article of this Section.

G. Schedules indicating proposed methods and sequence of operations for selective demolition prior to commencement of Work. Include coordination for shut-off of electrical service, and details for dust and noise control.
 1. Coordinate sequencing with construction phasing and Owner occupancy as specified in other Divisions.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced Installer for the installation and application of joint sealers, access panels, and doors.

B. Qualify welding processes and welding operators in accordance with AWS D1.1 "Structural Welding Code - Steel."
 1. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

C. Fire-Resistance Ratings: Where a fire-resistance classification is indicated, provide access door assembly with panel door, frame, hinge, and latch from manufacturer listed in the UL "Building Materials Directory" for rating shown.
 1. Provide UL Label on each fire-rated access door.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver joint sealer materials in original unopened containers or bundles with labels informing about manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multi-component materials.

B. Store and handle joint sealer materials in compliance with the manufacturers' recommendations to prevent their deterioration and damage.

1.6 PROJECT CONDITIONS

A. Conditions Affecting Selective Demolition: The following project conditions apply:
 1. Protect adjacent materials indicated to remain or in the other phases of the proposed construction. Install and maintain dust and noise barriers to keep
dirt, dust, and noise from being transmitted to adjacent areas. Remove protection and barriers after demolition operations are complete.

2. Locate, identify, and protect electrical services passing through demolition area and serving other areas outside the demolition limits. Maintain services to areas outside demolition limits. When services must be interrupted, install temporary services for affected areas.

3. Arrange for electric service change-overs during periods when the building is not occupied. This may include week-ends and evening hours. Coordinate with Owner's representatives.

B. Environmental Conditions: Apply joint sealers under temperature and humidity conditions within the limits permitted by the joint sealer manufacturer. Do not apply joint sealers to wet substrates.

1.7 SEQUENCE AND SCHEDULING

A. Coordinate the shut-off and disconnection of electrical power with the Owner.

B. Notify the Engineer at least 5 days prior to commencing demolition operations.

C. Perform demolition in sequencing/phases as noted and as required.

PART 2 - PRODUCTS

2.1 MISCELLANEOUS METALS

A. Steel plates, shapes, bars, and bar grating: ASTM A 36.

B. Cold-Formed Steel Tubing: ASTM A 500.

C. Hot-Rolled Steel Tubing: ASTM A 501.

E. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout, recommended for interior and exterior applications.

F. Fasteners: Zinc-coated, type, grade, and class as required.

2.2 MISCELLANEOUS LUMBER
A. Framing Materials: Standard Grade, light-framing-size lumber of any species. Number 3 Common or Standard Grade boards complying with WCLIB or AWPA rules, or Number 3 boards complying with SPIB rules. Lumber shall be preservative treated in accordance with AWPB LP-2, and kiln dried to a moisture content of not more than 19 percent.

B. Construction Panels: Plywood panels; APA C-D PLUGGED INT, with exterior glue; thickness as indicated, or if not indicated, not less that 3/4 inches.

2.3 JOINT SEALER

A. General: Joint sealers, joint fillers, and other related materials compatible with each other and with joint substrates under conditions of service and application.

B. Colors: As selected by the Architect from manufacturer's standard colors.

C. Elastomeric Joint Sealers: Provide the following types:
 1. One-part, nonacid-curing, silicone sealant complying with ASTM C 920, Type S, Grade NS, Class 25, for uses in non-traffic areas for masonry, glass, aluminum, and other substrates recommended by the sealant manufacturer.
 2. One-part, mildew-resistant, silicone sealant complying with ASTM C 920, Type S, Grade NS, Class 25, for uses in non-traffic areas for glass, aluminum, and nonporous joint substrates; formulated with fungicide; intended for sealing interior joints with nonporous substrates; and subject to in-service exposure to conditions of high humidity and temperature extremes.
 3. Available Products: Subject to compliance with requirements, products which may be incorporated in the Work include the following:
 a. One-Part, Nonacid-Curing, Silicone Sealant:
 1) Bostik - "Chem-Caulk 2000"
 2) Dow Corning - "Dow Corning 790"
 3) Pecora Corp – “864NST”
 b. One-Part, Mildew-Resistant, Silicone Sealant:
 1) Dow Corning - "Dow Corning 786"
 2) GE - "SCS 1702”
 3) Pecora Corp. - "898”

D. Acrylic-Emulsion Sealants: One-part, nonsag, mildew-resistant, paintable complying with ASTM C 834 recommended for exposed applications on interior and protected
exterior locations involving joint movement of not more than plus or minus 5 percent.

1. Available Products: Subject to compliance with requirements, products which may be incorporated in the Work include the following:
 a. Bostik - "Chem-Caulk 600"
 b. Pecora Corp. - "AC-20"
 c. Tremco – “Tremflex 834”

E. Fire-Resistant Joint Sealers: Two-part, foamed-in-place, silicone sealant formulated for use in through-penetration fire-stopping around cables, conduit, pipes, and duct penetrations through fire-rated walls and floors. Sealants and accessories shall have fire-resistance ratings indicated, as established by testing identical assemblies in accordance with ASTM E 814, by Underwriters’ Laboratories, Inc., or other testing and inspection agency acceptable to authorities having jurisdiction.

1. Available Products: Subject to compliance with requirements, products which may be incorporated in the Work include the following:
 a. Dow Corning - "Dow Corning Fire Stop Foam"
 b. GE - "Pensil 851"
 c. Hilti – “CP-620 Fire Stop Foam”

2.4 ACCESS DOORS

A. Steel Access Doors and Frames: Factory-fabricated and assembled units, complete with attachment devices and fasteners ready for installation. Joints and seams shall be continuously welded steel, with welds ground smooth and flush with adjacent surfaces.

B. Frames: 16-gage steel, with a 1-inch-wide exposed perimeter flange for units installed in unit masonry, pre-cast, or cast-in-place concrete, ceramic tile, or wood paneling.

1. For installation in masonry, concrete, ceramic tile, or wood paneling: 1 inch-wide-exposed perimeter flange and adjustable metal masonry anchors.
2. For gypsum wallboard or plaster: perforated flanges with wallboard bead.
3. For full-bed plaster applications: galvanized expanded metal lath and exposed casing bead, welded to perimeter of frame.

C. Flush Panel Doors: 14-gage sheet steel, with concealed spring hinges or concealed continuous piano hinge set to open 175 degrees; factory-applied prime paint.

1. Fire-Rated Units: Insulated flush panel doors, with continuous piano hinge and self-closing mechanism.

D. Locking Devices: Flush, screwdriver-operated cam locks.
E. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the Work include the following:
1. Bar-Co., Inc.
2. J.L. Industries.
5. Nystrom, Inc.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting installation and application of joint sealers and access panels. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION FOR JOINT SEALER

A. Surface Cleaning for Joint Sealers: Clean surfaces of joints immediately before applying joint sealers to comply with recommendations of joint sealer manufacturer.

B. Apply joint sealer primer to substrates as recommended by joint sealer manufacturer. Protect adjacent areas from spillage and migration of primers, using masking tape. Remove tape immediately after tooling without disturbing joint seal.

3.3 ERECTION OF METAL SUPPORTS AND ANCHORAGE

A. Cut, fit, and place miscellaneous metal fabrications accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS "Structural Welding Code."

3.4 ERECTION OF WOOD SUPPORTS AND ANCHORAGE

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorage accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
B. Select fastener sizes that will not penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

D. Do not install wood materials in areas being utilized as air plenum or other spaces where a potential combustible hazard exists.

3.5 APPLICATION OF JOINT SEALERS

A. General: Comply with joint sealer manufacturers' printed application instructions applicable to products and applications indicated, except where more stringent requirements apply.

B. Tooling: Immediately after sealant application and prior to time shining or curing begins, tool sealants to form smooth, uniform beads; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint. Remove excess sealants from surfaces adjacent to joint. Do not use tooling agents that discolor sealants or adjacent surfaces or are not approved by sealant manufacturer.

C. Installation of Fire-Stopping Sealant: Install sealant, including forming, packing, and other accessory materials, to fill openings around electrical services penetrating floors and walls, to provide fire-stops with fire-resistance ratings indicated for floor or wall assembly in which penetration occurs. Comply with installation requirements established by testing and inspecting agency.

3.6 INSTALLATION OF ACCESS DOORS

A. Set frames accurately in position and securely attached to supports, with face panels plumb and level in relation to adjacent finish surfaces.

B. Adjust hardware and panels after installation for proper operation.

END OF SECTION 260501
26 05 19 - LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and other Division Specification Sections, apply to this Section.

B. Requirements of other specified Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes wires, cables, and connectors for power, lighting, signal, control and related systems rated 600 volts and less.

1.3 SUBMITTALS

A. Product Data for electrical wires, cables and connectors.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with provisions of the following code:

B. NFPA 70 "National Electrical Code."
 1. Conform to applicable codes and regulations regarding toxicity of combustion products of insulating materials.

C. UL Compliance: Provide components which are listed and labeled by UL under the following standards.
 1. UL Std. 83 Thermoplastic-Insulated Wires and Cables.
 2. UL Std. 486A Wire Connectors and Soldering Lugs for Use with Copper Conductors.
 3. UL Std. 1569 Metal Clad Cable.

D. NEMA/ICEA Compliance: Provide components which comply with the following standards:
 1. WC-5 Thermoplastic-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy.

E. IEEE Compliance: Provide components which comply with the following standard.
1. Std. 82 Test procedures for Impulse Voltage Tests on Insulated Conductors.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the work include the following:

1. Wire and Cable:
 a. American Insulated Wire Corp.
 b. Republic Wire Inc.
 c. Southwire Company.

2. Connectors for Wires and Cable Conductors:
 a. AMP
 b. 3M Company
 c. O-Z/Gedney Co.
 d. Square D Company.

2.2 WIRES AND CABLES

A. General: Provide wire and cable suitable for the temperature, conditions and location where installed.

B. Conductors: Provide stranded conductors for power and lighting circuits no. 10 AWG and smaller. Provide stranded conductors for sizes no. 8 AWG and larger.

C. Conductor Material: copper for all wires and cables.

D. Conductor sizes indicated are based on copper.

E. Insulation: Provide THHN/THWN-2 insulation for all conductors size 500MCM and larger, and no. 8 AWG and smaller. For all other sizes provide, THHN/THWN-2 or XHHW insulation as appropriate for the locations where installed.

F. Color Coding for phase identification in accordance with Table 1 in Part 3 below.

G. Jackets: Factory-applied nylon or PVC external jacketed wires and cables for pulls in raceways over 100-feet in length, for pulls in raceways with more than three
equivalent 90 deg. bends, for pulls in conduits underground or under slabs on grade, and where indicated.

H. Cables: Provide the following type(s) of cables in NEC approved locations and applications where indicated. Provide cable UL listed for particular application:
1. Metal-Clad Cable: Type MC - limited to the following:
 a. lighting fixtures and outlets concealed in gypsum wallboard partitions.

2.3 CONNECTORS FOR CONDUCTORS

A. Provide UL-listed factory-fabricated, solderless metal connectors of sizes, ampacity ratings, materials, types and classes for applications and for services indicated. Use connectors with temperature ratings equal to or greater than those of the wires upon which used.

PART 3 - EXECUTION

3.1 WIRING METHOD

A. Use the following wiring methods as indicated:
1. Wire: install all wire in raceway.
2. Metal Clad Cable, Type MC: where wiring concealed in gypsum wall partitions, ceilings, for connections from raceway outlet boxes to lighting fixtures, unless otherwise noted.

3.2 INSTALLATION OF WIRES AND CABLES

A. General: Install electrical cables, wires, and connectors in compliance with NEC.

B. Coordinate cable installation with other Work.

C. Pull conductors simultaneously where more than one is being installed in same raceway. Use UL listed pulling compound or lubricant, where necessary.

D. Use pulling means including, fish tape, cable, rope, and basket weave wire/cable grips which will not damage cables or raceways. Do not use rope hitches for pulling attachment to wire or cable.

E. Conceal all cable in finished spaces.
F. Keep conductor splices to minimum.

G. Install splice and tap connectors which possess equivalent or better mechanical strength and insulation rating than conductors being spliced.

H. Use splice and tap connectors which are compatible with conductor material.

I. Provide adequate length of conductors within electrical enclosures and train the conductors to terminal points with no excess. Bundle multiple conductors, with conductors larger than no 10 AWG cabled in individual circuits. Make terminations so there is no bare conductor at the terminal.

J. Tighten electrical connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

A. Prior to energizing, check installed wires and cables with megohm meter to determine insulation resistance levels to assure requirements are fulfilled.

B. Prior to energizing, test wires and cables for electrical continuity and for short-circuits.

C. Subsequent to wire and cable hook-ups, energize circuits and demonstrate proper functioning. Correct malfunctioning units, and retest to demonstrate compliance.

D. TABLE 1: Color Coding for Phase Identification:
 1. Color code secondary service, feeder, and branch circuit conductors with factory applied color as follows:

<table>
<thead>
<tr>
<th>208Y/120Volts</th>
<th>Phase</th>
<th>120/240Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>A</td>
<td>Black</td>
</tr>
<tr>
<td>Red</td>
<td>B</td>
<td>Red</td>
</tr>
<tr>
<td>Blue</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>Green</td>
<td>Ground</td>
<td>Green</td>
</tr>
</tbody>
</table>

END OF SECTION 260519
26 05 26 - GROUNDING

PART 1 – GENERAL

1.1 SUMMARY

A. This Section includes solid grounding of electrical systems and equipment. It includes basic requirements for grounding for protection of life, equipment, circuits, and systems. Grounding requirements specified in this Section may be supplemented in other sections of these Specifications.

B. Related Sections: The following sections contain requirements that relate to this Section:
 1. Division 26 Section "low voltage electrical power conductors and cables."

1.2 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.

B. Product data for ground rods, connectors and connection materials, and grounding fittings.

C. Field-testing organization certificate, signed by the Contractor, certifying that the organization performing field tests complies with the requirements specified in Quality Assurance below.

D. Report of field tests and observations certified by the testing organization.

1.3 QUALITY ASSURANCE

A. Listing and Labeling: Provide products specified in this Section that are listed and labeled. The terms "listed" and "labeled" shall be defined as they are in the National Electrical Code, Article 100.

 1. Listing and Labeling Agency Qualifications: A "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.7.

B. Field-Testing Organization Qualifications: To qualify for acceptance, the independent testing organization must demonstrate, based on evaluation of organization-submitted criteria conforming to ASTM E 699, that it has the experience and capability to conduct satisfactorily the testing indicated.
C. Electrical Component Standard: Components and installation shall comply with NFPA 70, "National Electrical Code" (NEC).

D. UL Standard: Comply with UL 467, "Grounding and Bonding Equipment."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include the following:

1. Anixter Bros., Inc.
2. Bashlin Industries, Inc.
3. Erico Products, Inc.
4. GB Electrical, Inc.
5. Ideal Industries, Inc.
6. O-Z/Gedney Co.
7. Raco, Inc.
8. Thomas & Betts Corp.
9. Utilco Co.

2.2 GROUNDING AND BONDING PRODUCTS

A. Products: Of types indicated and of sizes and ratings to comply with NEC. Where types, sizes, ratings, and quantities indicated are in excess of NEC requirements, the more stringent requirements and the greater size, rating, and quantity indications govern.

B. Conductor Materials: Copper.

2.3 WIRE AND CABLE CONDUCTORS

A. General: Comply with Division 26 Section "low voltage electrical power conductors and cables." Conform to NEC Table 8, except as otherwise indicated, for conductor properties, including stranding.

B. Equipment Grounding Conductor: Green insulated.

C. Grounding Electrode Conductor: Stranded cable.
D. Bare Copper Conductors: Conform to the following:

2.4 MISCELLANEOUS CONDUCTORS

A. Ground Bus: Bare annealed copper bars of rectangular cross section.

B. Braided Bonding Jumpers: Copper tape, braided No. 30 gage bare copper wire, terminated with copper ferrules.

C. Bonding Strap Conductor/Connectors: Soft copper, 0.05 inch thick and 2 inches wide, except as indicated.

2.5 CONNECTOR PRODUCTS

A. General: Listed and labeled as grounding connectors for the materials used.

B. Pressure Connectors: High-conductivity-plated units.

C. Bolted Clamps: Heavy-duty units listed for the application.

D. Exothermic Welded Connections: Provided in kit form and selected for the specific types, sizes, and combinations of conductors and other items to be connected.

E. Aluminum-To-Copper Connections: Bimetallic type, conforming to UL 96, "Lighting Protection Components," or UL 467.

2.6 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel with high-strength steel core and electrolytic-grade copper outer sheath, molten welded to core.
 1. Size: 3/4 inch by 10 feet.
 2. Size: 5/8 inch by 10 feet.

B. Plate Electrodes: Copper plates, minimum 0.10 inch thick, size as required per N.E.C. indicated.

PART 3 - EXECUTION

3.1 APPLICATIONS
A. Equipment Grounding Conductor Application: Comply with NEC Article 250 for sizes and quantities of equipment grounding conductors, except where larger sizes or more conductors are indicated.

1. Install separate insulated equipment grounding conductors with circuit conductors for the following in addition to those locations where required by Code:
 a. Lighting circuits.
 b. Feeders and branch circuits.
 c. Receptacle Circuits.
 d. Single-phase motor or appliance circuits.
 e. Three-phase motor or appliance branch circuits.

2. Nonmetallic Raceways: Install an insulated equipment ground conductor in nonmetallic raceways.

B. Underground Conductors: Bare, stranded copper except as otherwise indicated.

3.2 INSTALLATION

A. General: Ground electrical systems and equipment in accordance with NEC requirements except where the Drawings or Specifications exceed NEC requirements.

B. Ground Rods: Locate a minimum of one rod length from each other and at least the same distance from any other grounding electrode, or as indicated otherwise on the drawings. Interconnect ground rods with bare conductors buried at least 24 inches below grade. Connect bare cable ground conductors to ground rods by means of exothermic welds except as otherwise indicated. Make these connections without damaging the copper coating or exposing the steel. Use 3/4 inch by 10 ft. ground rods except as otherwise indicated. Drive rods until tops are 6 inches below finished floor or final grade except as otherwise indicated.

C. Metallic Water Service Pipe: Provide insulated copper ground conductors, sized as indicated, in conduit from the building main service equipment, or the ground bus, to main metallic water service entrances to the building. Connect ground conductors to the main metallic water service pipes by means of ground clamps. Do not install a grounding jumper around dielectric fittings. Connect the ground conductor to the street side of the fitting. Bond the ground conductor conduit to the conductor at each end.
D. Braided Type Bonding Jumpers: Install to connect ground clamps on water meter piping to bypass water meters electrically. Use elsewhere for flexible bonding and grounding connections.

E. Route grounding conductors along the shortest and straightest paths possible without obstructing access or placing conductors where they may be subjected to strain.

F. Test Wells: Locate as indicated, and as required.

G. Grounding connections should conform to NEC in addition to local requirements.

3.3 CONNECTIONS

A. General: Make connections in such a manner as to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 1. Use electroplated or hot tin coated materials to assure high conductivity and make contact points closer in order of galvanic series.
 2. Make connections with clean bare metal at points of contact.
 3. Aluminum to steel connections shall be with stainless steel separators and mechanical clamps.
 4. Aluminum to galvanized steel connections shall be with tin plated copper jumpers and mechanical clamps.
 5. Coat and seal connections involving dissimilar metals with inert material such as red lead paint to prevent future penetration of moisture to contact surfaces.

B. Exothermic Welded Connections: Use for connections to structural steel and for underground connections except those at test wells. Install at connections to ground rods and plate electrodes. Comply with manufacturer's written recommendations. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Terminate insulated equipment grounding conductors for feeders and branch circuits with pressure type grounding lugs. Where metallic raceways terminate at metallic housings without mechanical and electrical connection to the housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to the ground bus in the housing. Bond electrically noncontinuous conduits at both entrances and exits with grounding bushings and bare grounding conductors.
D. Tighten grounding and bonding connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values for connectors and bolts. Where manufacturer's torquing requirements are not indicated, tighten connections to comply with torque tightening values specified in UL 486.

E. Connections at Test Wells: Use compression type connectors on conductors and make bolted and clamped type connections between conductors and ground rods.

F. Compression Type Connections: Use hydraulic compression tools to provide the correct circumferential pressure for compression connectors. Use tools and dies recommended by the manufacturer of the connectors. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on the ground conductor.

G. Moisture Protection: Where insulated ground conductors are connected to ground rods or ground buses, insulate the entire area of the connection and seal against moisture penetration of the insulation and cable.

3.4 UNDERGROUND DISTRIBUTION SYSTEM GROUNDING

A. Grounding System: Ground non-current carrying metallic items associated with pad mounted equipment by connecting them to bare underground cable and grounding electrodes arranged as indicated. Coordinate with utility company.

3.5 FIELD QUALITY CONTROL

A. Independent Testing Organization: Arrange and pay for the services of a qualified independent electrical testing organization to perform tests described below.

B. Tests: Subject the completed grounding system to a megger test at service disconnect enclosure ground terminal, and at ground test wells. Measure ground resistance without the soil being moistened by any means other than natural precipitation or natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. Perform tests by the 2 point method in accordance with Section 9.03 of IEEE 81, "Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Grounding System."

C. Ground/resistance maximum values shall be as follows:
1. Equipment rated 500 kVA and less: 5 Ohms
2. Equipment rated 500 kVA to 1000 kVA: 5 Ohms
3. Equipment rated over 1000 kVA: 3 Ohms
4. Pad Mounted equipment: 5 ohms.

D. Deficiencies: Where ground resistances exceed specified values, and if directed, modify the grounding system to reduce resistance values. Coordinate with the Owner's Representative.

E. Report: Prepare test reports, certified by the testing organization, of the ground resistance at each test location. Include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

3.6 CLEANING AND ADJUSTING

A. Restore surface features at areas disturbed by excavation and reestablish original grades except as otherwise indicated. Where sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other Work to their original condition. Include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, or mulching. Perform such Work in accordance with Division 2.

END OF SECTION 260526
26 05 29 - SUPPORTING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

B. Requirements specified in other Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes secure support from the building structure for electrical items by means of hangers, supports, anchors, sleeves, inserts, seals, and associated fastenings.

1.3 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.

B. Product data for each type of product specified.
 1. Hanger and support schedule showing manufacturer's figure number, size, spacing, features, and application for each required type of hanger, support, sleeve, seal, and fastener to be used.

C. Shop drawings indicating details of fabricated products and materials.

D. Engineered Design consisting of details and engineering analysis for supports for the following items:
 1. Fastener supporting systems.

1.4 QUALITY ASSURANCE

A. Electrical Component Standard: Components and installation shall comply with NFPA 70 "National Electrical Code."

B. Electrical components shall be listed and labeled by UL, ETL, CSA, or other approved, nationally recognized testing and listing agency that provides third-party certification follow-up services.
PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include the following:
1. Slotted Metal Angle and U-Channel Systems:
 a. Allied Tube & Conduit
 b. B-Line Systems, Inc.
 c. GS Metals Corp.
 d. Unistrut Diversified Products

2. Conduit Sealing Bushings:
 a. Bridgeport Fittings, Inc.
 b. Cooper Industries, Inc.
 c. O-Z/Gedney
 d. Producto Electric Corp.
 e. Raco, Inc.
 f. Spring City Electrical Mgf. Co.
 g. Thomas & Betts Corp.

2.2 COATINGS

A. Coating: Supports, support hardware, and fasteners shall be protected with zinc coating or with treatment of equivalent corrosion resistance using approved alternative treatment, finish, or inherent material characteristic. Products for use outdoors shall be hot-dip galvanized.

2.3 MANUFACTURED SUPPORTING DEVICES

A. Raceway Supports: Clevis hangers, riser clamps, conduit straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring steel clamps.

B. Fasteners: Types, materials, and construction features as follows:
 1. Expansion Anchors: Carbon steel wedge or sleeve type.
 2. Toggle Bolts: All steel springhead type.

C. Conduit Sealing Bushings: Factory-fabricated watertight conduit sealing bushing assemblies suitable for sealing around conduit, or tubing passing through concrete
floors and walls. Construct seals with steel sleeve, malleable iron body, neoprene sealing grommets or rings, metal pressure rings, pressure clamps, and cap screws.

D. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for nonarmored electrical cables in riser conduits. Provide plugs with number and size of conductor gripping holes as required to suit individual risers. Construct body of malleable-iron casting with hot-dip galvanized finish.

E. U-Channel Systems: 16-gage steel channels, with 9/16-inch-diameter holes, at a minimum of 8 inches on center, in top surface. Provide fittings and accessories that mate and match with U-channel and are of the same manufacture.

2.4 FABRICATED SUPPORTING DEVICES

A. General: Shop- or field-fabricated supports or manufactured supports assembled from U-channel components.

B. Steel Brackets: Fabricated of angles, channels, and other standard structural shapes. Connect with welds and machine bolts to form rigid supports.

C. Pipe Sleeves: Provide pipe sleeves of one of the following:
 1. Sheet Metal: Fabricate from galvanized sheet metal; round tube closed with snaplock joint, welded spiral seams, or welded longitudinal joint. Fabricate sleeves from the following gage metal for sleeve diameter noted:
 a. 3-inch and smaller: 20-gage.
 b. 4-inch to 6-inch: 16-gage.
 c. over 6-inch: 14-gage.
 2. Steel Pipe: Fabricate from Schedule 40 galvanized steel pipe.

PART 3 – EXECUTION

3.1 INSTALLATION

A. Install supporting devices to fasten electrical components securely and permanently in accordance with NEC requirements.

B. Coordinate with the building structural system and with other electrical installation.
C. Raceway Supports: Comply with the NEC and the following requirements:
 1. Conform to manufacturer's recommendations for selection and installation of supports.
 2. Strength of each support shall be adequate to carry present and future load multiplied by a safety factor of at least four. Where this determination results in a safety allowance of less than 200 lbs, provide additional strength until there is a minimum of 200 lbs safety allowance in the strength of each support.
 3. Install individual and multiple (trapeze) raceway hangers and riser clamps as necessary to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assembly and for securing hanger rods and conduits.
 4. Support parallel runs of horizontal raceways together on trapeze-type hangers.
 5. Support individual horizontal raceways by separate pipe hangers. Spring steel fasteners may be used in lieu of hangers only for 1-1/2-inch and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings only. For hanger rods with spring steel fasteners, use 1/4-inch-diameter or larger threaded steel. Use spring steel fasteners that are specifically designed for supporting single conduits or tubing.
 6. Space supports for raceways in accordance with Table I of this section. Space supports for raceway types not covered by the above in accordance with NEC.
 7. Support exposed and concealed raceway within 1 foot of an unsupported box and access fittings. In horizontal runs, support at the box and access fittings may be omitted where box or access fittings are independently supported and raceway terminals are not made with chase nipples or threadless box connectors.
 8. In vertical runs, arrange support so the load produced by the weight of the raceway and the enclosed conductors is carried entirely by the conduit supports with no weight load on raceway terminals.

D. Vertical Conductor Supports: Install simultaneously with installation of conductors.

E. Miscellaneous Supports: Support miscellaneous electrical components as required to produce the same structural safety factors as specified for raceway supports. Install metal channel racks for mounting cabinets, panelboards, disconnects, control enclosures, pull boxes, junction boxes, transformers, and other devices.

F. In open overhead spaces, cast boxes threaded to raceways need not be supported separately except where used for fixture support; support sheet metal boxes directly from the building structure or by bar hangers. Where bar hangers are used, attach the bar to raceways on opposite sides of the box and support the raceway with an approved type of fastener not more than 24 inches from the box.
G. Sleeves: Install in concrete slabs and walls and all other fire-rated floors and walls for raceways and cable installations. For sleeves through fire rated-wall or floor construction, apply UL-listed firestopping sealant in gaps between sleeves and enclosed conduits and cables in accordance with requirements specified elsewhere.

H. Conduit Seals: Install seals for conduit penetrations of slabs on grade and exterior walls below grade and where indicated. Tighten sleeve seal screws until sealing grommets have expanded to form watertight seal.

I. Fastening: Unless otherwise indicated, fasten electrical items and their supporting hardware securely to the building structure, including but not limited to conduits, raceways, cables, cable trays, busways, cabinets, panelboards, transformers, boxes, disconnect switches, and control components in accordance with the following:
1. Fasten by means of wood screws or screw-type nails on wood, toggle bolts on hollow masonry units, concrete inserts or expansion bolts on concrete or solid masonry, and machine screws, welded threaded studs, or spring-tension clamps on steel. Do not weld conduit, pipe straps, or items other than threaded studs to steel structures. In partitions of light steel construction, use sheet metal screws.
2. Holes cut to depth of more than 1-1/2 inches in reinforced concrete beams or to depth of more than 3/4 inch in concrete shall not cut the main reinforcing bars. Fill holes that are not used.
3. Ensure that the load applied to any fastener does not exceed 25 percent of the proof test load. Use vibration- and shock-resistant fasteners for attachments to concrete slabs.

J. TESTS: Test pull-out resistance of one of each type, size, and anchorage material for the following fastener types:
1. Expansion anchors.
2. Toggle bolts.

K. Provide all jacks, jigs, fixtures, and calibrated indicating scales required for reliable testing. Obtain the structural Engineer’s approval before transmitting loads to the structure. Test to 90 percent of rated proof load for fastener. If fastening fails test, revise all similar fastener installations and retest until satisfactory results are achieved.

L. Conduit seals at walk-in cooler & freezer location: Install seals for conduit penetrations into cooler or freezer equipment where conduit enters the respective conditional areas, and at slab locations.
TABLE I: SPACING FOR RACEWAY SUPPORTS

HORIZONTAL RUNS

<table>
<thead>
<tr>
<th>Raceway Size (Inches)</th>
<th>No. of Conductors in Run</th>
<th>RMC & IMC EMT Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2, 3/4</td>
<td>1 or 2</td>
<td>Flat ceiling or wall.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1/2, 3/4</td>
<td>1 or 2</td>
<td>Where it is difficult to provide supports except at intervals fixed by the building construction.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1/2, 3/4</td>
<td>3 or more</td>
<td>Any location.</td>
</tr>
<tr>
<td>1/2-1</td>
<td>3 or more</td>
<td>Any location.</td>
</tr>
<tr>
<td>1 & larger</td>
<td>1 or 2</td>
<td>Flat ceiling or wall.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1 & larger</td>
<td>1 or 2</td>
<td>Where it is difficult to provide supports except at intervals fixed by the building construction.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1 & larger</td>
<td>3 or more</td>
<td>Any location.</td>
</tr>
<tr>
<td>Any</td>
<td>....</td>
<td>Concealed.</td>
</tr>
</tbody>
</table>

VERTICAL RUNS

<table>
<thead>
<tr>
<th>Raceway Size (Inches)</th>
<th>No. of Conductors in Run</th>
<th>RMC & IMC EMT Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2, 3/4</td>
<td>....</td>
<td>Exposed.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>Location</td>
<td>Minimum Support Spacing</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1,1-1/4</td>
<td>Exposed</td>
<td>8</td>
</tr>
<tr>
<td>1-1/2 & larger</td>
<td>Exposed</td>
<td>10</td>
</tr>
<tr>
<td>Up to 2</td>
<td>Shaftway</td>
<td>14</td>
</tr>
<tr>
<td>2-1/2</td>
<td>Shaftway</td>
<td>16</td>
</tr>
<tr>
<td>3 & larger</td>
<td>Shaftway</td>
<td>20</td>
</tr>
<tr>
<td>Any</td>
<td>Concealed</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTES:

1. Maximum spacing of supports (feet).
2. Maximum spacings for IMC above apply to straight runs only. Otherwise the maximums for EMT apply.

Abbreviations:
- EMT Electrical metallic tubing.
- IMC Intermediate metallic conduit.
- RMC Rigid metallic conduit.

END OF SECTION 260529
PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

B. Requirements specified in other Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes raceways for electrical wiring. Types of raceways in this section include the following:
 1. Rigid metal conduit.
 2. Intermediate metal conduit.
 3. Liquidtight flexible conduit.
 4. Flexible metal conduit.
 5. Electrical Metallic Tubing (EMT).
 6. Rigid nonmetallic conduit.
 7. Wireways.

B. This section includes cabinets, boxes, and fittings for electrical installations and certain types of electrical fittings not covered in other sections. Types of products specified in this Section include:
 1. Outlet and device boxes.
 2. Pull and junction boxes.
 3. Cabinets.
 4. Hinged door enclosures.

C. Related Sections: The following Division 26 Sections contain requirements that relate to this Section:
 1. "Low voltage electrical power conductors and cables" for other wiring methods.

1.3 DEFINITIONS

A. Cabinets: An enclosure designed either for surface or for flush mounting and having a frame, or trim in which a door or doors may be mounted.
B. Device Box: An outlet box designed to house a receptacle device or a wiring box designed to house a switch.

C. Enclosure: A box, case, cabinet, or housing for electrical wiring or components.

D. Outlet Box: A wiring enclosure where current is taken from a wiring system to supply utilization equipment.

E. Wiring Box: An enclosure designed to provide access to wiring systems or for the mounting of indicating devices or of switches for controlling electrical circuits.

1.4 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections:
 1. Product data for Raceway systems.
 2. Product data for cabinets and enclosures with classification higher than NEMA 1.
 3. Shop drawings for boxes, enclosures and cabinets that are to be shop fabricated, (nonstock items). For shop fabricated junction and pull boxes, show accurately scaled views and spatial relationships to adjacent equipment. Show box types, dimensions, and finishes.

1.5 QUALITY ASSURANCE

A. UL Listing and Labeling: Items provided under this section shall be listed and labeled by UL.

B. Nationally Recognized Testing Laboratory Listing and Labeling (NRTL): Items provided under this section shall be listed and labeled by a NRTL. The term "NRTL" shall be as defined in OSHA Regulation 1910.7.

C. National Electrical Code Compliance: Components and installation shall comply with NFPA 70 "National Electrical Code."

D. NEMA Compliance: Comply with NEMA Standard 250, "Enclosures for Electrical Equipment (1000 Volts Maximum)."

E. NEMA Compliance: Comply with applicable requirements of NEMA standards pertaining to raceways.
F. Provide raceway products and components listed and labeled by UL, ETL, or CSA.

1.6 SEQUENCING AND SCHEDULING

A. Coordinate with other Work, including metal and concrete deck installation, as necessary to interface installation of electrical raceways and components with other Work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include the following:

B. Conduits:
 1. Allied Tube and Conduit
 2. Carlon
 3. Republic Conduit
 4. Wheatland

C. Conduit Bodies:
 1. Allied Tube and Conduit
 2. Carlon
 4. O Z/Gedney
 5. Spring City Electrical Mfg. Co.
 6. Wheatland

D. Wireways:
 1. Erickson Electric Equipment Co.
 2. GS Metals Corp.

E. Cabinets:
 1. Erickson Electrical Equipment Co.
 4. Square D Co.
2.2 METAL CONDUIT AND TUBING

A. Rigid Steel Conduit: ANSI C80.1.

B. Intermediate Steel Conduit: UL 1242.

C. Electrical Metallic Tubing and Fittings: ANSI C80.3

D. Flexible Metal Conduit: UL 1, zinc coated steel.

E. Liquid-tight Flexible Metal Conduit and Fittings: UL 360. Fittings shall be specifically approved for use with this raceway.

2.3 NONMETALLIC CONDUIT AND DUCTS

A. Rigid Nonmetallic Conduit: NEMA TC 2 and UL 651, Schedule 40 or 80 PVC.

B. PVC Conduit and Tube Fittings: TC 3; match to conduit or conduit/tube type and material.

C. Conduit, Tubing and Duct Accessories: Types, sizes and materials complying with manufacturer’s published product information. Mate and attach to raceway.

2.4 CONDUIT BODIES

A. General: Types, shapes, and sizes as required to suit individual applications and NEC requirements. Provide matching gasketed covers secured with corrosion resistant screws.

B. Metallic Conduit and Tubing: Use metallic conduit bodies. Use bodies with threaded hubs for threaded raceways.

C. Conduit Bodies 1 Inch and Smaller: Use bodies with compression type threaded connectors.

D. Nonmetallic Conduit and Tubing: Use nonmetallic conduit bodies conforming to UL 514B

2.5 WIREWAYS
A. General: Electrical wireways shall be of types, sizes, and number of channels indicated. Fittings and accessories including but not limited to couplings, offsets, elbows, expansion joints, adapters, hold-down straps, and end caps shall match and mate with wireway as required for completed system. Where features are not indicated, select to fulfill wiring requirements and comply with applicable provisions of NEC.

B. Wireway covers to be hinged type.

2.6 CABINETS, BOXES, AND FITTINGS, GENERAL

A. Electrical Cabinets, Boxes, and Fittings: Of indicated types, sizes, and NEMA enclosure classes. Where not indicated, provide units of types, sizes, and classes appropriate for the use and location. Provide all items complete with covers and accessories required for the intended use. Provide gaskets for units in damp or wet locations. This applies to kitchen areas.

B. Materials and finish
 2. Fasteners for General Use: Corrosion resistant screws and hardware including cadmium and zinc plated items.
 3. Fasteners for Damp or Wet Locations: Stainless steel screws and hardware.
 4. Cast Metal for Boxes, Enclosures, and Covers: Copper-free aluminum except as otherwise specified.
 5. Exterior Finish: Gray baked enamel for items exposed in finished locations except as otherwise indicated.
 7. Fittings for Boxes, Cabinets, and Enclosures: Conform to UL 514B. Malleable iron or zinc plated steel for conduit hubs, bushings and box connectors.

2.7 METAL OUTLET, DEVICE, AND SMALL WIRING BOXES

A. General: Conform to UL 514A, "Metallic Outlet Boxes, Electrical," and UL 514B, "Fittings for Conduit and Outlet Boxes." Boxes shall be of type, shape, size, and depth to suit each location and application.

B. Steel Boxes: Conform to NEMA OS 1, "Sheet Steel Outlet Boxes, Device Boxes, Covers, and Box Supports." Boxes shall be sheet steel with stamped knockouts, threaded screw holes and accessories suitable for each location including mounting brackets and straps, cable clamps, exterior rings and fixture studs.
C. Cast-Iron Boxes: Iron alloy, waterproof, with threaded raceway entries and features and accessories suitable for each location, including mounting ears, threaded screw holes for devices and closure plugs.

2.8 PULL OR JUNCTION BOXES

A. General: Comply with UL 50, "Electrical Cabinets and Boxes", for boxes over 100 cubic inches volume. Boxes shall have screwed or bolted on covers of material same as box and shall be of size and shape to suit application.

B. Steel Boxes: Sheet steel with welded seams. Where necessary to provide a rigid assembly, construct with internal structural steel bracing.

C. Hot-Dipped Galvanized Steel Boxes: Sheet steel with welded seams. Where necessary to provide a rigid assembly, construct with internal structural steel bracing. Hot-dip galvanized after fabrication. Cover shall be gasketed.

D. Stainless-Steel Boxes: Fabricate of stainless steel conforming to Type 302 of ASTM A 167, "Specification for Stainless and Heat Resisting Chromium-Nickel Steel Plate, Sheet, and Strip." Where necessary to provide a rigid assembly, construct with internal structural stainless steel bracing. Cover shall be gasketed.

E. Cast-Iron Boxes: Molded of cast iron alloy with gasketed cover and integral threaded conduit entrances.

2.9 CABINETS

A. Comply with UL 50, "Electrical Cabinets and Boxes."

B. Construction: Sheet steel, NEMA 4 class except as otherwise indicated. Cabinet shall consist of a box and a front consisting of a one piece frame and a hinged door. Arrange door to close against a rabbet placed all around the inside edge of the frame, with a uniformly close fit between door and frame. Provide concealed fasteners, not over 24-inches apart, to hold fronts to cabinet boxes and provide for adjustment. Provide flush or concealed door hinges not over 24-inches apart and not over 6-inches from top and bottom of door. For flush cabinets, make the front approximately 3/4 inch larger than the box all around. For surface mounted cabinets make front same height and width as box.

C. Doors: Double doors for cabinets wider than 24-inches.
D. Locks: Combination spring catch and key lock, with all locks for cabinets of the same system keyed alike. Locks may be omitted on signal, power, and lighting cabinets located within wire closets and mechanical-electrical rooms. Locks shall be of a type to permit doors to latch closed without locking.

2.10 STEEL ENClosures WITH HINGED DOORS

A. Comply with UL 50, "Cabinets and Enclosures" and NEMA ICS 6,

B. "Enclosures for Industrial Controls and Systems."

C. Construction: Sheet steel, 16 gage, minimum, with continuous welded seams. NEMA class as indicated; arranged for surface mounting.

D. Doors: Hinged directly to cabinet and removable, with approximately 3/4-inch flange around all edges, shaped to cover edge of box. Provide handle operated, key locking latch. Individual door width shall be no greater than 24-inches. Provide multiple doors where required.

E. Mounting Panel: Provide painted removable internal mounting panel for component installation.

F. Enclosure: NEMA 4 except as indicated. Where door gasketing is required, provide neoprene gasket attached with oil-resistant adhesive, and held in place with steel retaining strips. For all enclosures of class higher than NEMA 1, use hubbed raceway entrances.

PART 3 - EXECUTION

3.1 RACEWAY WIRING METHOD

A. Outdoors: Use the following wiring methods:
 3. Connection to Vibrating Equipment: Including transformers and hydraulic, pneumatic, or electric solenoid or motor driven equipment: liquidtight flexible metal conduit. Maximum length six (6) feet.

B. Indoors: Use the following wiring methods:
1. Connection to Vibrating Equipment: Including transformers and hydraulic, pneumatic or electric solenoid or motor operated equipment: Flexible metal conduit. Maximum length six (6) feet.

2. Exposed/Concealed: branch circuits: EMT.

4. Connection to vibrating equipment and hydraulic, pneumatic, or electric solenoid or motor driven equipment in moist or humid location or corrosive atmosphere, or where subject to water spray or dripping oil, grease, or water: Liquidtight flexible metal conduit. Maximum length six (6) feet.

3.2 RACEWAY INSTALLATION

A. General: Install electrical raceways in accordance with manufacturer’s written installation instructions, applicable requirements of NEC, and as follows:

B. Conceal Conduit, unless indicated otherwise, within finished walls, ceilings, and floors. Keep raceways at least 6 inches away from parallel runs of flues and hot water pipes. Install raceways level and square and at proper elevations.

C. Elevation of Raceway: Where possible, install horizontal raceway runs above water and sanitary piping.

D. Complete installation of electrical raceways before starting installation of conductors within raceways.

E. Provide supports for raceways as specified elsewhere in Division 26.

F. Prevent foreign matter from entering raceways by using temporary closure protection.

G. Protect stub ups from damage where conduits rise from floor slabs. Arrange so curved portion of bends is not visible above the finished slab.

H. Make bends and offsets so the inside diameter is not effectively reduced. Unless otherwise indicated, keep the legs of a bend in the same plane and the straight legs of offsets parallel.

I. Use raceway fittings that are of types compatible with the associated raceway and suitable for the use and location. For intermediate steel conduit, use threaded rigid steel conduit fittings except as otherwise indicated.
J. Run concealed raceways with a minimum of bends in the shortest practical distance considering the type of building construction and obstructions except as otherwise indicated.

K. Install exposed raceways parallel and perpendicular to nearby surfaces or structural members and follow the surface contours as much as practical.

L. Run exposed, parallel, or banked raceways together. Make bends in parallel or banked runs from the same center line so that the bends are parallel. Factory elbows may be used in banked runs only where they can be installed parallel. This requires that there be a change in the plane of the run such as from wall to ceiling and that the raceways be of the same size. In other cases provide field bends for parallel raceways.

M. Join raceways with fittings designed and approved for the purpose and make joints tight. Where joints cannot be made tight, use bonding jumpers to provide electrical continuity of the raceway system. Make raceway terminations tight. Where terminations are subject to vibration, use bonding bushings or wedges to assure electrical continuity. Where subject to vibration or dampness, use insulating bushings to protect conductors.

N. Tighten set screws of threadless fittings with suitable tool.

O. Terminations: Where raceways are terminated with locknuts and bushings, align the raceway to enter squarely and install the locknuts with dished part against the box. Where terminations cannot be made secure with one locknut, use two locknuts, one inside and one outside the box.

P. Where terminating in threaded hubs, screw the raceway or fitting tight into the hub so the end bears against the wire protection shoulder. Where chase nipples are used, align the raceway so the coupling is square to the box, and tighten the chase nipple so no threads are exposed.

Q. Install pull wires in empty raceways. Use no. 14 AWG zinc coated steel or monofilament plastic line having not less than 200 lb tensile strength. Leave not less than 12 inches of slack at each end of the pull wire.

R. Install raceway sealing fittings in accordance with the manufacturer's written instructions. Locate fittings at suitable, approved, accessible locations and fill them with UL listed sealing compound. For concealed raceways, install each fitting in a
flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points and elsewhere as indicated:

1. Where conduits pass from warm locations to cold locations, such as the boundaries of conditioned spaces and mechanical spaces.
2. Where required by the NEC.

S. Stub up Connections: Extend conduits through concrete floor for connection to freestanding equipment with an adjustable top or coupling threaded inside for plugs and set flush with the finished floor. Extend conductors to equipment with rigid steel conduit; flexible metal conduit may be used 6 inches above the floor.

T. Flexible Connections: Use short length (maximum of 6 ft.) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for all motors. Use liquidtight flexible conduit in wet locations. Install separate ground conductor across flexible connections.

3.3 CABINETS AND BOXES INSTALLATION, GENERAL

A. Locations: Install items where indicated and where required to suit code requirements and installation conditions.

B. Cap unused knockout holes where blanks have been removed and plug unused conduit hubs.

C. Support and fasten items securely in accordance with Division 16 Section "Supporting Devices."

D. Sizes shall be adequate to meet NEC volume requirements, but in no case smaller than sizes indicated.

E. Remove sharp edges where they may come in contact with wiring or personnel.

3.4 APPLICATIONS

A. Cabinets: Flush mounted, NEMA enclosure Type 1 except as otherwise indicated.

B. Hinged Door Enclosures: NEMA Type 1 enclosure except as indicated.

C. Hinged Door Enclosures Outdoors: Install drip hood, factory tailored to individual units.
D. Outlet Boxes and Fittings: Install outlet and device boxes and associated covers and fittings of materials and NEMA types suitable for each location and in conformance with the following requirements:

1. Interior Dry Locations: NEMA Type 1, sheet steel or as permitted by local code.
2. Locations Exposed to Weather, Dampness, or Wet Locations: NEMA Type 3R enclosures.

E. Pull and Junction Boxes: Install pull and junction boxes of materials and NEMA types suitable for each location except as otherwise indicated.

3.5 INSTALLATION OF OUTLET BOXES

A. Outlets at Windows and Doors: Locate close to window trim.

B. Column and Pilaster Locations: Locate outlet boxes for switches and receptacles on columns or pilasters so the centers of the columns are clear for future installation of partitions.

C. Locations in Special Finish Materials: For outlet boxes for receptacles and switches mounted in desks or furniture cabinets or in glazed tile, concrete block, marble, brick, stone or wood walls, use rectangular shaped boxes with square corners and straight sides. Install such boxes without plaster rings. Saw cut all recesses for outlet boxes in exposed masonry walls.

D. Gasketed Boxes: At the following locations use cast metal, threaded hub type boxes with gasketed weatherproof covers:

1. Exterior locations.
2. Where surface mounted on unfinished walls, columns or pilasters. (Cover gaskets may be omitted in dry locations).
3. Where exposed to moisture laden atmosphere.
4. Where indicated.

E. Cast-Iron Boxes: Iron alloy, waterproof, with threaded raceway entries and features and accessories suitable for each location, including mounting ears, threaded screw holes for devices and closure plugs.

F. Mounting: Mount outlet boxes for switches with the long axis vertical or as indicated. Mount boxes for receptacles either vertically or horizontally but consistently either way. Three or more gang boxes shall be mounted with the long axis horizontal. Locate box covers or device plates so they will not span different
types of building finishes either vertically or horizontally. Locate boxes for switches near doors on the side opposite the hinges and close to door trim, even though electrical floor plans may show them on hinge side.

G. Ceiling Outlets: For fixtures, where wiring is concealed, use outlet boxes 4-inches square by 1-1/2-inches deep, minimum.

H. Cover Plates for Surface Boxes: Use plates sized to box front without overlap.

I. Protect outlet boxes to prevent entrance of plaster, and debris. Thoroughly clean foreign material from boxes before conductors are installed.

3.6 INSTALLATION OF PULL OR JUNCTION BOXES

A. Box Selection: For boxes in main feeder conduit runs, use sizes not smaller than 8-inches square by 4-inches deep. Do not exceed 6 entering and 6 leaving raceways in a single box. Quantities of conductors (including equipment grounding conductors) in pull or junction box shall not exceed the following:

<table>
<thead>
<tr>
<th>Size of Conductors in Box</th>
<th>Maximum no. of Conductors in Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4/0 AWG</td>
<td>30</td>
</tr>
<tr>
<td>250 MCM</td>
<td>20</td>
</tr>
<tr>
<td>500 MCM</td>
<td>15</td>
</tr>
<tr>
<td>Over 500 MCM</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Cable Supports: Install clamps, grids, or devices to which cables may be secured. Arrange cables so they may be readily identified. Support cable at least every 30-inches inside boxes.

2. Mount pull boxes in inaccessible ceilings with the covers flush with the finished ceiling.

3. Size: Provide pull and junction boxes for telephone, signal, and other systems at least 50 percent larger than would be required by or as indicated. Locate boxes strategically and provide shapes to permit easy pulling of future wires or cables of types normal for such systems.

3.7 INSTALLATION OF CABINETS AND HINGED DOOR ENCLOSURES
A. Mount with fronts straight and plumb.

B. Install with tops 78-inches above floor.

C. Set cabinets in finished spaces flush with walls.

3.8 GROUNDING

A. Electrically ground metallic cabinets, boxes, and enclosures. Where wiring to item includes a grounding conductor, provide a grounding terminal in the interior of the cabinet, box or enclosure.

3.9 RACEWAY ADJUSTING AND CLEANING

A. Upon completion of installation of raceways, inspect interiors of raceways; clear all blockages and remove burrs, dirt, and construction debris.

3.10 CLEANING AND FINISH REPAIR

A. Upon completion of installation, inspect components. Remove burrs, dirt, and construction debris and repair damaged finish including chips, scratches, abrasions and weld marks.

B. Galvanized Finish: Repair damage using a zinc-rich paint recommended by the tray manufacturer.

C. Painted Finish: Repair damage using matching corrosion inhibiting touch-up coating.

END OF SECTION 260533
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

B. Requirements specified in other Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes identification of electrical materials, equipment, and installations. It includes requirements for electrical identification components including but not limited to the following:
 1. Identification labeling for switchboards, panelboards, devices, raceways, cables, and conductors.
 2. Operational instruction signs.
 3. Warning and caution signs.
 4. Equipment labels and signs.

B. Related Sections: The following Sections contain requirements that relate to this Section:
 1. Division 26 Section “Low voltage electrical power conductors and cables.” for requirements for color coding of conductors for phase identification.

C. Refer to other Division 26 sections for additional specific electrical identification associated with specific items.

1.3 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.

B. Product Data for each type of product specified.

C. Schedule of identification nomenclature to be used for identification signs and labels.

D. Samples of each color, lettering style, and other graphic representation required for identification materials; samples of labels and signs.
1.4 QUALITY ASSURANCE

A. Electrical Component Standard: Components and installation shall comply with NFPA 70 "National Electrical Code."

B. ANSI Compliance: Comply with requirements of ANSI Standard A13.1, "Scheme for the Identification of Piping Systems," with regard to type and size of lettering for raceway and cable labels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include the following:
 1. American Labelmark Co.
 2. Ideal Industries, Inc.
 3. LEM Products, Inc.
 4. Markal Corp.
 6. Panduit Corp.
 7. Seton Name Plate Co.

2.2 ELECTRICAL IDENTIFICATION PRODUCTS

A. Adhesive Marking Labels for Raceway and Cable: Pre-printed, flexible, self-adhesive labels with legend indicating voltage and service (Emergency, Lighting, Power, Light, Air Conditioning, Communications, Control, Fire, etc.).

B. Label Size: as follows:
 2. Raceways Larger than 1-Inch: 1-1/8 inches high by 8 inches long.

C. Color: Black legend on orange background.

D. Colored Adhesive Marking Tape for Raceways, Wires, and Cables: Self-adhesive vinyl tape not less than 3 mils thick by 1 inch to 2 inches in width.
E. Pretensioned Flexible Wraparound Colored Plastic Sleeves for Raceway and Cable Identification: Flexible acrylic bands sized to suit the raceway diameter and arranged to stay in place by pre-tensioned gripping action when coiled around the raceway or cable.

F. Wire/Cable Designation Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound, cable/conductor markers with preprinted numbers and letter.

G. Plasticized Card Stock Tags: Vinyl cloth with preprinted and field-printed legends to suit the application. Orange background, except as otherwise indicated, with Eyelet for fastener.

H. Engraved, Plastic-Laminated Labels, Signs, and Instruction Plates: Engraving stock melamine plastic laminate, 1/16-inch minimum thickness for signs up to 20 square inches, or 8 inches in length; 1/8-inch thick for larger sizes. Engraved legend in white letters on black face and punched for mechanical fasteners.

I. Baked-Enamel Warning and Caution Signs for Interior Use: Preprinted aluminum signs, punched for fasteners, with colors, legend, and size appropriate to the location.

J. Exterior Metal-Backed Butyrate Warning and Caution Signs: Weather-resistant, nonfading, preprinted cellulose acetate butyrate signs with 20-gage, galvanized steel backing, with colors, legend, and size appropriate to the location. Provide 1/4-inch grommets in corners for mounting.

K. Fasteners for Plastic-Laminated and Metal Signs: Self-tapping stainless steel screws or number 10/32 stainless steel machine screws with nuts and flat and lock washers.

L. Cable Ties: Fungus-inert, self-extinguishing, one-piece, self-locking nylon cable ties, 0.18-inch minimum width, 50-lb minimum tensile strength, and suitable for a temperature range from minus 50 deg F to 350 deg F. Provide ties in specified colors when used for color coding.

M. Underground Warning Tape: 6 inches wide, 5 mils thick, polyethylene underground warning tape with aluminum backing. Black lettering on red background stating “CAUTION BURIED ELECTRICAL LINE BELOW”.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Lettering and Graphics: Coordinate names, abbreviations, colors, and other designations used in electrical identification work with corresponding designations specified or indicated. Install numbers, lettering, and colors as approved in submittals and as required by code.

B. Install identification devices in accordance with manufacturer's written instructions and requirements of NEC.

C. Sequence of Work: Where identification is to be applied to surfaces that require finish, install identification after completion of finish work.

D. Conduit Identification:
 1. The following areas shall be identified:
 a. On wall surfaces directly external to conduits run concealed within wall.
 b. On all accessible surfaces of concrete envelope around conduits in vertical shafts, exposed at ceilings or concealed above suspended ceilings.

 2. Apply identification to areas as follows:
 a. Clean surface of dust, loose material, and oily films before painting.
 b. Prime surfaces: For galvanized metal, use single-component acrylic vehicle coating formulated for galvanized surfaces. For concrete masonry units, use heavy-duty acrylic resin block filler. For concrete surfaces, use clear alkali-resistant alkyd binder-type sealer.
 c. Apply one intermediate and one finish coat of orange silicone alkyd enamel.
 d. Apply primer and finish materials in accordance with manufacturer's instructions.

E. Identify Raceways of Certain Systems with Color Banding: Band exposed or accessible raceways of the following systems for identification. Bands shall be pretensioned, snap-around colored plastic sleeves, colored adhesive marking tape, or a combination of the two. Make each color band 2 inches wide, completely encircling conduit, and place adjacent bands of two-color markings in contact, side by side. Install bands at changes in direction, at penetrations of walls and floors, and at 40-foot maximum intervals in straight runs. Apply the following colors:
 1. Fire Alarm System: Red
 2. Fire Suppression Supervisory and Control System: Red
 3. Mechanical and Electrical Supervisory System: Green and Blue
 4. Telephone System: Green and Yellow

F. Identify Junction, Pull, and Connection Boxes: Code-required caution sign for boxes shall be pressure-sensitive, self-adhesive label indicating system voltage in black,
G. Conductor Color Coding: Provide color coding for secondary service, feeder, and branch circuit conductors throughout the project secondary electrical system as follows:

<table>
<thead>
<tr>
<th>208Y/120 Volts</th>
<th>Phase</th>
<th>120/240 Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>A</td>
<td>Black</td>
</tr>
<tr>
<td>Red</td>
<td>B</td>
<td>Red</td>
</tr>
<tr>
<td>Blue</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>Green</td>
<td>Ground</td>
<td>Green</td>
</tr>
</tbody>
</table>

H. Use conductors with color factory-applied the entire length of the conductors except as follows:

1. The following field-applied color-coding methods may be used in lieu of factory-coded wire for sizes larger than No. 10 AWG.
 a. Apply colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply the last two laps of tape with no tension to prevent possible unwinding. Use 1-inch-wide tape in colors as specified. Do not obliterate cable identification markings by taping. Tape locations may be adjusted slightly to prevent such obliteration.
 b. In lieu of pressure-sensitive tape, colored cable ties may be used for color identification. Apply three ties of specified color to each wire at each terminal or splice point starting 3 inches from the terminal and spaced 3 inches apart. Apply with a special tool or pliers, tighten for snug fit, and cut off excess length.

I. Tag or label conductors as follows:

1. Future Connections: Conductors indicated to be for future connection or connection under another contract with identification indicating source and circuit numbers.
2. Multiple Circuits: Where multiple branch circuits or control wiring or signal conductors are present in the same box or enclosure (except for three-circuit, four-wire home runs), label each conductor or cable. Provide legend indicating source, voltage, circuit number, and phase for branch circuit wiring. Phase and voltage of branch circuit wiring may be indicated by mean of coded color of
conductor insulation. For control and signal wiring, use color coding or wire marking tape at terminations and at intermediate locations where conductors appear in wiring boxes, troughs, and control cabinets. Use consistent letter/number conductor designations throughout on wire marking tapes.

3. Match identification markings with designations used in panelboards shop drawings, Contract Documents, and similar previously established identification schemes for the facility's electrical installations.

J. Apply warning, caution, and instruction signs and stencils as follows:
 1. Install warning, caution, or instruction signs where required by NEC, where indicated, or where reasonably required to assure safe operation and maintenance of electrical systems and of the items to which they connect. Install engraved plastic- laminated instruction signs with approved legend where instructions or explanations are needed for system or equipment operation. Install butyrate signs with metal backing for outdoor items.

K. Install equipment identification as follows:
 1. Apply equipment identification labels of engraved plastic- laminate on each major unit of electrical equipment in building, including central or master unit of each electrical system. This includes alarm systems, unless unit is specified with its own self-explanatory identification. Except as otherwise indicated, provide single line of text, with 1/2-inch-high lettering on 1-1/2-inch-high label (2-inch-high where two lines are required), white lettering in black field. Text shall match terminology and numbering of the Contract Documents and shop drawings. Apply labels for each unit of the following categories of electrical equipment.
 a. Switchboards, panelboards, electrical cabinets, and enclosures.
 b. Access doors and panels for concealed electrical items.
 c. Motor starters.
 d. Contactors.
 e. Control devices.
 f. Transformers.
 g. Fire alarm control panel.
 h. Security monitoring master station or control panel.
 i. Building Access System master station.

L. Apply designation labels of engraved plastic laminate for disconnect switches, breakers, pushbuttons, pilot lights, motor control centers, and similar items for power distribution and control components above, except panelboards and alarm/signal components, where labeling is specified elsewhere. For panelboards,
provide framed, typed circuit schedules with explicit description and identification of items controlled by each individual breaker.

M. Install labels at locations indicated and at locations for best convenience of viewing without interference with operation and maintenance of equipment.

END OF SECTION 260553
26 24 16 – PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions apply to this Section.

B. Requirements specified in other Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes lighting and power panelboards and associated auxiliary equipment rated 600 V or less.

B. Related Sections: The following Division 26 Sections contain requirements that relate to this Section:
 1. "Overcurrent Protective Devices" for circuit breakers, fusible switches, fuses, and other devices used in panelboards

1.3 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.

B. Product data for each type panelboard, accessory item, and component specified.

C. Shop drawings from manufacturers of panelboards including dimensioned plans, sections, and elevations. Show tabulations of installed devices, major features, and voltage rating. Include the following:
 1. Enclosure type with details for types other than NEMA Type 1.
 2. Bus configuration and current ratings.
 4. Features, characteristics, ratings, and factory settings of individual protective devices and auxiliary components.

D. Wiring diagrams detailing schematic diagram including control wiring, and differentiating between manufacturer installed and field installed wiring.
E. Qualification data for field testing organization certificates, signed by the Contractor, certifying that the organization complies with the requirements specified in Quality Assurance below. Include list of completed projects with project names, addresses, and names of Architect and Owner plus basic organization qualifications data.

F. Report of field tests and observations certified by the testing organization.

G. Panel schedules for installation in panelboards. Submit final versions after load balancing.

H. Maintenance data for panelboard components, for inclusion in Operating and Maintenance Manual specified in Division 1 and in Division 16 Section "Basic Electrical Requirements." Include instructions for testing circuit breakers.

1.4 QUALITY ASSURANCE

A. Listing and Labeling: Provide products specified in this Section that are listed and labeled.
 1. The terms "listed" and "labeled" shall be defined as they are in the National Electrical Code, Article 100.
 2. Listing and Labeling Agency Qualifications: A "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.7.

B. Field Testing Organization Qualifications: To qualify for acceptance, the independent testing organization must demonstrate, based on evaluation of organization submitted criteria conforming to ASTM E 699, that it has the experience and capability to conduct satisfactorily the testing indicated.

C. Electrical Component Standard: Components and installation shall comply with NFPA 70, "National Electrical Code."

D. NEMA Standard: Comply with NEMA PB1, "Panelboards."

E. UL Standards: Comply with UL 61, "Panelboards," and UL 50, "Cabinets and Boxes."

1.5 DEFINITIONS

A. Overcurrent Protective Device (OCPD): A device operative on excessive current that causes and maintains the interruption of power in the circuit it protects.

1.6 EXTRA MATERIALS
A. Keys: Furnish six spares of each type for panelboard cabinet locks.

B. Touch up Paint for surface mounted panelboards: One half pint container.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the work include the following:

1. Eaton Corp - Cutler Hammer
2. General Electric Company.
4. Schneider Electric - Square D

2.2 PANELBOARDS, GENERAL REQUIREMENTS

A. Overcurrent Protective Devices (OCPDs): Provide type, rating, and features as indicated. Comply with Division 16 Section "Overcurrent Protective Devices," with OCPDs adapted to panelboard installation. Tandem circuit breakers shall not be used. Multipole breakers shall have common trip.

B. Enclosures: Cabinets, flush or surface mounted as indicted. NEMA Type 1 enclosure, except where the following enclosure requirements are indicated.

1. NEMA 3R: Raintight.

C. Front: Hinged front covers.

D. Directory Frame: Metal, mounted inside each panel door.

E. Bus: Hard drawn copper of 98 percent conductivity.

F. Main and Neutral Lugs: Compression type.

G. Equipment Ground Bus: Adequate for feeder and branch circuit equipment ground conductors. Bonded to box.

H. Service Equipment Approval: Listed for use as service equipment for panelboards having main service disconnect.
I. Provision for Future Devices: Equip with mounting brackets, bus connections, and necessary appurtenances, for the OCPD ampere ratings indicated for future installation of devices.

J. Special Features: Provide the following features for panelboards as indicated.
 1. Isolated Equipment Ground Bus: Adequate for branch circuit equipment ground conductors; insulated from box.
 2. Hinged Front Cover: Entire front trim hinged to box with standard door within hinged trim cover.
 3. Split Bus: Vertical bus of indicated panels divided into two vertical sections with connections as indicated.
 4. Skirt For Surface Mounted Panels: Same gage and finish as panel front with flanges for attachment to panel, wall, and floor.
 5. Extra Gutter Space: Dimensions and arrangement as indicated.
 6. Gutter Barrier: Arranged to isolate section of gutter as indicated.
 7. Column Type Panelboard Configuration: Narrow cabinet extended as wireway to overhead junction box equipped with ground and neutral terminal buses.
 8. Subfeed: OCPD or lug provision as indicated.

2.3 LIGHTING AND APPLIANCE BRANCH CIRCUIT PANELBOARDS

A. Branch OCPDs: Bolt on circuit breakers, replaceable without disturbing adjacent units.

B. Double Width Panels: Where more than 42 poles are indicated or where otherwise indicated, provide two panelboards under single front.

C. Doors: In panel front, with concealed hinges. Secure with flush catch and tumbler lock, all keyed alike.

2.4 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items as required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: Arranged to permit testing of functions of solid state trip devices without removal from panelboard.

2.6 IDENTIFICATION

A. Panelboard Nameplates: Engraved laminated plastic or metal nameplate for each panelboard mounted with epoxy or industrial cement or industrial adhesive.

19MIL22301 BOILER AND WATER HEATER REPLACEMENT
NL 13-001 NEW LONDON ARMORY
JANUARY 9, 2019 NEW LONDON, CT
PART 3 – EXECUTION

3.1 INSTALLATION

A. General: Install panelboards and accessory items in accordance with NEMA PB 1.1, "General Instructions for Proper Installation, Operation and Maintenance of Panelboards Rated 600 Volts or Less" and manufacturers' written installation instructions.

B. Mounting Heights: Top of trim 6' 2" above finished floor, except as indicated, or required to fit existing wall cavity.

C. Mounting: Plumb and rigid without distortion of box. Mount flush panels uniformly flush with wall finish.

D. Circuit Directory: Typed and reflective of final circuit changes required to balance panel loads. Obtain approval before installing.

E. Install filler plates in unused spaces.

F. Wiring in Panel Gutters: Train conductors neatly in groups, bundle, and wrap with wire ties after completion of load balancing.

3.2 IDENTIFICATION

A. Identify field installed wiring and components and provide warning signs in accordance with Division 16 Section "Electrical Identification."

3.3 GROUNDING

A. Connections: Make equipment grounding connections for panelboards as indicated.

B. Provide ground continuity to main electrical ground bus indicated.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals, including grounding connections, in accordance with manufacturer's published torque tightening values. Where manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
3.5 FIELD QUALITY CONTROL

A. Independent Testing Organization: Arrange and pay for the services of an independent electrical testing organization (with minimum 5 years experience) to perform tests on low voltage power panelboards and accessories.

B. Pretesting: Upon completing installation of the system, perform the following preparations for independent tests:
1. Make insulation resistance tests of panelboard buses, components, and connecting supply, feeder, and control circuits.
2. Make continuity tests of circuits.
3. Provide set of Contract Documents to test organization. Include full updating on final system configuration and parameters where they supplement or differ from those indicated in original Contract Documents.

C. Quality Control Program: Conform to the following:
1. Procedures: Make field tests and inspections and prepare panelboard for satisfactory operation in accordance with manufacturer's recommendations and these specifications.
2. Schedule tests with at least one week in advance notification.
4. Labeling: Upon satisfactory completion of tests and related effort, apply a label to tested components indicating results of tests and inspections, responsible organization and person, and date.
5. Protective Device Ratings and Settings: Verify indicated ratings and settings to be appropriate for final system configuration and parameters. Where discrepancies are found, recommend final protective device ratings and settings. Use accepted ratings or settings to make the final system adjustments.

D. Visual and Mechanical Inspection: Include the following inspections and related work:
1. Inspect for defects and physical damage, labeling, and nameplate compliance with requirements of up to date drawings and panelboard schedules.
2. Exercise and perform of operational tests of all mechanical components and other operable devices in accordance with manufacturer's instruction manual.
3. Check panelboard mounting, area clearances, and alignment and fit of components.
4. Check tightness of bolted electrical connections with calibrated torque wrench. Refer to manufacturer's instructions for proper torque values.
5. Perform visual and mechanical inspection and related work for overcurrent protective devices as specified in Division 16 Section "Overcurrent Protective Devices."

E. Electrical tests: Include the following items performed in accordance with manufacturer's instruction:
 1. Insulation resistance test of buses and portions of control wiring that disconnected from solid state devices. Insulation resistance less than 100 megohms is not acceptable.
 2. Ground resistance test on system and equipment ground connections.
 3. Test main and subfeed overcurrent protective devices in accordance with Section "Overcurrent Protective Devices."

F. Retest: Correct deficiencies identified by tests and observations and provide retesting of panelboards by testing organization. Verify by the system tests that the total assembly meets specified requirements.

3.6 CLEANING

A. Upon completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots, dirt, and debris. Touch up scratches and mars of finish to match original finish.

3.7 COMMISSIONING

A. Balancing Loads: After Substantial Completion, but not more than two months after Final Acceptance, conduct load balancing measurements and circuit changes as follows:
 1. Perform measurements during period of normal working load as advised by the Owner.
 2. Perform load balancing circuit changes outside the normal occupancy/working schedule of the facility. Make special arrangements with Owner to avoid disrupting critical 24 hour services such as FAX machines and on line data processing, computing, transmitting, and receiving equipment.
 3. Recheck loads after circuit changes during normal load period. Record all load readings before and after changes and submit test records.
 4. Tolerance: Difference between phase loads exceeding 20 percent at any one panelboard is not acceptable. Rebalance and recheck as required to meet this minimum requirement.
B. **Infrared Scanning:** After Substantial Completion, but not more than two months after Final Acceptance, perform an infrared scan of each panelboard. Remove fronts to make joints and connections accessible to a portable scanner.

C. **Follow up Infrared Scanning:** Perform one additional follow up infrared scan of each panelboard 11 months after the date of Substantial Completion.

D. **Instrument:** Use an approved infrared scanning device designed to measure temperature or detect significant deviations from normal values. Provide calibration record for device used.

E. **Record of Infrared Scanning:** Prepare a certified report identifying panelboards checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262416
26 28 00 - OVERCURRENT PROTECTIVE DEVICES

PART 1 – GENERAL

1.1 SUMMARY

A. This Section includes overcurrent protective devices (OCPDs) rated 600 V and below and switching devices commonly used with them.

B. Panelboards: Application, installation, and other related requirements for overcurrent protective device installations in distribution equipment are specified in other Division 26 sections.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include the following:

1. Cartridge Fuses:
 a. Bussmann
 b. Ferraz Shawmut
 c. Littelfuse Inc.

2. Fusible Switches:
 a. Allen-Bradley Co.
 c. Eaton Corp. – Cutler Hammer
 d. General Electric Co.
 e. Siemens Energy & Automation, Inc.
 f. Schneider Electric - Square D

3. Molded-Case Circuit Breakers:
 a. Eaton Corp. – Cutler Hammer.
 b. General Electric Co.
 c. Siemens Energy & Automation, Inc.
 d. Schneider Electric - Square D

2.2 OVERCURRENT PROTECTIVE DEVICES (OCPDs), GENERAL
A. General: Provide OCPDs in indicated types, as integral components of panelboards and also as individually enclosed and mounted single units.

B. General: Provide OCPDs in indicated types, as integral components of panelboards, switchboards, and motor control centers; and also as individually enclosed and mounted single units.

C. Enclosures: NEMA 250 "Enclosures for Electrical Equipment (1,000 Volts Maximum)."

2.3 CARTRIDGE FUSES

A. General: NEMA Standard FU1, "Low-Voltage Cartridge Fuses." Unless indicated otherwise, provide nonrenewable cartridge fuses of indicated types, classes, and current ratings that have voltage ratings consistent with the circuits on which used.

B. Class J Fuses: UL 198C, "High-Interrupting Capacity Fuses, Current-Limiting Type."

C. Class L Fuses: UL 198C, "High-Interrupting Capacity Fuses, Current-Limiting Type."

D. Class RK1 and RK5 Dual Element Time-Delay Fuses: UL 198E, "Class R Fuses."

E. Class RK1 Fast-Acting Fuses: UL 198E, "Class R Fuses."

2.4 FUSIBLE SWITCHES

A. General: UL 98 "Enclosed and Dead Front Switches" and NEMA KS 1 "Enclosed Switches," quick-make, quick-break heavy-duty units.

B. Rating: Load-breaking capacity in excess of the normal horsepower rating for the switch.

C. Withstand Capability: In excess of the let-through current permitted by its fuse when subject to faults up to 100,000 RMS symmetrical amperes.

D. Operation: By means of external handle.

E. Interlock: Prevents access to switch interior except when in "off" position.

F. Fuse Clips: Rejection type.

G. Padlocking Provisions: For 2 padlocks, whether open or closed.
H. Enclosure for Independent Mounting: NEMA Type 1 enclosure except as otherwise indicated or required to suit environment where located.

2.5 MOLDED-CASE CIRCUIT BREAKERS (15A TO 350A RATING ONLY)

A. General: UL 489, "Molded Case Circuit Breakers and Circuit Breaker Enclosures," and NEMA AB 1, "Molded Case Circuit Breakers."

B. Construction: Bolt-in type, except breakers 225-ampere frame size and larger may be plug-in type if held in place by positive locking device requiring mechanical release for removal.

C. Construction: Bolt-in type, except breakers in load-center-type panelboards and breakers 225-ampere frame size and larger may be plug-in type if held in place by positive locking device requiring mechanical release for removal.

D. Characteristics: Indicated frame size, trip rating, number of poles, and a short-circuit interrupting capacity rating of 10,000 amperes symmetrical, unless a greater rating is indicated.

E. Tripping Device: Quick-make, quick-break toggle mechanism with inverse-time delay and instantaneous overcurrent trip protection for each pole.

F. Enclosure for Panelboard Mounting: Suitable for panel mounting in switchboard or panelboards where indicated.

G. Enclosure for Independent Mounting: NEMA Type 1 enclosure, except as otherwise indicated or required to suit environment where located.

2.6 ELECTROINC TRIP INSULATED CASE CIRCUIT BREAKERS (400A AND LARGER RATING)

A. General: UL 489, "Molded Case Circuit Breakers, Molded Case Switches and Circuit Breaker Enclosures,".

B. Construction: Bolt in type. May be plug in type if held in place by positive locking device requiring mechanical release for removal.

C. Characteristics: Indicated frame size, trip rating, number of poles, and a short circuit interrupting capacity rating of 10,000 amperes symmetrical, unless a greater rating is indicated.
D. Tripping Device: Electronic with adjustable instantaneous trip settings. Long-time and short-time pickup, long-time and short-time delay adjustments, ground fault pickup and delay adjustments.

E. Enclosure for Panelboard Mounting: Suitable for panel mounting in switchboard or panelboards where indicated.

F. Enclosure for Independent Mounting: NEMA Type 1 enclosure, except as otherwise indicated or required to suit environment where located.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Independently Mounted OCPDs: Locate as indicated and install in accordance with manufacturer's written installation instructions.

B. OCPDs in distribution equipment shall be factory installed.

3.2 IDENTIFICATION

A. Identify components in accordance with Division 16 Section "Electrical Identification."

3.3 CONTROL WIRING INSTALLATION

A. Install wiring between OCPDs and control/indication devices as specified in Division 16 Section "Wires and Cables" for hard wired connections.

3.4 CONNECTIONS

A. Check connectors, terminals, bus joints, and mountings for tightness. Tighten field-connected connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL 486A and UL 486B.

3.5 GROUNDING

A. Provide equipment grounding connections for individually mounted OCPD units as indicated and as required by NEC. Tighten connectors to comply with tightening torques specified in UL Standard 486A to assure permanent and effective grounding.
3.6 FIELD QUALITY CONTROL

A. Independent Testing Organization: Arrange and pay for the services of an independent electrical testing organization with a minimum of five (5) years experience to perform tests and observations on OCPDs.

B. Reports: Prepare written reports certified by testing organization on tests and observations. Report defective materials and workmanship and unsatisfactory test results. Include complete records of repairs and adjustments made.

C. Labeling: Upon satisfactory completion of tests and related effort, apply a label to tested components indicating test results, date, and responsible organization and person.

D. Schedule visual and mechanical inspections and electrical tests with at least one week's advance notification.

E. Pretesting: Upon completing installation of the system, perform the following preparations for independent tests:
1. Make insulation resistance tests of OCPD buses, components, and connecting supply, feeder, and control circuits.
2. Make continuity tests of circuits.
3. Provide set of Contract Documents to test personnel. Include full updating on final system configuration and parameters where they supplement or differ from those indicated in original Contract Documents.
4. Provide manufacturer's instructions for installation and testing of OCPDs to test personnel.

F. Visual and mechanical inspection: Include the following inspections and related work.
1. Overcurrent-Protective-Device Ratings and Settings: Verify indicated ratings and settings to be appropriate for final system arrangement and parameters. Where discrepancies are found, test organization shall recommend final protective device ratings and settings. Use accepted revised ratings or settings to make the final system adjustments.
2. Inspect for defects and physical damage, NRTL labeling, and nameplate compliance with current single line diagram.
3. Exercise and perform operational tests of all mechanical components and other operable devices in accordance with manufacturer's instruction manual.
4. Check tightness of electrical connections of OCPDs with calibrated torque wrench. Refer to manufacturer's instructions for proper torque values.
5. Clean OCPDs using manufacturer's approved methods and materials.
6. Verify installation of proper fuse types and ratings in fusible OCPDs.

G. Electrical Tests: Include the following items performed in accordance with manufacturer's instructions:
1. Insulation resistance test of OCPD conducting parts. Insulation resistance less than 100 megohms is not acceptable.
2. Contact resistance test or measurement of millivolt drop across contacts of drawout circuit breakers and fused power circuit devices at rated current. Compare contact resistance or millivolt drop values of adjacent poles and of similar breakers. Deviations of more than 50 percent are not acceptable.
3. Insulation resistance test of fused power circuit devices and insulated-case and molded-case circuit breakers over 600-ampere frame size at 1000 V d.c. for one minute from pole to pole and from each pole to ground with breaker closed and across open contacts of each phase. Insulation resistance less than 100 megohms is not acceptable.
4. Use primary current injection to check performance characteristics of trip units of molded-case breakers over 600-ampere frame size. Trip characteristics not falling within manufacturer's published time-current characteristic tolerance bands when adjusted to approved parameters are not acceptable. Perform the following tests:
 a. Determine minimum pickup current acceptable per manufacturer's instructions.
 b. Determine long-time delay at 300 percent pickup current.
 c. Determine short-time-pickup current and corresponding delay time.
 d. Determine ground-fault current pickup and corresponding delay time.
 e. Determine instantaneous pickup current value.
5. Make adjustments for final settings of adjustable-trip devices.
6. Activate auxiliary protective devices such as ground fault or undervoltage relays, to verify operation of shunt-trip devices.
7. Check operation of electrically operated OCPDs in accordance with manufacturer's instructions.

H. Retest: Correct deficiencies identified by tests and observations and provide retesting of OCPDs by testing organization. Verify by the system tests that specified requirements are met.

3.7 CLEANING
A. Upon completion of installation, inspect OCPDs. Remove paint splatters and other spots, dirt, and debris. Touch up scratches and mars of finish to match original finish.

3.8 DEMONSTRATION

A. Training: Arrange and pay for the services of factory-authorized service representatives to demonstrate OCPDs and train Owner's maintenance personnel.

B. Conduct a minimum of one half day of training in operation and maintenance as specified under "Instructions to Owner Employees" in the "Project Closeout" Section of these specifications. Include both classroom training and hands-on equipment operation and maintenance procedures.

C. Schedule training with at least seven days' advance notification.

3.9 COMMISSIONING

A. Infrared Scanning: After Substantial Completion, but not more than 2 months after Final Acceptance, perform an infrared scan of OCPDs including their line and load connections, fuses, and fuse clips. Also scan OCPD contact structures where accessible to a portable scanner. Include individual OCPDs and those installed in switchboards, panelboards, and motor control centers.

B. Follow-up Infrared Scanning: Perform two additional follow-up infrared scans of the same devices: one four months after Substantial Completion, and one 11 months after Substantial Completion.

C. Instrument: Use an infrared scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.

D. Record of Infrared Scanning: Prepare a certified report identifying all OCPDs checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and rescanning observations after remedial action.

END OF SECTION 262800
PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions apply to this Section.

B. Requirements specified in other Division 26 Sections apply to this section.

1.2 SUMMARY

A. This Section includes circuit and motor disconnects.

1.3 SUBMITTALS

A. Product data for each type of product specified.

B. Maintenance data for circuit and motor disconnects, for inclusion in Operation and Maintenance Manual specified in Division 1 and Division 26 Section "Common Work Results for Electrical"

1.4 QUALITY ASSURANCE

A. Electrical Component Standards: Provide components complying with NFPA 70 "National Electrical Code" and which are listed and labeled by UL. Comply with UL Standard 98 and NEMA Standard KS 1.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the work include the following:

1. Eaton Corp - Cutler Hammer
2. General Electric Company.
4. Schneider Electric - Square D
2.2 CIRCUIT AND MOTOR DISCONNECT SWITCHES

A. General: Provide circuit and motor disconnect switches in types, sizes, duties, features ratings, and enclosures as indicated. Provide NEMA 1 enclosure except for outdoor switches, and other indicated locations provide NEMA 3R enclosures with raintight hubs. For motor and motor starter disconnects, provide units with horsepower ratings suitable to the loads.

B. Fusible Switches: Heavy duty switches, with fuses of classes and current ratings indicated. Where current limiting fuses are indicated, provide switches with non-interchangeable feature suitable only for current limiting type fuses.

C. Non-fusible Disconnects: Heavy duty switches of classes and current ratings as indicated.

D. Double-Throw Switches: Heavy duty switches of classes and current ratings as indicated.

E. Provide weatherproof, NEMA Type 3R rated enclosures at exterior locations.

2.3 ACCESSORIES

A. Electrical Interlocks: Provide number and arrangement of interlock contacts in switches as indicated.

B. Captive Fuse Pullers: Provide built-in fuse pullers arranged to facilitate fuse removal.

PART 3 – EXECUTION

3.1 INSTALLATION OF CIRCUITS AND MOTOR DISCONNECTS

A. General: Provide circuit and motor disconnect switches as indicated and where required by the above Code. Comply with switch manufacturers' printed installation instructions.

3.2 FIELD QUALITY CONTROL

A. Testing: Subsequent to completion of installation of electrical disconnect switches, energize circuits and demonstrate capability and compliance with requirements. Except as otherwise indicated, do not test switches by operating them under load.
However, demonstrate switch operation through six opening/closing cycles with circuit unloaded. Open each switch enclosure for inspection of interior, mechanical and electrical connections, fuse installation, and for verification of type and rating of fuses installed. Correct deficiencies then retest to demonstrate compliance. Remove and replace defective units with new units and retest.

END OF SECTION 262816