DEMOLITION & RECONSTRUCTION

INDIAN NECK FIREHOUSE
6-10 LINDEN AVENUE
BRANFORD, CT 06405

S/P+A PROJECT NO. 17.015

DATE: November 19, 2018

The following changes to the Drawings and Project Specifications shall become a part of the Drawings and Project Specifications; superseding previously issued Drawings and Project Specifications to the extent modified by Addendum No. 1.

General Information:

- The deadline for RFIs is Wednesday, November 28, 2018.
- See attached RFIs. (4)
- The prebid sign-in sheet is attached for reference. (1)
- This project is a lump sum, fixed fee bid.

New Specifications:

- The following sections have been added and are attached as part of this addendum
 - 072600 VAPOR RETARDERS (2)
 - 230593 TESTING, ADJUSTING AND BALANCING FOR HVAC (12)

Changes to the Specifications:

- TABLE OF CONTENTS:
 - Page 2, Division 07 – Thermal and Moisture Protection, add the following:
 “Section 072600 Vapor Retarders 2”
 - Page 3, Division 10 – Specialties, Section 104416, delete in its entirety.
 - Page 4, Division 23 – Heating, Ventilating and Air Conditioning, add the following:
 “Section 230593 Testing, Adjusting and Balancing for HVAC 12”

- INVITATION TO BID, third paragraph from bottom, last sentence, revise to read as follows:
 “The classifications GENERAL BUILDING CONSTRUCTION (GROUP B) or CONSTRUCTION MANAGER AT RISK (GROUP B) are required as a minimum.”

- SUPPLEMENTARY INSTRUCTIONS TO BIDDERS, Page 6, Article 9.5, last sentence, revise to read as follows:
“The classifications GENERAL BUILDING CONSTRUCTION (GROUP B) or CONSTRUCTION MANAGER AT RISK (GROUP B) are required as a minimum.”

- SECTION 061600, SHEATHING, Page 3:
 - Article 2.7.A., after “1289” add “Type V, Grade 3”.
 - Article 2.7.A.2., revise “3½ inches” to read “4 inches”.

- SECTION 062013, EXTERIOR FINISH CARPENTRY, Page 3, Article 2.3.D., delete “for Soffit Vents” in its entirety.

- SECTION 104416, FIRE EXTINGUISHERS, delete in its entirety.

Changes to the Drawings:

- DRAWING A551, SECTION DETAILS has been deleted in its entirety. A new DRAWING A551 has been added and is attached as part of this addendum*. Revise construction throughout bid documents to meet that of the details in this reissued drawing.

The bid date remains unchanged by this addendum.

The addendum consists of twenty-one (21) pages of 8½” x 11” text and one (1) 30” x 42” drawing*.

End of Addendum ‘1’
Good morning Mat.
Yes, Construction Manager at Risk (Group B) is acceptable.
Thank you and good luck.

Rebecca Bouchard, CSI, CDT
Specifications Writer

3190 Whitney Avenue Bldg 2 | Hamden, CT 06518 | silverpetrucelli.com | P: 203.230.9007 x202 | F: 203.230.8247
REQUEST FOR INFORMATION

To: David Stein
Date: November 16, 2018

Project: Indian Neck Firehouse
Location: 6-10 Linden Ave. Branford, Ct.

1. Please provide spec Section 230593 "Testing, Adjusting, and Balancing for HVAC" as it is referenced in the spec but does not exist. -Section will be provided in forthcoming addendum.

2. There is a fire extinguisher and corner guard spec but I can’t locate how many are required. Please clarify. -Fire extinguisher spec will be removed in forthcoming addendum. Corner guards to be installed per 102600-5, 3.3.C.

Thank you,
Jon Stockford
Rebecca Bouchard

From: Rebecca Bouchard
Sent: Friday, November 16, 2018 1:39 PM
To: Jdoubleday@pse-ct.com
Subject: RE: Indian Neck Firehouse

Good afternoon Jeremy.
Please see response to your RFI in red below.
Thank you and good luck.

Rebecca Bouchard, CSI, CDT
Specifications Writer

Silver/Petrucelli + Associates
Architects / Engineers / Interior Designers

3190 Whitney Avenue Bldg 2 | Hamden, CT 06518 | silverpetrucelli.com | P: 203.230.9007 x202 | F: 203.230.8247

From: Gary Klare <gklare@silverpetrucelli.com>
Sent: Friday, November 16, 2018 10:14 AM
To: Dave Stein <dstein@silverpetrucelli.com>
Cc: Rebecca Bouchard <rbouchard@silverpetrucelli.com>
Subject: RE: Indian Neck Firehouse

MC Cable is acceptable as long as it’s concealed in walls and above ceilings.

Gary Klare
Electrical Engineer
Silver/Petrucelli + Associates

3190 Whitney Avenue Bldg 7 | Hamden, CT 06518 | silverpetrucelli.com | P: 203.230.9007 x 259 | F: 203.230.8247

From: Jeremy Doubleday <jdoubleday@pse-ct.com>
Sent: Friday, November 16, 2018 9:57:43 AM
To: Dave Stein
Subject: Indian Neck Firehouse

Good morning Mr. Stein,
My name is Jeremy and I’m the electrical estimator for Pro System Experts. I’m currently reviewing the Indian Neck Firehouse project for Bid on the 5 of December and I see that the equipment has to be run in conduit but, will MC be excepted for the lights and outlets or does that also have to be run in conduit?

Jeremy Doubleday - Electrical Estimator
Pro System Experts LLC, DBA Next Generations Alarms
64E Oakland Ave
East Hartford, Ct 06108
Tell: 930-9-033-4
REQUEST FOR INFORMATION

To: David Stein Date: November 19, 2018

Project: Indian Neck Firehouse
Location: 6-10 Linden Ave. Branford, Ct.

1. Do you have the loading requirements for the floor and roof trusses that should be used to calculate the trusses? -Loading requirements are indicated on Drawing S700.
2. Are the trusses required to be fire rated? No.

Thank you,
Jon Stockford
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert L. Howard</td>
<td>News LLC</td>
<td>info@newslc.net</td>
</tr>
<tr>
<td>Don Neagle</td>
<td>L. Brunoli, Inc.</td>
<td>bids@lbrunoli.com</td>
</tr>
<tr>
<td>Spencer Law</td>
<td>McMellon Electric</td>
<td>spencerl@mcmellonelectric.com</td>
</tr>
<tr>
<td>Chris Youmans</td>
<td>Carlin Construction</td>
<td>cyoumans@carlinconstruction.com</td>
</tr>
<tr>
<td>Jeremy Doubleday</td>
<td>Prosysterm Experts</td>
<td>jdoubleday@pse.ct.com</td>
</tr>
<tr>
<td>Dave Stackpole</td>
<td>Rockfall Company</td>
<td>dave@rockfallco.com</td>
</tr>
<tr>
<td>Brett Nemeth</td>
<td>Northeast Building Group</td>
<td>bnemeth@nbg-inc.com</td>
</tr>
<tr>
<td>Roel Legaspi</td>
<td>Nosal Builders</td>
<td>roel@nosalbuilders.com</td>
</tr>
<tr>
<td>Jon Adams</td>
<td>Orlando Annulli & Sons Inc.</td>
<td>jon@annulli.com</td>
</tr>
<tr>
<td>Mark Guelan</td>
<td>Cherry Hill Construction</td>
<td>markg@cherryhillinc.com</td>
</tr>
<tr>
<td>Michael Schettino</td>
<td>Branford Building Supplies</td>
<td>michael.schettino@branfordbuilding.com</td>
</tr>
<tr>
<td>Don Loza</td>
<td>Branford Building Supplies</td>
<td>don.loza@branfordbuilding.com</td>
</tr>
<tr>
<td>Pedro Rosario</td>
<td>Stanley Steemer</td>
<td>pedro.rosario@steemer.com</td>
</tr>
<tr>
<td>Peter Blonski</td>
<td>Standard Demolition Services</td>
<td></td>
</tr>
<tr>
<td>Joanne Anderson</td>
<td>The Total Group</td>
<td>dan@totalinteriorsllc.com</td>
</tr>
<tr>
<td>Rachel Agosto</td>
<td>Bismark Construction</td>
<td>rachel@bismarkconstruction.com</td>
</tr>
<tr>
<td>Jon Stockford</td>
<td>Pioneer Builders</td>
<td>jons@pioneerbuildersct.com</td>
</tr>
<tr>
<td>Dennis Pantani</td>
<td>B. Pantani and Sons</td>
<td>pantanibuilders@yahoo.com</td>
</tr>
<tr>
<td>Mark Seopi</td>
<td>Abcon Abatement</td>
<td>abcon1_96@hotmail.com</td>
</tr>
</tbody>
</table>
SECTION 072600 - VAPOR RETARDERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Polyethylene vapor retarders.
 B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for under-slab vapor retarders.
 2. Section 072100 "Thermal Insulation" for vapor retarders integral with insulation products.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

PART 2 - PRODUCTS

2.1 POLYETHYLENE VAPOR RETARDERS
 A. Polyethylene Vapor Retarders: ASTM D4397, 6-mil-thick sheet, with maximum permeance rating of 0.1 perm.

2.2 ACCESSORIES
 A. Vapor-Retarder Tape: Pressure-sensitive tape of type recommended by vapor-retarder manufacturer for sealing joints and penetrations in vapor retarder.
 B. Adhesive for Vapor Retarders: Product recommended by vapor-retarder manufacturer and has demonstrated capability to bond vapor retarders securely to substrates indicated.
 C. Vapor-Retarder Fasteners: Pancake-head, self-tapping steel drill screws; with fender washers.
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to vapor retarders, including removing projections capable of puncturing vapor retarders.

3.2 INSTALLATION OF VAPOR RETARDERS ON FRAMING

A. Place vapor retarders on side of construction indicated on Drawings.

B. Extend vapor retarders to extremities of areas to protect from vapor transmission. Secure vapor retarders in place with adhesives, vapor retarder fasteners, or other anchorage system as recommended by manufacturer. Extend vapor retarders to cover miscellaneous voids in insulated substrates, including those filled with loose-fiber insulation.

C. Seal vertical joints in vapor retarders over framing by lapping no fewer than two (2) studs and sealing with vapor-retarder tape according to vapor-retarder manufacturer's written instructions. Locate all joints over framing members or other solid substrates.

D. Seal joints caused by pipes, conduits, electrical boxes, and similar items penetrating vapor retarders with vapor-retarder tape to create an airtight seal between penetrating objects and vapor retarders.

E. Repair tears or punctures in vapor retarders immediately before concealment by other work. Cover with vapor-retarder tape or another layer of vapor retarders.

3.3 PROTECTION

A. Protect vapor retarders from damage until concealed by permanent construction.

END OF SECTION 072600
SECTION 230593 – TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable Air Volume systems.

1.3 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.

D. TABB: Testing, Adjusting, and Balancing Bureau.

E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 ACTION SUBMITTAL

A. TAB Report: Documentation of work performed for ASHRAE 90.1 Section 6.7.2.3 - “System Balancing”.

1.5 INFORMATION SUBMITTALS

A. Qualification Data: Within fifteen (15) days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. Certified TAB reports.

E. Instrument calibration reports, to include the following:
1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or NEBB

 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or NEBB as a TAB technician.

B. TAB Conference: Meet with Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven (7) days' advance notice of scheduled meeting time and location.

 1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:

 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

F. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

G. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.7 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
1.8 COORDINATION

A. Notice: Provide seven (7) days' advance notice for each test. Include scheduled test dates and times.

B. A factory-authorized service representative and the BAS Contractor shall be present when balancing and testing major equipment.

C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine the Contract Documents to become familiar with Project staging plan and to become familiar with the TAB requirements at the end of each construction stage.

C. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

D. Examine the approved submittals for HVAC systems and equipment.

E. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

F. Examine equipment performance data including fan curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.
I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

K. Examine operating safety interlocks and controls on HVAC equipment.

L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 SYSTEMS INSPECTION REPORT

A. Inspect equipment and installation for conformance with design.

B. The inspection and report are to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.

C. Reports: Follow check list format developed by AABC, NEBB, TABB, or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.3 TESTING, ADJUSTING AND BALANCING

A. At the completion of the project:
 1. Perform TAB for the whole system.
 2. Retest, readjust and rebalance all system previously tested and balanced at each stage.
 3. Generate complete final report.

3.4 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
e. Fans are operating, free of vibration, and rotating in correct direction.
f. Variable-frequency controllers' startup is complete and safeties are verified.
g. Automatic temperature-control systems are operational.
h. Ceilings are installed.
i. Windows and doors are installed.
j. Suitable access to balancing devices and equipment is provided.

3.5 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 233300 "HVAC Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.6 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.
I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.7 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Obtain approval from Commissioning Authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor
amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.
 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.
 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 2. Re-measure and confirm that total airflow is within design.
 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 4. Mark all final settings.
 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 6. Measure and record all operating data.
 7. Record final fan-performance data.

3.8 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.9 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.

B. Verify that proper test methods are used and that leakage rates are within specified tolerances.

C. Report deficiencies observed.

3.10 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:
 1. Verify temperature control system is operating within the design limitations.
 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.11 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Air Handling Unit and All Other Fans: Zero percent to plus ten percent (0-10%).
2. Minimum Outside Air: Zero percent to plus ten percent (0-10%).
3. Individual Room Air Outlets and Inlets: Minus five percent to plus ten percent (-5-10%).

3.12 PROGRESS REPORTING

A. Initial Construction-Stage Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.13 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and product data.
C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:

 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:

 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Damper settings.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.

E. Gas Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:

 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
e. Manufacturer's serial number.
f. Fuel type in input data.
g. Output capacity in Btu/h.
h. Ignition type.
i. Burner-control types.
j. Motor horsepower and rpm.
k. Motor volts, phase, and hertz.
l. Motor full-load amperage and service factor.
m. Sheave make, size in inches, and bore.
n. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Entering-air temperature in deg F (deg C).
 c. Leaving-air temperature in deg F (deg C).
 d. Air temperature differential in deg F (deg C).
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F (deg C).
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h.

F. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.
3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F (deg C).
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated air flow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual air flow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

3.14 INSPECTIONS

A. Initial Inspection:

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
2. Check the following for each system:
 a. Measure airflow of at least ten percent (10%) of air outlets.
 b. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 c. Verify that balancing devices are marked with final balance position.
 d. Note deviations from the Contract Documents in the final report.

B. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

C. Prepare test and inspection reports.
3.15 ADDITIONAL TESTS

A. Within ninety (90) days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

3.16 FOLLOW-UP SERVICES

A. Allow for three (3) scheduled visits during the 6-month period following substantial completion to adjust system parameters based on Owner's observations.

END OF SECTION 230593