

Page 1 of 5

Addendum No.: 6

Date Of Addendum: 09/21/2017

CT DAS • Construction Services • Process Management and Procurement Unit

NEW KAISER ANNEX AND KAISER HALL RENOVATION CENTRAL CONNECTICUT STATE UNIVERSITY NEW BRITIAN, CT BI – RC – 393

Original Bid Due Date / Time:	09/27/2017	1:00 PM

Addendum #5 dated September 20, 2017, Addendum #4 dated September 1, 2017, Addendum #3 dated August 30, 2017, Addendum #2 dated August 17, Previous Addendums: 2017, Addendum #1 dated August 10, 2017

TO: Prospective Bid Proposers:

This Addendum forms part of the "Contract Documents" and modifies or clarifies the original "Contract Documents" for this Project dated 04/17/2017. Prospective Bid Proposers **shall** acknowledge receipt of the total number the Addenda issued for this Project on the space provided on Section 00 41 00 Bid Proposal Form.

Failure to acknowledge receipt of the total number the Addenda issued for this Project on the space provided on Section 00 41 00 Bid Proposal Form <u>shall</u> subject Bid Proposers to disqualification.

The following clarifications are applicable to drawings and specifications for the project referenced above.

Item 01:

Question:

It appears that Appendices A through F (spec 00 31 19.26 Existing Conditions Survey) were not included in the revised specifications when addendum 4 was published. Can you please re-issue these?

Answer: Please find the Available Information attached to this addendum.

Item 02:

Question:

Spec 051200 Para 1.8B: The specifications for "Structural Steel Framing" calls for the Fabricator to be AISC Certified. Many of the local steel fabricators are not AISC Certified. May the AISC Certification be waived as long as the steel fabricator adheres to AISC standards?

Answer: AISC Certification is required for this project.

Item 03:

Question:

Detail 17/A8-41 -please confirm this shelving is intended at Closet 2-L5.3 only. If intended at other locations, please provide.

Answer: Confirmed.

Item 04:

Question:

Spec 064020 - we do not find any cabinet elevations that show locks. Please confirm door and drawer locks are not intended.

Page 2 of 5

Addendum No.: 6

Date Of Addendum: 09/21/2017

Answer: Project does not contain door and drawer locks. Disregard Specification section 064020 paragraph 2.3H, and Paragraph 2.3I.

Item 05:

Question:

Drawing A0-13A indicates a change in roof structure elevation at column line D & H Detail 9/S409 confirms this 4" difference. We do not find information on the roof plan if the 4" difference is to be a step in the roof or if the roof insulation has to be built up 4" additional at the areas of the lower metal deck (generally from column lines 1 to 3 at both A to D and H to L). Please clarify the intent of how the structural step is to be addressed in roof.

Answer: At transitions in deck type, Roofing assemblies are to be stepped to maintain minimum R-Value. Steps in Roofing are to transition with sloped insulation to maintain positive drainage.

Item 06:

Question:

Drawing A0-02 Material Keynote 0753M calls for 72 mil white EPDM. Spec 075300 Para 2.IA calls for 90 mil white EPDM. Please clarify thickness.

Answer: White EPDM is to be 90 mil. Change description of Keynote 0753M, change the word "72 mil" to "90 mil".

Item 07:

Question:

Drawing A0-02 Material Keynote 0753R calls for min R30 insulation. Drawing A0-05 Assembles ERA1, ERA2 & ERA3 all call for R34 min insulation. Please clarify min R-value.

Answer: The minimum roofing assembly R-value is to be, R34. In the description of Keynote 0753R, change the word "R30" to R34"

Item 08:

Question:

Drawing A0-05 Assembles ERA 1, ERA2 & ERA3 all call for R34 min insulation. Please confirm the 6" base layer is intended at the tapered insulation areas also, meaning the tapered insulation R value is NOT included in the assembly min R value.

Answer: Tapered insulation is not to be included when calculating the minimum R-Value for for ERA system.

Item 09:

Question:

Spec 072700, 1.5A.1 states that the owner to engage the testing agency for the mock-up. However in paragraph 3. 7 A states we are to engage the testing agency for the complete exterior wall install. Can the Owner's testing agency include this work too and to be all paid for by the owner?

Answer:

As stated in Specification section 072700 3.7 A, the contractor shall engage a qualified testing agency to perform tests and inspections and prepare test reports.

Item 10:

Question:

Drawing A1-04A Keynote legend 0753W states walk pads to be 39" wide. This is noted at a large rectangular area that measures approx. 12'x 150' shown with diagonal hatching. The 39" wide walk paths to, and around, the rooftop equipment are shown with the same diagonal hatching. Please clarify if all the diagonal hatching, including the large rectangular area that measures approx. 12'x 150', is intended to be walk pads.

Page 3 of 5

Addendum No.: 6

Date Of Addendum: 09/21/2017

Answer: Walking pads are required within the boundary of the diagonal hatch annotated as 0753W on A1-04A, Provide a minimum walking pad width of 39".

Item 11:

Question:

Drawing A5-4 Door Elevations FG, FGFG, NN: Please provide sizes and glass types for these.

Answer: Coordinate Glazing dimensions with the door schedule on A5-41 and the products specified within Specification Section 084110. Refer to Drawing Sheets A5-01,A5-02, and A5-03 for glazing types.

Item 12:

Question:

Spec 081113, 1.2A.4 mentions factory finishing yet paragraph 2.8A state's prime finish. Since factory finishing is extremely expensive and many manufacturers will not do, we highly recommend factory prime coat finishing.(field touch-up this is always an issue too). Please confirm if doors can be field painted.

Answer: Delete Specification Section 081113 Paragraph 1.2A.4.

Item 13:

Question:

Spec 081113, 2.7C.1 mentions factory installed glazing. This is not normally done at hollow metal doors. Also 088000, 1.2A. I a specifies it here. Please confirm field glazing is acceptable.

Answer: Factory installed glazing units where indicated in the drawings.

Item 14:

Question:

Drawing A4-21: Many of the "Attachment details" do not appear correct. The only attachment appears to be the 0727T Transition strip that is attached to the "filler". I assume this is strictly for air & water protection and does not represent attachment. Filler piece will not support attachment. Can you provide details that show proper attachment methods desired for this installation?

Answer: As per Specification Section 084110 and 084410, design of attachment is a delegated design.

Item 15:

Question:

Details 8 & 9/S401 note min. 16 gage CFMF studs to create the outriggers. Details 12-15/A4-12 note min. 14 gage CFMF studs to create the outriggers.

- A. Please clarify min gage.
- B. Note 1 says that the final design of CFMF delegated design engineer. Please clarity of the Engineer of Record is requiring a min gage and then have the CFMF designed by the CFMF delegated design engineer beyond the min, or is the min gage to be by the CFMF delegated design engineer.

Answer: As per details 8&9/S4-01, minimum gage at CFMF outriggers is to be 16 gage.

Item 16:

Question:

Drawing A0-01 Elevation A: Proximity sign shows it 4" away from door edge - comes 34" wide by 10" high.

Answer: In Specification Section 084110 paragraph 2.1.A.3 Provide tall door bottom, minimum 12 inches. Floor Proximity Exit Sign to be custom size 6 inches tall by 24 inches wide. Mounting height to be 6 inches above finish floor.

Item 17:

CT DAS - 6030 (Rev. 12.23.16)

Page 4 of 5

Addendum No.: 6

Date Of Addendum: 09/21/2017

Question:

Drawing A7-0I Detail 4 does not show a diaper changing station in the Men's and Women's Rooms. Do you require them per 102800, 2.4B?

Answer: Diaper changing station are not required except where indicated on 4/07-01.

Item 18:

Question:

Spec 116620 does not include storage carts for the VB or tennis. Please confirm these are not are intended. If they are intended, please provide spec and intended count.

Answer: Storage Carts for Volleyball and Tennis are not required for this project.

Item 19:

Question:

Drawing A0-20 Spec 116620 calls out three different types of wall and column padding (I 166P1, I 166P2 & 1166P3). We only find 1166P on the floor plans and elevations. Please confirm ALL the wall and column padding is ONE color on both floors. If not, please provide limits of the intended multiple colors.

Answer: It is the design Intent for all wall and column padding to be of a uniform color.

Item 20:

Question:

Spec 116620 Para 2. 7 is calling for a recessed wall channel to support the dual ballet barre brackets using wing nuts, implying height adjustability. Detail 12/A841 shows the bracket surface mounted over GWB with in wall wood blocking, resulting in fixed heights.

- A. Please clarify the intended installation method.
- B. If the intended method is a recessed wall channel, please provide a product spec for this. The specified suppliers are not aware of a recessed channel product.

Answer: As per Specification Section 116620 Paragraph 2.7 the design intent is for the product's mounting channel to be recessed to allow the outside face of channel to be 3/16 inch proud of outside face of mirror.

Item 21:

Question:

The drawings are not in agreement about the Owner doing plumbing, HVAC and electrical demo. Please confirm the Owner is doing this entire demo, including the plumbing, HvAC and electrical demo and the associated utility connections.

- A. Drawing DI-01 states the Owner will demo the bubble and it's implied the plumbing, HVAC and electrical demo is included in the Owners scope.
- B. Drawing MEPD-01 refers to plumbing, HVAC and electrical demo, implied to be by the GC and not the Owner.
- C. Drawing MEPD-02 Electrical Note 1 refers electrical demo, implied to be by the GC and not the Owner.
- D. Drawing E301 call for electrical demo of the 400A service back to the 1 OE fuse, implied to be by the GC and not the Owner.

Answer:

- A. Refer to Item# 30 of Addendum 4 dated September 07, 2017.
- B. Refer to Answer "A"
- C. Refer to Answer "A"
- D. Owner scope includes Demolition of 400 Amp service panel, and conductors back to utility transformer. GC Bid to include removal of secondary conduit, transformer and primary work shown on drawing E-301.

6030 Bid Addendum

Page 5 of 5

Addendum No.: 6

Date Of Addendum: 09/21/2017

Item 22:

Question: Please provide the location of the Existing AIR SWITCH NS-8A. We need to know the location to get the length for the new cables.

Answer: NS-8A is the existing box adjacent to the south side of the transformer to be removed, refer to drawing Sheet C1-00. For new transformer refer to Drawing Sheet C4-00.

Item 23:

Question:

Drawing TC600 - Please provide cabling spec/requirements for the various tele/data/coax devices.

Answer: Refer to specification Section 271500 - Communications Horizontal Cabling.

Item 24:

Question:

Drawing E301 - Please confirm that the demo and new work for the primary (high voltage) is included in this bid and will NOT be performed by the Power company. This includes demo, conduits, cabling, transformers and connections to the existing power.

Answer: Confirmed, this scope is included in the GC Bid and to be performed by the Electrical Contractor.

Item 25:

Question:

We were provided Spec 281300 for exterior access control. TS drawings show access control for exterior and interior doors. Please clarify who is responsible for interior access control cabling and devices. If this project is to include interior access control, please provide a spec.

Answer: Refer to the attached specification Section 281301 - Interior Access Control Persona

All questions must be in writing (not phone or e-mail) and must be forwarded to the consulting Architect/Engineer (Sasaki Associates, Inc., Fax Number: 617-924-2748) with copies sent to the DAS Project Manager (Peter Simmons, P.E, Fax Number: 959-200-4786) and Construction Manager (The Downes Construction Company, Fax Number: 860-225-3617)

End of Addendum 6

Mellanee Walton, Associate Fiscal Administrative Officer State of Connecticut Department of Administrative Services Construction Services Office of Legal Affairs, Policy & Procurement

APPENDIX A

Appendix A – Geodesign Inc.

Geotechnical Engineering and Preliminary Environmental Characterization Report CCSU Kaiser Hall Addition DAS Project No. BI-RC-393 New Britain, Connecticut Dated March 17,2016 (rev. 3-25-16) 123 pages

GEOTECHNICAL | CONSTRUCTION | ENVIRONMENTAL ENGINEERS and SCIENTISTS

March 17, 2016 (rev. 3-25-16); File No. 0185-49.00

Richard Colavecchio, AIA Sr. Associate Sasaki Associates 64 Pleasant Street Watertown, MA 02472

Via email <u>rcolavecchio@sasaki.com</u>

Re: Geotechnical Engineering and Preliminary Environmental Characterization Report CCSU Kaiser Hall Addition DAS Project No. BI-RC-393 New Britain, Connecticut

Dear Rick:

Geo**Design**, Inc. (Geo**Design**) is pleased to submit our geotechnical engineering and preliminary environmental characterization report for the referenced above project. The project will consist of a new approximately 70,000 square foot recreation center at the Central Connecticut State University (CCSU) campus at Ella Grasso Blvd and Kaiser Drive in New Britain, Connecticut. Refer to Figure 1 (in Appendix 1) for the site location.

PURPOSE AND SCOPE

Geo**Design** completed a subsurface exploration program, a geotechnical engineering evaluation, and preliminary environmental characterization in the area of the proposed building. Our services included characterizing the subsurface conditions within the footprint of the proposed building and related site work, performing geotechnical engineering analyses, and providing geotechnical design and construction recommendations for the project.

Our services were provided in accordance with our April 14, 2015 (revised 5-7-15) proposal and based in part on the March 19, 2015 Request for Geotechnical Engineering Services prepared by BVH Integrated Services for the project.

Our recommendations are based in part on guidance from the 2003 International Building Code (IBC), 2005 Connecticut Supplement, and 2009 and 2013 Connecticut Amendment. Design recommendations are based on Allowable Stress Design Methods.

Elevations (El.) stated in this report are in feet and based on the 2014 Topographic Survey for which was provided to us on January 7, 2016 in electronic format (titled "updated Campus Survey-2014.dwg" by Sasaki).

BACKGROUND

Site Description

The site is bounded Kaiser Drive to the east, and by Ella Grasso Blvd. to the north. Refer to Figures 1 and 2 (in Appendix 1) for the site location and site plan. In general, site topography is essentially flat except at the westerly edge where site grades drop off to a paved road and in the northeast corner where grades rise along with the rising Kaiser Drive. Existing site grades in the area of the proposed building addition range from about El. 151 to 152. To the north of the building the area currently occupied by outdoor tennis courts ranges from about El. 140 to 151.5, and there is a small low-lying area to the northwest of the tennis courts that is as low as about El. 146.3. At the bottom of the stair case which connects the drive to the southwest corner of the existing building, site grades are locally as low as about El. 140.

An air supported structure and six tennis courts presently occupy the site. Related concrete sidewalks surround the existing building. To the south is the existing Kaiser Hall building, and an at-grade connector links Kaiser Hall to the air-supported building. The approximate locations of these existing features are shown on Figure 2.

Proposed Construction

The existing air-supported building and related mechanical equipment will be demolished and a new building with associated site work (site walls, sidewalks, etc.) will be constructed in its place. The proposed building will be two stories, with a small (1,800 s.f.) mechanical room basement, and a third floor penthouse mechanical room of about (5,600 s.f.). It will consist of slab-on-grade structure.

The approximate current proposed footprint of the new building is shown on Figure 2. The building is anticipated to be supported on normal shallow foundations with a slab-on-grade at approximate El. 152, except the basement portion which will be about ten to fourteen feet lower. Aside from excavation needed for the partial basement, and needed to construct the new connector to match existing Kaiser Hall basement levels, little of no grade change will be required in the building area.

PRE-EXISITING TEST BORINGS

Due to the restricted drill rig access to the south of the existing air supported building (in the connector area), we researched available subsurface data at the CCSU facilities archives, and obtained pertinent portions of the as built drawings for the 1963 Kaiser Hall Addition, and the 1989 air-supported structure. These drawings are included in Appendix 3. The first and second sheets show the logs of four test borings (Nos. 13, 14, 15 and 16), and the third sheet shows their plan locations. We have also shown the location of these four borings on our Exploration Locations Plan (Figure 1, Appendix 1).

NEW TEST BORINGS

A Geo**Design** representative observed and logged ten test borings (B-1 through B-8; B-11 and B-12) in the proposed building area. Three other borings (B-9, B-10 and B-10A) were drilled to the north of the proposed building in areas slated for possible storm water infiltration features. These thirteen borings were drilled by General Borings on February 2, 3 and 4, 2016. The boring locations are depicted on Figure 2 (in Appendix 1). Borings were located in the field by taping/pacing from existing site features. The approximate ground surface elevation at each boring location was estimated from the referenced Topographic Survey. The locations of the borings and their elevations should be considered approximate. Boring logs prepared by Geo**Design** are included in Appendix 2.

Borings were drilled to explore subsurface conditions in the area of the proposed building and surrounding areas. Hollow-stem-auger drilling methods were used to advance the borings to depths of approximately 12 to 32 feet below current site grades, corresponding to approximate El. 139.5 to 119.

Representative samples were obtained by split barrel sampling procedures in general accordance with ASTM Specification D-1586. The split-barrel sampling procedure utilizes a standard 2-inch O.D. split-barrel sampler that is driven into the bottom of the boring with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampler the middle 12-inches of a normal 24-inch penetration is recorded as the Standard Penetration Resistance Value (N). The blows (i.e. the "N" values) are indicated on the boring logs at their depth of occurrence and provide an indication of the relative consistency of the material.

Groundwater levels were measured using a weighted tape in the open drill holes or inferred from wet soil samples. In addition, one small diameter PVC observation well was installed in Boring B-9.

SUBSURFACE CONDITIONS

Geology

Published surficial and bedrock geological data (1:1250,000 scale, *Surficial Materials Map of Connecticut, Janet Radway Stone, 1992* and *Bedrock Geological Map of Connecticut, John Rodgers, 1985*) was consulted. The surficial materials at the site are mapped as Sand and gravel overlying sand, or Sand overlying fines. The "Sand and gravel" is described as overlying sand. The "Sand overlying fines is described a sand of variable thickness overlying thinly bedded fines of variable thickness. The underlying bedrock is classified as either reddish-brown silty shale (East Berlin formation) or dark-gray, orange to brown-weathering basalt (Hampden Basalt formation).

General Subsurface Profile

The generalized subsurface profile, as inferred from the subsurface explorations, consists of Topsoil or Fill, overlying Silty Fine Sand or Silty Gravelly Sand, over occasional very loose to loose Sandy Silt, and over a localized thin layer of very stiff Clayey Silt (B-5). None of the borings reached the Bedrock. Inside the air-supported structure, a six-inch thick layer of Asphalt is present just below the ¹/₄-inch thick rubberized surfacing.

The following is a more detailed description of the major subsurface materials encountered based on our observations of the test borings.

Fill

Fill was encountered in most of the borings and was generally located about 1 to 4 feet below the ground surface. At Borings B-1 and B-8 (southwest corner of the air-supported building), the fill (or possible fill) extended to depths of about 7.5 to 8 feet. This stratum typically consisted of loose to medium dense, brown, fine to coarse sand with varying amounts of gravel and silt. Trace amounts of asphalt, organic fibers, and wood were also present in the Fill.

The thickness, character, and consistency of the Fill will vary between exploration locations. Fill is also known to be present as basement wall backfill to a depth of about 15 feet against the north wall of Kaiser Hall (this is shown on the as-built included in Appendix 3).

Silty Fine Sand, Sandy Silt

Silty Fine Sand or Sandy Silt strata were encountered below the Topsoil or Fill in all the borings and generally consisted of a loose to medium dense mixture of red-brown, fine sand with little to some (15 to 35%) amounts of silt. In some samples the silt predominates and the sand content ranges for about 20 to 30%.

Gravelly Sand

Gravelly Sand was encountered below the Silty Fine Sand in Borings B-2, and B-9, both located at the easterly edge of the site. This stratum generally consisted of medium dense, red-brown, fine to medium sand with trace to little (10 to 20%) amounts of silt.

Silt with Clay, and Silt

Thin layers of Silt with Clay or Silt, were encountered in the deepest borings (B-5 and B-10) at depths of about 15 to 17 feet, below the bottom of the Silty Fine Sand. This stratum varies from non-plastic to slightly cohesive and is either loose of relatively stiff.

Groundwater

Where encountered, groundwater was observed at depths of approximately 15 to 17 feet below the ground surface in the test borings which corresponds to approximate Elevations 135 to 138. In many cases the groundwater appeared to be locally "perched" above siltier soils, rather than a true phreatic surface. The well in B-9 indicted no groundwater to the well depth (17 feet deep).

Groundwater levels will vary depending on factors such as temperature, season, precipitation, construction activity, and other conditions, which may be different from those at the time of these measurements.

SOIL TESTING RESULTS

Geo**Design** and its laboratory testing subcontractor (GeoTesting Express) performed eight laboratory gradation tests on representative samples obtained in the borings using ASTM D422. Gradation test results are included in Appendix 4.

These tests confirmed that shallow site soils are granular soils. Tests indicated a Silt content of about 10 to 36% in the Fill; of about 10 to 15% in the upper Silty Sand; and of up to 70 to 77% in the deeper Silt (depth of about 17 feet).

These results generally confirm the visual sample description made in the field during drilling and sampling of this material.

PRELIMINARY ENVIRONMENTAL CHARACTERIZATION

Refer to Appendix 5 for the result of our design phase preliminary soil pre-characterization. In light of the soil analytical results provided and discussed in Appendix 5, it is our opinion that additional testing for PAHs and total and SPLP lead be performed to further characterize shallow site soils, particularly in the area of Boring B-10 which is in the general area that is slated for the infiltration areas.

INFILTRATION TESTING

Refer to Appendix 6 for the result of our soil infiltration investigation.

IMPLICATIONS OF SUBSURFACE EXPLORATIONS

The existing Fill and Topsoil are not suitable for support of normal shallow foundations. It appears the Fill was placed in an uncontrolled fashion and contains constituents that may result

in unacceptable post construction foundation settlements. These materials must be overexcavated and replaced with Structural Fill below foundations.

The slab can either be over-excavated and replaced with Structural Fill or "floated" above the Fill after the Fill has been improved (with partial over-excavation and surface compaction). Floating the slab would leave some buried material in place that may result in post construction slab settlements. This option may require periodic slab resurfacing and repair. Given that there will be significant savings to the project; the owner should consider this alternative to removing all the Fill below the slab.

In the southwest corner of the building and in the connector area, existing Fill extended below normal footing depth (42 inches) and will require excavation to depths of about 8 to 15 feet. In other portions of the building very little over-excavation is anticipated.

GEOTECHNICAL RECOMMENDATIONS

Foundations

Foundation Type and Bearing Strata

We recommend supporting the proposed building on normal shallow spread footings. The footings should bear on undisturbed natural soils or on Structural Fill (hereinafter specified as Compacted Granular Fill, CGF) over these materials.

Topsoil and existing Fill, foundations, and slabs are not considered suitable bearing materials, and must be excavated from the footing areas during site preparation. When CGF is used beneath the footings (e.g. in fill or over-excavated areas), we recommend that it be placed one foot beyond the edge of the footings and at a 1H:1V (horizontal to vertical) slope away and down from the footings.

Based on the proposed first floor elevation (approximate El. 152) and code specified minimum frost protection depth (42 inches), the perimeter wall footings are expected to be close to the level of natural soils with need for little over-excavation. However, some over-excavation and replacement with CGF should be anticipated particularly in the area of Borings B-1 and B-8 and in the connector area, where the natural soils are anticipated at about 5 and 10 to 11 feet below bottom of footing elevations, respectively. Actual bottom of Fill elevations will vary across the site and must be verified during construction excavation.

Footing Levels and Sizes

Exterior footings should be constructed at a minimum depth of 42-inches below proposed site grades. Interior footings, in heated areas, should be constructed at a minimum depth of 24-inches below proposed top of basement slab level.

The minimum isolated footing size should be 2.5 feet by 2.5 feet, and the minimum wall footing width should be 1.5 feet.

Allowable Bearing Pressure and Estimated Settlement

We recommend the following maximum allowable design bearing pressures for footings bearing on the recommended bearing strata:

Footing Type and Size	Maximum allowable design bearing pressure tons per square foot (TSF)
Continuous Footing (30-inch min. width)	2.0
Isolated Column Footing (smaller than 5-ft. by 5ft.)	2.5
Isolated Column Footing (larger than 5-ft. by 5ft.)	3.0

These allowable pressures may be increased by 1/3 for seismic or wind loading when using allowable stress design.

Based on the recommended bearing pressure and anticipated loads, we anticipate that footings will undergo less than one inch of total settlement and less than a half inch of differential settlement. Settlements will occur as the loads are applied and are expected to be complete at the end of construction.

Drainage

We recommend the use of footing drains due to the elevated fines content of some of the site soils. The footing drains should be installed along the exterior walls both for the basement and the frost walls. The footing drains should consist of 4-inch diameter perforated PVC pipe, surrounded by 6-inches of Crushed Stone, wrapped in non-woven filter fabric. Cleanouts should be installed in the direction of flow at the beginning of piping runs and consist of 45 degree elbows (90 degree elbows should not be allowed). The drains should be gravity drained to daylight or to the site drainage system.

Slab

<u>Subgrade</u>

We recommend placing the concrete floor slab over a minimum ten-inch thick base course layer of compacted Sand and Gravel or six-inch layer of compacted Crushed Stone placed on the surface of carefully prepared natural soils, previously improved existing Fill (defined herein), or on GCF over these materials

The design subgrade modulus for the recommended subgrade and base course is 250 pounds per cubic inch.

Drainage and Damp-Proofing

Groundwater is estimated to be at least 10 feet below the proposed top of the slab level for most of the building. We therefore do not recommend using of sub-slab drains. However, dampproofing of the slab is recommended. In proposed basement areas, sub-slab drains may be required depending on the depth of the basement's lowest level. Slab damp-proofing must be installed between the slab and base course, and consist of not less than 6-mil polyethylene with joints lapped at least 6-inches. Other approved methods or materials may be considered.

Earth Retaining Structures

Backfill and Drainage

We recommend backfilling earth retaining structures (e.g. site retaining walls) with compacted Sand and Gravel and installing footing drains. The drains should consist of 4-inch diameter perforated PVC pipe, surrounded by 6-inches of Crushed Stone, wrapped in non-woven filter fabric. Drain inverts shall be set flush with or up to 6-inches above bottom of footing level. The drains shall be gravity drained to daylight or to the site drainage system.

Weep holes may be installed in place of footing drains where they can discharge to non-paved areas (e.g., grassed areas). In paved areas such as sidewalks, weep holes should be avoided to reduce the potential for ice formation in pedestrian access ways. Where weep holes are appropriate we recommend installing Crushed Stone (minimum diameter of 12 inches), wrapped in non-woven filter fabric at each weep hole location, to prevent movement of wall backfill materials into the weep holes.

Lateral Earth Pressures

Cantilevered walls that are free to rotate at the top and are not braced shall be designed to resist an equivalent active static horizontal fluid earth pressure equal to 37 pcf (based on $\phi' = 32^\circ$, c = 0, K_a = 0.31, and $\gamma = 120$ pcf).

Rigid basement walls (that are not free to rotate at the top and are brace) should be designed to resist an equivalent at rest static horizontal fluid earth pressure equal to 57 pcf (based on $\phi' = 32^\circ$, c = 0, K₀ = 0.47, and $\gamma = 120$ pcf).

These earth pressures assume no unbalanced hydrostatic pressures, seismic forces, or surcharges from traffic loads. We recommend using a traffic surcharge load of 250 psf.

We do not recommend the reliance on passive earth pressures against the base of walls as there will not be enough wall movement to mobilize these pressures.

Based on an assumed Seismic Design Category "C", no seismic design forces need be applied to retaining walls.

Coefficient of Friction

We recommend a maximum coefficient of friction of 0.5 between foundations and the recommending bearing strata.

Seismic Design

Based on the controlling boring data, the average Standard Penetration Test "N" value over a 100-foot depth below the building is 15. Thus, the site class for the proposed structure is "D" (Stiff Soil Profile) per the IBC.

We compute S_S for the site as 0.242g, S_1 as 0.064g, S_{MS} as 0.387g, S_{M1} as 0.153g, S_{DS} as 0.258g, S_{D1} as 0.102g, and the peak ground acceleration as 0.103g.

Based on the standard penetration test results, visual soil descriptions, and expected design peak ground acceleration (0.103g) at this locale, our analyses have determined that site soils are not prone to liquefaction.

MATERIALS AND COMPACTION REQUIREMENTS

On-Site Materials

The Topsoil and Organic Silt are not considered suitable for reuse except in non-structural and landscape areas, due to their organic content. Glacial Till and Existing Fill that do not contain deleterious constituents can be reused as General Site Fill. The elevated fines (i.e. soil particles passing the No. 200 sieve) content of these soils could make them difficult to place and compact. Success in re-using these materials will depend on their moisture content and prevailing weather conditions when they are excavated, placed, and compacted.

The Gravelly Sand and some of the non-organic Existing Fill can be reused as CGF. We do not recommend reusing the site soils for Sand and Gravel Backfill or processed aggregate base due to their high fines content.

Compacted Granular Fill

CGF should consist of hard, durable sand and gravel; free of ice, clay, shale, roots, sod, rubbish, and other organic matter; graded within the following limits:

Sieve Size	Percent finer by weight
2/3 loose lift thickness*	100%
No. 10	30-100
No. 40	10-90
No. 200	0-12

*8-inches maximum

Crushed Stone can be used in place of CGF in areas below groundwater, or for expediency (as it is much easier to compact than CGF).

Sand and Gravel

Sand and Gravel for use as pavement subbase and retaining wall backfill shall consist of hard, durable sand and gravel; free of ice, clay, shale, roots, sod, rubbish, and other organic matter; graded within the following limits:

Sieve Size	Percent finer by weight
2-inches	100%
1/2-inch	50 - 85
No. 4	40 - 75
No. 40	10 - 35
No. 200	0 - 5

Crushed Stone

Crushed Stone for use around drains or below foundations and slabs shall consist of sound, tough, durable, rock that is graded within the following:

Sieve Size	Percent finer by weight
5/8-inches	100%
1/2-inch	85 - 100
3/8 inch	15 - 45
No. 4	0 - 15
No. 8	0 - 5

Processed Aggregate Base

Processed Aggregate Base for use as pavement base shall consist of inorganic soil free of clay, loam, ice and snow, tree stumps, roots, and other organic matter; graded within the following limits:

Sieve Size	Percent finer by weight
2 1/2-inches	100%
2-inch	95 - 100
3/4-inch	50 - 75
1/4-inch	25 - 45
No. 40	5 - 20
No. 100	2 - 12

Compaction Requirements

We recommend a minimum in-place dry density of 95-percent as per ASTM D1557 for material placed below foundations. We recommend a minimum in-place dry density of 92-percent as per ASTM D1557 for material placed below slabs, paved areas, and as backfill against foundations and retaining walls. Materials should be placed within 2% of their optimum moisture content and compacted in accordance with the following table:

Compaction Method	Maximum Stone Size*	Maximum I Thicki		Minimum Number of Passes			
		Below Structures and Pavement	Less Critical Area	Below Structures and Pavement	Less Critical Area		
Hand-operated vibratory plate or light roller in confined areas	4"	6"	8"	4	4		
Hand-operated vibratory drum rollers weighing at least 1,000# in confined areas	6"	10"	12"	4	4		
Light vibratory drum roller							
minimum dynamic force 3,000#/ft drum width	8"	12"	18"	4	4		
Medium vibratory drum roller							
minimum dynamic force 5,000#/ft drum width	8"	18"	24"	6	6		

* And no more than two-thirds (2/3) loose lift thickness.

CONSTRUCTION CONSIDERATIONS

Protection of Existing Buildings

Because foundations for the new connector will match the level of the bottom of the existing Kaiser Hall Footings, the need for underpinning is not anticipated.

Demolition of Existing Buildings

Foundations, slabs, utilities, and remnants of the existing building construction should be removed in their entirety from the building area and replaced with CGF below proposed foundation and slab areas.

Improvement of Existing Fill Below Slab and Pavement

As a minimum, we recommend improving the existing Fill by excavating 12-inches of material below bottom of slabs and pavement sections and compacting remaining Fill (if any) with a minimum of four passes with a vibratory drum roller having a minimum dynamic force of 6,500 lbs. per foot of drum width. Areas exhibiting instability shall receive additional compaction and/or be over-excavated and replaced with CGF. This improvement procedure assumes that the existing Fill is above the groundwater level and relatively dry and may have to be modified if the subgrade is too saturated. Fill improvement will require careful observation by an experienced geotechnical engineer. Alternately, all the existing Fill may be removed, as preferred by the owner, to reduce slab settlement risks.

Footing Preparation

The base of footing excavations should be free of water, ice, and frozen and loose soils prior to placing concrete. We recommend the use of smooth edged excavator buckets to make the final excavation to help protect the subgrade. Concrete should be placed as soon as possible after excavation so that disturbance of bearing materials does not occur. Should the materials at bearing level become disturbed, the affected materials should be removed prior to placing concrete. A four-inch-thick layer of crushed stone may be used to protect footing subgrades that are expected to be open for an extended period of time.

Temporary Excavations

The on-site soils are classified as OSHA Class "C" soil and can be cut at a maximum one vertical to one and half horizontal (1V:1.5H) slope for the shallow excavations (less than 10 feet) anticipated for the project. These maximum slope and excavation depth assume no surcharge load (i.e. stockpiles, construction equipment, etc.) at the top of the excavations or seepage (e.g. cuts below the groundwater).

If excavations cannot be sloped up in accordance with OSHA requirements, a temporary excavation support system will be required. The system should be chosen and installed by the contactor and designed by a Professional Engineer registered in the State of Connecticut.

Dewatering

We expect that temporary storm water control can be accomplished by means of and grading the excavation to low points supplemented as needed by shallow trenches and sumps.

CONSTRUCTION DOCUMENTS AND PLANS

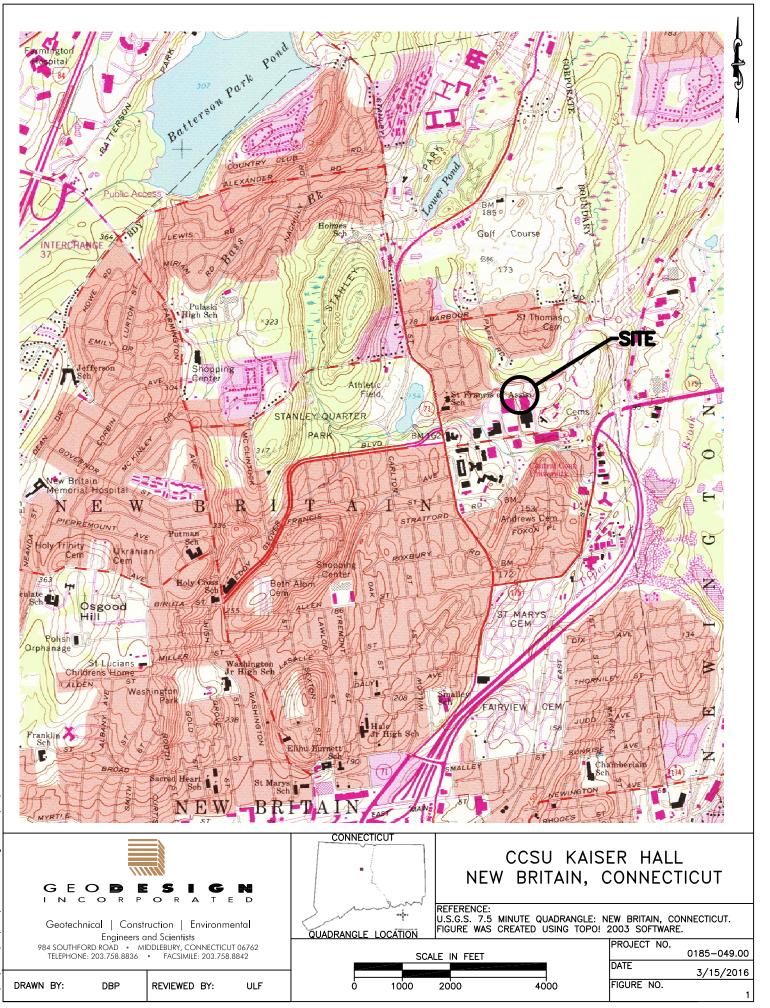
Project plans should be provided to Geo**Design** to review for conformance with geotechnical recommendations. If changes are made to the location, slab-on-grade elevation, or type of structure; the recommendations in this report will need to be reviewed.

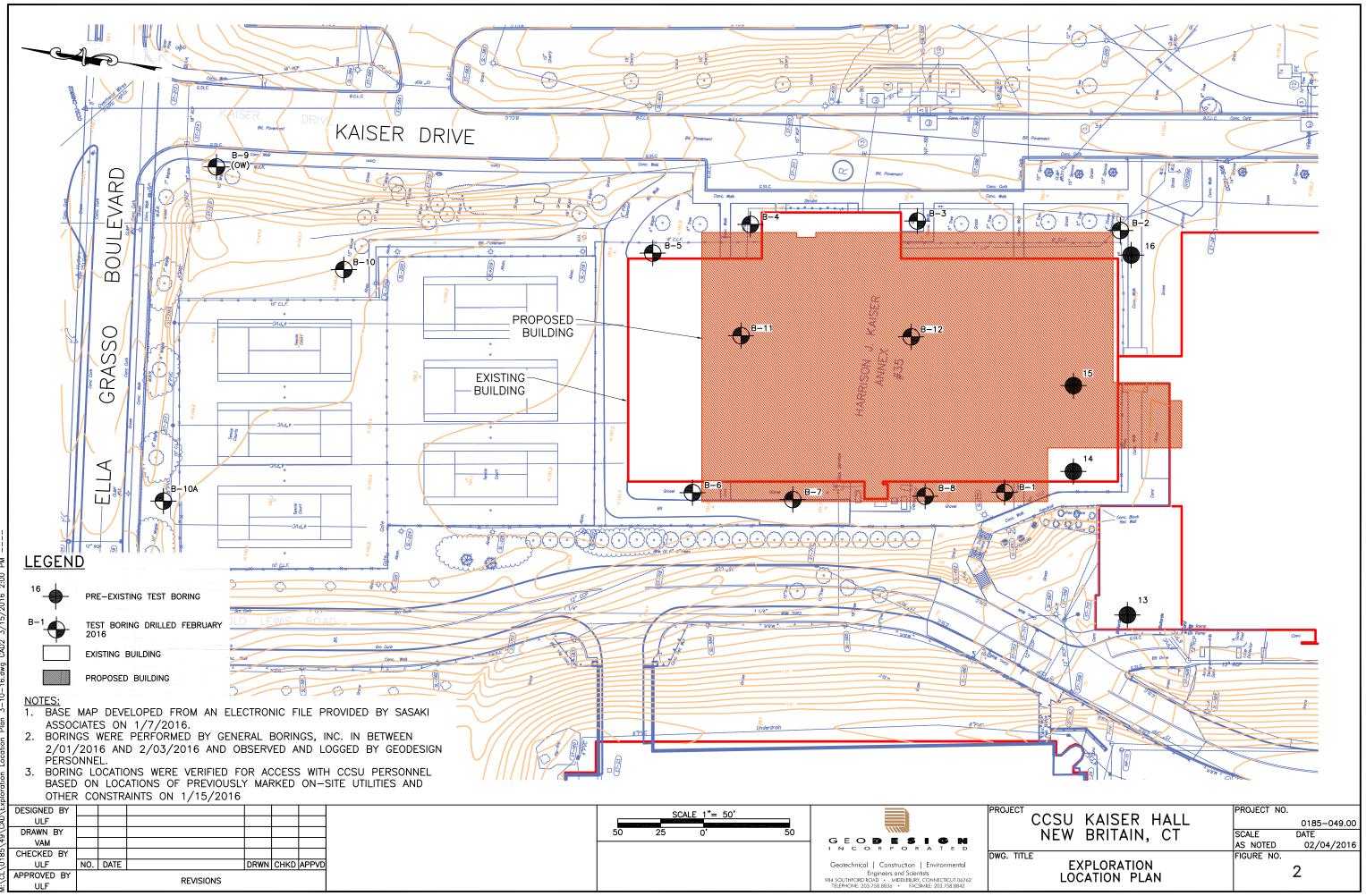
LIMITATIONS

This report is subject to the limitations included in Appendix 7.

Thank you for the opportunity to be of service. Please feel free to call if you have questions.

Sincerely,


Ulrich LaFosse, P.E. Senior Principal


Daniel F. LaMesa, P.E. Associate/Reviewer

Attachments:

- Appendix 1 Figures
- Appendix 2 Boring Logs (Drilled February 2016)
- Appendix 3 Pre-Existing Boring Logs and Location Plan (1963 Drawings)
- Appendix 4 Geotechnical Laboratory Test Data
- Appendix 5 Preliminary Soil Pre Characterization Report
- Appendix 6 Soil Infiltration Investigation
- Appendix 7 Limitations

Appendix 1 – Figures

(CL\0185\49\CAD\Exploration Location Plan 3-10-16.dwg CAD2 3/15/2016 2:00 PM -

Appendix 2 – Boring Logs (Drilled February 2016)

												BORING LOG Boring No.:E	-1	
				ЭЕ	- 0) c	G	N			Project Name	of 1
			ī	N	с		PO	R A	TE	_			CCSU Kaiser Hall File No.: 0185	049.00
				Geo	recnnic		Constructi ers and S			ITOI			DAS Project No. BI-RC-393 Checked By:	ILF
						Telepho		Fax	:					
	ng Co man:	ompa	iny:	-	Genera Tim Ca	al Boring Issan	s Inc.						Casing: Sampler: Groundwater Observations Type: H.S.A. SS Date Depth Elev. Notes	
	Desig		p.:	_		Marsha							I.D.: <u>3.25 in.</u> <u>1.38 in.</u> (ft) (ft)	
Date Started: February 2, 2016 Date Finished: February 2, 2016 N. Coordinate: E. Coordinate:												Hammer Wt.: N/A 140 lbs ¥ 2/2/16 None encountered Hammer Fall: N/A 30 in. ¥		
Ground Surface Elevation (feet): 151.8												Rig Type: Bombardier with Diedrich 🗵 50		
Station: Offset: ft I Sample Information														
	ws/ft			_				morma	.1011		e	g	_ ··· · · · · · · · · · · · · · · · · ·	
Depth (ft)	Casing Blows/ft	C dasing Blows T Type T Type T Type Penetration (inches) Depth (ft) Depth (ft)<										PID Reading (ppm)	Description 5	
Dept	Casi	Number	Type	Pene (inch	Recc	Dept	0 - 6	6 - 12	12 - 18	18 - 24	Cori (min	nqq) UIq	Depth & Elevation(feet) Classification System: Modified Burmister	
		1	SS	24	14	0	3	5	1	2		ND	Fill Loose, red brown fine to coarse SAND, litt Silt, little fine to coarse Gravel, trace Root fibers	e (+)
		2	SS	24	20	2	3	2	1	2		ND	Loose, red brown fine to medium SAND, s Silt, little fine to coarse Gravel	ome
5													4.0	
		3	SS	24	24	5	1	2	2	4		ND	Loose, red brown fine to medium SAND, s Silt, trace fine Gravel	ome
		4	SS	24	18	7	2	2	3	3		ND	Loose, red brown fine to medium SAND, s	ome
													Silty Silty Silt, trace fine Gravel	
10		5	SS	24	16	10	4	4	3	3		ND	Loose, brown to red brown fine to medium	
													SAND, some Silt, trace fine to coarse Gra	/el
15														
		6	SS	24	19	15	5	5	5	6		ND	 Medium dense, red brown fine SAND, son Silt, trace fine to coarse Gravel 	ne (-)
2													17.0 2.12 Bottom 134.8	
<u> </u>													of Exploration at 17.0 ft	
20														
25														
30														
S S							et north ened wi						nts. sobutylene standard where ND indicates no detection.	
Remarks	,	20			2					00				
Note	1	NR =	Not F	Recorde	ed; NA =	 Not App 	plicable; Ol	R = Out of	Range				e noted in Remarks). The meter was calibrated relative to a benzene in air standard. ND = None Detection $\Delta C = \Delta \theta_{\rm exp}$ cover due to other feature over time. $\Delta C = \Delta \theta_{\rm exp}$ cover $M_{\rm exp}$ Not Beauched	ted;
Note	3) /	Abbr Rod/	eviatio Hamm	ons: A = ier	= Auger;	C = Cor	e; MC=Ma	crocore; D	= Driven;	G = Grab;	PS = Pi	s of grou ston San	ndwater may occur due to other factors over time. $AC = After coring; NR = Not Recorded.$ ple; SS = Split Spoon; SSL = 3.5 Inch ID Split Spoon; ST = Shelby Tube; V = Vane; WOR/H = Weigh	
	4)1	Prop	ortions	Used:	Trace =	1-10%; 1	Little = 10-	20%; Som	e = 20-35% een materia	6; And = 3	5-50% insitions	s may be	Boring No.: B-1	

												BOH		Boring No.: B-2						
				ЭЕ	= 0				G	N			Р	rojec	t Nar	me			e No.:	1 of 1
			ī	N	c	O R	P O		ТЕ	_			CCS	UΚ	aise	er Hall		File	No.:	0185-049.0
				Geo	lechnic		ers and :			1101			DAS Proje	ect I	No.	BI-RC-393		Che	ecked By	: <u> </u>
D						Teleph		Fax	:				Casing:							
	ng Co man:	mpa	iny:	_	Tim Ca	al Boring Issan	s Inc.						Type: <u>H.S.A.</u>	<u>San</u>	Depth	dwater Observations h Elev. Notes				
	Desig		:р.:	_		Marsha		Data	Finishad	Fobrug	n 2 20	16	I.D.: <u>3.25 in.</u> Hammer Wt.: N/A		8 in.	₹ 2/3/16	(ft)	(ft)		anaountarad
Date Started: February 3, 2016 Date Finished: February 3, 2016 N. Coordinate:												Hammer Fall: N/A		0 lbs) in.	¥ 2/3/16 ¥			Dry, none	encountered	
Ground Surface Elevation (feet): 150.7												Rig Type: <u>Bombardier</u> Hammer Type: Automat			III IIII IIIII IIIII IIIIII IIIIII IIIII					
Stati							ample I	nforma	tion				Strata		Taulic		nple D	escri	ntion	
	Casing Blows/ft			-		~					ne	gu	Description	Symbol		Sai	npic L	CSCI1	ption	
Depth (ft)	ng Blc	Number	0	Penetration (inches)	Recovery (inches)	Depth (ft)	В	lows / 6 i	nch Interva	al	Coring Time (min./ft)	PID Reading (ppm)		Syn						
Dep	Casi	Nun	Type	Pene (incl	Rec (incl	Dep	0 - 6	6 - 12	12 - 18	18 - 24	Cori (mir	ndd) DID	Depth & Elevation(feet)			sification System: Mo		urmiste	er	
		1	SS	24	22	0	5	5	5	4		ND	Topsoil 150.4 Silty			ose, red brown p 3": TOPSOIL				
		2	SS	24	14	2	5	3	4	5		ND	Fine Sand			ttom 19": fine t ce fine Gravel		dium	SAND, I	ittle Silt,
	2 SS 24 14 2 5 3 4 5 ND														oose, red brown fine to coarse SAND, little S					
5													4.5 Gravelly 146.2	0						
	3 SS 24 12 5 5 5 6 0.2											Sand	0 (Me SA	edium dense, ro ND, little (-) Si	ed/bro lt, trac	wn fi ce fin	ne to co e Grave	arse	
		4	SS	24	18	7	5	5	6	8		ND		0	Ме	dium dense, re	ed bro	wn fi	ne to co	arse
														0	SA	ND, trace (+) f	ine G	ravel,	trace S	ilt
10) ()						
		5	SS	24	14	10	5	6	5	8		ND		o C		dium dense, ro ND, little fine (arse
														0						
15														° C						
		6	SS	24	18	15	11	10	14	13				0 (SA	dium dense, ro ND, some (-) f				
2													17.0 Bottom 133.7	0	Silt	t				
6 													of Exploration at 17.0 ft							
20																				
25																				
30																				
	1.)	So	il sa	mple	s field	d scre	ened wi	th a Mi	ni Rae	PID cal	ibrate	ed to i	sobutylene standard	l whe	ere N	D indicates no	detec	tion.		
Remarks																				
Re																				
Note	1	VR =	Not F	Recorde	ed; NA =	 Not App 	olicable; Ol	R = Out of	Range				e noted in Remarks). The me							one Detected;
	2) V 3) A	Wate Abbr	r level	l readin ons: A =	gs have	been mad	le at times	and under	conditions	stated, fluc G = Grab;	tuation PS = Pis	s of grou ston Sam	ndwater may occur due to oth ple; SS = Split Spoon; SSL =	er facto 3.5 Incl	ors over h ID Sp	time. AC = After con blit Spoon; ST = Shell	ing; NR by Tube;	= Not F V $=$ Va	Recorded. ne; WOR/H	= Weight of
ń	4) I	Prop	ortions	s Used:	Trace =	1-10%; 1	Little = 10-	20%; Som	e = 20-35%	6; And = 3:	5-50%	,						Bori	ng No.:	B-2

Γ							\equiv	8				BORING LOG Boring No.: B-3	
							/////						Project Name
			C 1	Э Е N		D O R	E PO	SI RA	G T E	N D			
				Geo	technic		Constructi eers and 3			ntal			CCSU Kaiser Hall File No.: 0185-049. DAS Project No. BI-RC-393
						Telepho	-	Fax					Checked By: ULF
Bori	ng Co	ompa	any:	_		al Boring							Casing: Sampler: Groundwater Observations
	man:	n Da			Tim Ca	issan Marsha							Type: H.S.A. SS Date Depth Elev. Notes I.D.: 3.25 in. 1.38 in. 1.3
	Desig e Start		:р.:			iry 3, 20		Date	Finished:	Februa	ary 3, 20	016	I.D.: 3.25 in. 1.38 in. (II) (II) Hammer Wt.: N/A 140 lbs ¥ 2/3/16 Dry, none observed
N. Coordinate: E. Coordinate:												Hammer Fall: N/A 30 in. ¥	
												Rig Type: Bombardier with Diedrich 1 \$\vee\$50 Hammer Type: Automatic Hydraulic	
Sample Information											Strata Sample Description		
_	lows/f			g		_					me	ling	Description g
Depth (ft)	Casing Blows/ft Number Type Penetration Prenetration Penetration Indext Recovery Recovery Penetration Indext Penetration Penetration Penetration <td>) Read m)</td> <td>Depth &</td>) Read m)	Depth &
Del	Cas	Νu	Type	Per (inc	Red (inc	Del	0 - 6	6 - 12	12 - 18	18 - 24	Coi (mi	dd) IId	Elevation(feet) Classification System: Modified Burmister
\vdash		1	SS	24	20	0	2	2	7	9		ND	Topsoil 151.2 Loose, Fill Top 3": brown TOPSOIL
<u> </u>		2	SS	24	18	2	7	25	12	10		ND	2.5 Bottom 17": red brown fine to medium SAND,
⊢		-			10	-							Fill 1487
5													4.5 Dense, red brown fine to coarse SAND, little Silty 147.0 Silt, little fine to coarse Gravel
	5 3 SS 24 16 5 6 7 7 7 ND											Fine Mid 4": Black ASPHALT fragments	
													Sand Medium dense, red brown fine SAND, little (-)
		4	SS	24	22	7	5	6	7	8		ND	SILT, trace fine Sand
- 10													Medium dense, red brown, Top 9": SILT, trace fine Sand, slight plasticity
10		5	SS	24	18	10	6	5	5	3		ND	(wet, perched water)
													The stand Medium dense, red brown fine SAND, trace Fine Sand 140.5 Silt, dry
15		6	SS	24	21	15	5	7	9	9		ND	
		-				-							17.0
													Bottom 134.5 of Exploration
													at 17.0 ft
20													
25													
-													
\vdash													
30													
	1.)	So	il sa	mple	s field	d scree	ened w	ith a Mi	ni Rae	PID ca	librate	ed to i	sobutylene standard where ND indicates no detection.
Remarks													
Rei													
Note	s: 1) \$	Soil S	Sampl	es scree	ened in t	he field u	ising a cali	brated Pho	toionizatio	n Detector	(unless	otherwis	e noted in Remarks). The meter was calibrated relative to a benzene in air standard. ND = None Detected;
	2)	NR = Wate	= Not I r level	Recorde l readin	ed; NA = gs have	 Not App been mad 	plicable; O de at times	R = Out of and under	Range conditions	stated, flue	ctuation	s of grou	ndwater may occur due to other factors over time. AC = After coring; NR = Not Recorded. ple; SS = Split Spoon; SSL = 3.5 Inch ID Split Spoon; ST = Shelby Tube; $V = Vane; WOR/H = Weight of$
1	1	Rod/I	Hamn	ner	-					%; And = 3			Boring No.: B-3

								Ì				BOF		Boring No.: B-4								
				ЭЕ	- 0			() < 1	G	N			Р	roje	ct Nai	me			Page No.: <u>1 of 1</u>			
			ì	N	c		P O	> ∎ R A	ТЕ				CCS	Uĸ	Caise	er Hall		File	e No.:	0185-049.		
				Geo	recnnic		ers and		vironmer	זמו						BI-RC-393		Che	ecked By:	ULF		
						Teleph		Fax	:				Coring	Sa	Ground							
	ng Co man:	ompa	iny:	_	Genera Tim Ca	al Boring Issan	s Inc.						Casing: Type: H.S.A.		th Elev. Notes							
	Desig		р.:			Marsha							I.D.: <u>3.25 in.</u>		38 in.		(ft)	(ft)				
											Hammer Wt.: N/A Hammer Fall: N/A		40 lbs 80 in.	▼ 2/2/16	15.0	136.8	Wet samp	le				
Ground Surface Elevation (feet): 151.8											Rig Type: Bombardier											
Station: Offset: ft F Sample Information											Hammer Type: Automat	ic Hyd	draulic	¥.	1 5							
	ws/ft					6		morma			e	50	Strata Description	loc		Sar	nple [Jescri	ption			
1 (ft)	Depth (ft) Casing Blows/ft Recovery Recovery Casing Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Blows/ft Casing Blows/ft Casing Casing Casing Casing Casing Casing											Readin		Symbol								
Deptl	Casir	Number	Type	Penet (inch	Recovery (inches)	Deptl	0 - 6	6 - 12	12 - 18	18 - 24	Corir (min.	I (IId	Depth & Elevation(feet)		Class	er						
		1	SS	24	15	0	5	4	4	3		ND	Topsoil 151.5 Silty		1	ose, n 3": brown TC						
													Fine Sand		Top 3": brown TOPSOIL							
\vdash		2	SS	24	24	2	3	2	4	5		ND				me Silt, trace f		ravel				
5															- 1	ose, red brown p 12": fine to m		n SA	ND som	e (-) Silt		
		3	SS	24	24	5	5	3	4	4		ND			∏∖tra	ce fine Gravel				o () olit,		
											Bottom 12": fine SAND, little (-) Silt											
		4	SS	24	17	7	4	5	5	5		ND				me Silt	strati	nea i	ine SAN	D, trace to		
40																ose, red brown me Silt	strati	fied f	ine SAN	D, trace to		
10		5	SS	24	18	10	3	5	6	8		ND			Me	dium dense, re	ed bro	wn s	tratified f	ine SAND,		
															IITTI	e to some Silt						
15		6	SS	24	20	15	2	4	4	5		ND	¥			ose, red brown						
													17.0		fee	e 3" layer fine : et	Sand,	trace	e Slit 16.	5 to 16.8		
													Bottom 134.8 of Exploration									
													at 17.0 ft									
20																						
\vdash																						
25																						
		-																				
30					 									L			-1 (
rks	1.)	50	II sa	mple	s field	a scree	ened w	ith a Mi	nı Rae	PID cal	Ibrate	ea to i	sobutylene standard	wh	ere N	undicates no Undicates	aeteo	ction.				
Remarks																						
Note	1	NR =	Not I	Recorde	ed; NA =	 Not App 	plicable; O	R = Out of	Range				e noted in Remarks). The me ndwater may occur due to othe							ne Detected;		
	3) /	Abbr Rod/	eviatio Hamn	ons: A = her	Auger;	C = Cor	e; MC=Ma	crocore; D	= Driven;	G = Grab;	PS = Pis	ston Sam	ple; SS = Split Spoon; SSL =	3.5 In	ch ID Sp	plit Spoon; ST = Shell	by Tube;	$V = V_{z}$	ane; WOR/H			
1										%; And = 3		mortho	aradual					Bou	ng No.:	B-4		

							\equiv						BOI		Bor	ring No.:	B-5			
				~ .					•				Р	rojec	et Nar	me			ge No.: _	1 of 2
			I	N	-	OR	P O		ТЕ				CCS	UК	aise	er Hall			-	185-049.00
				Geo	otechnie		Constructi eers and S			ntal						BI-RC-393			ecked By:	
						Teleph	one:	Fax	:							1				
	ing Co eman:	ompa	my:	-	Genera Tim Ca	al Boring	s Inc.						Type: <u>H.S.A.</u>		n <u>pler:</u> SS	Date	Groundy Depth		bservations	
	Desig	n Re	p.:			t Marsha	II						I.D.: <u>3.25 in.</u>		38 in.	Date	(ft)	(ft)	INC	otes
	Date Started: February 1, 2016 Date Finished: February 1, 2016 N. Coordinate:												Hammer Wt. <u>N/A</u> Hammer Fall: N/A		0 lbs 0 in.	¥ 2/1/16 ¥	15.0	136.6	Wet spoon	
	Ground Surface Elevation (feet): 151.6												Rig Type: Bombardier			n I≣ 50				
												Hammer Type: Automat	tic Hyd	Iraulic	¥					
Sample Information												Strata Description	ol		Sai	nple D	Descri	ption		
(ŧ)	Depth (ff) Depth (ff) Depth (ff) Number Type Inchesting Blows/e Inchesting Blows/e Inchesting											teading	-	Symbol						
Depth (ft)	Casin	Number	Type	Type Perentation (inches) (inches) (inches) Depth (inches) Depth (inches) Dopth (inches) Dopth (inches) Dopth (inches) Dopth (inches) (inches)									Depth & Elevation(feet)		Class	sification System: Mo	odified B	urmiste	er	
		1	SS	24	16	0	2	3	4	6		ND	Fill	\boxtimes	Lo	ose, red brown	fine t	o me	dium SAN	
_	2 SS 24 15 2 7 7 7 5 ND															dium dense, r ND, little fine t				
													4.0 Silty 147.6	×××						
5	5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 10 <th10< th=""> <th< td=""><td>Fine Sand</td><td></td><td>Lo</td><td>ose, red brown</td><td>fine S</td><td>SANE</td><td>D, trace Silf</td><td>t</td></th<></th10<>												Fine Sand		Lo	ose, red brown	fine S	SANE	D, trace Silf	t
		4	SS	24	22	7	4	5	6	6		ND				edium dense, r le to trace Silt	ed bro	wn s	tratified fin	e SAND,
- 10																				
10		5	SS	24	24	10	3	4	4	6		ND			Lo	ose, red brown	fine S	SANE	D, some Sil	it
													13.5							
45													Silt with 138.1 Clay and _							
15		6	SS	24	24	15	1	2	2	1		ND	Silt Seams			ry loose, red b				
															wit	h occasional C		anu e		flick, wet
					-								18.5							
													Silty Fine 133.1 Sand to							
20		7	SS	24	18	20	6	6	7	8		ND	Sandy Silt			edium dense, r				
																p 6": SILT, trac ttom 12": fine :				_
																			-	/
0 05																				
25		8	SS	24	24	25	1	2	2	1		ND	26.0			ry loose, red b				
													Silt with 125.6 Slay and			p 12": SILT, tra ttom 12": SILT				ns to 1" _
					<u> </u>								Silt Seams 28.5			ck CLAY and S				
													123.1							
30		So	il sa	mole		d scre	ened wi	ith a Mi	ni Rae	PID cal	librate	ed to i	sobutylene standard		ne N	D indicates no	deter	rtion		
arks													mize potential for ru				uelet			
Remarks																				
NU	tes; 1) Soil Samples screened in the field using a calibrated Photoionization Detector (unless otherwise noted in Remarks). The meter was calibrated relative to a benzene in air standard. ND = None Detected;																			
inote	2)	NR = Wate	Not I r level	Record I readir	ed; NA = 1gs have	= Not App been made	plicable; Ol de at times	R = Out of and under	Range conditions	stated, flue	ctuation	s of grou	ndwater may occur due to oth	er facto	ors over	time. $AC = After contracts$	ring; NR	= Not F	Recorded.	
	4)]	Rod/l Propo	Hamm ortions	ner s Used:	Trace =	= 1-10%; I	Little = 10-	20%; Som	e = 20-35%	%; And = 3	5-50%		ple; SS = Split Spoon; SSL =	3.5 Inc	n ID Sp	put Spoon; ST = Shel	by Tube;		<u>me; WOR/H = V</u> ng No.:	B-5
							imate bour					s may be	gradual.					Don		

													BOF				G		Bor	ing No.:	B-5
			c	GЕ		D) S I	G	N			P	rojeo	ct Nai	me			Pag	e No.:	2 of 2
			I	И	С	0 R cal C	р о Constructi	R A					CCS						File	No.:	0185-049.00
						-	-	Scientists					DAS Proje	ect	No.	BI-R	C-393		Che	ecked By	ULF
Bori	ng Co	mpa	ny:			Teleph al Boring		Fax	:				Casing:	Sa	mpler:			Groundy	water O	bservations	
Fore	man: Desig	n Re	n ·	-	Tim Ca	issan Marsha							Type: H.S.A. I.D.: 3.25 in.		SS 38 in.		Date	Depth (ft)	Elev. (ft)		Notes
Date	Start	ed:				iry 1, 20				Februa	ry 1, 20)16	Hammer Wt.: N/A	14	10 lbs	¥	2/1/16	15.0	136.6	Wet spoor	n
	oordi ind Si			vation (feet):		151.		ordinate:				Hammer Fall: N/A Rig Type: Bombardier		i0 in. Diedrich	. ⊻ n D≇ 50					
Stati	on:					Offset:							Hammer Type: Automat	ic Hyd	draulic	¥					
	vs/ft					S	ample l	nforma	tion		0	50	Strata Description	ol			Sai	nple D	Descri	ption	
Depth (ft)	Casing Blows/ft	ber		Penetration (inches)	very es)	h (ft)	E	Blows / 6 ii	nch Interva	al	Coring Time (min./ft)	PID Reading (ppm)		Symbol							
Dept	Casir	Number	Type	Pene (inch	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Corir (min.	[[] [] [] [] [] [] [] [] [] [] [] [] []	Depth & Elevation(feet)				n System: Mo				
		9	SS	24	24	30	8	13	12	11		ND			vai	rved w	f, red bro vith red b	wn Cl rown (ayey CLAY	SILT to ' and SIL	3" thick _T layers to
													Bottom of Exploration		1/2	2" thic	k				
													at 32.0 ft								
35																					
40																					
45																					
50																					
FF																					
55																					
60																					
ks K																					
Remarks																					
										-											
Note	2)	√R = Water	Not I r level	Recorde l readin	d; NA = gs have	 Not App been mad 	plicable; O de at times	R = Out of and under	Range conditions	stated, fluc	tuation	s of grou	e noted in Remarks). The me ndwater may occur due to oth	er fact	ors over	r time. A	C = After cos	ring; NR	= Not F	Recorded.	
	4) I	Rod/I Propc	Hamm	ner s Used:	Trace =	1-10%;1	Little = 10	-20%; Som	e = 20-35%	G = Grab; 1 %; And = 3: al types, tra	5-50%		ple; SS = Split Spoon; SSL =	3.5 Inc	ch ID Sp	plit Spoo	on; ST = Shel	by Tube;		ne: WOR/H ng No.:	= Weight of B-5

							\equiv						BOI	RIN	[G]	LOG		Bor	ing No.:_	B-6
							//////		_				Р	rojec	t Nar	ne			e No.:	1 of 1
			I I	Э Б		O R	P O	R A	G T E	N D			200		aico	er Hall				0185-049.00
				Geo	technic		Constructi ers and S			ntal						BI-RC-393				
						Teleph	- one:	Fax	:				-					Che	ecked By:	ULF
	ing Co	-	any:	_		al Boring	s Inc.						Casing:		<u>ipler:</u>				bservations	
	eman: Desig		ep.:	-	Tim Ca Robert	issan Marsha							Type: <u>H.S.A.</u> I.D.: <u>3.25 in.</u>		85 8 in.	Date	Depth (ft)	Elev. (ft)		Notes
	e Start		-	_	Februa	ıry 1, 20 [.]	16			Februa	iry 1, 20	016	Hammer Wt.: N/A 140 lbs ¥ 2/1/16 14.0 137.6 Wet sample							
	Coordi und S			vation (feet):				ordinate:			Hammer Fall: N/A Rig Type: Bombardier	-) in. iedrich	⊻ D ¥ 50					
Stat	ion:	1				Offset:	ft					Hammer Type: Automat			¥					
	ų					S	ample I	nforma	tion			Strata			San	nple D	escri	ption		
(l	3lows/			ion	v	()					lime	Description	Symbol							
Depth (ft)	Deput (1) Number Type Number If ype If ype If ype If ype												Depth &	S.						
Ď	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												Elevation(feet) Classification System: Modified Burmister Fill XX Loose, red brown fine to coarse SANI							
		1	55	24	8	0	3	3	3	3					t, little fine Gra					
		2	SS	24	8	2	3	2	1	2			\bigotimes		ry loose, red b					
												4.0	\bigotimes	sor	ne Silt, little fir	e to c	oars	e Gravel,	wet	
5												Silty 147.6 Fine				-4 **	<u>.</u>			
		3	SS	24	16	5	3	3	4	6		Sand			ose, red brown ce to little (+) S		fied f	ine SANI) with	
		4	SS	24	18	7	5	5	7	5					Ме	dium dense, re	ed bro	wn s	tratified f	ine SAND
		4 SS 24 18 7 5 5 7 5 ND														h trace to little				
10																				
		5 SS 24 20 10 4 5 4 5 ND														ose, red brown ce to some Silt		fied f	ine SANI	D with
															ti di					
15													¥							
15		6	SS	24	8	15	4	3	2	2		ND			Lo	ose, red brown	SILT	, som	ne fine Sa	and
													17.0							
<u> </u>													Bottom 134.6 of Exploration							
5													at 17.0 ft							
0																				
) 																				
25																				
2																				
30																				
	1.)	So	il sa	mple	s field	d scre	ened wi	ith a Mi	ni Rae	PID cal	ibrate	ed to i	sobutylene standard	l whe	ere N	D indicates no	detec	tion.		
Remarks																				
R																				
Note	s: 1)	Soil S	Sampl	es scree	ned in t	he field u	ising a calil blicable; Ol	brated Pho R = Out of	toionizatio `Range	n Detector	(unless	otherwis	e noted in Remarks). The me	ter was	calibra	ted relative to a benze	ne in air	standa	rd. ND = Nor	ne Detected;
2	2) 3)	Wate Abbr	er level eviatio	l readin ons: A =	gs have	been mad	le at times	and under	conditions	stated, fluc G = Grab;	tuation PS = Pi	s of grou ston Sam	ndwater may occur due to oth ple; SS = Split Spoon; SSL =	er facto 3.5 Inc	rs over h ID Sp	time. AC = After cor blit Spoon; ST = Shelb	ing; NR y Tube <u>;</u>	= Not F V $=$ Va	Recorded. ne; WOR/H =	= Weight of
	4)	Prop		s Used:			Little = 10-			6; And = 3			arahual					Bori	ng No.:	B-6

													BOI	RIN	I G	LOG		Bor	ing No.:	B-7	
						_	/////		-				Р	roje	ct Nar	ne			e No.:	1 of 1	
			С 	G E		O R	P O		G TE	N D			200		(aicc	er Hall			e No.:	0185-049.00	
				Geo	technio		Constructi eers and			ntal						BI-RC-393					
						Telepho	one:	Fax	:									Che	ескеа Ву	: <u>ULF</u>	
	ing Co	ompa	my:	_		al Boring	is Inc.						Casing:		mpler:				bservations		
	eman: Desig	n Re	р.:	-	Tim Ca Robert	assan t Marsha	111						Type: H.S.A. I.D.: 3.25 in.		SS 38 in.	Date	Depth (ft)	Elev. (ft)		Notes	
													Hammer Wt.: N/A 140 lbs ▼ 2/2/16 None Encountered Hammer Fall: N/A 30 in. ▼								
Ground Surface Elevation (feet): 151.7													Hammer Fall: N/A 30 in. ¥ Rig Type: Bombardier with Diedrich D\$50								
Station: Offset: ft F												Hammer Type: Automatic Hydraulic 🗶									
Sample Information													Strata Description	-		Sar	nple D	Descri	ption		
(ŧ)	Depth (ft) Depth (ft) Casing Blows/ft N Number Type Prenetration (inches) Depth (ft) (inches) Inches) (inches) Depth (ft) (inches) Inches) (inches) Depth (ft) (inches) Inches) (inches) Inches) (inches) Press (inches) Press (inches) Press (inches) Press (inches) Press												Description	Symbol							
Jepth													Depth & Elevation(feet)		Class	ification System: Mo	dified D	humaint			
-												Asphalt 151	5		sification System: Mo		urmisu				
1 SS 24 12 0.2 9 9 9 6 ND													Base 151.2 Course	2		p 3": gray fine coarse Sand, t			GRAVEL	, some fine	
		2	SS	24	0	2.2	10	8	5	5		Silty Fine		Bo	ttom 9": red br	own fi	ne to	medium	n SAND,		
												Sand		<u>:L</u> L	me (-) Silt, little				vel		
5		3	SS	24	2	5	8	4	2	2		ND				dium dense, N ose, red brown				ilt	
		-			-														,		
		4	SS	24	0	7	4	4	4	5		-			Lo	ose, No Recov	ery				
						<u> </u>															
10		5	SS	24	20	10	2	2	4	5					Lo	ose, red brown	fine S	SAND	D. little (-) Silt	
		5 SS 24 20 10 2 2 4 5 ND														,			, (,	
15		6	SS	24	20	15	4	4	3	4		ND				ose, red brown	1				
		0	33	24	20	15	4	4	3	4		ND	17.0		То	p 10": SILT, so	me fir				
													Bottom 134.7 of Exploration	7	Bo	ttom 10": fine \$	SAND	, little	e Silt, we	t/	
													at 17.0 ft								
20																					
25						<u> </u>	<u> </u>														
-							<u> </u>														
					-																
30																					
s	1.)	So	il sa	mple	s field	d scre	ened w	rith a Mi	ni Rae	PID cal	ibrate	ed to i	sobutylene standarc	d wh	ere N	D indicates no	detec	ction.			
Remarks																					
2																					
Note	s: 1)	Soil S NR =	Sampl • Not F	es scree Recorde	ened in t ed; NA =	he field u = Not Ap	using a cali plicable; O	brated Pho R = Out of	toionizatio 'Range	n Detector	(unless	otherwis	e noted in Remarks). The me	ter wa	s calibra	ated relative to a benze	ene in air	standa	rd. $ND = Nc$	one Detected;	
	2) 3)	Wate Abbr	r level eviatio	l readin ons: A =	gs have	been mad	de at times	and under	conditions	stated, fluc G = Grab;	ctuation PS = Pis	s of grou ston Sam	ndwater may occur due to oth ple; SS = Split Spoon; SSL =	er fact 3.5 In	ors over ch ID Sp	time. AC = After con blit Spoon; ST = Shelt	ing; NR by Tube;	= Not F V = Va	Recorded. me; WOR/H	= Weight of	
			Hamm		Trace =	- 1-10%; 1	Little = 10	-20%; Som	e = 20-35%	%; And = 3:	5-50%	marcha	aradual					Bori	ng No.:	B-7	

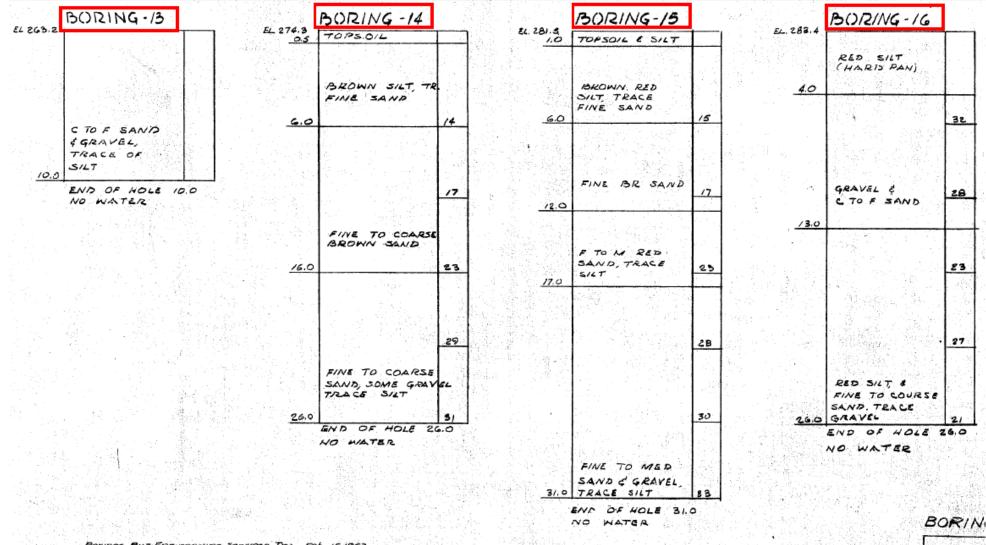
								<u></u>					DOI	DTN.							
								Ì								LOG		Bor	ing No.:	B-8	
							/////	8	_				F	Projec	t Nar	ne		Pao	e No.:	1 of 1	
				G E			P O		G TE									1 42	ç 110		
			-	Geo	otechnie		Constructi			ntal						er Hall		File	e No.:	0185-049.0	
						Engine	eers and : -	Scientists					DAS Proj	ecti	NO.	BI-RC-393		Che	ecked By	:ULF	
						Teleph	one:	Fax	а:							1					
Bor	ing Co	ompa	any:	-	Genera	al Boring	is Inc.						Casing:	San	<u>npler:</u>		Groundv	vater O	bservations		
	eman:			-	Tim Ca								Type: <u>H.S.A.</u>		SS .	Date	Depth (ft)	Elev. (ft)		Notes	
	Desig e Start		ep.:	-		Marsha ary 2, 20		Date	Finished:	Februa	IN 2 20	116	I.D.: <u>3.25 in.</u> Hammer Wt.: N/A		8 in.) Ibs	₹ 2/2/16		. /	Wet samp	la	
	Coordi		:	-	1 CDT GC	ay 2, 20	10		ordinate:		<u>, </u>	510	Hammer Fall: N/A) in.	¥ 2/2/10	10.0	134.3	wei samp		
Gro	und S	urfac	e Ele	vation	(feet):		151.	7				Rig Type: Bombardier with Diedrich 1250									
Stat	Station: Offset: ft												Hammer Type: Automa								
	≤ Sample Information												Strata			Sai	nple D	escri	ption		
	Casing Blows/1 Number Number Algebra Casing Blows/1 Casing Casing Blows/1 Casing Casing Blows/1 Casing Casing Casing Blows/1 Casing Casing Cas												Description	Symbol							
(ff)	g Ble	Der		ratio es)	very es)	(ff)	E	Blows / 6 i	nch Interva	al	ff)	keadi		Syn							
Depth (ft)	Dependence Casing Blows Casing Blows Number Type Penetration Penetration Penetration Inches Depth (fin ches) Penetration (inches) Depth Penetration Penetration (inches) Depth Penetration Penetration (inches) Penetration (inches) Penetration (inches) Penetration (inches) Penetration											I UI d	Depth & Elevation(feet)		Class	ification System: Mo	dified P	urmiete	ər		
-	1 SS 24 8 0 3 8 8 6 ND												Fill			dium dense, r				edium	
		<u> </u>			Ť	L	+				-		-		SA	ND, some Silt					
-		2	SS	24	7	2	5	5	14	25					ers dium dense, r	od bro	wp fi	no to ma	dium		
		-	- 33	24	'	<u> </u>				2.5					ND, some Silt						
<u> </u>		-					<u> </u>	<u> </u>	<u> </u>			4.0 Possible 147.1	7				-				
5		_					- 10		-				Fill		Me	dium dense, r	ed bro	wn fi	ne to me	dium	
		3	SS	24	22	5	10	8	7	5		ND				ND, little (+) S					
	4 SS 24 20 7 5 3 2 3 ND												7.5			ose, red browr	fina S) little S	ilt	
		4	SS	24	20	7	5	3	2	3		ND	Silty Sand 144.2	2 🏹	LU				, intie 3	iii.	
								<u> </u>	<u> </u>				-								
10								<u> </u>	<u> </u>						1.4						
		5	SS	24	12	10	3	4	5	7		ND	11.0 Construction 140	- 11		ose, red browr p 6": fine SAN					
													Sandy Silt 140.	1		ttom 6": SILT,					
																				/	
								<u> </u>	<u> </u>												
15								<u> </u>	<u> </u>						—	. All and Datta		A			
		6	SS	24	20	15	4	6	6	8		ND					I and Bottom 7": Medium den n SILT, trace fine Sand				
								<u> </u>	<u> </u>				17.0 Y		_ Mic	d 4": medium d				ne SAND,	
								<u> </u>	<u> </u>				Bottom 134. of Exploration	"	tra	ce Silt]	
								L	L				at 17.0 ft								
20									L												
									L												
							<u> </u>	<u> </u>	Ļ												
									<u> </u>												
							L		L												
25																					
30																					
	1)	S٥	il sa	mole	s field	d scre	ened w	ith a Mi	ini Rae	PID cal	ibrate	ed to i	sobutylene standard	d whe	ere N	D indicates no	detec	tion			
rks	,	20	50		2 1101		2														
Remarks																					
ŕ																					
Note	es: 1)	Soil	Sampl	es scree	ened in t	he field u	using a cali	brated Pho	toionizatic	n Detector	(unless	otherwis	e noted in Remarks). The me	eter was	calibra	ted relative to a benz	ene in air	standa	rd. $ND = Nc$	one Detected;	
	2)	NR = Wate	= Not I r level	Recorde l readin	ed; NA = gs have	Not Ap been ma	plicable; Ol de at times	R = Out of and under	f Range conditions	stated, flue	tuation	s of grou	ndwater may occur due to oth	ner facto	rs over	time. $AC = After contracts$	ring; NR :	= Not F	Recorded.		
		Rod/	Hamm	ner	-							ston Sam	ple; SS = Split Spoon; SSL =	3.5 Inc	h ID Sp	blit Spoon; ST = Shel					
1	4)	Prop Strati	ortion	s Used:	Trace =	1-10%;	Little = 10- ximate bour	-20%; Som	e = 20-35%	%; And = 3	5-50%	a may he	oradual					Bori	ng No.:	B-8	

							\equiv	Ì					BORING LOG Boring No.: B-9 (OW	/)						
				~ -		_		8	-				Project Name Page No.:1 of 1							
			I	Э E N		O R	P O		G T E	Ð			CCSU Kaiser Hall File No.: 0185-049	00						
				Geo	techni		Constructi eers and			ntal			DAS Project No. BI-RC-393	.00						
						Teleph	- one:	Fax	:				Checked By: ULF							
Bori	ng Co	ompa	any:	-		al Boring	is Inc.						Casing: Sampler: Groundwater Observations							
	man: Desig	n Re	ep.:	-	Tim Ca Robert	assan Marsha							Type: H.S.A. SS Date Depth (ff) Elev. Notes I.D.: 3.25 in. 1.38 in. (ff) (ff) </td <td></td>							
	e Start		1	_		ary 1, 20		Date	Finished:	Februa	ary 1, 20	016	Hammer Wt.: N/A 140 lbs ¥ 2/1/16 None encountered							
	Coordi			vation	(feet)		153		ordinate:				Hammer Fall: N/A 30 in. ¥ 2/2/16 Dry well after 24 hou Rig Type: Bombardier with Diedrich DE50 2/3/16 Dry well after 48 hou							
Stati			A LIC	vacion	· /	Offset:							Hammer Type: Automatic Hydraulic							
	Ť					S	Sample I	Informa	tion				Strata Sample Description							
	Casing Blows/ft			uo							ime	ding		ell og						
Depth (ft)	sing B	Number	e	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 in	nch Interv	al	Coring Time (min./ft)	PID Reading (ppm)	Depth &	og						
De													Elevation(feet) Classification System: Modified Burmister	NG						
		1	SS	24	14	0	1	2	2	6		Fill/ Medium dense, red brown fine SAND, Reworked some (-) Silt, trace Root fibers	ACT							
		2	SS	24	14	2	6	5	5	4		Fill/ Reworked Medium dense, red brown fine SAND, some (-) Silt, trace Root fibers 2.0 Silty Silty 151.0 Fine Sand Medium dense, red brown fine SAND, some (-) Silt, trace fine Gravel Medium dense, red brown, Top 3": SILT, trace fine Gravel	KCA							
		2	- 33	24	14		0	3	5	+		Fine Silt, trace fine Gravel								
5													2AA							
		3	SS	24	12	5	5	6	6	8		Medium dense, red brown,	ACC.							
													REA							
		4	SS	24	16	7	8	6	5	6		ND	SAND, LIACE IIIE LO CUAISE GIAVEI, LIACE							
													Sand Silt							
10		5	SS	24	12	10	3	3	3	3		ND	∠ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓							
			00	24		10	0	Ŭ					trace (+) fine to coarse Gravel, trace Silt							
													13.5 Sandy 139.5							
15													Silt							
		6	SS	24	16	15	6	10	10	9		ND	Medium dense, red brown SILT, trace fine Sand							
													17.0 Bottom 136.0							
													of Exploration at 17.0 ft							
20																				
25					<u> </u>															
\vdash																				
30																				
s	1.) 2)	So	il sa	mple	s field	d scre	ened w	ith a Mi	ini Rae	PID cal	librate	ed to i	sobutylene standard where ND indicates no detection. poring with tip of 5 foot screen set at 15 feet, filter sand to 9 feet, bentonit	Δ						
Remarks													and concrete collar installed.	.0						
Re																				
	s: 1) §	Soil :	Sampl	es scree	ened in t	he field u	ising a cali plicable; O	brated Pho $R = Out c^{4}$	toionizatio	n Detector	(unless	otherwis	e noted in Remarks). The meter was calibrated relative to a benzene in air standard. ND = None Detected;							
	2) V 3) J	Wate Abbr	r level eviatio	readin	gs have	been mad	de at times	and under	conditions	stated, flue G = Grab;	ctuation PS = Pis	s of grou ston Sarr	ndwater may occur due to other factors over time. AC = After coring; NR = Not Recorded. ple; SS = Split Spoon; SSL = 3.5 Inch ID Split Spoon; ST = Shelby Tube <u>; V = Vane; WOR/H = Weight of</u>							
Note	4)1	Prop		Used:				-20%; Som ndary betw		%; And = 3		s may be	Boring No.: B-9 (OW)							

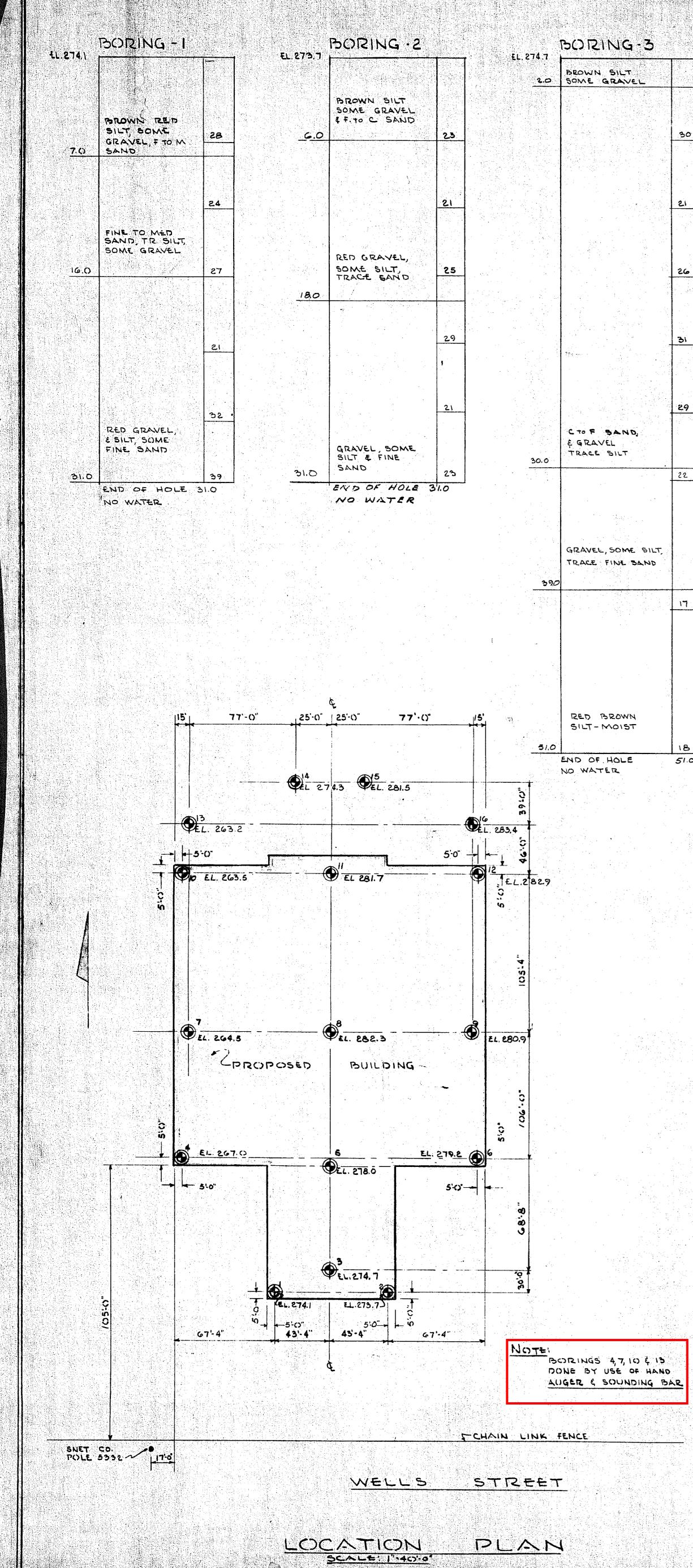
							\equiv						BOI	RIN	[G]	LOG		Bor	ing No.:	B-10	
							//////		_				Р	Projec	t Nar	ne			e No.:	1 of 1	
			C I	G E		O R	P O	S I	G T E	N D			CC8		aiaa	er Hall			No.:	0185-049.00	
				Geo	technic		Constructi eers and S			ntal						BI-RC-393					
						Teleph	- one:	Fax	:				-					Che	cked By	ULF	
	ing Co	ompa	any:	-		al Boring	s Inc.						Casing:		<u>npler:</u>				bservations		
	eman: Desig	n Re	ep.:	-	Tim Ca Robert	issan Marsha							Type: H.S.A. I.D.: 3.25 in.		8 in.	Date	Depth (ft)	Elev. (ft)		Notes	
	e Start			-	Februa	iry 1, 20	16			Februa	iry 1, 20	Hammer Wt.: N/A	14) Ibs	₹ 2/1/16			None enco	ountered		
Ground Surface Elevation (feet): 149.2 Ri													Hammer Fall: N/A 30 in. ¥ Rig Type: Bombardier with Diedrich I#50 Image: Content of the second secon								
Station: Offset: ft Ha													Hammer Type: Automatic Hydraulic								
	ĥ					S	ample I	nforma	tion			Strata			San	ıple D	escriț	otion			
(ł)	Casing Blows/ft			ion	y	(l)	г		1.1.4	.1	Lime	PID Reading (ppm)	Description	Symbol							
Depth (ft)	asing l	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	E	slows / 6 1	nch Interv		Coring Time (min./ft)	D Rea pm)	Depth &	Ś							
Ď	ũ	<i>ī</i>	T SS	ਰੂ <u>ਜ</u> 24	₩. <u>.</u> 12	Ŭ 0	0-6 3	6 - 12 3	12 - 18 3	18 - 24 3	Ü.C	표 <u>여</u> 1.6	Elevation(feet)	X	Classification System: Modified Burmister Loose, red brown fine to medium SAND, some						
			33	24	12	0	3		3	3					Silt, trace fine						
		2	SS	24	8	2	1	4	7	8					dium dense, re						
															ND, little (+) Si ck Organics (F		e fin	e Grave	i, trace		
5														Ve	ry loose, red bi		no 0				
		3	SS	24	10	5	2	1	2	4		ND	6.5			ce (-) Organics		ne S	AND, SC	nne Siit,	
		4	SS	24	20	7	5	5	5	7		ND	Silty Sand/ 142.7 Sandy Silt	7	Me	dium dense, re	ed bro	wn fir	ne SANI) and SILT	
									-	-					Bo	ttom 2": red bro	own fir	ne SA	AND, tra	ce Silt	
10																					
		5	SS	24	18	10	5	7	7	6		ND				dium dense, re p 9": fine SAN			F		
													ttom 9": fine S/				_				
															<u> </u>					/	
15																					
		6	SS	24	20	15	3	4	4	5		ND	16.0			ose, red brown	la fina	San	d		
												17.0 Varved Silt 133.2 and Clay Bottom 132.2		- Bo	p 10": SILT, litt ttom 10": stiff r	ed bro	wn S	SILT laye	ers to 1" _		
<u> </u>													of Exploration			ck, varved with ers to 1" thick,			CLAY a	nd SILT	
20													at 17.0 ft]	
20																					
25																					
2																					
30				L							L			L							
2	2.)	So	il sa	mple	s field	d scre	ened wi	ith a Mi	ni Rae	PID cal	ibrate	alame ed to i	eter bore holes at 2 t sobutylene standard	to 4' d whe	and 4 ere N	F 10 6 D indicates no	detec	tion.			
Remarks	3.)	۲o	iyeth	nelyn	e sha	iras in	auger	cuttings	s ot till r	naterial											
Note		NR =	Not F	Recorde	ed; NA =	 Not App 	olicable; Ol	R = Out of	Range				e noted in Remarks). The me ndwater may occur due to oth							ne Detected;	
Note	3)	Abbr Rod/	eviatio Hamm	ons: A = ner	= Auger;	C = Cor	e; MC=Ma	crocore; D	= Driven;	G = Grab;	PS = Pis	ston Sam	ple; SS = Split Spoon; SSL =	3.5 Inc	h ID Sp	olit Spoon; ST = Shelb	y Tube; '	V = Vat	ne; WOR/H		
.1							Little = 10- timate bour			%; And = 3		maybe	oradual					BOLIL	1g No.:	B-10	

													BOF	RIN	G]	LOG		Bor	ing No.:	B-10A		
				~ .	= 0				•				Р	rojec	t Nar	ne			e No.:	1 of 1		
			1	Э Е N	с	OR	P O		TE				CCS	υĸ	aise	er Hall			e No.:	0185-049.00		
				Geo	otechnic		Constructi ers and S			ntal						BI-RC-393				ULF		
						Teleph		Fax	:					0			<u> </u>					
	ng Co man:	ompa	any:	-	Genera Tim Ca	al Boring assan	s Inc.						Casing: Type: H.S.A.		<u>npler:</u> SS	Date	Depth		bservations	Notes		
Geo	Desig		ep.:	-	Robert	Marsha							I.D.: <u>3.25 in.</u>	1.3	38 in.		(ft)	(ft)		110103		
												Hammer Wt.: N/A 140 lbs ¥ 2/2/16 Dry, none observed Hammer Fall: N/A 30 in. ¥										
Ground Surface Elevation (feet): 150												Rig Type: Bombardier with Diedrich										
Station: Offset: ft Sample Information												Hammer Type: Automatic Hydraulic Strata Sample Description										
	Sample Information											50	Strata Description	loc		Sai	nple L	Jescri	ption			
Depth (ft)	Deput (t) Number Type Penetration If ype Penetration Inches Penetration										ng Tim /ft)	Readin)		Symbol								
Deptl	Depth Number Number Type Pepth Pepth Pepth Image: State of the state of											udd) I (IId	Depth & Elevation(feet)		Class	ification System: Mo	odified B	Burmisto	er			
	1 SS 24 20 0 1 2 2 6 ND											ND	Reworked			ose, red browr ce Root fibers	fine S	SANE	D, some	(-) Silt,		
													2.0 Silty Sand 148.0									
-		2	SS	24	18	2	5	6	7	9		to Sandy Silt		Silt					, intro (')			
5																						
		3	SS	24	24	5	3	3	4	6				ine SAN	D, trace to							
																me Silt	ed bro	own fine SAND, little Silt				
-		4	SS	24	16	7	5	6	6	8					IVIC			, , , , , , , , , , , , , , , , , , ,		, indie Ont		
10																						
		5 SS 24 14 10 4 4 4 7													ose, red browr ers to 2" thick							
													,			•	0, 0.0.0					
15																						
		6	SS	24	12	15	4	2	5	7						e fine Sa little Silt	and, with					
													17.0 Bottom 133.0		,							
													of Exploration at 17.0 ft									
20																						
25																						
30																						
30	30																					
	1.)	Fa	lling	head	d perr	neabil	ity tests	perfor	med in	separa	te 6"	diame	eter bore holes at 2 t	o 4'	and 4	4 to 6 foot dep	ths.					
Remarks	2.)	So	il sa	mple	s field	d scre	ened wi	ith a Mi	ni Rae	PID cal	ibrate	ed to i	sobutylene standard	l whe	ere N	D indicates no	detec	ction.				
Rei																						
)	s: 1) \$	Soil S	Sampl	es scree	ened in t	he field ı	ising a cali	brated Pho	toionizatio	n Detector	(unless	otherwis	e noted in Remarks). The me	ter was	calibra	ated relative to a benz	ene in air	r standa	rd. ND = No	ne Detected;		
	2)	Wate	r level	l readin	gs have	been mad	olicable; Ol le at times e; MC=Ma	and under	conditions	stated, fluc G = Grab:	ctuation PS = Pi	s of grou ston Sam	ndwater may occur due to oth ple; SS = Split Spoon; SSL = 1	er facto 3.5 Inc	ors over h ID Sn	time. AC = After co blit Spoon; ST = Shell	ring; NR by Tube:	= Not F V $=$ Va	Recorded. me; <u>WO</u> R/H	= Weight of		
2	4) l	Rod/l Propo	Hamm ortions	ner s Used:	Trace =	1-10%;	Little = 10-	20%; Som	e = 20-35%	%; And = 3: al types, tra	5-50%				1	-	[ng No.:	B-10A		

							\equiv	8					BOR	RIN	[G]	LOG			Bor	ing No.:	B-1 ²	1
							/////)					Pr	rojec	t Nar	ne				ge No.:	1 of	
			C I	Э Б		D O R	P O	SI R A	G TE	N D			000		_:	er Hall						
				Geo	technie		Constructi eers and			ntal			DAS Proje	-		-	-393			No.:	0185-04	
						Teleph	- one:	Fax	:										Che	ecked By	:: <u>UL</u> F	-
	ing Co	ompa	iny:	_		al Boring							Casing:		npler:		(bservations		
	eman: Desig	n Re	:p.:	-		assan/Jo Marsha	hn Wyanc II	1					Type: H.S.A. I.D.: 3.25 in.		85 8 in.	Da	ate	Depth (ft)	Elev. (ft)		Notes	
Dat	e Star	ed:		_		ary 3, 20				Februa	ry 3, 20	016	Hammer Wt.: N/A	140) Ibs		3/16			Dry, none	encountere	d
	Coordi und S			vation (feet):		 151.		ordinate:				Hammer Fall: N/A Rig Type: Bombardier v) in. iedrich	⊻ □¥ 50						
Stat					· /	Offset:							Hammer Type: Automati			¥						
	ų					S	ample I	nforma	tion				Strata				San	nple D	escri	ption		
(ł)	Casing Blows/ft			ion	y	æ			1.1.4	.1	Lime	PID Reading (ppm)	Description	Symbol								
Depth (ft)	asing I	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)			nch Interv		Coring Time (min./ft)	D Rea pm)	Depth &	Ś								
ñ	Ű	2 1	SS I	a' <u>∃</u> 24	2. <u>=</u> 6	0 0	0 - 6 28	6 - 12 50/3"	12 - 18	18 - 24	ŬĒ	립 의 ND	Elevation(feet)			ification Sy					ome fine	to
		'	33	24			20	30/3					Base Course 157.2 Fill/Reworked	\bigotimes		arse Gra				, 0		
		2	SS	24	12	2	32	44	37	30		ND	- III A GWOI NEU	\bigotimes		d brown	,					
													4.0	\bigotimes		p 6": fine e Gravel		dium	SAN	ID, some	e Silt, tra	ce _
5													Silty Fine 147.5 Sand to		Bo	ttom 6":	fine SA	AND,	little	Silt, dry		
		3	SS	24	12	5	11	12	10	9		ND	Sandy Silt		Re	d brown	stratifi	ed fin	e SA	ND, trac	e to	
		4	SS	24	12	7	8	10	11	11		ND			Re	d brown	,					
							-	-								p 6": fine						
10																ttom 6":						
		5	SS	24	16	10	10	12	14	18		ND				d brown ers to 2"						
													12.0 Bottom 139.5	길꾼	lay	ers to 3"	" thick					
													of Exploration at 12.0 ft									
15																						
20																						
20																						
25																						
30		L							<u> </u>													
ks	So	Il Sa	amp	les fi	eld so	creene	d with I	Mini Ra	e PID o	calibrate	ed to	an isc	butylene standard w	here	e ND	indicate	s no de	etectio	on.			
Remarks																						
Note		NR =	Not I	Recorde	ed; NA =	 Not App 	olicable; O	R = Out of	Range				e noted in Remarks). The met								one Detected;	,
	3)	Abbr Rod/	eviatio Hamm	ons: A = her	Auger	C = Cor	e; MC=Ma	crocore; D	= Driven;	G = Grab;	PS = Pi	s or grou ston Sam	ndwater may occur due to othe ple; SS = Split Spoon; SSL = 3	3.5 Incl	h ID Sp	olit Spoon; S	T = Shelb	y Tube;	V = Va	me; WOR/H		
1	4) 5)	Prop Strati	ortions	s Used: on lines	Trace = represe	1-10%; I	Little = 10- timate bour	-20%; Som adary betw	e = 20-35% een materi	%; And = 3 al types, tra	5-50% nsitions	s may be	gradual.						Bori	ng No.:	B-11	

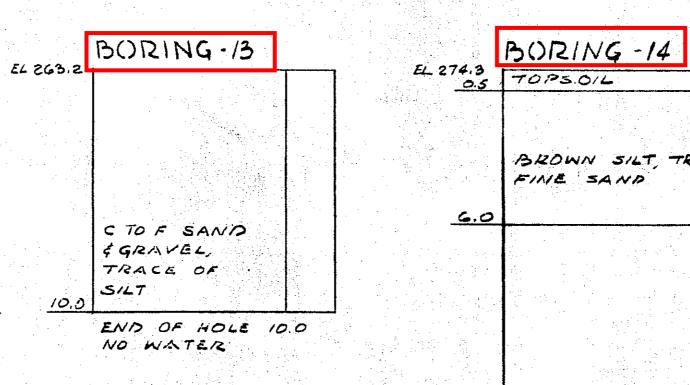

													BOF	RIN	[G]	LOG		Bor	ing No.:	B-12
					_	_)	_				P	rojec	t Nar	ne			e No.:	1 of 1
			C I	G E		D O R	P O	SI R A	G , te	N D					- 1	1 1 - 11				
				Geo	techni		Constructi eers and S			ntal						r Hall BI-RC-393			No.:	0185-049.00
						Telepho	-	Fax										Che	ecked By:	ULF
Bor	ng Co	ompa	iny:	_	Gener	al Boring			•				Casing:	San	<u>npler:</u>		Groundy	vater C	bservations	
	man:			-			hn Wyand	<u>t</u> t					Type: <u>H.S.A.</u>		SS	Date	Depth (ft)	Elev. (ft)		Notes
	Desig Start		:р.:	_		<u>t Marsha</u> ary 3, 20 [.]		Date	Finished:	Februa	nrv 3. 20	016	I.D.: <u>3.25 in.</u> Hammer Wt.: N/A		8 in.) Ibs	▼ 2/3/16	(11)	(11)	Dry none	encountered
	Coordi			_					ordinate:				Hammer Fall: N/A) in.	¥ 2/3/10			Dry, none	choountered
		urfac	e Ele	vation (· /	Offset:	151. #	5					Rig Type: Bombardier Hammer Type: Automat			III50 ▼				
Stat	on:						Sample I	Informa	tion						raulic	I				
	vs/ft										0	50	Strata Description	ol		San	nple D	escri	ption	
(ŧ	Casing Blows/ft	ы.		Penetration (inches)	ery s)	(£)	F	3lows / 6 i	nch Interva	al	Coring Time (min./ft)	PID Reading (ppm)		Symbol						
Depth (ft)	Casing	Number	Type	enetr	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Coring min./j	PID R	Depth & Elevation(feet)		Class	ification System: Ma	dified D	urmist		
F	5	~	L	<u> </u>		+	0-0	0-12	12 - 18	10-24		<u> </u>	Asphalt			ification System: Mo				
		-1-	-SS-	-9	6-	-0.5-		-60/3"-				-ND-	Base Course 15/.2 Fill	\bigotimes	lo] Coa∫	o 3": gray fine f arse Gravel, tra	to coa ace Si	irse S It	SAND, SO	ome fine to
														\bigotimes		ttom 3": red bro		ne to	coarse	SAND, little
			-55-	-24-	-16-	2.5	49	60	81-	81		-ND-		\bigotimes		e Gravel, trace		um S	SAND lit	tle (+) Silt
5													4.5 Sandy Silt to 147.0		tra	ce fine Gravel				
		3	SS	24	12	5	10	9	11	12		ND	Silty Fine Sand		Re	d brown fine to	medi	um S	SAND, tra	ace Silt
					40	<u> </u>		<u> </u>							Re	d brown fine S		little	Silt	
		4	SS	24	13	7	11	11	10	13		ND				ttom 3": red bro				Sand
10		5	SS	24	12	10	14	16	13	19		ND				d brown,				
																o 3": SILT, trac				
															ЛВО	ttom 9": fine Sa	and, ti	ace	(+) Siit	
15						<u> </u>			<u> </u>						De	dhrown				
		6	SS	24	13	15	6	10	16	13		ND				d brown, o 9": SILT, trac	e fine	San	d, wet	
													17.0 Bottom 134.5	<u>9999</u>	Bot	ttom 4": fine SA	AND,	little	Silt, (dry) _
													of Exploration at 17.0 ft							
20																				
								<u> </u>	<u> </u>											
						<u> </u>														
25						<u> </u>														
\vdash						<u> </u>														
30																				
	1.)	So	il sa	mple	s fiel	d scre	ened w	ith Mini	Rae P	ID calib	rated	to an	isobutylene standar	d wh	nere l	ND indicates no	o dete	ectior	1.	
Remarks																				
Ren																				
Net	a. 1)	50:10	Samel	00 00000	mad in	the field -	using a celi	brated Dka	tojonizatio	n Detector	(unlace	otherwis	e noted in Remarka) The most	tor was	calibra	tad relative to a herea	no in oir	etanda	rd ND - No	ne Detected:
inote	2)	NR = Wate	Not l r leve	Recorde I readin	ed; NA ⊧ gs have	= Not App been mad	plicable; Ol de at times	R = Out of and under	Range conditions	stated, flue	ctuation	s of grou	e noted in Remarks). The met ndwater may occur due to othe	er facto	rs over	time. AC = After cor	ing; NR	= Not F	Recorded.	
	3)	Abbr Rod/	eviatio Hamn	ons: A = ner	Auger	; C = Cor	e; MC=Ma	crocore; D	= Driven;	G = Grab;	PS = Pi	ston Sam	ple; SS = Split Spoon; SSL = 3	3.5 Incl	h ID Sp	lit Spoon; ST = Shelb	y Tube;	V = Va	ne; WOR/H	
1	4)	riop	Juon	s Used:	r race =	· 1-10%; J	Little = 10-	-20%; SOM	.c - 20-33%	, And = 3	J-JU%	,						ROLL	ng No.:	B-12

Appendix 3 – Pre-Existing Boring Logs and Location Plan (1963 Drawings)


Pre-Existing Boring Data

(Taken from As-Builts of 1963 Kaiser Hall Addition)

Detail taken for portion of Drawing S-1 (next Sheet)



Borings By-Engineering Services In: Feb. 15,1963

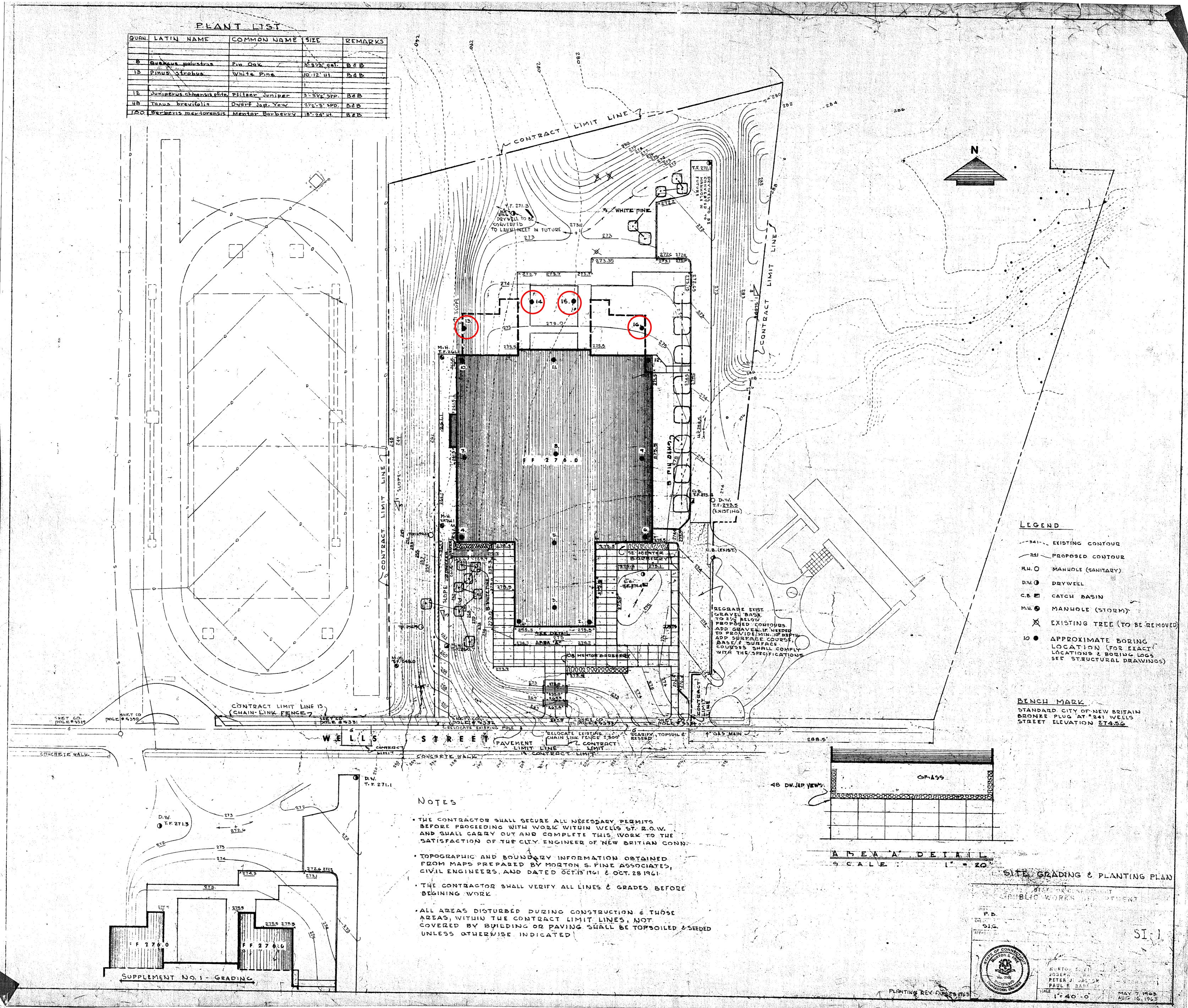
Stern National States

	BODING -A		BODINC F		BODING
	BORING-4	- EL 278.4	BORING-5	EL. 279:2	BORING - G
	G to F SAND & GRAVEL,		HARD PAN (SILT, SAND	<u> </u>	RED C TO F SAND & GRAVEL, TRACE SILT
30	TEACE OF SILT	<u>4.5</u>	L GRAVEL	35	RED HARDPAN
				7.0	8 GRAVEL
21				20	
26	END OF HOLE 15.0 NO WATER			22	CRAVEL, (RED) SOME SILT, GRAVEL, SOME DECOMP. SHALE
31					C. TO F GRAVEL
51			RED GRAVEL SOME F to M SAND, TRACE	2.8 21.0	END OF HOLE ZIC NO WATER
29		<u>26</u> 0	SILT	<u>30</u>	
22					
	BORING-9	FL 263.5	BORING-10	BI 2817	BORING 11
	EL.280.9 RED HARDPAN (SILT, SAND, & GKAVEL)	EL. 263,5	BORING-10	EL. 281.7	BORING 11
Σ.	EL.280.9 RED HARDPAN (SILT, SAND,	EL. 263,5	C TO F SAND	EL. 281.7 7.0	BORING 11 BROWN SILT TRACE FINE SAND
	EL.280.9 RED HARDPAN (SILT, SAND, & GRAVEL) 5:0	EL 263,5 <u>10,0</u>	C TO F SAND & GRAVEL, TRACE OF SILT END OF HOLE A		BROWN SILT TRACE FINE
Σ.	EL.280.9 RED HARDPAN (SILT, SAND, CGKAVEL) 5:0 43 27	EL. 26 3.6	C TO F SAND S GRAVEL, TRACE OF SILT	2.0	BROWN SILT TRACE FINE SAND F TO M BR SAND TRACE GRAVEL,
Σ.	EL.280.9 RED HARDPAN (SILT, SAND, & GIKAVEL) 5:0 43 43 27 27 SILT, & FINE TO COARSE SAND	EL. 26 3.6	C TO F SAND & GRAVEL, TRACE OF SILT END OF HOLE A	7.0 7.0 0.0	BROWN SILT TRACE FINE SAND F TO M BR SAND TRACE GRAVEL, E SILT F. BROWN SAND
T	EL.280.9 RED HARDPAN (SILT, SAND, ¢ GKAVEL) 5.0 43 27 GRAVEL, TR. SILT, ¢ FINE TO COARSE	EL. 26 3.6	C TO F SAND & GRAVEL, TRACE OF SILT END OF HOLE A	7.0 7.0 0.0	BROWN SILT TRACE FINE SAND F TO M BR SAND TRACE GRAVEL, E SILT F BROWN SAND TRACE SILT
17	EL.280.9 RED HARDPAN (SILT, SAND, & GIMAVEL) 5:0 43 43 43 43 43 43 43 150 180 180 180	EL. 26 3.6	C TO F SAND & GRAVEL, TRACE OF SILT END OF HOLE A	7.0 7.0 0.0	BROWN SILT TRACE FINE SAND F TO M BR SAND TRACE GRAVEL, & SILT F BROWN SAND TRACE SILT 2

0.5	70P5.016		
	BROWN SILT, TR FINE SAND		
6.0		/4	
		17	
	FINE TO COARSE BROWN SAND		
16.0		23	
)	
		29	
	FINE TO COARSE SAND, SOME GRAV TRACE SILT	6L	

	BORING-15
EL. 281.5 1,0	TOPSOIL & SILT
6.0	BROWN, RED SILT, TRACE FINE SAND
	FINE BR SAND
	F TO M RED SAND, TRACE

31.0 TRACE SILT

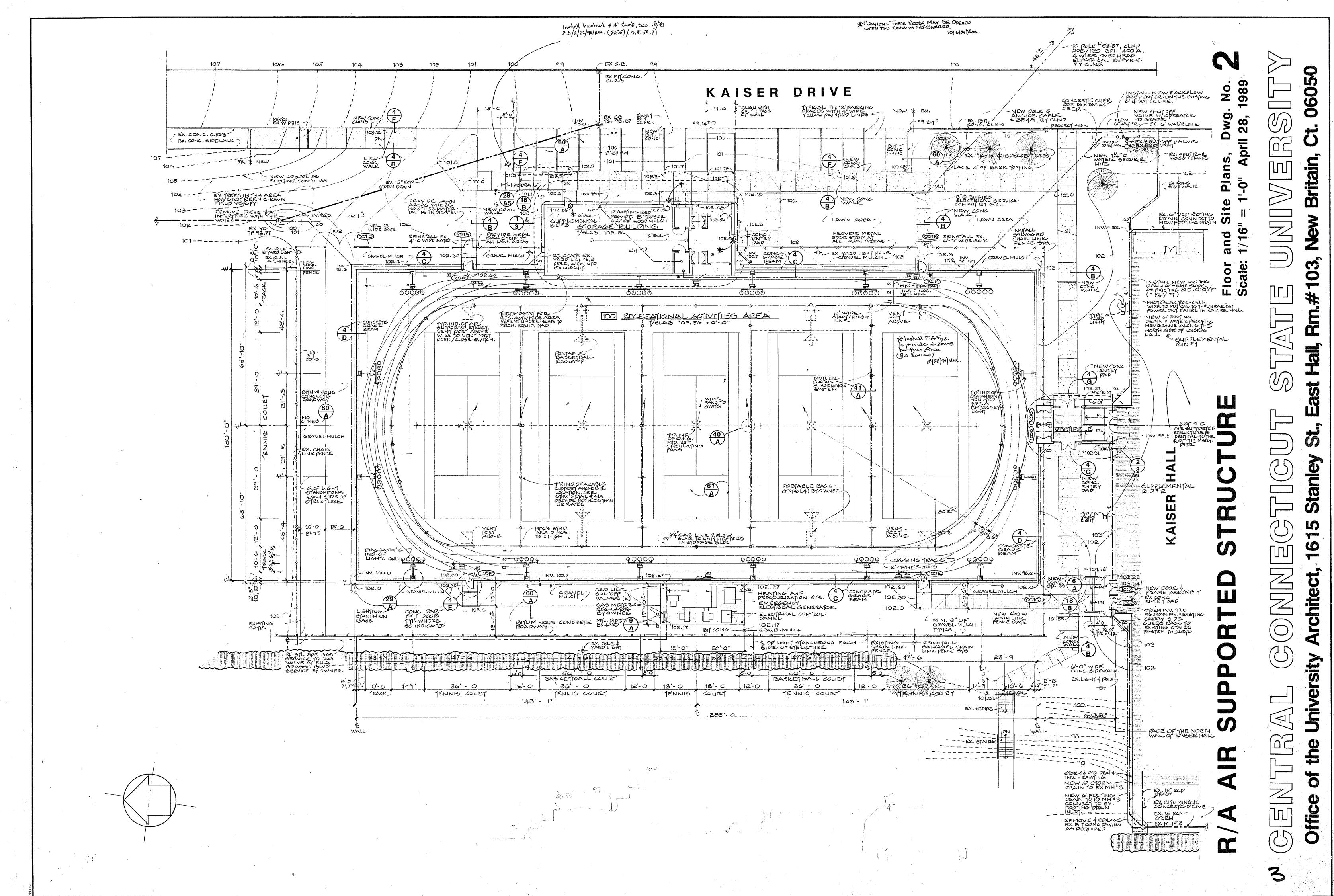

17.0

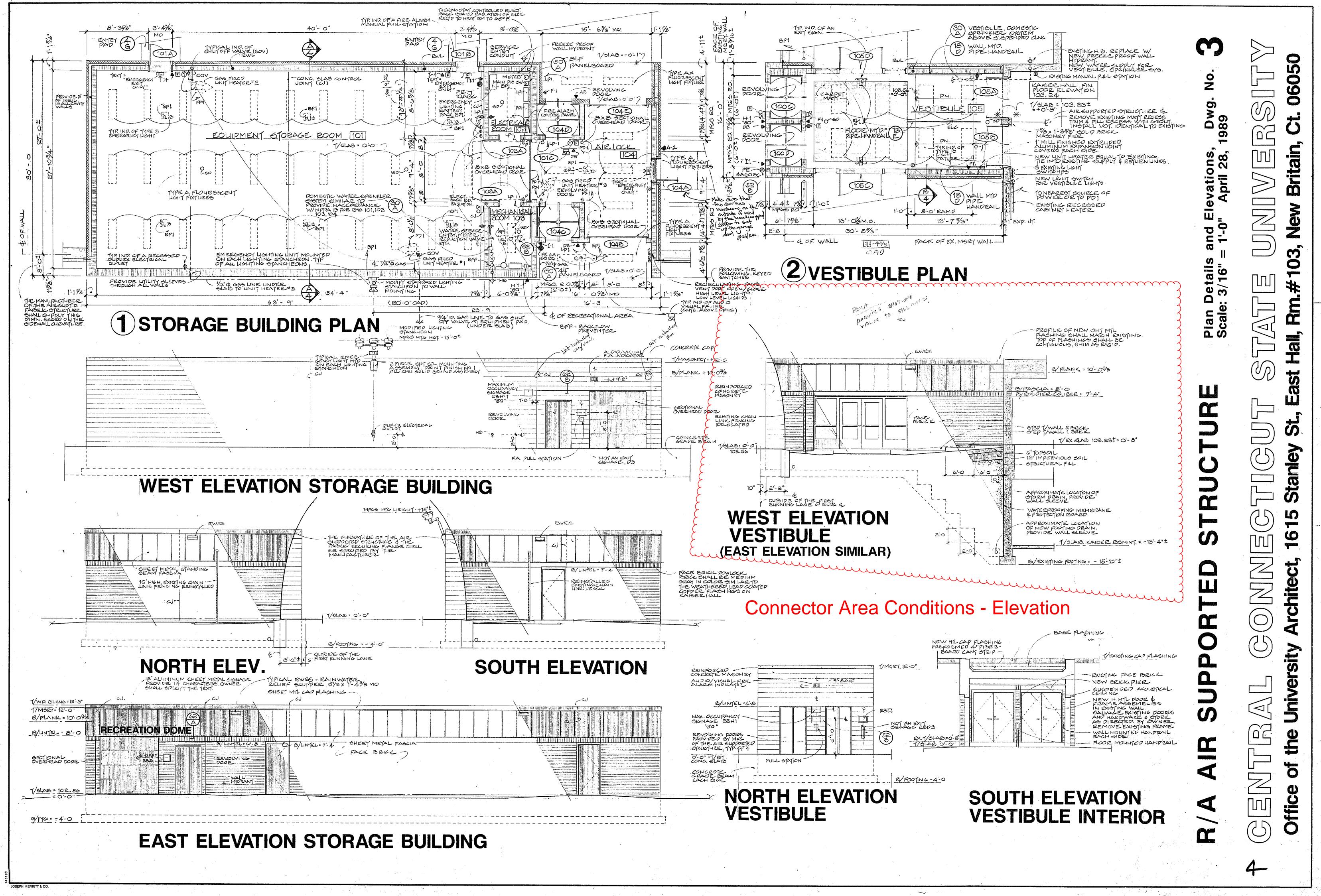
Borings By - Engineering Services In: Feb. 15,1963

2	BORING -6	Franke	50RING-7			BORING-8		
	RED C TO F SAND & GRAVEL, TRACE SILT	EL 264.5			EL:282:3 <u>/:5</u>	BROWN SILT	5	
	RED HARDPAN 30 (SILT, SAND, & GRAVEL		C TO F SAND & GRAVEL,				28	
		<u>10.0</u>	TRACE OF S/LT					
	3)		END OF HOL NO WATER	.6 10.0			22	
	CRAVEL, (RED) Some Silt, 25					C TO F SAND		
0	GRAVEL, SOME DECOMP. SHALE					E GRAVEL TRACE OF SILT	30	
0	C TO F GRAVEL						86	
	END OF HOLE 21.0 NO WATER							
							33	
					29.0			
	BORING 11		BORING-12				26	
17			RED BROWN SILT, SOME GRAY					
	BROWN SILT	<u>3.0</u>	<u>с. то F. SAND</u>			RED SILT, C FINE SAND, MED. COMM.	3	
2	TRACE FINE 12 SAND			26	<u>38.0</u>			
	F TO M BR SAND TRACE GRAVEL,						22	
0	E SILT 15 F. BROWN SAND TRACE SILT			27				
<u>0</u>	24			26				
		<u>17,0</u>				BROWN SILT, MOIST COMIS		
	1 29			25	<u>51.0</u>	END OF HOLE : NO WATER	24. 510	
	FINE TO MED SAND, E GRAVEL		F TO M SAND,					
5 0	TRACE SILT	26:0	& SOME GRAVEL, TRACE SILT	24				
	END OF HOLE 26.0 NO WATER		END OF HOLE 2 NO WATER	2 6.0				
	BORING-15	EL, 283, 4	BORING-16]				
a	TOPSOIL & SILT	<i>EL. 609.4</i>	RED SILT (HARIS PAN)					
	BROWN, RED SILT, TRACE FINE SAND	4.0						
.0	15			32				
	FINE BR SAND		GRAVEL E					
<u>0</u>		/3,0	C TO F SAND	28			N	
	F TO M RED SAND, TRACE 23			23				
0	SILT							
	2 B			. 87				
			RED SILT &				11日 11日 11日 一 一 大 大	
	30	26.0	FINE TO COURSE SAND. TEACE GRAVEL	21				
	FINE TO MED		END OF HOLE VO WATER	6 8 , 0				
/ <mark>,0</mark>	SAND & GRAVEL TRACE SILT 83 ENT OF HOLE 31.0							
	NO WATER		B F		<u>LOGS</u>	F CONNECTICUT		
				F ^{WRR} WRR	UBLIC WOF	KS DEPARTME	PROJECT	
					CENTEAL CO	ON PACIFICA	No. B/1-R-	199 •
			CONNECTION CONNECTION		P .	PLANS PREAMER ISSELL F. HILLS, A ISS MARIN AVI, WELLI	DCUITC	
			o ~~~	医动力 建建		ENGINEERS		

ENGINEERS MORTON S. FINE. ASSOCIATES - SITE JOSEPH Y HALLISEY - STRUCTURAL PETER J DALTON - MECHANICAL PAUL R. BARBUTO - ELECTRICAL

SCALE As Shown BATE 5-7-63 REV. DOLG-63

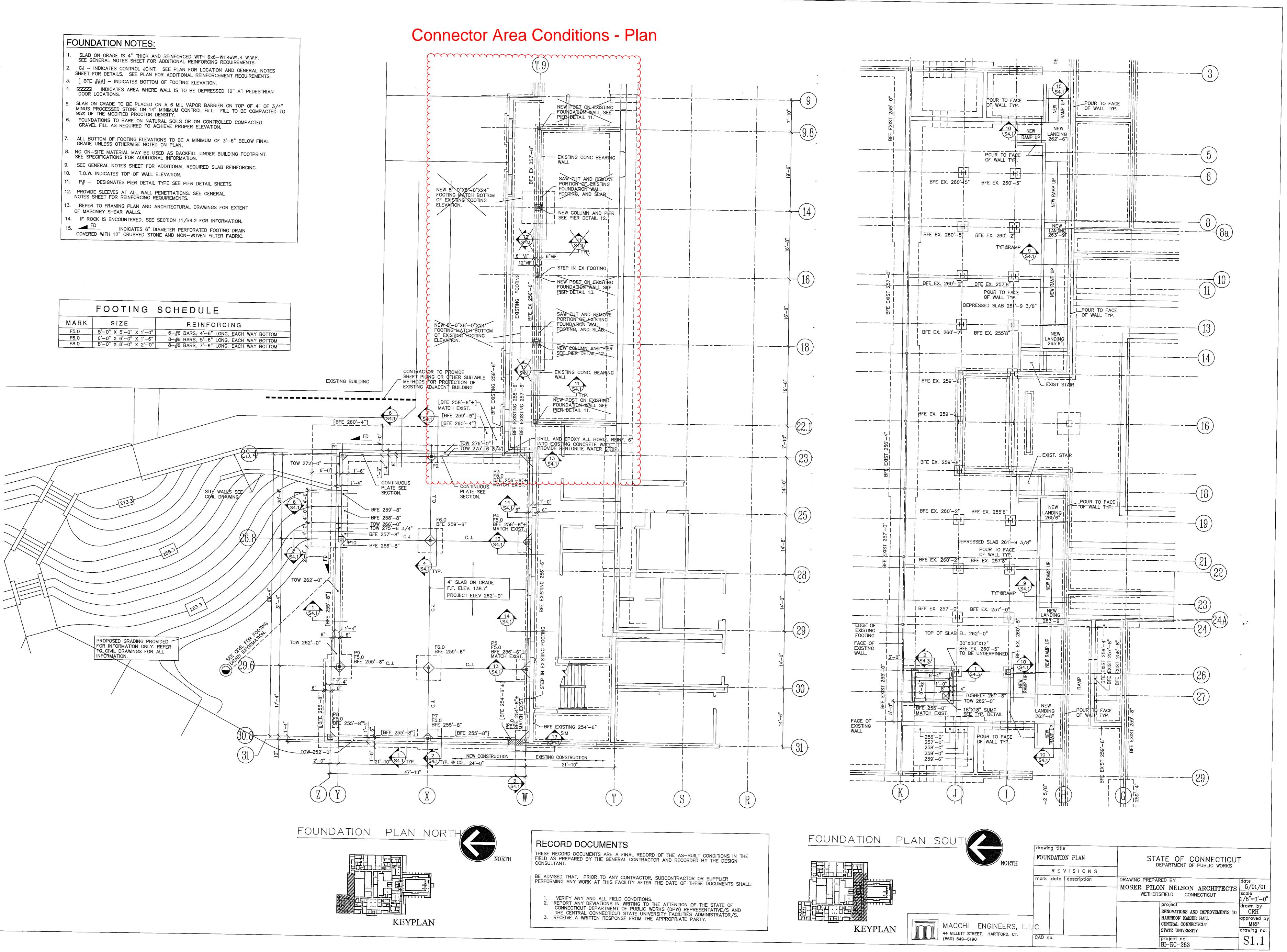


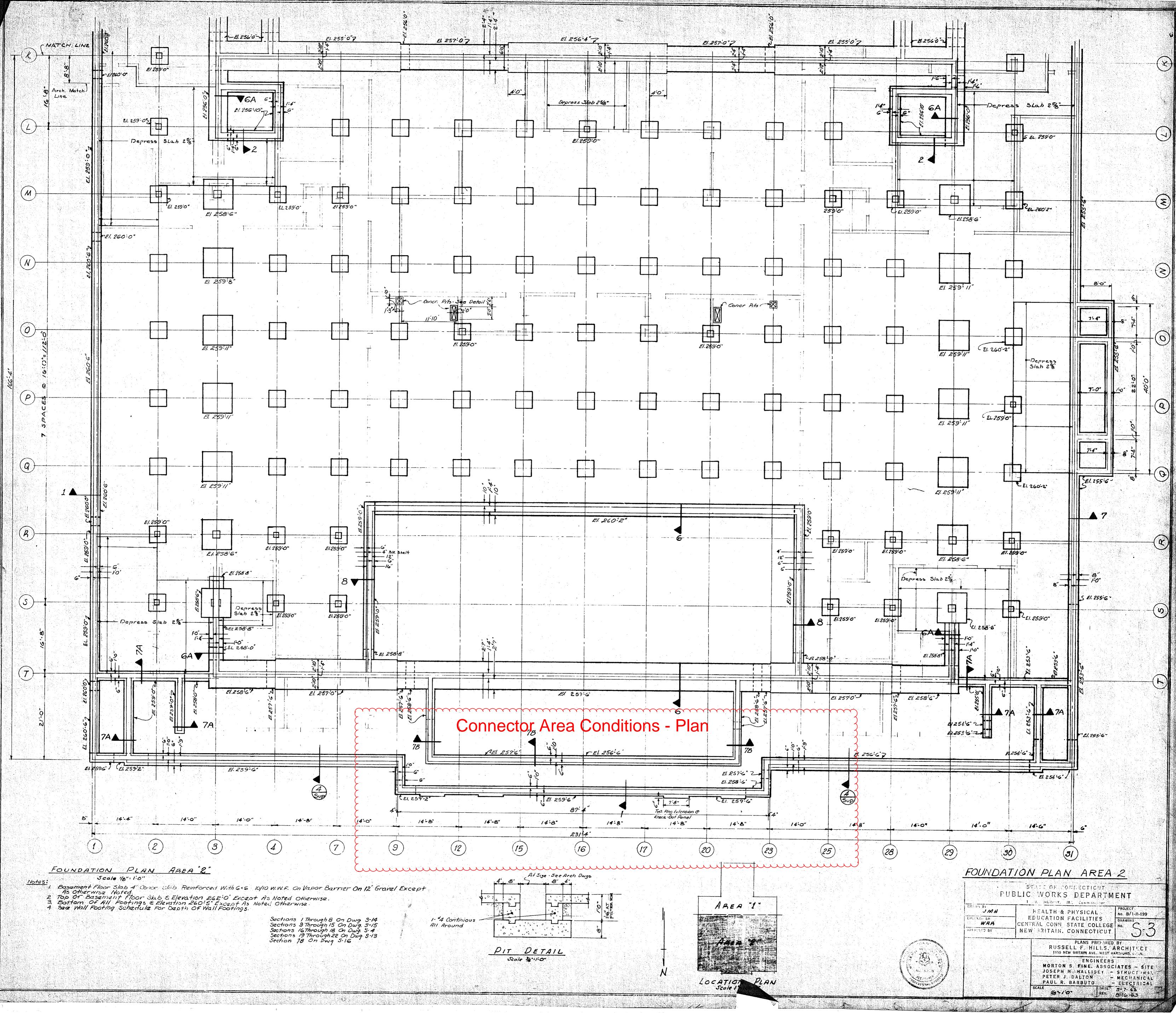

ude de la s

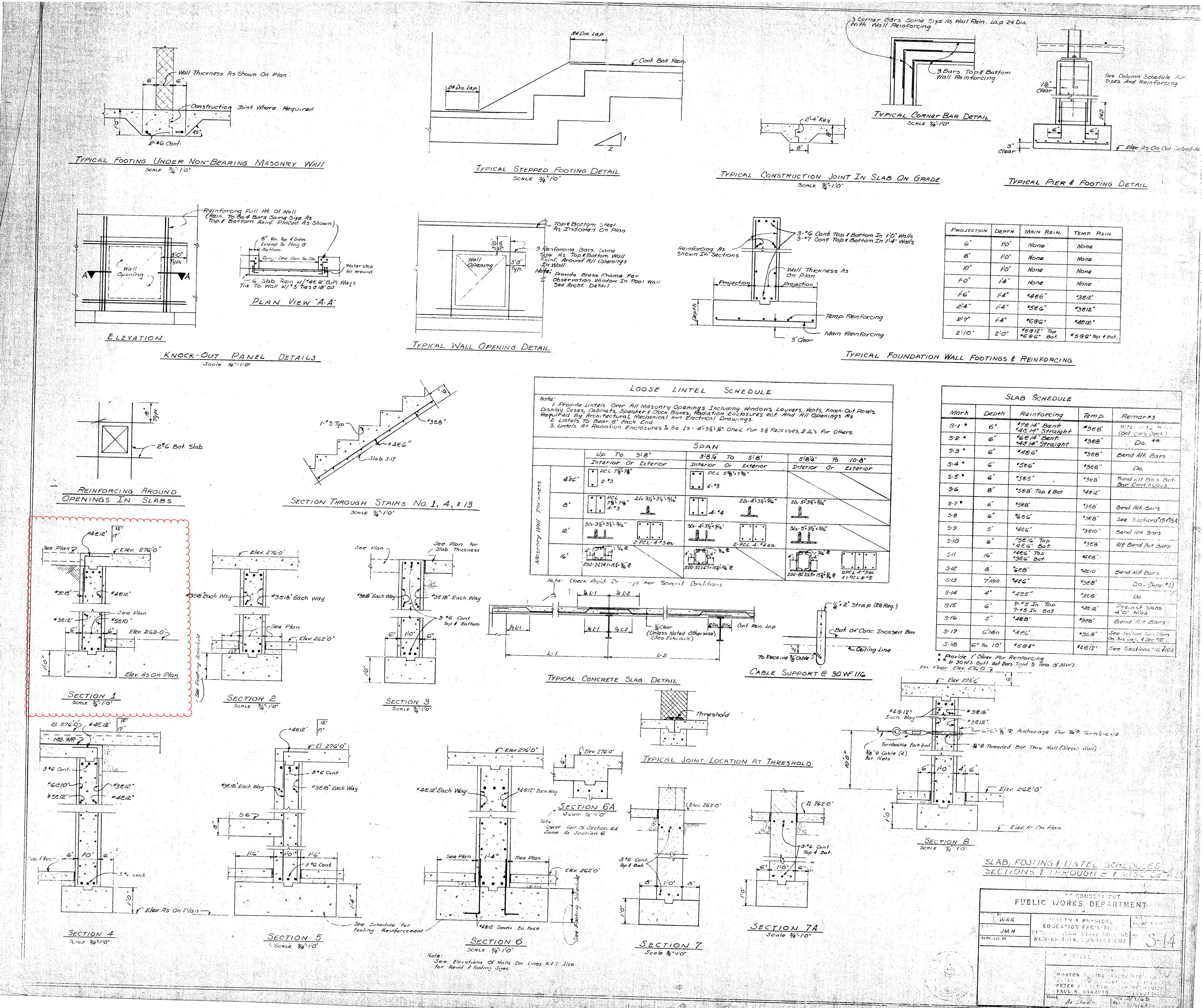
<u>1</u> 1000

Selected As-Built Data in Connector Area

(Taken from As-Builts of 1963 Kaiser Hall Addition)

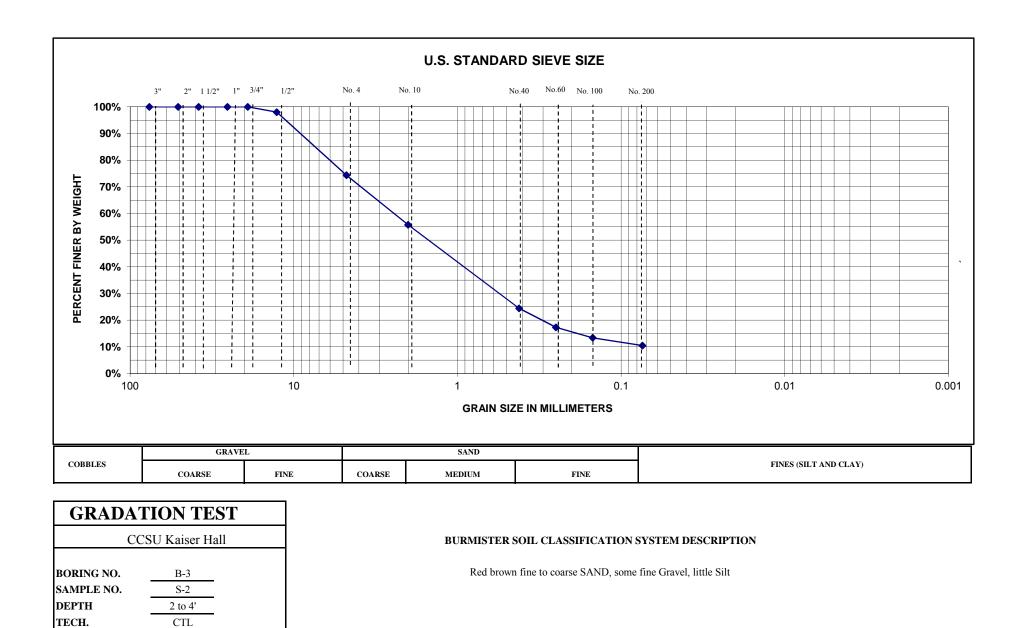





- [BFE ###] INDICATES BOTTOM OF FOOTING ELEVATION.
- FOUNDATIONS TO BARE ON NATURAL SOILS OR ON CONTROLLED COMPACTED

- OF MASONRY SHEAR WALLS.

	FOOTING	SCHEDULE
MARK	SIZE	REINFORCING
F5.0	5'-0" X 5'-0" X 1'-0"	6-#6 BARS, 4'-6" LONG, EACH WAY BOTTOM
F6.0	6'-0" X 6'-0" X 1'-6"	8-#6 BARS. 5'-6" LONG FACH WAY BOTTOM
F8.0	8'-0" X 8'-0" X 2'-0"	8-#8 BARS, 7'-6" LONG, EACH WAY BOTTOM



Annal Sec.

RE/ 5/7/63

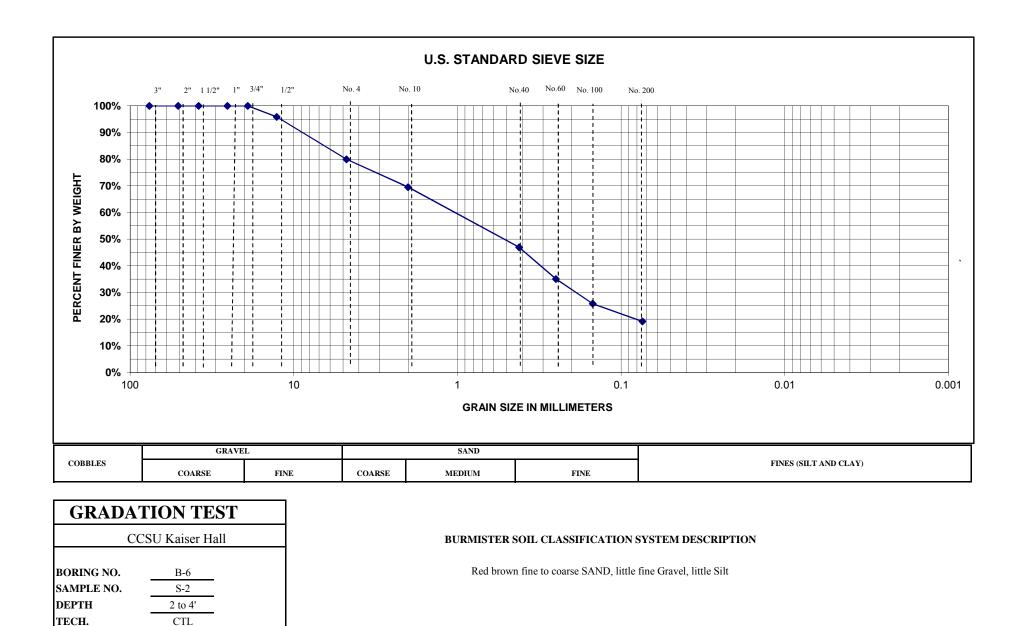
Appendix 4 – Geotechnical Laboratory Test Data

REVIEWER

DATE

FILE NO.

DFL


2/29/2016

0185-049

 GeoDesign Inc.
 (203) 758 8836 (voice)

 984 Southford Road
 (203) 758 8842 (fax)

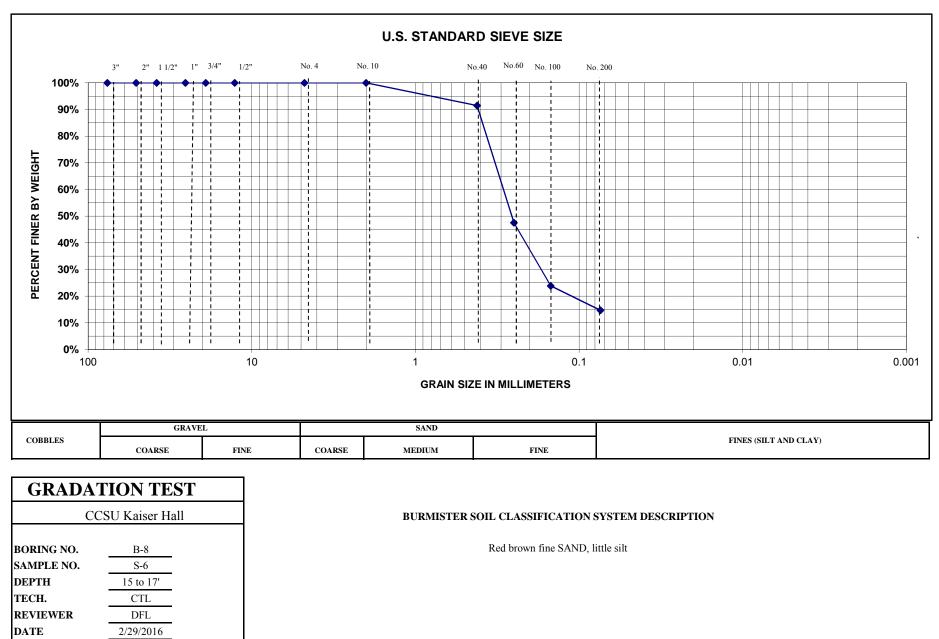
 Middlebury, Connecticut 06762
 www.geodesign.net

CTL

DFL

2/29/2016

0185-049.5

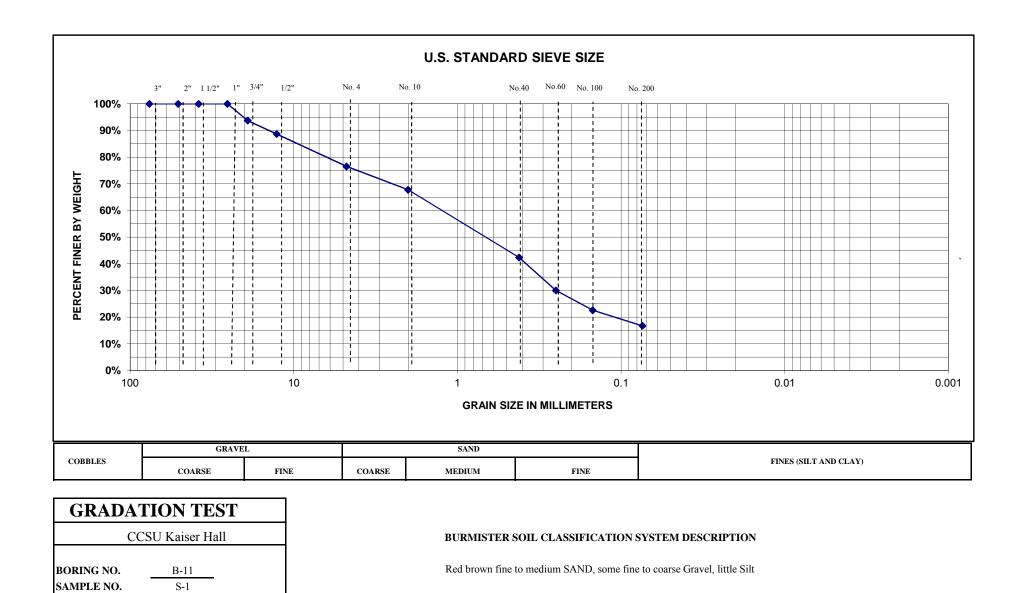

REVIEWER

DATE

FILE NO.

GeoDesign Inc. 984 Southford Road Middlebury, Connecticut 06762

(203) 758 8836 (voice) (203) 758 8842 (fax) www.geodesign.net



Geo**Design** Inc. (984 Southford Road (Middlebury, Connecticut 06762 v

FILE NO.

0185-049.5

(203) 758 8836 (voice) (203) 758 8842 (fax) www.geodesign.net

Geo**Design** Inc.(2984 Southford Road(2Middlebury, Connecticut 06762w

DEPTH

ТЕСН.

DATE

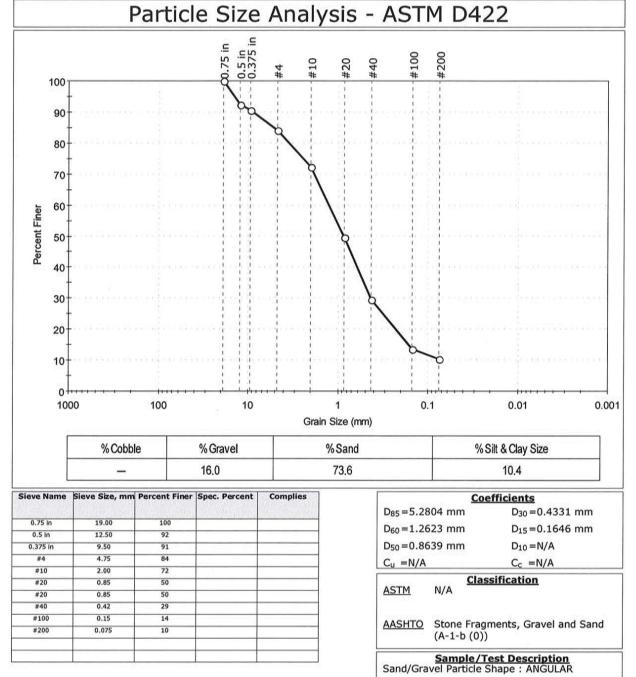
FILE NO.

REVIEWER

0 to 2'

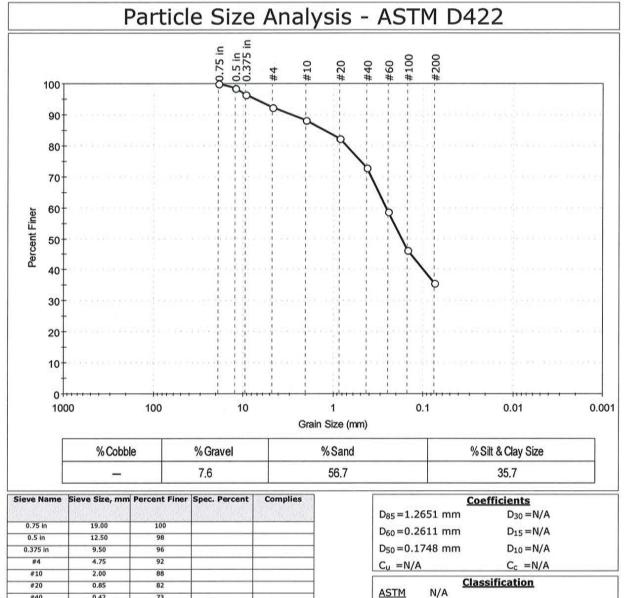
CTL

DFL


2/29/2016

0185-049.5

(203) 758 8836 (voice) (203) 758 8842 (fax) www.geodesign.net


Client:	GeoDesig	in, Inc.				
Project:	CCSU Kai	iser Hall				
Location:	New Briti	an, CT			Project No:	GTX-304364
Boring ID:	B-2		Sample Type	e: jar	Tested By:	GA
Sample ID:	S-1		Test Date:	02/16/16	Checked By:	jdt
Depth :	0-2 ft		Test Id:	364684		
Test Comm	ent:					
Visual Desc	ription:	Moist, darl	reddish brown s	and with silt	and gravel	
Sample Co	mment:					

Sand/Gravel Hardness : HARD

Client:	GeoDesign	, Inc.				
Project:	CCSU Kais	er Hall				
Location:	New Britia	n, CT			Project No:	GTX-304364
Boring ID:	B-5		Sample Type	: jar	Tested By:	GA
Sample ID:	S-1		Test Date:	02/16/16	Checked By:	jdt
Depth :	0-2 ft		Test Id:	364683		
Test Comm	ent:					
Visual Desc	ription:	Moist, dark	reddish brown s	ilty sand		
Sample Cor	mment:					

AASHTO Silty Soils (A-4 (0))

Sand/Gravel Hardness : HARD

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

#40

#60

#100

#200

0.42

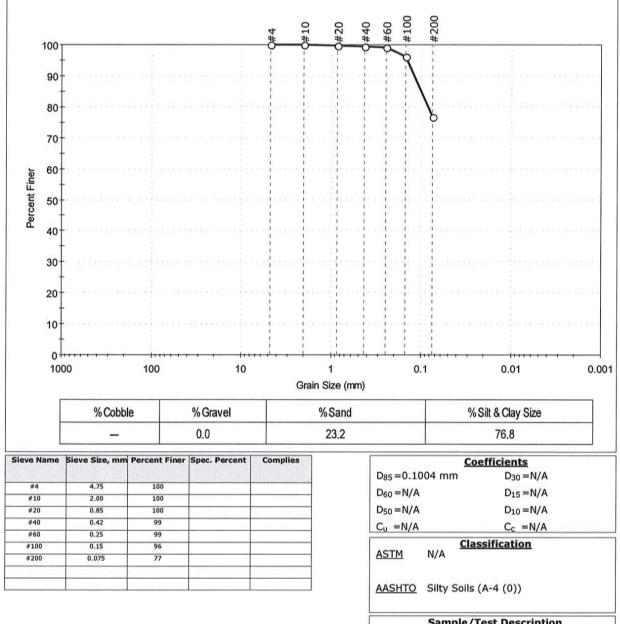
0.25

0.15

0.075

73

59


46

36

Client:	GeoDesig	n, Inc.				
Project:	CCSU Kai	ser Hall				
Location:	New Britia	an, CT			Project No:	GTX-304364
Boring ID:	B-6		Sample Type	e: jar	Tested By:	GA
Sample ID	: S-6		Test Date:	02/16/16	Checked By:	jdt
Depth :	15-17 ft		Test Id:	364681		
Test Comm	nent:					
Visual Desc	cription:	Moist, dar	k reddish brown s	silt with sand		
Sample Co	mment:					

Particle Size Analysis - ASTM D422

Client:	GeoDesig	n, Inc.				
Project:	CCSU Kai	ser Hall				
Location:	New Britia	an, CT			Project No:	GTX-304364
Boring ID:	B-7		Sample Type	e: jar	Tested By:	GA
Sample ID:	S-6		Test Date:	02/16/16	Checked By:	jdt
Depth :	15-17 ft		Test Id:	364682		
Test Comm	nent:			1979-194 - 1474 - 1970 - 1		
Visual Desc	cription:	Moist, dar	k reddish brown s	silt with sand		
Sample Co	mment:					

Particle Size Analysis - ASTM D422 #100 #200 #20 #40 #10 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 1000 100 10 1 0.1 0.01 0.001 Grain Size (mm) % Cobble % Gravel %Sand % Silt & Clay Size 0.0 29.9 70.1 _ Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies ٦

oleve nume	Sieve Size, min	recent i mer	Spec. Facent	compiles
#4	4.75	100		Negli V R Sile
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	99		
#100	0.15	96		
#200	0.075	70		

	Co	efficients
D85=0.11	L25 mm	$D_{30} = N/A$
$D_{60} = N/A$		D15=N/A
D50 = N/A		D10=N/A
$C_u = N/A$		C _c =N/A
ASTM	N/A	sification
AASHTO	Silty Soils ((A-4 (0))
		est Description

Appendix 5 – Preliminary Soil Pre Characterization Report

APPENDIX 5 Preliminary Environmental Characterization Report

March 17, 2015; File No. 0185-49.00

Re: CCSU Kaiser Hall DAS Project No. BI-RC-393 New Britain, CT

DESIGN PHASE PRELIMINARY SOIL PRE-CHARACTERIZATION PROGRAM

- a. GeoDesign planned and conducted a Phase Preliminary Soil Pre-characterization Program to initially assess the environmental quality of shallow soil samples for beneficial reuse in area of likely construction-phase excavations. This program consisted of the following:
- b. Soil samples were obtained semi-continuously from the ground surface to the top of the groundwater table. Boring logs were logged by a field engineer/geologist. Soil samples were screened for the presence of volatile organic contaminants using a calibrated photoionization detector (PID). The boring logs summarize the subsurface conditions encountered and noted the potential presence of contamination (PID readings, color, and odor).
- c. Soil samples were selected for analysis based on location, a range of potential contaminants of concern, sample depth, PID screening results, and/or visual and olfactory field observations. Phoenix Environmental Laboratories (a State of Connecticut certified laboratory) completed the following types and number of soil analyses in accordance with the CTDEEP's Reasonable Confidence Protocols (RCP) guidance:

Type of Analyses	No. of Analyses
Volatile organic compounds (VOCs) by EPA Method 8260B using sample preservation methods	2
CT Extractable Total Petroleum Hydrocarbons (CT ETPH)	2
Polychlorinated Biphenyls by EPA Method 8082	2
Semi-volatile Organic compounds (SVOCs) by EPA Method 8270C	2
 Waste Characterization Parameters Ignitability / Flashpoint (Setaflash) - SW846 1020 Reactive Cyanide - SW846 7.3.3 Reactive Sulfide - SW846 7.3.4 Corrosivity, pH - SW846 9040 Conductivity - SW846 9045D 	2
Total RCRA 8 Metals	2
Toxicity characteristic leachate procedure (TCLP) RCRA 8 Metals	2

1

DESIGN PHASE PRELIMINARY SOIL PRE-CHARACTERIZATION RESULTS

Boring logs which provide the details for each subsurface exploration performed are included in Appendix 2 and described in the text of the report.

Soil samples were screened in the field for the presence of volatile organic compounds (VOCs) using a calibrated photoionization detector (PID). The PID provides a relative indication of the total concentration of certain VOCs in the headspace of soil samples. Each split spoon sample was screened in the field with the PID. None of the soil samples indicated elevated readings above the detection limit except in Boring B-2 with a detection of 0.2 part per million (ppm) at 5 - 7 feet and B-10 with detections of 1.6 and 9.8 ppm at 0 - 2 feet and 2 - 4 feet, respectively. PID screening results are summarized on the boring logs in Appendix 2 of this report. No discoloration or odor was noted in the sample soils.

Based on the site environmental setting and land use, the applicable remedial standards for soils are the Residential Direct Exposure Criteria (RES-DEC), Industrial/Commercial Direct Exposure Criteria (I/C-DEC) and the GA groundwater Pollutant Mobility Criteria (GA-PMC). The Connecticut Department of Energy and Environmental Protection (CTDEEP) CT-ECO website (<u>http://ctecoapp1.uconn.edu/advancedviewer</u>) indicated that the CTDEEP has classified groundwater underlying the Site as "GA". GA groundwater is presumed suitable for use as an existing private and potential public water supply without prior treatment. It may be used as a supply of agricultural or industrial process water.¹

Soil samples were analyzed for the parameters listed on Page 1 based upon proposed use of the site and observations (e.g. color, staining, odor and PID screening). Samples were analyzed from discrete depth intervals for volatile organic compounds testing, and wider depth intervals, for overall soil reuse characterization.

The analytical laboratory results are included at the end of this appendix, and are summarized in Tables 1 and 2. The tables include a comparison of the analytical data to numeric remedial criteria specified in Connecticut's Remediation Standard Regulations (RCSA 22a-133k).

The hydrocarbon compound Naphthalene is a hydrocarbon that is quantified both on the volatile organics test (Table 1) and on the polynuclear aromatic hydrocarbons test (Table 2). The volatile organic compound test of the discrete 3-foot deep sample in Boring B-10, the concentration of Naphthalene exceeded the GA Pollutant Mobility Criteria (GA-PCM) by a factor of 1.78 (10,000 ug/kg vs. 5,600 ug/kg). However, that VOC sample was subject of a 50X dilution, and the laboratory result for this Naphthalene detection was flagged, as being

State of Connecticut Department of Environmental Protection, "Water Quality Standards", Effective February 25, 2011

outside of laboratory-specified recovery limits, and therefore the result by the VOC test is suspect and is indicated as such on Table 1. The Naphthalene result from the polynuclear aromatic hydrocarbons test in the B-10 sample (0-5 ft depth interval) summarized on Table 2 indicated no detection, at an appropriately low detection limit of <270 ug/kg, well below the 5,600 ug/kg groundwater protection criteria standard.

In the 0 to 4-foot deep sample in Boring B-1, the concentration of leachable Lead by the toxicity characteristic leaching procedure (TCLP) exceed the GA Pollutant Mobility Criteria (GA-PCM) by a factor of 7.4 (0.111 mg/l vs. 0.015 mg/l). We note however that the corresponding total lead value in that sample was low (17.8 mg/kg) which is in the range of typical background conditions. Re-testing this area for total lead and leachable lead (by a different method, synthetic precipitation leaching procedure, SPLP), is recommended to better characterize conditions with respect to lead in this area.

PRELIMINARY ENVIRONMENTAL-RELATED OPINION

We offer the following preliminary opinion as to the significance of the environmental conditions relative to the proposed site construction:

We anticipate two types of earthwork and foundation construction activities to occur as part of the proposed addition and related site work. In the building footprint, we anticipate a general excavation to a depth of up to about four feet below site grades, and locally (at the connector and at the southwest building corner) deeper to remove existing fill. The area will then be covered with the new addition's concrete slab-on-grade. In the area of the proposed storm water infiltration area(s), storm water will be infiltrated into shallow site soils and either a vegetative revetment or common earth/impounded water will cover the final ground surface. Of these two proposed activities, the latter is more critical as it will allow surface and storm water to infiltrate into existing site soils.

In light of the previously described soil analytical results, it is our opinion that additional testing for PAHs and total and SPLP lead be performed to further characterize shallow site soils, particularly in the area of Boring B-10 which is in the general area that is slated for the infiltration areas.

LIMITATIONS

This appendix is subject to the limitations included in Appendix 7.

TABLE 1 SUMMARY OF DETECTED COMPOUNDS IN SOIL SAMPLES CCSU KAISER HALL NEW BRITIAN , CONNECTICUT

Parameter	Remedial StandardsSample Description, Depth (ft) an Analytical Result			ind		
				B-1 2.5 FT	B-10 FT	3.0
	GA-PMC	I/C-DEC	RES-DEC			
	Volatiles	s By SW8260C i	n ug/kg			
Ethylbenzene	10,100	1,000,000	500,000	< 4.0	250	
m&p-Xylene	19,500	1,000,000	500,000	< 4.0	1,500	
Naphthalene	5,600	2,500,000	1,000,000	< 4.0	10,000	
n-Butylbenzene	1,400	1,000,000	500,000	< 4.0	290	
o-Xylene	19,500	1,000,000	500,000	< 4.0	670	
Total Xylenes	19,500	1,000,000	500,000	< 4.0	2,170	

Legend

RES-DEC = Residential Direct Exposure Criteria

I/C-DEC = Industrial/Commercial Direct Exposure Criteria

GA PMC= GA Pollutant Mobility Criteria

< 4.0 = Not Detected Above Laboratory Detection Limit

Highlighted Value Denotes Analytical Detection Above Remedial Standard

Notes

1. Samples were obtained on Feb. 1 and 2, 2016 by GeoDesign, Inc and submitted to Phoenix Environmental Laboratories

of Manchester, Connecticut.

2. Remedial standards were obtained from the Connecticut Remediation Standard Regulations 22a-133k-2.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN SOIL SAMPLES CCSU KAISER HALL NEW BRITIAN, CONNECTICUT

Parameter	Rei	nedial Stand	ards		ion, Depth in feet tical Result
	GA-PMC	I/C-DEC	RES-DEC	B-1 0 - 4 FT	B-10 0 - 5 FT
	Polynuclear A			~ ~	
2-Methylnaphthalene	980	2,500,000	474,000	< 270	< 280
Acenaphthene	84,000	2,500,000	1,000,000	< 270	< 280
Acenaphthylene	8,400	2,500,000	1,000,000	< 270	< 280
Anthracene	40,000	2,500,000	1,000,000	< 270	< 280
Benz(a)anthracene	1,000	7,800	1,000	< 270 < 270	590 600
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	7,800	1,000	< 270	490
Benzo(ghi)perylene	4,200	2,500,000	1,000,000	< 270	380
Benzo(k)fluoranthene	4,200	2,300,000	8,400	< 270	470
Chrysene	1,000	780,000	84,000	< 270	660
Dibenz(a,h)anthracene	1,000	1,000	1,000	< 270	< 280
Fluoranthene	5,600	2,500,000	1,000,000	< 270	1,000
Fluorene	5,600	2,500,000	1,000,000	< 270	< 280
Indeno(1,2,3-cd)pyrene	1,000	7,800	1,000,000	< 270	380
Naphthalene	5,600	2,500,000	1,000,000	< 270	< 280
Phenanthrene	4,000	2,500,000	1,000,000	< 270	460
Pyrene	4,000	2,500,000	1,000,000	< 270	990
	tractable Tot				,,,,,
ETPH	500	2,500	500	< 58	70
			henls in ug/k		-
PCB-1016	NA	10,000	1,000	< 390	< 400
PCB-1221		10,000	1,000	< 390	< 400
PCB-1232		10,000	1,000	< 390	< 400
PCB-1242		10,000	1,000	< 390	< 400
PCB-1248		10,000	1,000	< 390	< 400
PCB-1254		10,000	1,000	< 390	< 400
PCB-1260		10,000	1,000	< 390	< 400
PCB-1262		10,000	1,000	< 390	< 400
PCB-1268		10,000	1,000	< 390	< 400
Total PCBs		10,000	1,000	< 390	< 400
		Total Metals	mg/kg		
Arsenic	NA	10	10	5.3	6.7
Barium		140,000	4,700	81.2	114
Cadmium		1,000	34	< 0.38	< 0.36
Chromium		100	100	25.4	27.5
Lead		1,000	400	17.8	51
Mercury		610	20	< 0.03	0.07
Selenium		10,000	340	< 1.5	< 1.4
Silver		10,000	340	< 0.38	< 0.36
	-	TCLP Metal	Ū.		
TCLP Arsenic	0.01	NA	NA	< 0.01	< 0.01
TCLP Barium	1.0			0.86	0.74
TCLP Cadmium	0.005			< 0.005	< 0.005
TCLP Chromium	NE			< 0.010	< 0.010
TCLP Lead	0.015			0.111	0.01
TCLP Mercury	0.002			< 0.0002	< 0.0002
TCLP Selenium	0.05			< 0.01	< 0.01
TCLP Silver	0.036	<u> </u>	L	< 0.010	< 0.010
	Mi	scellaneous/I	norganics		
Conductivity - Soil Matrix in umhos/cm	~	~	~	100	26
Corrosivity - POS/NEG	~	~	~	Negative	Negative
Flash Point in Degrees F	~	~	2	>200	>200
Ignitability in Degrees F	~	~	2	Passed	Passed
pH - Soil - pH Units	~	~	2	7.66	6.82
Reactivity Cyanide in mg/kg	~	~	2	< 5.7	< 6.1
Reactivity Sulfide in mg/kg	~	~	~	< 20	< 20
Reactivity - POS/NEG	~	~	~	Negative	Negative

Legend

RES-DEC = Residential Direct Exposure Criteria

I/C-DEC = Industrial/Commercial Direct Exposure Criteria

GA PMC= GA Pollutant Mobility Criteria

< 270 = Not Detected Above Laboratory Detection Limit

NE = Not Established

NA = Not Applicable

 \sim Denotes that there is no standard for this parameter

Highlighted Value Denotes Analytical Detection Above Remedial Standard

<u>Notes</u>

1. Samples were obtained on Feb. 1 and 2, 2016 by Geo Design, Inc and submitted to

Phoenix Environmental Labortatories of Manchester, Connecticut.

2. Remedial standards were obtained from the Connecticut Remediation Standard Regulations 22a-133k-2.

Monday, February 08, 2016

Attn: Ulrich Lafosse GeoDesign 984 Southford Road Middlebury, CT 06762

Project ID: CCSU KAISER HALL NEW BRITAIN Sample ID#s: BK59760 - BK59761

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Xille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 08, 2016

FOR: Attn: Ulrich Lafosse GeoDesign 984 Southford Road Middlebury, CT 06762

Sample Informa	ation	Custody Inform	ation	<u>Date</u>
Matrix:	SOLID	Collected by:		02/01/16
Location Code:	GEODSIGN	Received by:	SW	02/01/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	185-49	l als avataw.	Data	5001

Laboratory Data

SDG ID: GBK59760 Phoenix ID: BK59760

Time

9:30 15:20

Project ID: CCSU KAISER HALL NEW BRITAIN Client ID: B-10 3.0 FT

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	83		%		02/01/16	W	SW846-%Solid
Field Extraction	Completed				02/01/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	180	ug/Kg	50	02/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,1-Dichloropropene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,3-Dichloropropane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
2,2-Dichloropropane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
2-Chlorotoluene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
2-Hexanone	ND	1500	ug/Kg	50	02/02/16	JLI	SW8260C
2-Isopropyltoluene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C

Project ID: CCSU KAISER HALL NEW BRITAIN Client ID: B-10 3.0 FT

-Chlorotoluene		PQL	Units	Dilution	Date/Time	By	Reference
	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
-Methyl-2-pentanone	ND	1500	ug/Kg	50	02/02/16	JLI	SW8260C
cetone	ND	15000	ug/Kg	50	02/02/16	JLI	SW8260C
crylonitrile	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
enzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
romobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
bromochloromethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
romodichloromethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
Bromoform	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
romomethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
arbon Disulfide	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
arbon tetrachloride	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
Chlorobenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
Chloroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
hloroform	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
Chloromethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
ibromochloromethane	ND	180	ug/Kg	50	02/02/16	JLI	SW8260C
ibromomethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
ichlorodifluoromethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
thylbenzene	250	200	ug/Kg	50	02/02/16	JLI	SW8260C
exachlorobutadiene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
opropylbenzene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
&p-Xylene	1500	290	ug/Kg	50	02/02/16	JLI	SW8260C
ethyl Ethyl Ketone	ND	1800	ug/Kg	50	02/02/16	JLI	SW8260C
ethyl t-butyl ether (MTBE)	ND	590	ug/Kg	50	02/02/16	JLI	SW8260C
lethylene chloride	ND	590 590	ug/Kg	50	02/02/16	JLI	SW8260C
laphthalene	10000	290	ug/Kg	50	02/02/16	JLI	SW8260C
-Butylbenzene	290	290	ug/Kg ug/Kg	50 50	02/02/16	JLI	SW8260C
-Propylbenzene	ND	290	ug/Kg ug/Kg	50 50	02/02/16	JLI	SW8260C
	670	290		50 50	02/02/16	JLI	SW8260C
-Xylene	ND	290 290	ug/Kg ug/Kg	50 50	02/02/16		SW8260C SW8260C
-Isopropyltoluene	ND	290 290	ug/Kg ug/Kg	50 50	02/02/16	JLI JLI	SW8260C SW8260C
ec-Butylbenzene					02/02/16		
tyrene	ND	290 200	ug/Kg	50 50		JLI	SW8260C
ert-Butylbenzene	ND	290 200	ug/Kg	50	02/02/16	JLI	SW8260C
etrachloroethene	ND	290 500	ug/Kg	50	02/02/16	JLI	SW8260C
etrahydrofuran (THF)	ND	590 200	ug/Kg	50 50	02/02/16	JLI	SW8260C
oluene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
otal Xylenes	2170	290	ug/Kg	50	02/02/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	590	ug/Kg	50	02/02/16	JLI	SW8260C
richloroethene	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
richlorofluoromethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
richlorotrifluoroethane	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
inyl chloride	ND	290	ug/Kg	50	02/02/16	JLI	SW8260C
A/QC Surrogates	100		%	50	02/02/16	JLI	70 - 130 %

Project ID: CCSU KAISER HALL NEW BRITAIN Client ID: B-10 3.0 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Bromofluorobenzene	97		%	50	02/02/16	JLI	70 - 130 %
% Dibromofluoromethane	94		%	50	02/02/16	JLI	70 - 130 %
% Toluene-d8	98		%	50	02/02/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director February 08, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 08, 2016

FOR: Attn: Ulrich Lafosse GeoDesign 984 Southford Road Middlebury, CT 06762

see "By" below

SW

Sample Information

S Matrix: Location Code: G S Rush Request: 1 P.O.#:

OLID	
GEODSIGN	
Standard	
85-49	

Laboratory Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GBK59760 Phoenix ID: BK59761

Time

10:10

15:20

Date

02/01/16

02/01/16

CCSU KAISER HALL NEW BRITAIN Project ID: Client ID: **B-10 COMPOSITE**

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
	< 0.36	0.36	mg/Kg	1	02/02/16	LK	SW6010C
Silver	< 0.36 6.7						
Arsenic		0.7	mg/Kg	1	02/02/16	LK	SW6010C
Barium	114	0.36	mg/Kg	1	02/02/16	LK	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	02/02/16	LK	SW6010C
Chromium	27.5	0.36	mg/Kg	1	02/02/16	LK	SW6010C
Mercury	0.07	0.03	mg/Kg	1	02/02/16	RS	SW7471B
Lead	51.0	0.36	mg/Kg	1	02/02/16	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	02/02/16	LK	SW6010C
TCLP Silver	< 0.010	0.010	mg/L	1	02/03/16	LK	SW6010C
TCLP Arsenic	< 0.01	0.01	mg/L	1	02/03/16	LK	SW6010C
TCLP Barium	0.74	0.01	mg/L	1	02/03/16	LK	SW6010C
TCLP Cadmium	< 0.005	0.005	mg/L	1	02/03/16	LK	SW6010C
TCLP Chromium	< 0.010	0.010	mg/L	1	02/03/16	LK	SW6010C
TCLP Mercury	< 0.0002	0.0002	mg/L	1	02/02/16	RS	SW7470A
TCLP Lead	0.010	0.010	mg/L	1	02/03/16	LK	SW6010C
TCLP Selenium	< 0.01	0.01	mg/L	1	02/03/16	LK	SW6010C
TCLP Metals Digestion	Completed				02/02/16	W/W	SW3005A
Percent Solid	82		%		02/01/16	W	SW846-%Solid
Conductivity - Soil Matrix	26	5	umhos/cm	1	02/05/16	RWR	SM2510B-97
Corrosivity	Negative		Pos/Neg	1	02/01/16	DH/KDB	SW846-Corr
Flash Point	>200	200	Degree F	1	02/03/16	Y	SW1010A
Ignitability	Passed	140	degree F	1	02/03/16	Y	SW846-Ignit
pH - Soil	6.82	0.10	pH Units	1	02/01/16 20:00	DH/KDB	SW9045
Reactivity Cyanide	< 6.1	6.1	mg/Kg	1	02/02/16		SW846-ReactCyn
Reactivity Sulfide	< 20	20	mg/Kg	1	02/02/16		SW-7.3
Reactivity	Negative		Pos/Neg	1	02/02/16	BS/GD	SW846-React
Soil Extraction for PCB	Completed		- 5		02/01/16	JC/V	SW3545A
Soil Extraction for SVOA	Completed				02/01/16		SW3545A

Project ID: CCSU KAISER HALL NEW BRITAIN Client ID: B-10 COMPOSITE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				02/01/16	BC/V	SW3545A
Mercury Digestion	Completed				02/02/16	W/W	SW7471B
CLP Digestion Mercury	Completed				02/02/16	W/W	SW7470A
FCLP Extraction for Metals	Completed				02/01/16	w	SW1311
Fotal Metals Digest	Completed				02/01/16	G/AG	SW3050B
ГРН by GC (Extractab	le Products	5)					
Ext. Petroleum HC	70	60	mg/Kg	1	02/05/16	JRB	CTETPH 8015D
dentification	**		mg/Kg	1	02/05/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	88		%	1	02/05/16	JRB	50 - 150 %
Polychlorinated Biphe	enyls						
PCB-1016	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1221	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1232	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1242	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1248	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1254	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1260	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1262	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
PCB-1268	ND	400	ug/Kg	10	02/02/16	AW	SW8082A
QA/QC Surrogates							
6 DCBP	95		%	10	02/02/16	AW	30 - 150 %
6 TCMX	81		%	10	02/02/16	AW	30 - 150 %
<u>Semivolatiles</u>							
,2,4,5-Tetrachlorobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,2,4-Trichlorobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,2-Dichlorobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,2-Diphenylhydrazine	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
,3-Dichlorobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,4-Dichlorobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,4-Dichlorophenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,4-Dinitrophenol	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
2,4-Dinitrotoluene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Chloronaphthalene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Chlorophenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Methylnaphthalene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Methylphenol (o-cresol)	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Nitroaniline	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
-Nitrophenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
,3'-Dichlorobenzidine	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Nitroaniline	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
,6-Dinitro-2-methylphenol	ND	400	ug/Kg	1	02/02/16	DD	SW8270D

Project ID: CCSU KAISER HALL NEW BRITAIN Client ID: B-10 COMPOSITE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-Bromophenyl phenyl ether	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
-Chloro-3-methylphenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Chloroaniline	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Chlorophenyl phenyl ether	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Nitroaniline	ND	640	ug/Kg	1	02/02/16	DD	SW8270D
-Nitrophenol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
cenaphthene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
cenaphthylene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
cetophenone	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
niline	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
nthracene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
enz(a)anthracene	590	280	ug/Kg	1	02/02/16	DD	SW8270D
enzidine	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
enzo(a)pyrene	600	280	ug/Kg	1	02/02/16	DD	SW8270D
enzo(b)fluoranthene	490	280	ug/Kg	1	02/02/16	DD	SW8270D
enzo(ghi)perylene	380	280	ug/Kg	1	02/02/16	DD	SW8270D
enzo(k)fluoranthene	470	280	ug/Kg	1	02/02/16	DD	SW8270D
enzoic acid	ND	800	ug/Kg	1	02/02/16	DD	SW8270D
enzyl butyl phthalate	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
s(2-chloroethoxy)methane	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
s(2-chloroethyl)ether	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
s(2-chloroisopropyl)ether	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
s(2-ethylhexyl)phthalate	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
arbazole	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
nrysene	660	280	ug/Kg	1	02/02/16	DD	SW8270D
benz(a,h)anthracene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
ibenzofuran	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
iethyl phthalate	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
imethylphthalate	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
• •	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-n-butylphthalate i-n-octylphthalate	ND	280	ug/Kg ug/Kg	1	02/02/16	DD	SW8270D
uoranthene	1000	280			02/02/16	DD	SW8270D
	ND	280 280	ug/Kg	1	02/02/16	DD	SW8270D SW8270D
uorene			ug/Kg	1			
exachlorobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
exachlorobutadiene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
exachlorocyclopentadiene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
exachloroethane	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
deno(1,2,3-cd)pyrene	380	280	ug/Kg	1	02/02/16	DD	SW8270D
ophorone	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
aphthalene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
trobenzene	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
Nitrosodimethylamine	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
Nitrosodi-n-propylamine	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
-Nitrosodiphenylamine	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
entachloronitrobenzene	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
entachlorophenol	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
henanthrene	460	280	ug/Kg	1	02/02/16	DD	SW8270D
henol	ND	280	ug/Kg	1	02/02/16	DD	SW8270D
/rene	990	280	ug/Kg	1	02/02/16	DD	SW8270D

Project ID: CCSU KAISER HALL NEW BRITAIN Client ID: B-10 COMPOSITE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Pyridine	ND	400	ug/Kg	1	02/02/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	51		%	1	02/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	59		%	1	02/02/16	DD	30 - 130 %
% 2-Fluorophenol	47		%	1	02/02/16	DD	30 - 130 %
% Nitrobenzene-d5	54		%	1	02/02/16	DD	30 - 130 %
% Phenol-d5	50		%	1	02/02/16	DD	30 - 130 %
% Terphenyl-d14	58		%	1	02/02/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C18 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director February 08, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBK59760

QA/QC Report

February 08, 2016

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 333814 (mg/L),	QC Samp	ole No: I	3K59591	(BK5976	51)								
Mercury - Water	BRL	0.0002	< 0.0002	< 0.0002	NC	104	100	3.9	91.1	89.7	1.5	70 - 130	20
Comment:													
Additional Mercury criteria: LCS	acceptanc	e range f	or waters	is 80-120°	% and fo	or soils is	s 70-1309	%.					
QA/QC Batch 333800 (mg/L),	QC Samp	ole No: I	3K59600	(BK5976	51)								
ICP Metals - TCLP Extra	action												
Arsenic	BRL	0.01	<0.01	<0.01	NC	113			109			75 - 125	20
Barium	BRL	0.01	0.41	0.40	2.50	103			97.0			75 - 125	20
Cadmium	BRL	0.005	0.014	0.014	NC	103			99.3			75 - 125	20
Chromium	BRL	0.010	0.002	0.002	NC	107			103			75 - 125	20
Lead	BRL	0.010	0.083	0.083	0	107			103			75 - 125	20
Selenium	BRL	0.01	<0.01	<0.01	NC	123			118			75 - 125	20
Silver	BRL	0.010	<0.010	<0.010	NC	113			109			75 - 125	20
QA/QC Batch 333802 (mg/kg), QC Sam	ple No:	BK5965	6 (BK597	/61)								
Mercury - Soil	BRL	0.06	0.39	0.46	16.5	91.5	94.7	3.4	77.3	101	26.6	70 - 130	30
Comment:													
Additional Mercury criteria: LCS	acceptanc	e range f	or waters	is 80-1209	% and fo	or soils is	s 70-1309	%.					
QA/QC Batch 333784 (mg/kg), QC Sam	ple No:	BK5984	1 (BK597	/61)								
ICP Metals - Soil		•											
Arsenic	BRL	0.67	3.3	3.58	NC	93.6			88.6			75 - 125	30
Barium	BRL	0.33	115	108	6.30	101			114			75 - 125	30
Cadmium	BRL	0.33	<0.36	<0.39	NC	92.5			92.4			75 - 125	30
Chromium	BRL	0.33	27.7	26.4	4.80	102			99.3			75 - 125	30
Lead	BRL	0.33	81.0	87.4	7.60	99.7			96.9			75 - 125	30
Selenium	BRL	1.3	<1.5	<1.6	NC	85.5			93.6			75 - 125	30
Silver	BRL	0.33	<0.36	<0.39	NC	96.4			98.1			75 - 125	30

QA/QC Report

February 08, 2016

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 333815 (PH), Q0	Sample	e No: Bl	K59600 (E	3K59761)								
pH - Soil			6.70	6.67	0.40	98.1						85 - 115	20
QA/QC Batch 333798 (mg/Kg)	QC Sar	nple No	: BK5964	1 4.95X	(BK597	761)							
Reactivity Cyanide	BRL	0.05	<6.0	<5.6	NC	96.8						85 - 115	30
QA/QC Batch 333931 (Degree	F), QC 5	Sample	No: BK60	328 (BK	59761)								
Flash Point			>200	>200	NC	101						85 - 115	30
QA/QC Batch 334182 (umhos/	cm), QC	Sample	e No: BK6	0376 (B	K59761)							
Conductivity - Soil Matrix	BRL	1	330	340	3.00	101						85 - 115	30

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

February 08, 2016

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 333740 (mg/Kg),	QC San	nple No: BK59500 (BK59761)									
TPH by GC (Extractable											
Ext. Petroleum H.C.	ND	50	60	64	6.5	60	61	1.7	60 - 120	30	
% n-Pentacosane	85	%	79	82	3.7	94	94	0.0	50 - 150	30	
		ple No: BK59642 (BK59760 (50)		02	017			010			
Volatiles - Solid		pie 110. DK39042 (DK39700 (30.	~))								
1,1,1,2-Tetrachloroethane	ND	5.0	89	96	7.6	99	108	8.7	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	81	95	15.9	91	95	4.3	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	98	98	0.0	115	131	13.0	70 - 130	30	m
1,1,2-Trichloroethane	ND	5.0	90	97	7.5	92	95	3.2	70 - 130	30	
1,1-Dichloroethane	ND	5.0	85	97	13.2	93	95	2.1	70 - 130	30	
1,1-Dichloroethene	ND	5.0	78	86	9.8	82	86	4.8	70 - 130	30	
1,1-Dichloropropene	ND	5.0	86	101	16.0	90	91	1.1	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	97	109	11.7	66	52	23.7	70 - 130	30	m
1,2,3-Trichloropropane	ND	5.0	93	93	0.0	107	123	13.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	97	108	10.7	65	53	20.3	70 - 130	30	m
1,2,4-Trimethylbenzene	ND	1.0	84	95	12.3	97	99	2.0	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	100	97	3.0	94	111	16.6	70 - 130	30	
1,2-Dibromoethane	ND	5.0	96	96	0.0	94	99	5.2	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	86	95	9.9	81	79	2.5	70 - 130	30	
1,2-Dichloroethane	ND	5.0	88	96	8.7	89	94	5.5	70 - 130	30	
1,2-Dichloropropane	ND	5.0	86	94	8.9	93	97	4.2	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	85	96	12.2	102	109	6.6	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	85	93	9.0	80	76	5.1	70 - 130	30	
1,3-Dichloropropane	ND	5.0	90	94	4.3	97	101	4.0	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	86	96	11.0	77	74	4.0	70 - 130	30	
2,2-Dichloropropane	ND	5.0	82	95	14.7	90	93	3.3	70 - 130	30	
2-Chlorotoluene	ND	5.0	87	96	9.8	99	102	3.0	70 - 130	30	
2-Hexanone	ND	25	88	85	3.5	80	84	4.9	70 - 130	30	
2-Isopropyltoluene	ND	5.0	86	98	13.0	104	109	4.7	70 - 130	30	
4-Chlorotoluene	ND	5.0	83	92	10.3	86	87	1.2	70 - 130	30	
4-Methyl-2-pentanone	ND	25	91	92	1.1	84	86	2.4	70 - 130	30	
Acetone	ND	10	73	69	5.6	70	72	2.8	70 - 130	30	I.
Acrylonitrile	ND	5.0	102	98	4.0	94	96	2.1	70 - 130	30	
Benzene	ND	1.0	88	100	12.8	93	96	3.2	70 - 130	30	
Bromobenzene	ND	5.0	90	96	6.5	91	96	5.3	70 - 130	30	
Bromochloromethane	ND	5.0	91	94	3.2	93	97	4.2	70 - 130	30	
Bromodichloromethane	ND	5.0	89	100	11.6	93	94	1.1	70 - 130	30	
Bromoform	ND	5.0	99	104	4.9	95	98	3.1	70 - 130	30	
Bromomethane	ND	5.0	83	96	14.5	96	97	1.0	70 - 130	30	
Carbon Disulfide	ND	5.0	82	93	12.6	77	75	2.6	70 - 130	30	
Carbon tetrachloride	ND	5.0	82	97	16.8	87	93	6.7	70 - 130	30	
Chlorobenzene	ND	5.0	86	95	9.9	85	83	2.4	70 - 130	30	
		Page									

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Chloroethane	ND	5.0	80	93	15.0	86	90	4.5	70 - 130	30	
Chloroform	ND	5.0	84	92	9.1	90	93	3.3	70 - 130	30	
Chloromethane	ND	5.0	82	92	11.5	84	89	5.8	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	89	98	9.6	82	84	2.4	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	89	97	8.6	88	87	1.1	70 - 130	30	
Dibromochloromethane	ND	3.0	95	99	4.1	98	104	5.9	70 - 130	30	
Dibromomethane	ND	5.0	93	98	5.2	92	94	2.2	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	85	98	14.2	83	87	4.7	70 - 130	30	
Ethylbenzene	ND	1.0	87	97	10.9	93	95	2.1	70 - 130	30	
Hexachlorobutadiene	ND	5.0	89	101	12.6	67	60	11.0	70 - 130	30	m
Isopropylbenzene	ND	1.0	82	94	13.6	107	118	9.8	70 - 130	30	
m&p-Xylene	ND	2.0	86	96	11.0	89	89	0.0	70 - 130	30	
Methyl ethyl ketone	ND	5.0	80	80	0.0	73	81	10.4	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	86	90	4.5	92	94	2.2	70 - 130	30	
Methylene chloride	ND	5.0	78	82	5.0	85	89	4.6	70 - 130	30	
Naphthalene	ND	5.0	108	113	4.5	65	54	18.5	70 - 130	30	m
n-Butylbenzene	ND	1.0	85	98	14.2	80	72	10.5	70 - 130	30	
n-Propylbenzene	ND	1.0	83	94	12.4	96	102	6.1	70 - 130	30	
o-Xylene	ND	2.0	86	96	11.0	93	92	1.1	70 - 130	30	
p-Isopropyltoluene	ND	1.0	86	97	12.0	101	102	1.0	70 - 130	30	
sec-Butylbenzene	ND	1.0	87	99	12.9	101	101	0.0	70 - 130	30	
Styrene	ND	5.0	88	97	9.7	79	76	3.9	70 - 130	30	
tert-Butylbenzene	ND	1.0	83	97	15.6	109	116	6.2	70 - 130	30	
Tetrachloroethene	ND	5.0	84	102	19.4	87	84	3.5	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	101	95	6.1	88	100	12.8	70 - 130	30	
Toluene	ND	1.0	84	98	15.4	88	88	0.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	78	88	12.0	81	79	2.5	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	89	96	7.6	82	81	1.2	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	97	96	1.0	96	105	9.0	70 - 130	30	
Trichloroethene	ND	5.0	88	101	13.8	38	72	61.8	70 - 130	30	m,r
Trichlorofluoromethane	ND	5.0	74	87	16.1	80	84	4.9	70 - 130	30	,
Trichlorotrifluoroethane	ND	5.0	77	94	19.9	87	92	5.6	70 - 130	30	
Vinyl chloride	ND	5.0	83	91	9.2	84	84	0.0	70 - 130	30	
% 1,2-dichlorobenzene-d4	101	%	100	100	0.0	99	104	4.9	70 - 130	30	
% Bromofluorobenzene	97	%	99	98	1.0	91	87	4.5	70 - 130	30	
% Dibromofluoromethane	96	%	101	98	3.0	100	101	1.0	70 - 130	30	
% Toluene-d8 Comment:	98	%	98	99	1.0	98	98	0.0	70 - 130	30	
Additional 8260 criteria: 10% of	LCS/LCSD	compounds can be ou	tside of acceptance of	riteria as	long as	recover	y is 40-1	60%.			
QA/QC Batch 333756 (ug/Kg)		-	-		0		-				
Polychlorinated Bipheny	<u>/ls - Solic</u>	<u>I</u>									
PCB-1016	ND	- 33	83	78	6.2	84	84	0.0	40 - 140	30	
PCB-1221	ND	33							40 - 140	30	
PCB-1232	ND	33							40 - 140	30	
PCB-1242	ND	33							40 - 140	30	
PCB-1248	ND	33							40 - 140	30	
PCB-1254	ND	33							40 - 140	30	
PCB-1260	ND	33	92	89	3.3	91	85	6.8	40 - 140	30	
PCB-1262	ND	33		- /					40 - 140	30	
PCB-1268	ND	33							40 - 140	30	
% DCBP (Surrogate Rec)	99	%	109	99	9.6	100	97	3.0	30 - 150	30	
% TCMX (Surrogate Rec)	80	%	80	72	10.5	81	80	1.2	30 - 150	30	
<u> </u>			Page 4 of 6								

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 333776 (ug/kg)	OC Sam	ple No: BK59841 (BK59761)									
Semivolatiles - Solid	20 04										
1,2,4,5-Tetrachlorobenzene	ND	230	60	60	0.0	58	55	5.3	30 - 130	20	
1,2,4,3-Tetrachiorobenzene	ND	230	55	58	0.0 5.3	55	53	3.7	30 - 130	30 30	
1,2,4-mcniorobenzene	ND	180	55 54	50	5.3 5.4	55 54	53 51	5.7 5.7	30 - 130	30 30	
1,2-Diphenylhydrazine	ND	230	64	62	3.2	60	58	3.4	30 - 130	30	
1,3-Dichlorobenzene	ND	230	51	54	5.2 5.7	51	49	4.0	30 - 130	30	
1,4-Dichlorobenzene	ND	230	51	54	5.7	52	50	4.0 3.9	30 - 130	30	
2,4,5-Trichlorophenol	ND	230	77	74	4.0	70	68	2.9	30 - 130	30	
2,4,6-Trichlorophenol	ND	130	77	76	1.3	71	67	5.8	30 - 130	30	
2,4-Dichlorophenol	ND	130	67	67	0.0	62	61	1.6	30 - 130	30	
2,4-Dimethylphenol	ND	230	65	64	1.6	64	63	1.6	30 - 130	30	
2,4-Dinitrophenol	ND	230	31	34	9.2	85	81	4.8	30 - 130	30	
2,4-Dinitrotoluene	ND	130	77	76	1.3	72	69	4.3	30 - 130	30	
2,6-Dinitrotoluene	ND	130	74	73	1.4	68	66	3.0	30 - 130	30	
2-Chloronaphthalene	ND	230	63	63	0.0	60	57	5.1	30 - 130	30	
2-Chlorophenol	ND	230	61	63	3.2	58	56	3.5	30 - 130	30	
2-Methylnaphthalene	ND	230	59	61	3.3	58	58	0.0	30 - 130	30	
2-Methylphenol (o-cresol)	ND	230	63	65	3.1	60	59	1.7	30 - 130	30	
2-Nitroaniline	ND	330	79	76	3.9	70	68	2.9	30 - 130	30	
2-Nitrophenol	ND	230	67	70	4.4	65	63	3.1	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	230	66	67	1.5	64	63	1.6	30 - 130	30	
3,3'-Dichlorobenzidine	ND	130	71	68	4.3	71	68	4.3	30 - 130	30	
3-Nitroaniline	ND	330	71	70	1.4	65	63	3.1	30 - 130	30	
4,6-Dinitro-2-methylphenol	ND	230	70	70	0.0	99	92	7.3	30 - 130	30	
4-Bromophenyl phenyl ether	ND	230	70	69	1.4	65	64	1.6	30 - 130	30	
4-Chloro-3-methylphenol	ND	230	75	74	1.3	71	68	4.3	30 - 130	30	
4-Chloroaniline	ND	230	63	63	0.0	56	55	1.8	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	230	67	67	0.0	64	62	3.2	30 - 130	30	
4-Nitroaniline	ND	230	75	75	0.0	69	67	2.9	30 - 130	30	
4-Nitrophenol	ND	230	86	79	8.5	78	77	1.3	30 - 130	30	
Acenaphthene	ND	230	66	67	1.5	62	61	1.6	30 - 130	30	
Acenaphthylene	ND	130	64	64	0.0	60	58	3.4	30 - 130	30	
Acetophenone	ND	230	56	58	3.5	56	54	3.6	30 - 130	30	
Aniline	ND	330	50	51	2.0	46	44	4.4	30 - 130	30	
Anthracene	ND	230	71	70	1.4	66	65	1.5	30 - 130	30	
Benz(a)anthracene	ND	230	75	72	4.1	69	66	4.4	30 - 130	30	
Benzidine	ND	330	67	54	21.5	48	32	40.0	30 - 130	30	r
Benzo(a)pyrene	ND	130	71	69	2.9	66	63	4.7	30 - 130	30	
Benzo(b)fluoranthene	ND	160	73	71	2.8	66	64	3.1	30 - 130	30	
Benzo(ghi)perylene	ND	230	66	65	1.5	63	60	4.9	30 - 130	30	
Benzo(k)fluoranthene	ND	230	70	69	1.4	66	63	4.7	30 - 130	30	
Benzoic Acid	ND	330	<10	<10	NC	41	67	48.1	30 - 130	30	l,r
Benzyl butyl phthalate	ND	230	77	73	5.3	70	68	2.9	30 - 130	30	
Bis(2-chloroethoxy)methane	ND	230	62	64	3.2	59	57	3.4	30 - 130	30	
Bis(2-chloroethyl)ether	ND	130	51	52	1.9	49	46	6.3	30 - 130	30	
Bis(2-chloroisopropyl)ether	ND	230	50	51	2.0	49	47	4.2	30 - 130	30	
Bis(2-ethylhexyl)phthalate	ND	230	84	82	2.4	72	71	1.4	30 - 130	30	
Carbazole	ND	330	71	69	2.9	66	64	3.1	30 - 130	30	
Chrysene	ND	230	72	70	2.8	68	65	4.5	30 - 130	30	
Dibenz(a,h)anthracene	ND	130	68	67	1.5	67	63	6.2	30 - 130	30	
Dibenzofuran	ND	230	66	65	1.5	62	60	3.3	30 - 130	30	

SDG I.D.: GBK59760

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Diethyl phthalate	ND	230	72	71	1.4	66	64	3.1	30 - 130	30	
Dimethylphthalate	ND	230	72	70	2.8	66	62	6.3	30 - 130	30	
Di-n-butylphthalate	ND	230	77	75	2.6	69	67	2.9	30 - 130	30	
Di-n-octylphthalate	ND	230	83	80	3.7	76	74	2.7	30 - 130	30	
Fluoranthene	ND	230	73	71	2.8	69	67	2.9	30 - 130	30	
Fluorene	ND	230	65	66	1.5	63	61	3.2	30 - 130	30	
Hexachlorobenzene	ND	130	68	67	1.5	63	62	1.6	30 - 130	30	
Hexachlorobutadiene	ND	230	56	58	3.5	55	52	5.6	30 - 130	30	
Hexachlorocyclopentadiene	ND	230	55	57	3.6	55	51	7.5	30 - 130	30	
Hexachloroethane	ND	130	49	51	4.0	48	45	6.5	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	68	68	0.0	64	63	1.6	30 - 130	30	
Isophorone	ND	130	57	58	1.7	55	53	3.7	30 - 130	30	
Naphthalene	ND	230	56	58	3.5	56	54	3.6	30 - 130	30	
Nitrobenzene	ND	130	60	62	3.3	58	57	1.7	30 - 130	30	
N-Nitrosodimethylamine	ND	230	43	46	6.7	44	42	4.7	30 - 130	30	
N-Nitrosodi-n-propylamine	ND	130	63	63	0.0	60	59	1.7	30 - 130	30	
N-Nitrosodiphenylamine	ND	130	76	74	2.7	70	66	5.9	30 - 130	30	
Pentachloronitrobenzene	ND	230	71	69	2.9	67	64	4.6	30 - 130	30	
Pentachlorophenol	ND	230	82	78	5.0	78	76	2.6	30 - 130	30	
Phenanthrene	ND	130	68	67	1.5	64	63	1.6	30 - 130	30	
Phenol	ND	230	63	61	3.2	57	56	1.8	30 - 130	30	
Pyrene	ND	230	74	72	2.7	69	67	2.9	30 - 130	30	
Pyridine	ND	230	29	31	6.7	31	29	6.7	30 - 130	30	l,m
% 2,4,6-Tribromophenol	59	%	74	72	2.7	67	65	3.0	30 - 130	30	
% 2-Fluorobiphenyl	52	%	61	61	0.0	57	54	5.4	30 - 130	30	
% 2-Fluorophenol	40	%	52	53	1.9	49	48	2.1	30 - 130	30	
% Nitrobenzene-d5	51	%	60	61	1.7	58	56	3.5	30 - 130	30	
% Phenol-d5	48	%	59	59	0.0	55	54	1.8	30 - 130	30	
% Terphenyl-d14 Comment:	60	%	71	69	2.9	64	63	1.6	30 - 130	30	

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director February 08, 2016

Monday, Fe	bruary 08, 2016		Sample Criteria	a Exceedences Report				Page 1 of 1
Criteria:			•	760 - GEODSIGN				
State: SampNo	CT Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
	to Diaplay ***	T Hoomix Analyte	опона	Roour	I.L	Onteria	Onteria	Offit3

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	aboratory Name: Phoenix Environmental Labs, Inc. Client: GeoDesign							
Proje	ect Location: CCSU KAISER HALL NEW BRIT Project Number:							
Labo	Laboratory Sample ID(s): BK59760, BK59761							
Sam	pling Date(s): 2/1/2016							
RCP	Methods Used:							
✓ 13	x11/1312 ✔ 6010 🗌 7000 🗌 7196 ✔ 7470/7471 🗌 8081	EPH		TO15				
✔ 80	✓ 8082 □ 8151 ✓ 8260 ✓ 8270 ✓ ETPH □ 9010/9012 □ VPH							
1.	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✔ Yes	□ No					
1a.	Were the method specified preservation and holding time requirements met?	✓ Yes	□ No					
1b.	D.EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)□ YesNo✓ NA							
2.	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes	🗌 No					
3.	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes	🗌 No	□ NA				
4.	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: SVOA Narration, VOA Narration.							
5a.	Were reporting limits specified or referenced on the chain-of-custody?							
5b.	Were these reporting limits met? □ Yes □ No ✓ NA							
6.	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	□ Yes	✓ No	□ NA				
7.	Are project-specific matrix spikes and laboratory duplicates included in the data set?							

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Monday, February 08, 2016 Printed Name: Ethan Lee

Position: Project Manager

Nov 2007

RCP Certification Report

February 08, 2016

SDG I.D.: GBK59760

BK59761 - The following analytes from the 6010 RCP Metals list were not reported: Antimony, Beryllium, Copper, Nickel, Thallium, Vanadium, Zinc.

Cyanide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Lachat 02/02/16-1 (BK59761)

The samples were distilled in accordance with the method. The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples. The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

Printed Name	Greg Danielewski
Position:	Chemist
Date:	2/2/2016

QC (Batch Specific)

----- Sample No: BK59641, QA/QC Batch: 333798 ------

All LCS recoveries were within 85 - 115 with the following exceptions: None.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Au-fid11 02/04/16-3 (BK59761)</u>

The initial calibration (ETPH117I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (204A023) and contained the following outliers: C36 (24.2%L)

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name	Jeff Bucko
Position:	Chemist
Date:	2/4/2016

RCP Certification Report

February 08, 2016

SDG I.D.: GBK59760

QC (Batch Specific)

------ Sample No: BK59500, QA/QC Batch: 333740 ------

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 02/02/16-1 (BK59761)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name	Rick Schweitzer
Position:	Chemist
Date:	2/2/2016

QC (Batch Specific)

----- Sample No: BK59591, QA/QC Batch: 333814 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

----- Sample No: BK59656, QA/QC Batch: 333802 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

RCP Certification Report

February 08, 2016

SDG I.D.: GBK59760

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Arcos 02/03/16-1 (BK59761)</u>

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range. The continuing calibration blanks were less than the reporting level for the elements reported. The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name	Laura Kinnin
Position:	Chemist
Date:	2/3/2016

QC (Batch Specific)

------ Sample No: BK59600, QA/QC Batch: 333800 ------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

----- Sample No: BK59841, QA/QC Batch: 333784 ------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Au-ecd1 02/02/16-1 (BK59761)</u>

The initial calibration (PC1229AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC1229BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name	Adam Werner
Position:	Chemist
Date:	2/2/2016

RCP Certification Report

February 08, 2016

SDG I.D.: GBK59760

QC (Batch Specific)

----- Sample No: BK59841, QA/QC Batch: 333756 -----

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 333776 (Samples: BK59761): -----

The QC recoveries for one or more analytes are below method criteria. A low bias is possible. (Pyridine)

The LCS and/or LCSD recoveries for one or more analytes is below the method criteria. A low bias for these analytes is possible. (Benzoic Acid)

Instrument: <u>Chem25 02/01/16-1 (BK59761)</u>

Initial Calibration Verification (CHEM25/SV_0128):

95% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol (39%), 2-Nitrophenol (21%), 4,6-Dinitro-2-methylphenol (27%), 4-Nitrophenol (26%)

The following compounds did not meet recommended response factors: 2-Nitrophenol (.085)[0.1] The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/0201_04-SV_0128): Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 99% of target compounds met criteria. The following compounds did not meet % deviation criteria: 2,4-dinitrophenol (37%H)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.073)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name	Damien Drobinski
Position:	Chemist
Date:	2/1/2016

RCP Certification Report

February 08, 2016

SDG I.D.: GBK59760

QC (Batch Specific)

----- Sample No: BK59841, QA/QC Batch: 333776 ------

All LCS recoveries were within 30 - 130 with the following exceptions: Benzoic Acid(<10%), Pyridine(29%)

All LCSD recoveries were within 30 - 130 with the following exceptions: Benzoic Acid(<10%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 333943 (Samples: BK59760): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Acetone)

Instrument: Chem03 02/01/16-1 (BK59760)

Initial Calibration Verification (CHEM03/VT-L0126): 99% of target compounds met criteria. The following compounds had %RSDs >20%: Acetone (25%) The following compounds did not meet recommended response factors: Acrolein (.036)[0.05] The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM03/0201L02-VT-L0126): Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 100% of target compounds met criteria. The following compounds did not meet % deviation criteria: None. The following compounds did not meet maximum % deviations: None. The following compounds did not meet recommended response factors: Acrolein (.038)[0.05] The following compounds did not meet minimum response factors: None.

Printed Name	Jane Li
Position:	Chemist
Date:	2/1/2016

Instrument: Chem03 02/02/16-1 (BK59760)

Initial Calibration Verification (CHEM03/VT-L0126):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone (25%)

The following compounds did not meet recommended response factors: Acrolein (.036)[0.05]

RCP Certification Report

February 08, 2016

SDG I.D.: GBK59760

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM03/0202L02-VT-L0126):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: Acrolein (.034)[0.05]

The following compounds did not meet minimum response factors: None.

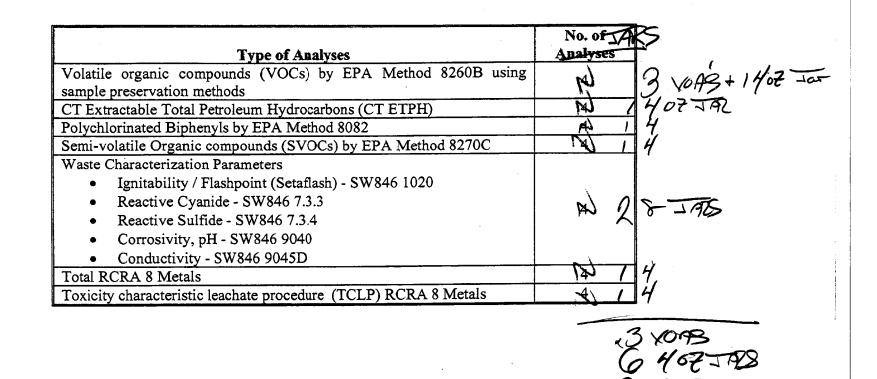
Printed Name	Jane Li
Position:	Chemist
Date:	2/2/2016

QC (Batch Specific)

------ Sample No: BK59642, QA/QC Batch: 333943 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: Acetone(69%)


All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 6C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

																			C	oolant	Ci t: II	ooler: PK Ø			No 🗌 No 🔲	
DTTO				C	IAI	N O	FC	US	ТО	DY	REC	OR	D			r				Tem	· .	ှ° C Optic		9	of	
PHO. Environmen	ENIX Stal Laboratories, T	nc.	:	587 East M Email:	info@)) pho	enixl	abs.c	om		(860)	645-		6040 (~		XX	Fax: Phone Email		03	7	33.	.5	2(7	- Day	- Def
Customer:	200 Detron				_		ject			$\tilde{\mathcal{S}}$		_				ωĽ		5	Proje	ect P	<u>.0:</u>	18	ليسحح	49		
Address:	17 deleburg (2)	(2 (Xe7	62	_					5/2		at La		e re	<u>*</u> **	UEF				7	C	отр	olete	a MU ed w antit		
Sampler's Signature	Client Semple-Information	Identifica	ation Date: 2	: <i>lle</i>		Analy Requ		/												HRO A		-HE			3830ril 3830ril	
DW=Drinking Wate	er GW- Ground Water SW =Si E=Sediment SL =Sludge S =S L=Liquid					/												815	Netrato H	A CLAR		\$ 11 25 \$ 11 25 \$ 12	AND A	[~ ~	/ /	
PHOENIX USE ONLY SAMPLE #	Customer Sample Identification	Sample Matrix	Date Sampled	Time Sampled												5	N CO N	5010 G		No. A.	27 P	\$\ \$\	N N N	501. 501. 501. 501. 501. 501. 501. 501.	230ril Botte	
59760	B-10:3.01	5	2-1-16										_			3	1	4							_	
59761	13-10; 2705 Gupste	<u>_</u> S	2-1-16	1010	1	70	0	\square	4	A	, l	_					5	2								
					<u> </u>	Per					7										_				-	4
	•				-														_				_	_		_
					┨───						_	+	-						+	+		_	+	_		-
												-	+							+			-			-
		- · · ·											-							+		-	+-	+		1
																-		_								1
	-																									1
	A				<u> </u>										Ĺ											4
Belinguisted by	Accepted by	25	fin AT			:: /-// 		Time 2 12		N#***	∃gw	dentia			CP C W Pr W Pr	ert otectio otectio	on on		SW-2	ertifica	ition		a <u>ta Fo</u> Exc PDI GIS EQI	/Key	* Ш	-
	Requirements or Regulation				Turn	narou	nd:	1		l] Othe	•			SA Mo SB Mo				S-1] Oth ata Pa	er ackage	•	
NOC'S	on discle	te	Sam	pre		1 Da	ay*								eside	-	DEC		S-2			Ē] Tier	II Che	ecklist	
Remai	ning analy Ulrich C Geo	5:5	$o \cap c$	OMP		2 Da 3 Da Stan	ays*								/C DE Other	C			S-3 /IWRA Other	eSMA	ART] Pho	oenix S	Package* Std Repor	
Per	Jirich e Geo	Jesio	n. (\$Y)	[] ⁺ si	Othe URCH	IE		LIES		State	whe	re sa	mple	es we	ere c	olled		_	1	_				EAPPLIE	5

Geotechnical Engineering Proposal - CCSU Kaiser Hall File No. 0185-49 – April 14, 2015 (rev. 5-7-15) Page No. 5

Tuesday, February 09, 2016

Attn: Ulrich Lafosse GeoDesign 984 Southford Road Middlebury, CT 06762

Project ID: CCSU KAISER HALL Sample ID#s: BK60366 - BK60367

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

X.lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Custody Information

Collected by:

Analysis Report

February 09, 2016

FOR: Attn: Ulrich Lafosse GeoDesign 984 Southford Road Middlebury, CT 06762

Sam	ple	Information

Matrix: SOLID Location Code: **GEODSIGN** Rush Request: Standard 185-49 P.O.#:

Laboratory	Data
Analyzed by:	see "B
Received by:	SW

SW see "By" below

Date Time 02/02/16 13:50 02/02/16 16:02

SDG ID: GBK60366 Phoenix ID: BK60366

CCSU KAISER HALL Project ID: Client ID: B-1 2.5 FT

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	86		%		02/02/16	W	SW846-%Solid
Field Extraction	Completed				02/02/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	2.4	ug/Kg	1	02/03/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
2-Chlorotoluene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
2-Hexanone	ND	20	ug/Kg	1	02/03/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C

	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
4-Chlorotoluene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	20	ug/Kg	1	02/03/16	JLI	SW8260C
Acetone	ND	200	ug/Kg	1	02/03/16	JLI	SW8260C
Acrylonitrile	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Benzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Bromobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Bromochloromethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Bromodichloromethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Bromoform	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Bromomethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Carbon Disulfide	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Carbon tetrachloride	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Chlorobenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Chloroethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Chloroform	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Chloromethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
sis-1,2-Dichloroethene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
sis-1,3-Dichloropropene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Dibromochloromethane	ND	2.4	ug/Kg	1	02/03/16	JLI	SW8260C
Dibromomethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
thylbenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
lexachlorobutadiene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
sopropylbenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
n&p-Xylene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	24	ug/Kg	1	02/03/16	JLI	SW8260C
Aethyl t-butyl ether (MTBE)	ND	8.0	ug/Kg	1	02/03/16	JLI	SW8260C
lethylene chloride	ND	8.0	ug/Kg	1	02/03/16	JLI	SW8260C
Japhthalene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
-Butylbenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
-Propylbenzene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
-Xylene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
ec-Butylbenzene	ND	4.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C
Styrene	ND	4.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C
ert-Butylbenzene	ND	4.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C
etrachloroethene	ND	4.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C
etrachioroethene	ND	4.0 8.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C
	ND	4.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C
	ND	4.0 4.0	ug/Kg ug/Kg	1	02/03/16	JLI	SW8260C SW8260C
otal Xylenes rans-1,2-Dichloroethene	ND	4.0 4.0	ug/Kg ug/Kg	1	02/03/16	JLI JLI	SW8260C SW8260C
•	ND	4.0 4.0		1	02/03/16	JLI	SW8260C SW8260C
rans-1,3-Dichloropropene			ug/Kg				
ans-1,4-dichloro-2-butene	ND	8.0	ug/Kg	1	02/03/16	JLI	SW8260C
	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
richlorofluoromethane	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
/inyl chloride	ND	4.0	ug/Kg	1	02/03/16	JLI	SW8260C
QA/QC Surrogates							

Client ID: B-1 2.5 FT

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Bromofluorobenzene	102		%	1	02/03/16	JLI	70 - 130 %
% Dibromofluoromethane	100		%	1	02/03/16	JLI	70 - 130 %
% Toluene-d8	100		%	1	02/03/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director February 09, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

February 09, 2016

FOR: Attn: Ulrich Lafosse GeoDesign 984 Southford Road Middlebury, CT 06762

see "By" below

SW

Sample	Information	

Matrix:	SOLID
Location Code:	GEODSIGN
Rush Request:	Standard
P.O.#:	185-49

Labo	ratory	Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GBK60366 Phoenix ID: BK60367

<u>Date</u> 02/02/16

02/02/16

Time

14:00

16:02

Project ID:	CCSU KAISER HALL
Client ID:	B-1 0-4 COMPOSITE

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.38	0.38	mg/Kg	1	02/03/16	LK	SW6010C
Arsenic	5.3	0.8	mg/Kg	1	02/03/16	LK	SW6010C
Barium	81.2	0.38	mg/Kg	1	02/03/16	LK	SW6010C
Cadmium	< 0.38	0.38	mg/Kg	1	02/03/16	LK	SW6010C
Chromium	25.4	0.38	mg/Kg	1	02/03/16	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	02/03/16	RS	SW7471B
Lead	17.8	0.38	mg/Kg	1	02/03/16	LK	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	02/03/16	LK	SW6010C
TCLP Silver	< 0.010	0.010	mg/L	1	02/03/16	EK	SW6010C
TCLP Arsenic	< 0.01	0.01	mg/L	1	02/03/16	LK	SW6010C
TCLP Barium	0.86	0.01	mg/L	1	02/03/16	EK	SW6010C
TCLP Cadmium	< 0.005	0.005	mg/L	1	02/03/16	EK	SW6010C
TCLP Chromium	< 0.010	0.010	mg/L	1	02/03/16	EK	SW6010C
TCLP Mercury	< 0.0002	0.0002	mg/L	1	02/03/16	RS	SW7470A
TCLP Lead	0.111	0.010	mg/L	1	02/03/16	EK	SW6010C
TCLP Selenium	< 0.01	0.01	mg/L	1	02/03/16	LK	SW6010C
TCLP Metals Digestion	Completed				02/03/16	W/W	SW3005A
Percent Solid	84		%		02/02/16	W	SW846-%Solid
Conductivity - Soil Matrix	100	5	umhos/cm	1	02/05/16	RWR	SM2510B-97
Corrosivity	Negative		Pos/Neg	1	02/02/16	DH/KDB	SW846-Corr
Flash Point	>200	200	Degree F	1	02/03/16	Y	SW1010A
Ignitability	Passed	140	degree F	1	02/03/16	Y	SW846-Ignit
pH - Soil	7.66	0.10	pH Units	1	02/02/16 20:15	DH/KDB	SW9045
Reactivity Cyanide	< 5.7	5.7	mg/Kg	1	02/03/16	BS/GD	SW846-ReactCyn
Reactivity Sulfide	< 20	20	mg/Kg	1	02/02/16	BS/GD	SW-7.3
Reactivity	Negative		Pos/Neg	1	02/02/16	BS/GD	SW846-React
Soil Extraction for PCB	Completed				02/02/16	BC/V	SW3545A
Soil Extraction for SVOA	Completed				02/02/16	BJ/CKV	SW3545A

Client ID: B-1 0-4 COMPOSITE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Extraction of CT ETPH	Completed				02/02/16	BC/CK	SW3545A
Mercury Digestion	Completed				02/03/16	W/W	SW7471B
CLP Digestion Mercury	Completed				02/03/16	W/W	SW7470A
CLP Extraction for Metals	Completed				02/02/16	W	SW1311
otal Metals Digest	Completed				02/02/16	G/AG	SW3050B
FPH by GC (Extractab	le Products	<u>)</u>					
Ext. Petroleum HC	ND	58	mg/Kg	1	02/04/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	02/04/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	74		%	1	02/04/16	JRB	50 - 150 %
olychlorinated Biphe	nyls						
PCB-1016	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1221	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1232	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1242	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1248	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1254	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1260	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1262	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
CB-1268	ND	390	ug/Kg	10	02/03/16	AW	SW8082A
A/QC Surrogates			0 0				
6 DCBP	94		%	10	02/03/16	AW	30 - 150 %
5 TCMX	79		%	10	02/03/16	AW	30 - 150 %
Semivolatiles							
,2,4,5-Tetrachlorobenzene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,2,4-Trichlorobenzene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,2-Dichlorobenzene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,2-Diphenylhydrazine	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
,3-Dichlorobenzene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4-Dichlorobenzene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4,5-Trichlorophenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4,6-Trichlorophenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4-Dichlorophenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4-Dimethylphenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4-Dinitrophenol	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
,4-Dinitrotoluene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
,4-Dinitrotoluene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
-Chloronaphthalene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
-Chlorophenol	ND	270	ug/Kg ug/Kg	1	02/03/16	DD	SW8270D SW8270D
	ND	270	ug/Kg ug/Kg	1	02/03/16	DD	SW8270D SW8270D
Methylnaphthalene	ND	270	ug/Kg ug/Kg	1	02/03/16	DD	SW8270D SW8270D
-Methylphenol (o-cresol)	ND	390		1	02/03/16	DD	SW8270D SW8270D
-Nitroaniline			ug/Kg				
	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	390 370	ug/Kg	1	02/03/16	DD	SW8270D
,3'-Dichlorobenzidine	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
-Nitroaniline	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
,6-Dinitro-2-methylphenol	ND	390	ug/Kg	1	02/03/16	DD	SW8270D

Client ID [.]	B-1 0-4	4 COMPOSITE
Uncrit ID.	010	

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Bromophenyl phenyl ether	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
4-Chloroaniline	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
4-Nitroaniline	ND	620	ug/Kg	1	02/03/16	DD	SW8270D
4-Nitrophenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Acenaphthene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Acetophenone	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Aniline	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
Anthracene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benzidine	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Benzoic acid	ND	780	ug/Kg	1	02/03/16	DD	SW8270D
Benzyl butyl phthalate	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Carbazole	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
Chrysene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Dibenzofuran	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Diethyl phthalate	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Dimethylphthalate	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Di-n-butylphthalate	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Di-n-octylphthalate	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Fluoranthene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Fluorene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Hexachlorobenzene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Hexachlorobutadiene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Hexachloroethane	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Isophorone	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Naphthalene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Nitrobenzene	ND	270	ug/Kg	1	02/03/16		SW8270D
N-Nitrosodimethylamine	ND	390	ug/Kg	1	02/03/16		SW8270D
-	ND	390 270	ug/Kg ug/Kg	1	02/03/16	DD	SW8270D SW8270D
N-Nitrosodi-n-propylamine	ND	390	ug/Kg ug/Kg	1	02/03/16	DD	SW8270D SW8270D
N-Nitrosodiphenylamine							
Pentachloronitrobenzene	ND	390 300	ug/Kg	1	02/03/16	DD	SW8270D
Pentachlorophenol	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
Phenanthrene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Phenol	ND	270	ug/Kg	1	02/03/16	DD	SW8270D
Pyrene	ND	270	ug/Kg	1	02/03/16	DD	SW8270D

Client ID: B-1 0-4 COMPOSITE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Pyridine	ND	390	ug/Kg	1	02/03/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	55		%	1	02/03/16	DD	30 - 130 %
% 2-Fluorobiphenyl	53		%	1	02/03/16	DD	30 - 130 %
% 2-Fluorophenol	43		%	1	02/03/16	DD	30 - 130 %
% Nitrobenzene-d5	45		%	1	02/03/16	DD	30 - 130 %
% Phenol-d5	45		%	1	02/03/16	DD	30 - 130 %
% Terphenyl-d14	63		%	1	02/03/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director February 09, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

February 09, 2016

QA/QC Data

SDG I.D.: GBK60366

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 333892 (mg/kg),	QC San	ple No:	BK5987	7 (BK603	867)									
Mercury - Soil	BRL	0.06	0.09	0.08	NC	102	99.5	2.5	86.3	84.0	2.7	70 - 130	30	
Comment:														
Additional Mercury criteria: LCS a	cceptanc	e range f	or waters	is 80-120°	% and fo	or soils is	s 70-1309	%.						
QA/QC Batch 333865 (mg/kg),	QC San	ple No:	BK6033	1 (BK603	867)									
ICP Metals - Soil														
Arsenic	BRL	0.66	2.3	2.20	NC	100			92.7			75 - 125	30	
Barium	BRL	0.33	45.6	46.7	2.40	99.7			107			75 - 125	30	
Cadmium	BRL	0.33	<0.39	<0.44	NC	89.5			91.7			75 - 125	30	
Chromium	BRL	0.33	12.7	15.1	17.3	99.1			100			75 - 125	30	
Lead	BRL	0.33	19.7	27.1	31.6	100			95.7			75 - 125	30	r
Selenium	BRL	1.3	<1.5	<1.8	NC	93.5			81.8			75 - 125	30	
Silver	BRL	0.33	<0.39	<0.44	NC	97.4			98.2			75 - 125	30	
QA/QC Batch 333891 (mg/L), 0	2C Sam	ole No: I	3K60367	(BK6036	57)									
ICP Metals - TCLP Extra	ction													
Arsenic	BRL	0.01	<0.01	<0.01	NC	114			124			75 - 125	20	
Barium	BRL	0.01	0.86	0.86	0	101			123			75 - 125	20	
Cadmium	BRL	0.005	<0.005	< 0.005	NC	101			104			75 - 125	20	
Chromium	BRL	0.010	<0.010	<0.010	NC	105			111			75 - 125	20	
Lead	BRL	0.010	0.111	0.107	3.70	106			112			75 - 125	20	
Selenium	BRL	0.01	<0.01	<0.01	NC	121			>130			75 - 125	20	m
Silver	BRL	0.010	<0.010	<0.010	NC	109			120			75 - 125	20	
QA/QC Batch 333894 (mg/L), 0	2C Sam	ole No: I	3K60567	(BK6036	57)									
Mercury - Water	BRL	0.0002	< 0.0002	< 0.0002	NC	91.3	101	10.1	96.2	90.1	6.5	70 - 130	20	
Comment:														
Additional Mercury criteria: LCS a	cceptanc	e range f	or waters	is 80-120º	% and fo	or soils i	s 70-1309	%.						

 $\label{eq:main_state} \begin{array}{l} m = \mbox{This parameter is outside laboratory MS/MSD specified recovery limits.} \\ r = \mbox{This parameter is outside laboratory RPD specified recovery limits.} \end{array}$

QA/QC Report

February 09, 2016

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 333798 (mg/Kg), QC Sample No: BK59641 4.95X (BK60367)													
Reactivity Cyanide	BRL	0.05	<6.0	<5.6	NC	96.8						85 - 115	30
QA/QC Batch 333896 (PH), QC Sample No: BK60327 (BK60367)													
pH - Soil			7.28	7.20	1.10	99.8						85 - 115	20
QA/QC Batch 333931 (Degree	e F), QC S	Sample	No: BK60	328 (BK	(60367)								
Flash Point			>200	>200	NC	101						85 - 115	30
QA/QC Batch 334182 (umhos/cm), QC Sample No: BK60376 (BK60367)													
Conductivity - Soil Matrix	BRL	1	330	340	3.00	101						85 - 115	30

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

February 09, 2016

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 333777 (ug/Kg),	, QC Sam	ple No: BK59880 2X (BK60367)									
Polychlorinated Bipheny											
PCB-1016	ND	33	79	85	7.3	118	100	16.5	40 - 140	30	
PCB-1221	ND	33	,,	00	7.5	110	100	10.0	40 - 140	30	
PCB-1232	ND	33							40 - 140	30	
PCB-1242	ND	33							40 - 140	30	
PCB-1248	ND	33							40 - 140	30	
PCB-1254	ND	33							40 - 140	30	
PCB-1260	ND	33	81	88	8.3	108	98	9.7	40 - 140	30	
PCB-1262	ND	33	01	00	0.0	100	70	7.7	40 - 140	30	
PCB-1268	ND	33							40 - 140	30	
% DCBP (Surrogate Rec)	83	%	91	98	7.4	109	97	11.7	30 - 150	30	
% TCMX (Surrogate Rec)	66	%	74	80	7.8	94	84	11.2	30 - 150	30	
QA/QC Batch 333940 (ug/kg),											
Volatiles - Solid	QC Sam	JIC NO. DK37707 (DK00300)									
1,1,1,2-Tetrachloroethane	ND	5.0	102	95	7.1	105	104	1.0	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	102	91	9.4	107	104	2.8	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	97	91	6.4	114	115	0.9	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	101	90	11.5	100	97	3.0	70 - 130	30	
1,1-Dichloroethane	ND	5.0	103	90	13.5	100	104	4.7	70 - 130	30	
1,1-Dichloroethene	ND	5.0	103	92	12.2	107	101	5.8	70 - 130	30	
1,1-Dichloropropene	ND	5.0	104	93	10.2	107	104	3.8	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	103	91	12.4	57	50	13.1	70 - 130	30	m
1,2,3-Trichloropropane	ND	5.0	95	90	5.4	114	115	0.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	103	93	10.2	65	57	13.1	70 - 130	30	m
1,2,4-Trimethylbenzene	ND	1.0	101	91	10.2	115	107	7.2	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	101	91	10.4	99	98	1.0	70 - 130	30	
1,2-Dibromoethane	ND	5.0	97	89	8.6	100	99	1.0	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	101	90	11.5	95	88	7.7	70 - 130	30	
1,2-Dichloroethane	ND	5.0	101	92	9.3	104	100	3.9	70 - 130	30	
1,2-Dichloropropane	ND	5.0	99	92	7.3	106	101	4.8	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	101	92	9.3	119	115	3.4	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	101	91	10.4	101	94	7.2	70 - 130	30	
1,3-Dichloropropane	ND	5.0	97	89	8.6	103	102	1.0	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	101	90	11.5	99	91	8.4	70 - 130	30	
2,2-Dichloropropane	ND	5.0	99	88	11.8	110	105	4.7	70 - 130	30	
2-Chlorotoluene	ND	5.0	100	92	8.3	114	113	0.9	70 - 130	30	
2-Hexanone	ND	25	85	79	7.3	68	67	1.5	70 - 130	30	m
2-Isopropyltoluene	ND	5.0	106	97	8.9	122	115	5.9	70 - 130	30	
4-Chlorotoluene	ND	5.0	99	90	9.5	109	105	3.7	70 - 130	30	
4-Methyl-2-pentanone	ND	25	94	86	8.9	84	82	2.4	70 - 130	30	
Acetone	ND	10	68	63	7.6	71	72	1.4	70 - 130	30	
Acrylonitrile	ND	5.0	104	92	12.2	73	69	5.6	70 - 130	30	m
		Doro 2				-		-			

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Benzene	ND	1.0		101	91	10.4	106	102	3.8	70 - 130	30	
Bromobenzene	ND	5.0		100	92	8.3	110	108	1.8	70 - 130	30	
Bromochloromethane	ND	5.0		105	92	13.2	108	104	3.8	70 - 130	30	
Bromodichloromethane	ND	5.0		107	96	10.8	106	102	3.8	70 - 130	30	
Bromoform	ND	5.0		113	99	13.2	99	97	2.0	70 - 130	30	
Bromomethane	ND	5.0		110	93	16.7	104	87	17.8	70 - 130	30	
Carbon Disulfide	ND	5.0		107	93	14.0	100	94	6.2	70 - 130	30	
Carbon tetrachloride	ND	5.0		102	92	10.3	105	103	1.9	70 - 130	30	
Chlorobenzene	ND	5.0		101	92	9.3	104	99	4.9	70 - 130	30	
Chloroethane	ND	5.0		118	97	19.5	122	107	13.1	70 - 130	30	
Chloroform	ND	5.0		102	90	12.5	108	104	3.8	70 - 130	30	
Chloromethane	ND	5.0		102	86	17.0	97	89	8.6	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0		102	89	13.6	107	101	5.8	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0		99	90	9.5	98	95	3.1	70 - 130	30	
Dibromochloromethane	ND	3.0		106	97	8.9	104	105	1.0	70 - 130	30	
Dibromomethane	ND	5.0		104	92	12.2	107	100	6.8	70 - 130	30	
Dichlorodifluoromethane	ND	5.0		95	80	17.1	90	82	9.3	70 - 130	30	
Ethylbenzene	ND	1.0		104	93	11.2	110	105	4.7	70 - 130	30	
Hexachlorobutadiene	ND	5.0		107	96	10.8	92	78	16.5	70 - 130	30	
Isopropylbenzene	ND	1.0		99	91	8.4	124	121	2.4	70 - 130	30	
m&p-Xylene	ND	2.0		104	94	10.1	108	102	5.7	70 - 130	30	
Methyl ethyl ketone	ND	5.0		81	77	5.1	76	77	1.3	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0		99	91	8.4	105	104	1.0	70 - 130	30	
Methylene chloride	ND	5.0		97	84	14.4	103	93	10.2	70 - 130	30	
Naphthalene	ND	5.0		105	93	12.1	68	63	7.6	70 - 130	30	m
n-Butylbenzene	ND	1.0		104	94	10.1	109	99	9.6	70 - 130	30	
n-Propylbenzene	ND	1.0		98	90	8.5	119	115	3.4	70 - 130	30	
o-Xylene	ND	2.0		105	93	12.1	109	104	4.7	70 - 130	30	
p-Isopropyltoluene	ND	1.0		104	95	9.0	118	111	6.1	70 - 130	30	
sec-Butylbenzene	ND	1.0		104	96	8.0	119	115	3.4	70 - 130	30	
Styrene	ND	5.0		104	91	13.3	98	93	5.2	70 - 130	30	
tert-Butylbenzene	ND	1.0		100	93	7.3	121	117	3.4	70 - 130	30	
Tetrachloroethene	ND	5.0		104	93	11.2	108	99	8.7	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0		96	88	8.7	98	97	1.0	70 - 130	30	
Toluene	ND	1.0		103	93	10.2	108	101	6.7	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0		102	91	11.4	109	103	5.7	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0		102	91	11.4	97	94	3.1	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0		95	89	6.5	101	100	1.0	70 - 130	30	
Trichloroethene	ND	5.0		102	94	8.2	106	102	3.8	70 - 130	30	
Trichlorofluoromethane	ND	5.0		102	89 0(13.6	102	95	7.1	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0		108	96	11.8	110	107	2.8	70 - 130	30	
Vinyl chloride	ND	5.0		108	91	17.1	105	94	11.1	70 - 130	30	
% 1,2-dichlorobenzene-d4	98	%		102	98 101	4.0	99	99	0.0	70 - 130	30	
% Bromofluorobenzene	103	%		104	101	2.9	97 105	94	3.1	70 - 130	30	
% Dibromofluoromethane % Toluene-d8	102 99	% %		102	102	0.0	105	101	3.9	70 - 130	30	
Comment:				103	101	2.0	103	100	3.0	70 - 130	30	
Additional 8260 criteria: 10% of	LCS/LCSD	compounds	an be outside of acce	eptance o	riteria as	long as	recover	y is 40-1	60%.			
QA/QC Batch 333855 (ug/Kg), QC Sam	ple No: BK6	0189 (BK60367)									
Semivolatiles - Solid												
1,2,4,5-Tetrachlorobenzene	ND	230		46	55	17.8	63	55	13.6	30 - 130	30	
1,2,4-Trichlorobenzene	ND	230		44	54	20.4	62	53	15.7	30 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2-Dichlorobenzene	ND	180	35	43	20.5	55	45	20.0	30 - 130	30	
1,2-Diphenylhydrazine	ND	230	46	55	17.8	60	52	14.3	30 - 130	30	
1,3-Dichlorobenzene	ND	230	32	38	17.1	50	41	19.8	30 - 130	30	
1,4-Dichlorobenzene	ND	230	34	42	21.1	53	44	18.6	30 - 130	30	
2,4,5-Trichlorophenol	ND	230	61	67	9.4	73	67	8.6	30 - 130	30	
2,4,6-Trichlorophenol	ND	130	54	63	15.4	71	61	15.2	30 - 130	30	
2,4-Dichlorophenol	ND	130	51	62	19.5	69	60	14.0	30 - 130	30	
2,4-Dimethylphenol	ND	230	49	59	18.5	67	56	17.9	30 - 130	30	
2,4-Dinitrophenol	ND	230	41	31	27.8	70	48	37.3	30 - 130	30	r
2,4-Dinitrotoluene	ND	130	55	64	15.1	69	61	12.3	30 - 130	30	
2,6-Dinitrotoluene	ND	130	50	59	16.5	64	54	16.9	30 - 130	30	
2-Chloronaphthalene	ND	230	46	56	19.6	64	53	18.8	30 - 130	30	
2-Chlorophenol	ND	230	44	52	16.7	60	49	20.2	30 - 130	30	
2-Methylnaphthalene	ND	230	45	53	16.3	63	54	15.4	30 - 130	30	
2-Methylphenol (o-cresol)	ND	230	50	57	13.1	64	53	18.8	30 - 130	30	
2-Nitroaniline	ND	330	47	55	15.7	59	51	14.5	30 - 130	30	
2-Nitrophenol	ND	230	37	45	19.5	51	43	17.0	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	230	49	57	15.1	67	56	17.9	30 - 130	30	
3,3'-Dichlorobenzidine	ND	130	47	56	17.5	57	42	30.3	30 - 130	30	
3-Nitroaniline	ND	330	50	60	18.2	64	55	15.1	30 - 130	30	
4,6-Dinitro-2-methylphenol	ND	230	52	51	1.9	71	50	34.7	30 - 130	30	r
4-Bromophenyl phenyl ether	ND	230	55	67	19.7	72	64	11.8	30 - 130	30	
4-Chloro-3-methylphenol	ND	230	53	64	18.8	70	63	10.5	30 - 130	30	
4-Chloroaniline	ND	230	44	52	16.7	59	49	18.5	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	230	50	58	14.8	65	56	14.9	30 - 130	30	
4-Nitroaniline	ND	230	50	59	16.5	64	57	11.6	30 - 130	30	
4-Nitrophenol	ND	230	56	63	11.8	69	59	15.6	30 - 130	30	
Acenaphthene	ND	230	48	57	17.1	66	56	16.4	30 - 130	30	
Acenaphthylene	ND	130	45	54	18.2	61	52	15.9	30 - 130	30	
Acetophenone	ND	230	40	49	20.2	58	48	18.9	30 - 130	30	
Aniline	ND	330	37	44	17.3	52	44	16.7	30 - 130	30	
Anthracene	ND	230	54	62	13.8	62	54	13.8	30 - 130	30	
Benz(a)anthracene	ND	230	56	66	16.4	61	54	12.2	30 - 130	30	
Benzidine	ND	330	30	38	23.5	10	<10	NC	30 - 130	30	m
Benzo(a)pyrene	ND	130	52	61	15.9	56	48	15.4	30 - 130	30	
Benzo(b)fluoranthene	ND	160	54	65	18.5	59	54	8.8	30 - 130	30	
Benzo(ghi)perylene	ND	230	56	67	17.9	68	57	17.6	30 - 130	30	
Benzo(k)fluoranthene	ND	230	52	62	17.5	60	50	18.2	30 - 130	30	
Benzoic Acid	ND	330	25	16	43.9	51	44	14.7	30 - 130	30	l,r
Benzyl butyl phthalate		230	52 51	62	17.5	64	59	8.1	30 - 130 30 - 130	30 20	
Bis(2-chloroethoxy)methane		230	38	60	16.2	69 55	57	19.0		30	
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	ND ND	130 230	38 41	46 48	19.0 15.7	55 57	43 47	24.5 19.2	30 - 130	30 20	
Bis(2-ethylhexyl)phthalate	ND	230	58	40 67	14.4	67		19.2	30 - 130 30 - 130	30 20	
Carbazole	ND	330	58 53	62	14.4 15.7	67 67	60 60	11.0	30 - 130 30 - 130	30 30	
Chrysene	ND	230	53	65	18.5	61	54	12.2	30 - 130	30	
Dibenz(a,h)anthracene	ND	130	54 55	66	18.2	73	54 61	12.2	30 - 130 30 - 130	30	
Dibenzofuran	ND	230	55 49	59	18.5	73 66	56	17.9	30 - 130 30 - 130	30	
Diethyl phthalate	ND	230	49 52	59 61	15.9	65	50	13.1	30 - 130 30 - 130	30	
Dimethylphthalate	ND	230	52	61	15.9	65	56	14.9	30 - 130	30	
Di-n-butylphthalate	ND	230	52 61	67	9.4	64	57	14.9	30 - 130	30	
Di-n-octylphthalate	ND	230	55	64	15.1	64	58	9.8	30 - 130	30	
Fluoranthene	ND	230	56	65	14.9	54	45	18.2		30	
			00 5 of 6		/	U r	10		100	50	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Fluorene	ND	230	50	58	14.8	66	57	14.6	30 - 130	30	
Hexachlorobenzene	ND	130	47	56	17.5	59	53	10.7	30 - 130	30	
Hexachlorobutadiene	ND	230	43	51	17.0	61	51	17.9	30 - 130	30	
Hexachlorocyclopentadiene	ND	230	47	56	17.5	55	48	13.6	30 - 130	30	
Hexachloroethane	ND	130	29	36	21.5	46	38	19.0	30 - 130	30	Т
Indeno(1,2,3-cd)pyrene	ND	230	53	65	20.3	65	53	20.3	30 - 130	30	
Isophorone	ND	130	44	53	18.6	61	50	19.8	30 - 130	30	
Naphthalene	ND	230	43	52	18.9	63	52	19.1	30 - 130	30	
Nitrobenzene	ND	130	38	47	21.2	55	46	17.8	30 - 130	30	
N-Nitrosodimethylamine	ND	230	35	44	22.8	58	51	12.8	30 - 130	30	
N-Nitrosodi-n-propylamine	ND	130	45	54	18.2	61	50	19.8	30 - 130	30	
N-Nitrosodiphenylamine	ND	130	57	66	14.6	74	62	17.6	30 - 130	30	
Pentachloronitrobenzene	ND	230	50	59	16.5	65	57	13.1	30 - 130	30	
Pentachlorophenol	ND	230	67	77	13.9	86	77	11.0	30 - 130	30	
Phenanthrene	ND	130	52	60	14.3	53	44	18.6	30 - 130	30	
Phenol	ND	230	51	61	17.9	69	58	17.3	30 - 130	30	
Pyrene	ND	230	58	67	14.4	60	50	18.2	30 - 130	30	
Pyridine	ND	230	23	29	23.1	44	39	12.0	30 - 130	30	I
% 2,4,6-Tribromophenol	47	%	43	52	18.9	53	49	7.8	30 - 130	30	
% 2-Fluorobiphenyl	45	%	44	53	18.6	60	49	20.2	30 - 130	30	
% 2-Fluorophenol	37	%	39	48	20.7	55	43	24.5	30 - 130	30	
% Nitrobenzene-d5	39	%	40	49	20.2	57	47	19.2	30 - 130	30	
% Phenol-d5	40	%	42	52	21.3	58	49	16.8	30 - 130	30	
% Terphenyl-d14	66	%	57	67	16.1	70	61	13.7	30 - 130	30	
0											

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 333866 (mg/Kg), QC Sample No: BK60367 (BK60367)

TPH by GC (Extractable Products) - Solid

t. Petroleum H.C.	ND	50	64	60	6.5	60 -	120
n-Pentacosane	63	%	88	78	12.0	50 -	150
Comment:							

*The MS/MSD could not be reported due to the presence of ETPH in the original sample. The LCS was within QA/QC criteria.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

- NC No Criteria
- Intf Interference

Phyllis/Shiller, Laboratory Director February 09, 2016

Tuesday, February 09, 2016			Sample Criter	Sample Criteria Exceedences Report				
Criteria:			•	60366 - GEODSIGN				
State:	СТ						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** NI= D=1=	La D'aulau ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc. Client: GeoDesign									
Project Location: CCSU KAISER HALL Project Number:									
Labo	Laboratory Sample ID(s): BK60366, BK60367								
Sam	pling Da	te(s): 2/2/2	016						
RCP	Methods	s Used:							
✓ 13	311/1312	✓ 6010	7000	7196	✔ 7470/7471	8081	EPH		TO15
✔ 80	082	8151	✔ 8260	✔ 8270	ETPH	9010/9012	VPH		
1.	 For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents? 								
1a.	Were the	method spec	ified preserva	ation and hold	ing time requiren	nents met?	✓ Yes	□ No	
1b.	1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) □ Yes □ No ✓ NA								
2.	2. Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)? ✓ Yes □ No								
3.	Were samples received at an appropriate temperature (< 6 Degrees C)?								
4.	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: SVOA Narration, VOA Narration.								
5a.	. Were reporting limits specified or referenced on the chain-of-custody?								
5b.	D. Were these reporting limits met? □ Yes □ No								✓ NA
6.	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents? □ Yes ☑ No □ NA								
7.	Are project-specific matrix spikes and laboratory duplicates included in the data set?								

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Tuesday, February 09, 2016 Printed Name: Ethan Lee Position: Project Manager

Nov 2007

RCP Certification Report

February 09, 2016

SDG I.D.: GBK60366

BK60367 - The following analytes from the 6010 RCP Metals list were not reported: Antimony, Beryllium, Copper, Nickel, Thallium, Vanadium, Zinc.

Cyanide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Lachat 02/03/16-1 (BK60367)

The samples were distilled in accordance with the method. The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples. The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

Printed Name	Greg Danielewski
Position:	Chemist
Date:	2/3/2016

QC (Batch Specific)

----- Sample No: BK59641, QA/QC Batch: 333798 ------

All LCS recoveries were within 85 - 115 with the following exceptions: None.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Au-fid1 02/03/16-2 (BK60367)</u>

As per section 7.2.3, a discrimination check standard was run (203A016_1) and contained the following outliers: C30 (45.1%L), C36 (148.9%L)

The initial calibration (ETPH117I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name	Jeff Bucko
Position:	Chemist
Date:	2/3/2016

RCP Certification Report

February 09, 2016

SDG I.D.: GBK60366

Instrument: <u>Au-x12 02/04/16-1 (BK60367)</u>

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

The initial calibration (ETPHD09I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (204A003_1) and contained the following outliers: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name	Jeff Bucko
Position:	Chemist
Date:	2/4/2016

QC Comments: <u>QC Batch 333866 02/02/16 (BK60367)</u>

*The MS/MSD could not be reported due to the presence of ETPH in the original sample. The LCS was within QA/QC criteria.

QC (Batch Specific)

------ Sample No: BK60367, QA/QC Batch: 333866 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 02/03/16-1 (BK60367)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name	Rick Schweitzer
Position:	Chemist
Date:	2/3/2016

RCP Certification Report

February 09, 2016

SDG I.D.: GBK60366

QC (Batch Specific)

------ Sample No: BK59877, QA/QC Batch: 333892 ------

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

------ Sample No: BK60567, QA/QC Batch: 333894 ------

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Arcos 02/03/16-1 (BK60367)</u>

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range. The continuing calibration blanks were less than the reporting level for the elements reported. The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name	Laura Kinnin
Position:	Chemist
Date:	2/3/2016

QC (Batch Specific)

----- Sample No: BK60331, QA/QC Batch: 333865 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

------ Sample No: BK60367, QA/QC Batch: 333891 ------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Au-ecd29 02/03/16-1 (BK60367)</u>

RCP Certification Report

February 09, 2016

SDG I.D.: GBK60366

The initial calibration (PC0120AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC0120BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name	Adam Werner
Position:	Chemist
Date:	2/3/2016

QC (Batch Specific)

------ Sample No: BK59880, QA/QC Batch: 333777 ------

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. OC Batch 333855 (Samples: BK60367): -----

The LCS and/or LCDS recoveries for one or more analytes is below the method criteria. A low bias for these analytes is possible. (Benzoic Acid, Pyridine)

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Hexachloroethane)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Benzoic Acid)

Instrument: Chem25 02/02/16-1 (BK60367)

Initial Calibration Verification (CHEM25/SV_0128):

95% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol (39%), 2-Nitrophenol (21%), 4,6-Dinitro-2-methylphenol (27%), 4-Nitrophenol (26%)

The following compounds did not meet recommended response factors: 2-Nitrophenol (.085)[0.1]

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/0202_07-SV_0128):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: 2,4-dinitrophenol (34%H)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.065)[0.1]

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

February 09, 2016

SDG I.D.: GBK60366

The following compounds did not meet minimum response factors: None.

Printed NameDamien DrobinskiPosition:ChemistDate:2/2/2016

QC (Batch Specific)

------ Sample No: BK60189, QA/QC Batch: 333855 -----

All LCS recoveries were within 30 - 130 with the following exceptions: Benzoic Acid(25%), Hexachloroethane(29%), Pyridine(23%)

All LCSD recoveries were within 30 - 130 with the following exceptions: Benzoic Acid(16%), Pyridine(29%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: Benzoic Acid(43.9%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. QC Batch 333940 (Samples: BK60366): -----

The LCS and/or LCSD recoveries for one or more analytes is below the method criteria. A low bias for these analytes is possible. (Acetone)

Instrument: Chem15 02/02/16-2 (BK60366)

Initial Calibration Verification (CHEM15/VT-B0202): 98% of target compounds met criteria. The following compounds had %RSDs >20%: 1,4-Dioxane (22%), Acetone (25%) The following compounds did not meet recommended response factors: None. The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM15/0202B14-VT-B0202): Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 100% of target compounds met criteria. The following compounds did not meet % deviation criteria: None. The following compounds did not meet maximum % deviations: None. The following compounds did not meet recommended response factors: None. The following compounds did not meet minimum response factors: None.

Printed Name	Jane Li
Position:	Chemist
Date:	2/2/2016

nelac

N ACCOR

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

February 09, 2016

SDG I.D.: GBK60366

QC (Batch Specific)

------ Sample No: BK59987, QA/QC Batch: 333940 ------

All LCS recoveries were within 70 - 130 with the following exceptions: Acetone(68%)

All LCSD recoveries were within 70 - 130 with the following exceptions: Acetone(63%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples in this delivery group were received at 1° C. (Note acceptance criteria is above freezing up to 6° C)

		Cooler: Yes A No Coolant: IPK PICE No
PHOENIX 587 East	HAIN OF CUSTODY RECORD iddle Turnpike, P.O. Box 370, Manchester, CT 06040 info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726 Project: CSU Kaser Hall New Britin C Report to: Ulrich Latoffer + OF Invoice to: Ulrich Latoffer	Temp / °C Pg of Contact Options: Fax: Phone: 203-733-5217 0211 Email: 0-6-575-0 000055 00-00000000000000000000000
Sampler's Signature Date: 2.2.16 Matrix Code: Date: Date: 2.2.16 DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid Description PHOENIX USE ONLY Customer Sample Sample Date Time	Analysis Request	
SAMPLE # Identification Matrix Sampled Sampled 60366 B-1:2.5' 5 2-2-16 1350 60367 B-1:000 Conget 9 2-16 1400	Gran 131	9/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/
Colored by: Accepted by: Accepted by: Colored by: Accepted by: Acce	Date: Time: RI CT Call UF $2-2/6$ $3'70$ Direct Exposure (Residential) CT Call UF $2/2/10$ $3'70$ Direct Exposure (Residential) CT Call UF $2/2/10$ $3'70$ Direct Exposure (Residential) SW Protection $2/2/10$ $100/2$ GW SW Protection	Data Format MCP Certification GW-1 DDF GW-2
Comments, Special Requirements or Regulations:	Image: Constraint of the constraint	GW-3 EQuIS Other Other S-1 Data Package S-2 Tier II Checklist S-3 Full Data Package* MWRA eSMART Phoenix Std Report Other Other

6BK60366

Geotechnical Engineering Proposal - CCSU Kaiser Hall File No. 0185-49 – April 14, 2015 (rev. 5-7-15) Page No. 5

70012 3 HQ 9711 VAB 6 402 Glass Jars 2 8 02 Glass Jars ٠

ŧ

Type of Analyses	No. of Analyses	448
Volatile organic compounds (VOCs) by EPA Method 8260B using sample preservation methods	M 3.	4011/1095 1407 2011 102 2011
CT Extractable Total Petroleum Hydrocarbons (CT ETPH)	M L	102
Polychlorinated Biphenyls by EPA Method 8082	A) (с Л
Semi-volatile Organic compounds (SVOCs) by EPA Method 8270C		
 Waste Characterization Parameters Ignitability / Flashpoint (Setaflash) - SW846 1020 Reactive Cyanide - SW846 7.3.3 Reactive Sulfide - SW846 7.3.4 Corrosivity, pH - SW846 9040 Conductivity - SW846 9045D 	m2	
Total RCRA 8 Metals	ころ	62
Toxicity characteristic leachate procedure (TCLP) RCRA 8 Metals	.4) /	

Appendix 6 – Soil Infiltration Investigation

APPENDIX 6 Soil Infiltration Investigation

March 17, 2015; File No. 0185-49.00

Re: CCSU Kaiser Hall DAS Project No. BI-RC-393 New Britain, CT

For the purpose of estimating infiltration rates for use in the design of storm water features, we selected two borings in the general area planned for infiltration features and performed eight infiltration tests. Selected Borings were B-10 and B-10A. Refer to Appendix 2 for test boring logs and refer to Appendix 4 for laboratory gradation test data. The locations of these borings are shown as shown on Figure 2 (Appendix 1). Depth to groundwater in the tested areas is at least 17 feet below present ground surface

The infiltrometer tests were performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method) using the Boring Percolation Test Procedure. The details of this procedure are attached. The test method consists of installing well screens in 4- to 6-inch diameter holes, and directly measuring the time for water to percolate after a specified presoaking period. Bottom depth of the tests was either four feet or six feet below exiting site grades.

Test results are attached as Table 1 to 8 and summarized below. Test results indicate Stabilized Measured Percolation Rates (in inches per hour) ranging from about 5 to 10 in./hr. in B-10, and about 24 to 36 in./hr. in B-10A. Refer each table for the Stabilized Measured Percolation Rate and the corresponding reduction factor (R_f) for each test. Note that $R_f = CF_t$ for the Boring Percolation Test Procedure.

Assuming CF_v and CF_s are both equal to 1.0, the calculated Design Infiltration Rate = Stabilized Measured Percolation Rate/ CF_t . Based on our data the calculated Design Infiltration Rates are as follows:

Test Boring	Test Number	Design Infiltration Rate
B-10	1	0.7 in./hr.
B-10	2	2.0 in./hr.
B-10A	1	6.5 in./hr.
B-10A	2	4.6 in./hr.
B-10A	3	5.5 in./hr.
B-10A	4	4.8 in./hr.
B-10A	5	5.7 in./hr.
B-10A	6	3.5 in./hr.

Also, refer to Appendix 5, for a discussion of environmental conditions encountered at the site and their implications on infiltrating storm water at the site.

TABLE 1 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN , CONNECTICUT PROJECT NUMBER: 0185-049

Test #: Test Depth (feet): Test Date: Test Performed By: Depth to Groundwater:

4.0
2/1/2016
R. Marshall
No groundwater encountered

1

Boring:B-10Borehole Depth (feet):4.0Borehole Diameter (in):6.0Stickup (feet):2.01

4.92

		Below	Reference			
Notes	Time	Depth with	Depth without	Elapsed	Water	Percolation
Indies	TIME	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)
	9:25	3.01	1.00	-	-	-
	9:42	4.16	2.15	0:17	13.80	48.71
Presoak	9:50	3.95	1.94	0:08	-2.52	-18.90
	9:55	4.08	2.07	0:05	1.56	18.72
	10:25	4.35	2.34	0:30	3.24	6.48
Start Test	10:40	4.11	2.10	0:15	-2.88	-11.52
	10:45	4.19	2.18	0:05	0.96	11.52
	10:50	4.25	2.24	0:05	0.72	8.64
	11:00	4.32	2.31	0:10	0.84	5.04
	11:15	4.42	2.41	0:15	1.20	4.80
	11:45	4.56	2.55	0:30	1.68	3.36
	12:15	4.67	2.66	0:30	1.32	2.64
	13:00	4.76	2.75	0:45	1.08	1.44
	13:35	4.80	2.79	0:35	0.48	0.82
	14:00	4.83	2.82	0:25	0.36	0.86
End Test	14:45	4.95	2.94	0:45	1.44	1.92

*Stabilized Measured Percolation Rate (in/hr): 4.92 Reduction Factor: 7.39 $R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$ $d_1 = Initial Water Depth (in.) = 19.68$ $\Delta d = Water Level Drop (in.) = 1.02$ DIA = Diameter of the boring (in.) = 6.00

<u>Reference:</u> Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

<u>Notes:</u> 1) Percolation Tests 1 & 2 were performed in adjacent, dedicated holes, approximately 6 ft. apart.
2) 2 in. Diameter PVC screen installed to test depth.

3) Screen was filled with coarse sand up to 1-foot below ground surface.

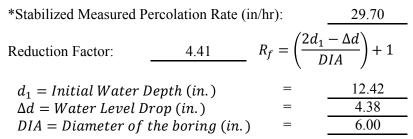
TABLE 2 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN , CONNECTICUT PROJECT NUMBER: 0185-049

Test #:2Test Depth (feet):6.0Test Date:2/1/2016Test Performed By:R. MarshallDepth to Groundwater:No groundwater encountered

Boring:B-10Borehole Depth (feet):6.0Borehole Diameter (in):6.0Stickup (feet):1.84

		Below	Reference				_
Notor	Time	Depth with	Depth without	Elapsed	Water	Percolation	
Notes	Time	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)	
	9:45	4.84	3.00	-	-	-	
Presoak	9:55	6.00	4.16	0:10	13.92	83.52	
	10:25	6.72	4.88	0:30	8.64	17.28	
Start Test	10:40	5.84	4.00	0:15	-10.56	-42.24	
	10:45	5.95	4.11	0:05	1.32	15.84	
	10:50	6.18	4.34	0:05	2.76	33.12	
	11:00	6.35	4.51	0:10	2.04	12.24	
	11:15	6.58	4.74	0:15	2.76	11.04	-*9.48
	11:45	6.91	5.07	0:30	3.96	7.92	- 9.48
	12:15	7.14	5.30	0:30	2.76	5.52	5
	13:00	7.35	5.51	0:45	2.52	3.36	
	13:35	7.45	5.61	0:35	1.20	2.06	
	14:00	7.52	5.68	0:25	0.84	2.02	
End Test	14:45	7.60	5.76	0:45	0.96	1.28	

*Stabilized Measured Percolation Rate (in/hr): 9.48 Reduction Factor: 4.82 $R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$ $d_1 = Initial Water Depth (in.) = 13.14$ $\Delta d = Water Level Drop (in.) = 3.36$ DIA = Diameter of the boring (in.) = 6.00


<u>Reference:</u> Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

Notes: 1) Percolation Tests 1 & 2 were performed in adjacent, dedicated holes, approximately 6 ft. apart. 2) 2 in. Diameter PVC screen installed to test depth.

3) Screen annulas was filled with coarse sand up to 3-feet below ground surface.

TABLE 3 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN , CONNECTICUT PROJECT NUMBER: 0185-049

			I KOJI	LCI NUMBER	. 0105-047			
Test #:			1 Boring:				B-10A	
Test Dep	pth (feet):		4.0 Borehole Depth (feet			pth (feet):	4.0	
Test Dat	te:		2/2/2016 Borehole Diameter (in):			6.0		
Test Per	formed By:		R. Mars	R. Marshall/D. Pell Stickup (feet):			1.93	
Depth to	o Groundwa	ter:	No groundw	ater encountered	1			
_			Below	Reference				_
Γ	Natar	Time	Depth with	Depth without	Elapsed	Water	Percolation	ĺ
	Notes	Time	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)	
ſ		8:30	2.93	1.00	-	-	-	
	Presoak	8:32	3.28	1.35	0:02	4.20	126.00	
	FIESOak	8:50	4.85	2.92	0:18	18.84	62.80	
		9:00	5.13	3.20	0:10	3.36	20.16	
	Start Test	9:03	3.85	1.92	0:03	-15.36	-307.20	
ſ		9:08	4.08	2.15	0:05	2.76	33.12	
		9:13	4.49	2.56	0:05	4.92	59.04	
		9:18	4.68	2.75	0:05	2.28	27.36	-28.80
		9:28	5.10	3.17	0:10	5.04	30.24	20.00
		9:38	5.30	3.37	0:10	2.40	14.40	-
		10:08	5.50	3.57	0:30	2.40	4.80	
		10:38	5.50	3.57	0:30	0.00	0.00	
		11:03	5.65	3.72	0:25	1.80	4.32	
	Refill	11:08	3.60	1.67	0:05	-24.60	-295.20	ĺ
ſ		11:13	3.94	2.01	0:05	4.08	48.96	
		11:18	4.23	2.30	0:05	3.48	41.76	
		11:28	4.72	2.79	0:10	5.88	35.28	-30.60
		11:38	5.08	3.15	0:10	4.32	25.92	-30.00
	End Test	12:08	5.55	3.62	0:30	5.64	11.28	Í

<u>Reference:</u> Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

<u>Notes:</u> 1) Percolation Tests 1 & 2 were performed in adjacent, dedicated holes, approximately 6 ft. apart.
2) 2 in. Diameter PVC screen installed to test depth.
3) Screen was filled with filter sand up to 1-foot below ground surface.

TABLE 4 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN , CONNECTICUT PROJECT NUMBER: 0185-049

			I KOJI	ECT NUMBER	. 0105-049			
Test #:			2			Boring:		B-10A
Test De	epth (feet):		6.0			Borehole De	pth (feet):	6.0
Test Da	ate:		2/2/2016				6.0	
Test Pe	rformed By:		R. Mars	R. Marshall/D. Pell Stickup (feet):			2.03	
Depth t	o Groundwa	ter:	No groundw	ater encountered	1			
			Below	Reference				
	Natas	Time	Depth with	Depth without	Elapsed	Water	Percolation	
	Notes	Time	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)	
		8:30	5.03	3.00	-	-	-	
	Presoak	8:32	4.81	2.78	0:02	-2.64	-79.20	
	TICSOak	8:50	6.95	4.92	0:18	25.68	85.60	
		9:00	7.38	5.35	0:10	5.16	30.96	
	Start Test	9:04	5.72	3.69	0:04	-19.92	-298.80	
		9:08	5.92	3.89	0:04	2.40	36.00	
		9:13	6.35	4.32	0:05	5.16	61.92	
		9:18	6.49	4.46	0:05	1.68	20.16	
		9:28	6.90	4.87	0:10	4.92	29.52	-23.76
		9:38	7.20	5.17	0:10	3.60	21.60	
		10:08	7.45	5.42	0:30	3.00	6.00	-
		10:38	7.50	5.47	0:30	0.60	1.20	
		11:03	7.55	5.52	0:25	0.60	1.44	
	Refill	11:10	5.80	3.77	0:07	-21.00	-180.00	
		11:13	5.90	3.87	0:03	1.20	24.00	
		11:18	6.21	4.18	0:05	3.72	44.64	
		11:28	6.58	4.55	0:10	4.44	26.64	-25.92
		11:38	6.93	4.90	0:10	4.20	25.20	-23.92
	End Test	12:08	7.55	5.52	0:30	7.44	14.88	ſ
								2

*Stabilized Measured Percolation Rate (in/hr): 24.84
Reduction Factor: 5.21
$$R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$$

 $d_1 = Initial Water Depth (in.) = 14.52$
 $\Delta d = Water Level Drop (in.) = 3.77$
 $DIA = Diameter of the boring (in.) = 6.00$

<u>Reference:</u> Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

Notes: 1) Percolation Tests 1 & 2 were performed in adjacent, dedicated holes, approximately 6 ft. apart. 2) 2 in. Diameter PVC screen installed to test depth.

TABLE 5 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN, CONNECTICUT PROJECT NUMBER: 0185-049

Test #: Test Depth (feet): Test Date: Test Performed By: Depth to Groundwater:

3 4.0 2/2/2016 R. Marshall/D. Pell No groundwater encountered Boring: B-10A Borehole Depth (feet): 4.0 Borehole Diameter (in): 6.0 Stickup (feet): 1.93

		Below	Reference				-
Notes	Time	Depth with	Depth without	Elapsed	Water	Percolation	
notes	THIC	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)	
Start Test	13:13	3.98	2.05	-	-	-	
	13:16	4.12	2.19	0:03	1.68	33.60	
	13:21	4.37	2.44	0:05	3.00	36.00	2
	13:26	4.57	2.64	0:05	2.40	28.80	-28.08
	13:36	4.95	3.02	0:10	4.56	27.36	20.00
	13:46	5.18	3.25	0:10	2.76	16.56	
	13:56	5.48	3.55	0:10	3.60	21.60	
	14:06	5.54	3.61	0:10	0.72	4.32	
End Test	14:16	5.50	3.57	0:10	-0.48	-2.88	

8

*Stabilized Measured Percolation Rate (in/hr): 28.08			28.08
Reduction Factor:	5.10	$R_f = \left(\frac{2d_1}{D}\right)$	$\left(\frac{-\Delta d}{DIA}\right) + 1$
$d_1 = Initial Water L$	0epth (in.)	=	14.04
$\Delta d = Water \ Level \ D$	rop (in.)	=	3.48
DIA = Diameter of	the boring (in.)	=	6.00

Reference: Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

- <u>Notes:</u> 1) Percolation Tests 3 & 4 were performed in adjacent, dedicated holes, approximately 6 ft. apart. 2) 2 in. Diameter PVC screen installed to test depth.
 - 3) Existing presoaked conditions due to Test #1 for B-10A being performed earlier that day.
 - 4) Screen was filled with filter sand up to 1-foot below ground surface.

TABLE 6 **BOREHOLE INFILTROMETER TEST DATA** CCSU KAISER HALL **NEW BRITAIN, CONNECTICUT PROJECT NUMBER: 0185-049**

Test #: Test Depth (feet): Test Date: Test Performed By: Depth to Groundwater:

4
6.0
2/2/2016
R. Marshall/D. Pell
No groundwater encountered

Boring: B-10A Borehole Depth (feet): 6.0 Borehole Diameter (in): 6.0 Stickup (feet): 2.03

		Below	Reference				
Notes	Time	Depth with	Depth without	Elapsed	Water	Percolation	
Inotes	Time	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)	
Start Test	13:11	5.66	3.63	-	-	-	
	13:16	6.00	3.97	0:05	4.08	48.96	
	13:21	6.25	4.22	0:05	3.00	36.00	*
	13:26	6.40	4.37	0:05	1.80	21.60	- 31.
	13:36	6.89	4.86	0:10	5.88	35.28	
	13:46	6.94	4.91	0:10	0.60	3.60	
	13:56	7.19	5.16	0:10	3.00	18.00	
	14:06	7.38	5.35	0:10	2.28	13.68	
End Test	14:16	7.50	5.47	0:10	1.44	8.64	

.0

*Stabilized Measured Pe	ercolation Rate (i	n/hr):	30.96			
Reduction Factor:	6.47	$R_f = \left(\frac{2d_1}{L}\right)$	$\left(\frac{-\Delta d}{DIA}\right) + 1$			
$d_1 = Initial Water Detection Detection The sector Detection The secto$	epth (in.)	=	18.20			
$\Delta d = Water \ Level \ Dresson de ter \ Dress$	=	3.56				
DIA = Diameter of th	=	6.00				

Reference: Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

Notes: 1) Percolation Tests 3 & 4 were performed in adjacent, dedicated holes, approximately 6 ft. apart. 2) 2 in. Diameter PVC screen installed to test depth.

3) Existing presoaked conditions due to Test #2 for B-10A being performed earlier that day.

4) Screen was filled with filter sand up to 3-feet below ground surface.

TABLE 7 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN , CONNECTICUT PROJECT NUMBER: 0185-049

Test #: Test Depth (feet): Test Date: Test Performed By: Depth to Groundwater:

5
4.0
2/2/2016
R. Marshall/D. Pell
No groundwater encountered

Boring:B-10ABorehole Depth (feet):4.0Borehole Diameter (in):6.0Stickup (feet):1.93

		Below	Reference				_
Notes Tim		Depth with	Depth without	Elapsed	Water	Percolation	
Inotes	Time	stickup (ft)	stickup (ft)	Time (mins)	Drop (in)	Rate (in/hr)	
Start Test	14:30	3.19	1.26	-	-	-	
	14:35	3.59	1.66	0:05	4.80	57.60	
	14:40	3.84	1.91	0:05	3.00	36.00	
	14:45	4.10	2.17	0:05	3.12	37.44	*-36.0
	14:55	4.63	2.70	0:10	6.36	38.16	50.0
	15:05	5.08	3.15	0:10	5.40	32.40	
	15:15	5.15	3.22	0:10	0.84	5.04	
	15:25	5.38	3.45	0:10	2.76	16.56	
	15:35	5.50	3.57	0:10	1.44	8.64	
End Test	15:45	5.50	3.57	0:10	0.00	0.00	

*Stabilized Measured Pe	36.00		
Reduction Factor:	6.33	$R_f = \left(\frac{2d_1}{L}\right)$	$\left(\frac{-\Delta d}{DIA}\right) + 1$
$d_1 = Initial Water$	Depth (in.)	=	18.21
$\Delta d = Water \ Level$	=	4.47	
DIA = Diameter of	f the boring (in.) =	6.00

<u>Reference:</u> Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

Notes:1) Percolation Tests 5 & 6 were performed in adjacent, dedicated holes, approximately 6 ft. apart.2) 2 in. Diameter PVC screen installed to test depth.

3) Existing presoaked conditions due to Tests #1 & #3 for B-10A being performed earlier that day.

4) Screen was filled with filter sand up to 1-foot below ground surface.

TABLE 8 BOREHOLE INFILTROMETER TEST DATA CCSU KAISER HALL NEW BRITAIN , CONNECTICUT PROJECT NUMBER: 0185-049

Test #: Test Depth (feet): Test Date: Test Performed By: Depth to Groundwater:

6	
6.0	
2/2/2016	
R. Marshall/D. Pell	
No groundwater encount	ered

Boring:B-10ABorehole Depth (feet):6.0Borehole Diameter (in):6.0Stickup (feet):2.03

		Below	Reference				_
Notes	Time	Depth with	Depth without	Elapsed	Water	Percolation	
notes	Time	stickup (ft.)	stickup (ft.)	Time (mins)	Drop (in)	Rate (in/hr)	
Start Test	14:33	5.38	3.35	-	-	-	
	14:35	5.49	3.46	0:02	1.32	39.60	
	14:40	5.81	3.78	0:05	3.84	46.08	_
	14:45	5.95	3.92	0:05	1.68	20.16	
	14:55	6.40	4.37	0:10	5.40	32.40	*24.96
	15:05	6.71	4.68	0:10	3.72	22.32	
	15:15	6.76	4.73	0:10	0.60	3.60	
	15:25	7.09	5.06	0:10	3.96	23.76	
	15:35	7.42	5.39	0:10	3.96	23.76	
End Test	15:45	7.43	5.40	0:10	0.12	0.72	

*Stabilized Measured Percolation Rate (in/hr): 24.96 Reduction Factor: 7.11 $R_f = \left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$ $d_1 = Initial Water Depth (in.) = 20.12$ $\Delta d = Water Level Drop (in.) = 3.60$ DIA = Diameter of the boring (in.) = 6.00

<u>Reference:</u> Test was performed in general accordance with USBR 7300-89 (Performing Field Permeability Testing by the Well Permeameter Method).

Notes: 1) Percolation Tests 5 & 6 were performed in adjacent, dedicated holes, approximately 6 ft. apart. 2) 2 in. Diameter PVC screen installed to test depth.

3) Existing presoaked conditions due to Tests #2 & #4 for B-10A being performed earlier that day.

4) Screen was filled with filter sand up to 3-feet below ground surface.

Boring Percolation Test Procedure

This procedure is similar to the USBR 7300-89 Well Permeameter Testing Procedure and is useful for LID features that are proposed at depth, since the depth of testing can be isolated with slotted sections of PVC pipe, surrounded by a bentonite cap, and placed at any depth in the borehole. It requires the application of a reduction factor to account for non-vertical flow. A figure is attached on Plate 3-A. Field log template with example are attached on Plates 3-C and 3-D.

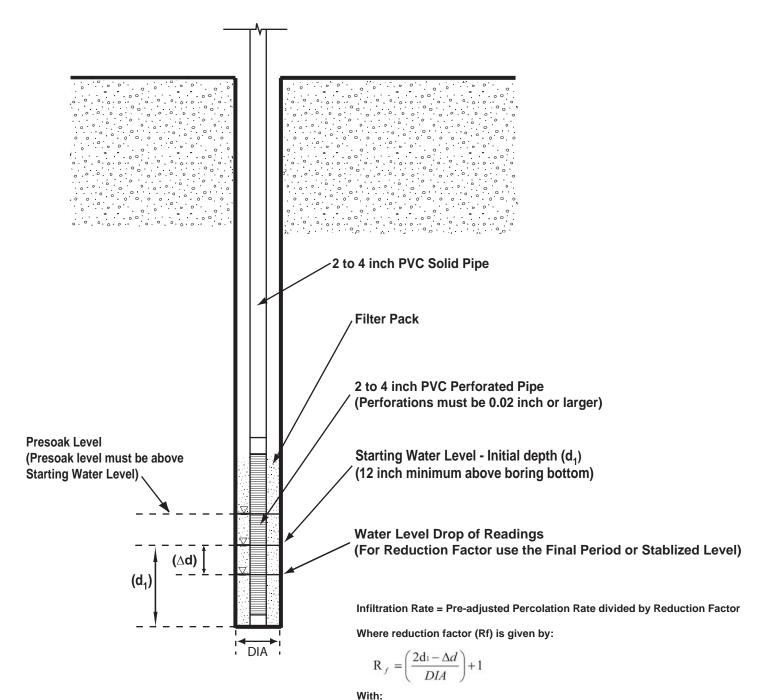
- 1. Using a hollow-stem auger, advance the boring at least 12 inches below the elevation of proposed invert of infiltration. Rotate the auger until all cuttings are removed. Care shall be taken to ensure smearing of clayey soils does not occur along augered surface as this will dramatically reduce the final calculated infiltration rate. Record the boring diameter and depth to be tested.
- 2. Install through the auger, a 2- to 4-inch-diameter perforated PVC casing with a solid end cap. Perforations shall be 0.02 inch slot or larger. Pour filter pack down inside of auger while withdrawing the auger such that the PVC casing is surrounded by the filter pack. The filter pack and perforated casing must have a larger hydraulic conductivity than the soil or rock that is to be tested.
- 3. For boreholes drilled below the proposed invert of infiltration that are being converted to boring percolation tests, careful attention must be paid to isolate the depth of the test section with an impermeable cap above and below it. The annulus between the slotted PVC and native materials in the test section must be backfilled with well-draining sand. The borehole below the desired test section, and the annulus between solid PVC and native materials above the desired test section, must be backfilled with between solid PVC and native materials above the desired test section, must be backfilled with bentonite or similar low-permeability material. The borehole itself shall not create a path of less resistance for the water than the in-situ materials being tested.
- 4. Presoak the hole immediately prior to the percolation testing. Presoaking the test hole shall maintain a water level above the percolation testing level and at least 12 inches above the bottom of the boring. If the water seeps completely away within 30 minutes after filling the boring two consecutive times, and the subsurface exploration has yielded permeable soils beneath the proposed invert of infiltration, presoaking can be considered complete and the testing can proceed. If the water does not completely drain within 30 minutes, presoak the hole for at least 4 hours before conducting the infiltration test. A sounder or piezometer may be used to determine the water level. Record all water levels to the nearest ½-inch increment.

- 5. After presoaking, determine the time interval that will be used to measure the water drop readings for the percolation test. Fill the hole to a minimum depth of 12 inches above the top of the bentonite plug. Observe the drop in the water during the next 30 minutes and compare with the condition that applies below. This will determine the standard time interval for this test location:
 - a. If no water remains in the hole, the time interval between readings shall be 10 minutes.
 - b. If water remains in the hole, the time interval between readings shall be 30 minutes.
- 6. Once the time interval for the test has been determined, add water to the casing to the depth of soil to be tested. The water depth must be less than or equal to the water level used to presoak the hole and a minimum depth of 12 inches above the bentonite plug. For each successive percolation test reading, the starting water level must be at this initial water depth.
- 7. Conduct the percolation test by taking readings of the water drop from the initial water depth. Record the time and the drop in water level during the standard time interval determined in Step 5. Fill the boring back to the initial water depth.
- 8. Repeat the percolation test readings a minimum of eight times or until a stabilized rate of drop is obtained, whichever occurs first. A stabilized rate is when the highest and lowest readings are within 10 percent of each other from three consecutive readings.
- 9. The average drop of the stabilized rate over the last three consecutive readings is the preadjusted percolation rate at the test location, expressed in inches per hour. The preadjusted percolation rate must be reduced to account for the discharge of water from both the sides and bottom of the boring (i.e., non-vertical flow). Use the following formula to determine the infiltration rate:

Reduction Factor (R_f) = R_f = $\left(\frac{2d_1 - \Delta d}{DIA}\right) + 1$ With: d₁ = Initial Water Depth (in.) Δd = Water Level Drop of the Final Period or Stabilized Rate (in.) DIA = Diameter of the boring (in.)

CORRECTION FACTORS

Measured infiltration rates must be reduced with correction factors to determine design values that will represent long-term performance of the proposed infiltration BMPs. Test-specific correction factors are applied to account for the direction of flow during the test and calculations. The correction factor for site variability, number of tests performed, and thoroughness of subsurface investigation should be selected by comparing the size and scope of subsurface exploration to similar projects. The correction factor for siltation, plugging, and maintenance should be selected based on the specified levels of pre-treatment and maintenance for the proposed BMPs. For example, stormwater infiltration BMPs that are proposed with pretreatment components and regular maintenance programs, a correction factor of 1 may be appropriate; for BMPs that are proposed to infiltrate untreated flow with unspecified maintenance programs, a high level of siltation and plugging is to be expected and a correction factor of 3 is likely more appropriate.


The following table provides guidance for the range of values used for each factor. The geotechnical consultant shall determine site-specific correction factors and provide substantiating data and analyses to justify the selection. All correction factors will be subject to review and approval by the County.

Correction Factors Applied to Measured Infiltration Rates									
Double-ring infiltrometer	CF _t = 1								
Well permeameter	= 1								
Boring percolation	See test procedures = R _f								
Excavation percolation	See test procedures = R _f								
High flow-rate percolation	= 2								
Policy for new percolation basins	= 2								
Site variability, number of tests, and thoroughness of subsurface investigation	CF _v = 1 to 3								
Long-term siltation, plugging and maintenance	CF _s = 1 to 3								

Total Correction Factor, $CF = CF_t \times CF_v \times CF_s$

Design Infiltration Rate = Measured Percolation Rate/CF

d1 = Initial Water Depth (in.)

 Δd = Water Level Drop of Final Period or Stablized Level (in.)

DIA = Diameter of the boring (in.)

Appendix 7 – Limitations

LIMITATIONS

Explorations

- 1. The analyses and recommendations submitted in this report are based in part upon the data obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
- 3. Water level readings have been made in drill holes at times and under conditions stated on the boring logs and in the report. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, tides, and other factors occurring since the time measurements were made.

Limited Environmental Testing

- 4. The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by Client.
- 5. Observations were made of site soils as indicated within the report. Where access to portions of the site was unavailable or limited, GeoDesign renders no opinion as to the presence of hazardous material or oil, or to the presence of indirect evidence relating to hazardous material or oil, in that portion of the site.
- 6. Unless otherwise specified in the report, GeoDesign did not perform testing or analyses to determine the presence or concentration of asbestos or polychlorinated biphenyls (PCB's) at the site or in the environment at the site.
- 7. In part, the purpose of this report was to preliminarily assess the physical characteristics of site soils with respect to the presence in the environment of hazardous material or oil. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.
- 8. The conclusions and recommendations contained in this report are based in part upon the data obtained from a limited number of soil and/or groundwater samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and

recommendations of this report.

- 9. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of our scope of work. Where such analyses have been conducted by an outside laboratory, GeoDesign has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data.
- 10. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of our scope of work. Where such analyses have been conducted by an outside laboratory, GeoDesign has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data.
- 11. The conclusions and recommendations contained in this report are based in part upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. As indicated within the report, some of these data are preliminary "screening" level data, and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by GeoDesign, and the conclusions and recommendations presented herein modified accordingly.
- 12. Chemical analyses have been performed for specific parameters during the course of this study, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.

Review

- 13. In the event that any changes in the nature, design or location of the proposed CCSU Kaiser Hall Addition, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by Geo**Design**. It is recommended that this firm be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.
- 14. It is recommended that GeoDesign be retained to provide further engineering services during construction and/or implementation of any remedial measures recommended in this report. This is to allow GeoDesign to observe compliance with the concepts and recommendations contained herein, and to allow the development of design changes in the event that subsurface conditions differ from those anticipated.

Use of Report

15. This report has been prepared for the exclusive use of Sasaki Associates and their design consultants for specific application to the proposed CCSU Kaiser Hall Addition Project in New Britain, Connecticut, in accordance with generally accepted soil and foundation engineering practices. No other warranty, express or implied, is made.

APPENDIX B

Appendix B - TRC Solutions Limited Soil Assessment, Kaiser Hall at CCSU New Britain, Connecticut TRC Project No. 260041 Dated October 28, 2016 117 Pages

Windsor, CT 06095

October 28, 2016

Mr. Peter Simmons, P.E. **Project Manager Division of Construction Services** 165 Capital Avenue, Room 460 Hartford, CT 06106

RE: Limited Soil Assessment Kaiser Hall at CCSU New Britain, Connecticut TRC Project No. 260041

Dear Mr. Simmons,

This report provides the results of our Limited Soil Assessment Program and associated environmental recommendations for the Proposed Central Connecticut State University (CCSU) Kaiser Hall Addition in New Britain, Connecticut. This work was completed in accordance with our proposal dated July 22, 2016.

Background

This investigation was designed to determine the disposition of soils broadly across the proposed Kaiser Hall building footprint vicinity and the area of the drainage structure to be installed to the north of the proposed building. Note that GeoDesign, Inc. (GeoDesign) conducted a geotechnical investigation within the project area in February 2016. The complete results of that investigation were presented in a report entitled "Geotechnical Engineering and Preliminary Environmental Characterization Report" dated March 17, 2016. Thirteen soil borings, identified on Figure 1 as B-1 through B-12 and B-10A, were completed as part of that investigation. GeoDesign collected soil samples from two of the borings (identified as B-1 and B-10) for laboratory analysis. The relevant analytical results from those two samples are included in this report for completeness.

Existing Conditions

The project area is surrounded by Ella Grasso Boulevard to the north, Kaiser Drive to the east and the existing Kaiser Hall building to the south. The student center parking garage and mid-campus residence hall are located to the west of the project area. The project area is currently occupied by a large air-supported structure (the Kaiser Hall Annex), three tennis courts and two basketball courts. Kaiser Hall is connected to the Kaiser Hall Annex via a narrow, covered hallway. Current conditions are shown on Figure 1.

Proposed Construction

Based on information provided to TRC, the existing air-supported structure will be demolished as part of this project and replaced by an approximately 70,000 square foot recreation center. The proposed building will be two stories, primarily slab-on-grade, with a small mechanical room basement. In addition, a new drainage basin will be installed to the north of the proposed building.

Based on the information provided to TRC, excavations performed in support of the proposed construction project will range from four to sixteen feet below existing grade in the areas immediately surrounding the current building and the location of the new drainage basin. The proposed building footprint and approximate excavation depths as provided by the project design team are shown on Figure 1.

Environmental Review

To obtain information on the environmental setting for the project area, TRC obtained an environmental database report, historic aerial photographs and historic topographic maps from Environmental Data Resources (EDR) of Shelton, Connecticut. No development is visible within the project area on aerial photographs from 1934, 1942, 1957, 1962 and 1965. Nine tennis courts are visible within the project area on aerial photographs from 1970 through 1986. The present day air-supported structure becomes visible on the 1992 aerial photograph and remains unchanged from the present day layout in aerial photographs through 2012. Six tennis courts are visible to the north of the air-supported structure on aerial photographs from 1992 through 2006. The current configuration of three tennis courts and two basketball courts is visible on the aerial photographs from 2008 through 2012. No additional information regarding the development history of the project area could be gleaned from the historic topographic maps reviewed by TRC.

A total of 39 database records related to the CCSU campus were identified in the EDR database report. None of the records presented in the database report could be specifically linked to the project area.

Regulatory Setting

Although the project site is not subject to the Transfer Act, the Voluntary Cleanup Program, nor the requirements of a Consent Order, the soil analytical results were compared to the Connecticut Remediation Standard Regulations (RSRs) to evaluate the levels of any detected contaminants within the investigated areas. This allows for management of any contaminated media encountered during the impending construction activities in a manner consistent with applicable regulations.

The reported concentrations for soils were compared to the Residential Direct Exposure Criteria (RES DEC), the Industrial/Commercial Direct Exposure Criteria (I/C DEC) and the GA Pollutant Mobility Criteria (GA PMC) under the RSRs. In addition, the Toxicity Characteristic Leaching Procedure (TCLP) metals results were compared to the toxicity characteristic threshold values presented in 40 CFR 261.24.

The reported sample results were also compared to the unlined and lined landfill reuse criteria

presented in the documented entitled "Reuse and Disposal of Contaminated Soil at Massachusetts Landfills, Department of Environmental Protection Policy # COMM-97-001".

Preliminary Activities

Prior to beginning the investigation, TRC marked the proposed boring locations at the site with white paint on the pavement. "Call Before You Dig" (CBYD) was contacted by Glacier Drilling, Inc. (Glacier) of Durham, Connecticut to mark the locations of buried utilities in the proposed work zones. In addition, TRC contracted Underground Surveying, LLC of Brookfield, Connecticut, a private utility mark-out service, to conduct a more detailed on-site mark-out given the presence of several utilities within the work areas. Photographs from the underground utility survey are included in Attachment A.

Preliminary activities also included the preparation of a Health and Safety Plan (HASP) to address the field work to be completed as part of this investigation.

Soil Boring Program

A total of 12 soil borings were advanced on August 5, 2016 by Glacier under the direct supervision of TRC personnel. The borings were advanced utilizing a track-mounted GeoProbeTM direct-push drill rig. Soil cores were collected continuously from the ground surface to depths up to 16 feet below grade (ftbg).

Each four-foot soil core, collected in an acetate Macro-Core[®] liner, was logged with respect to soil characteristics (i.e., grain size, moisture content and any other physical characteristics) and indications of potential impacts (e.g., stains and odors). In addition, each core was field-screened using a photoionization detector (PID) prior to the collection of soil samples for analysis. Soil boring logs are presented in Attachment B. The soil boring/sampling locations (identified as SB-1 through SB-12) are shown on Figure 1.

No staining, odors or elevated PID readings were noted in any of the soil cores collected as part of this investigation. In general, soils encountered during this investigation were comprised of reddishbrown fine-to-medium sand, with varying amounts of coarse-grained sand and gravel. Groundwater was not encountered in any of the soil borings drilled as part of this investigation. Note that groundwater was encountered at depths between 15 and 17 feet below grade in three of the soil borings advanced as part of the previous geotechnical investigation.

One soil sample was collected from each of the soil borings. Soil samples were collected as a composite along the entire drilled depth at each location. Note that the volatile organic compound (VOC) aliquot was collected from a discrete location within each boring. Soil samples submitted to the laboratory for VOC analysis were collected in accordance with EPA Method 5035. This method outlines the collection of soil samples, without homogenization and with minimal disturbance, into extraction solvents. Soils collected for the remaining constituents were homogenized in dedicated stainless steel bowls utilizing dedicated stainless steel spoons. The soils were placed in properly labeled laboratory provided glassware and packed in a cooler with ice for sample preservation. Utilizing proper chain- of-custody procedures, the samples were submitted to Phoenix

Environmental Laboratories of Manchester, CT. All samples collected were submitted to Phoenix for the following analysis list that was developed considering disposal parameters and potential hazardous materials:

- Volatile Organic Compounds (VOCs)(EPA Methods 5035 and 8260),
- Semi-Volatile Organic Compounds (SVOCs)(EPA Method 8270),
- Total and TCLP Resource Conservation and Recovery Act (RCRA) 8 Metals (EPA Methods 6010B and 7471A),
- Extractable Total Petroleum Hydrocarbons (ETPH) (Connecticut Department of Environmental Protection Extractable Total Petroleum Hydrocarbons Method),
- Polychlorinated Biphenyls (PCBs) (EPA Method 8082),
- Cyanide by EPA Method 9010, Reactive Sulfide, conductivity, flashpoint and pH.

The laboratory analytical report for the samples collected by TRC is provided in Attachment C. As previously mentioned, two soil samples were also collected by GeoDesign during their investigation from borings B-1 and B-10. These two samples were submitted by GeoDesign to Phoenix for the same analyses as those listed above. The analytical results from both investigations are summarized in Table 1.

None of the soils represented by the samples collected as part of this investigation or those by GeoDesign are considered to be characteristically hazardous waste as defined in RCRA based on the results of the ignitability, pH, reactivity and TCLP metals analyses.

All of the total metals concentrations reported for samples collected by TRC and GeoDesign were below the RES DEC. Given the very consistent nature of the metals concentrations noted in all of the soil samples, the reported metals concentrations are likely representative of naturally occurring or background conditions. Note that while none of the TCLP metals results exceed the hazardous waste thresholds, the TCLP lead concentrations reported in the GeoDesign soil sample B-1 and TRC soil sample SB-7 do exceed the GA PMC. None of the other reported TCLP metals concentrations exceed the GA PMC.

ETPH was not reported above analytical detection limits in any of the soil samples collected by TRC. ETPH was reported above the analytical detection limit in the GeoDesign soil sample B-10 at a concentration of 70 parts per million (ppm).

PCBs were not reported above analytical detection limits in any of the soil samples collected by TRC or GeoDesign.

VOCs were reported above analytical detection limits in soil sample B-10 collected as part of GeoDesign's earlier effort. The reported concentration of naphthalene (10 ppm) exceeds the GA PMC. The reported total concentration of VOCs (14.88 ppm) in that sample also exceeded the criteria for acceptance at a Massachusetts unlined or lined landfill. VOCs were not reported above detection limits in any of the other samples collected as part of either investigation.

SVOCs were reported at concentrations above analytical detection limits in the soil samples SB-2, SB-4, SB-6, SB-7, SB-10, SB-11 and in GeoDesigns's sample B-10. None of the reported

concentrations of SVOCs exceeded the RES DEC or GA PMC.

Soil Management

Based on the results of the soil sampling, soils generated as part of the future construction project fall into one of three categories as defined below and should be managed as designated in the sections that follow.

Soil Categories

<u>Clean Soil:</u> Soils within this category contain only naturally occurring concentrations of metals. Based on the consistent metals concentrations noted in each of the soil samples collected at the site, these metals concentrations are considered representative of background conditions. There were no detectable concentrations ETPH, PCBs, VOCs or SVOCs in any of the soils represented by the samples collected from soil boring locations SB-1, SB-3, SB-5, SB-8, SB-9 and SB-12. Soils within this category include those that do not fall within one of the red, blue or purple outlined areas shown on Figure 1.

<u>Polluted Soil</u>: Soils within this category are polluted with SVOCs at concentrations below the RES DEC and GA PMC. These soils are represented by the samples collected from borings SB-4, SB-6, SB-10 and SB-11. Soils in this category fall within the blue outlined areas shown on Figure 1.

<u>Contaminated Soil:</u> Soils within this category contain concentrations of constituents in excess of RSR criteria. Specifically, the reported concentrations of TCLP lead exceed the GA PMC at the SB-7 and B-1 locations. The naphthalene concentration in the sample collected from the GeoDesign boring location B-10 (which is located adjacent to the TRC boring location SB-2) exceeded the GA PMC. Note that due to the close proximity of SB-2 to B-10, soils at the SB-2 location are considered contaminated. Soils within this category fall within the red or purple outlined areas shown on Figure 1.

Soil Management Options

<u>On-site Reuse</u>: Soils identified as clean or polluted (see Figure 1) may be reused on-site. As it is DCS's policy not to re-use polluted soils at any off-site location, any excess polluted soils from the construction project will need to be disposed of. As indicated in Table 1, all soils identified as being polluted meet the Massachusetts COMM-97 policy limits for lined or unlined landfills.

Note that the contaminated soil identified within the red outlined area on Figure 1 may be considered for reuse on-site, however, it's potential use should be limited to the area beneath the proposed building footprint. As the soils in the area around B-1/SB-7 are impacted with leachable lead, their reuse under the building would render them isolated. Therefore, the intent of the regulations is met.

Should soils determined to be "contaminated" or "polluted" be reused on-site, an Operations and Maintenance Plan (O&M Plan) should be developed at the completion of construction. The O&M

Plan will serve as a permanent record of how and where contaminated or polluted soils were used. The O&M Plan would serve as a useful tool in aiding future construction activities, responding to potential CTDEEP audits, securing project financing and aiding in potential transfers of the property to other parties.

<u>Off-site Disposal:</u> As indicated above, any excess polluted soils derived from this project meet the Massachusetts COMM-97 policy limited for both lined and unlined landfills and should be disposed of (reused) in one such place. If it is determined that the contaminated soils identified on Figure 1 within the red outlined area are not or cannot (based on physical characteristics) be used underneath the proposed building footprint, it too qualifies for disposal at a Massachusetts landfill. Based on the total VOC concentrations in soils outlined in purple on Figure 1, they <u>do not</u> qualify for on-site reuse or disposal at a Massachusetts landfill. Rather, these soils qualify for "disposal" at an asphalt batching plant.

Table 2 summarizes the various soil management requirements for this project, along with estimated excess soil allowances. Note that the quantities listed in Table 2 are approximate and include soils displaced by the new building, soils generated from excavations for the new foundation and soils potentially excavated in support of the new drainage structure. The actual quantities of excess soil for which there is no on-site reuse option will depend on the actual volumes of soil excavated from the areas outlined on Figure 1. The quantities of excess soils which have an on-site reuse option can be reduced considerably if such soils are reused onsite. Therefore, all quantities listed in Table 2 should be considered allowances for preliminary pricing purposes only.

Contractor excavation activities should be monitored to ensure that regulated materials are handled appropriately. This would include maintaining appropriate shipping paperwork for soils transported to off-site facilities and ensure that soils reused on-site are placed appropriately.

Permits

If excavated soils are direct-loaded onto trucks for disposal at approved off-site facilities, a CTDEEP General Permit for Contaminated Soil and or Sediment Management (Staging and Transfer) will not be required. The ultimate need for this permit should be reevaluated once a Contractor is selected and the construction sequence and logistics are determined.

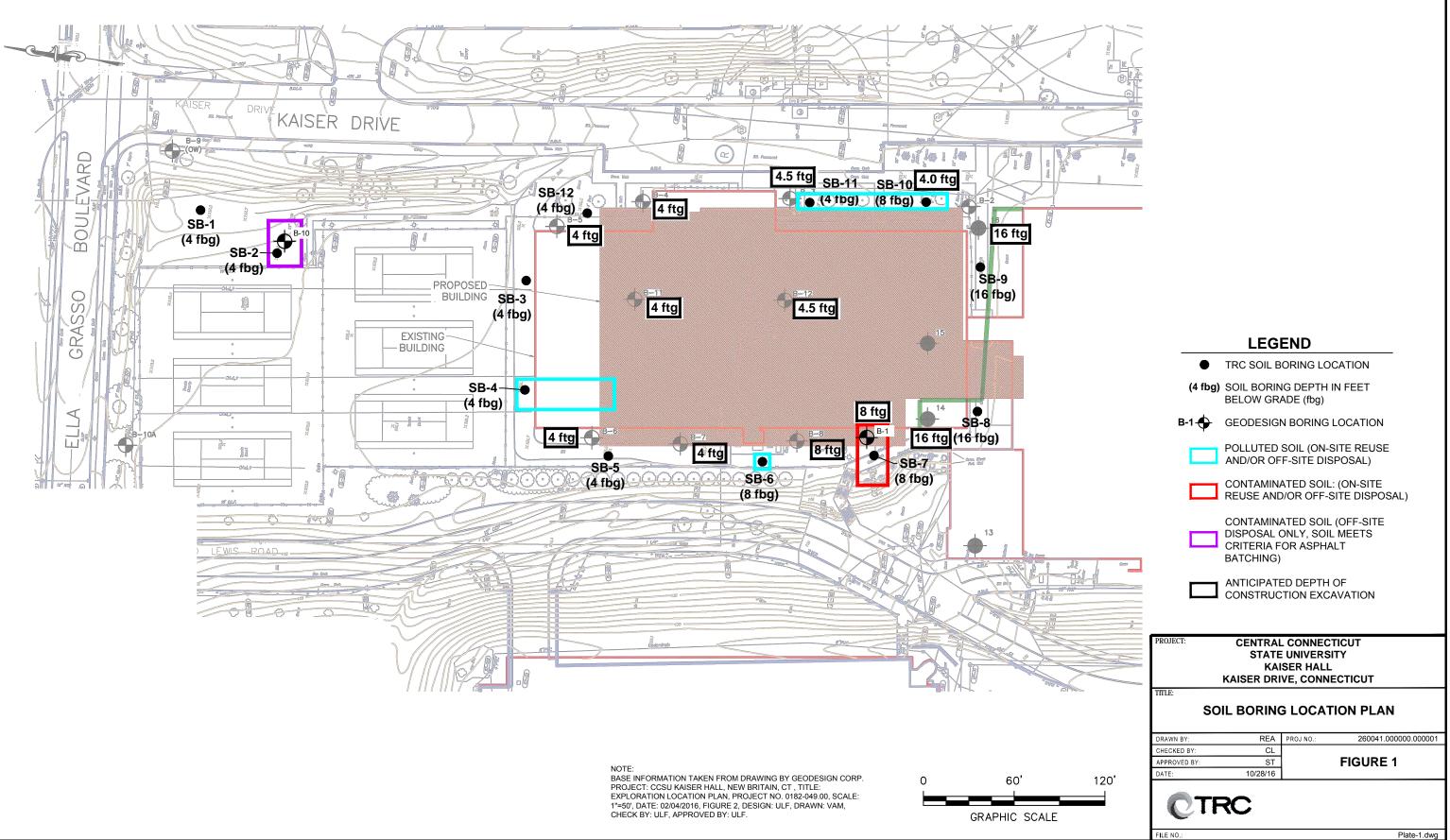
It does not appear that groundwater will be encountered during construction activities. Therefore, groundwater management and associated permitting will not be needed.

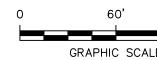
Additional Chemical Testing

The analytical data presented in this report was obtained from the soil borings discussed in this report which were advanced within the limits of the proposed construction area as it is currently understood. Additional soil sampling may be warranted depending on future changes in the location, nature and design of the proposed structures and the contractor's approach to the work.

In addition, the disposal facilities that are ultimately chosen by the contractor may require additional sampling at a frequency higher than that performed as part of this program. Such additional sampling would typically be conducted once the disposal facilities have been identified, typically either just before or soon after construction begins.

If you have any questions, please contact me at (860) 298-6226.


Sincerely,


TRC ENVIRONMENTAL CORPORATION

Marya B Mahoney

Marya Mahoney, LEP Senior Project Manager Attachments

Central Connecticut State University								I									1																	
1615 Stanley Street	Sample De	pth (feet belo	w grade)						4	4		4	Ļ	4	4	4		8		8		16		16		8	3		1	4	1	4	4	4
New Britain, Connecticut 06053	Collection		0,					8/5/	2016	8/5/20	016	8/5/2	2016	8/5/2	2016	8/5/2	2016	8/5/20	016	8/5/20	016	8/5/201	16	8/5/20		8/5/	2016	8/5/	2016	8/5/2	2016	2/2/	2016	2/2/2016
Kaiser Annex	Client Id							SE	3-1	SB-2	2	SB	-3	SB	3-4	SB	-5	SB-6	6	SB-2	7	SB-8		SB-9	9	SB	-10	SB	-11	SB-	-12	B-1	1**	B-10**
TRC Project Number: 260041.000001	Soil Catego	ory						Cle	ean	Contamint	tated*	Cle	an	Pollu	uted	Cle	an	Pollut	ted	Contami	inated	Clean		Clea	in	Pollu	uted	Poll	uted	Cle	an	Poll	uted	Contaminated
Table 1						Massac	husetts																											
Project Id : CCSU-KAISER ANNEX			CT RSRs		Federal Regs	Landfill Crite																												
	Units	GA PMC	RES DEC	I/C DEC	40 CFR 261.24	Lined	Unlined	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result RL
Miscellaneous/Inorganics																																		
Conductivity - Soil Matrix	umhos/cm					8000	4000	q	5	31	5	53	5	28	5	26	5	37	5	42	5	110	5	290	5	73	5	49	5	21	5	100		26
Corrosivity	Pos/Neg					0000	4000	Negative		Negative	5	Negative	5	Negative		Negative	5	Negative	5	Negative		Negative	5	Vegative	5	Negative		Negative	5	Negative	5	Negative		Negative
Flash Point	Degree F							>200	200	>200	200	>200	200	>200	200	>200	200	>200	200	>200	200	-		>200	200	>200	200	>200	200	>200	200	>200	200	>200 200
Ignitability	degree F							Passed	140	Passed	140	Passed	140	Passed	140	Passed	140	Passed	140	Passed				Passed	140	Passed	140	Passed	140	Passed	140	Passed	140	Passed 140
pH - Soil	pH Units							7.19	0.10	7.22	0.10	8.41	0.10	8.27	0.10	8.18	0.10	7.56	0.10	7.55	0.10	6.95	0.10	9.58	0.10	8.24	0.10	7.94	0.10	7.53	0.10	7.66	0.10	6.82 0.10
Reactivity Cyanide	mg/Kg							< 5.6	5.6	< 5.3	5.3	< 5.3	5.3	< 5.5	5.5	< 5.4	5.4	< 5.6	5.6	< 5.7	5.7	< 5.4	5.4	< 5.3	5.3	< 5.0	5.0	< 4.9	4.9	< 5.2	5.2	< 5.7	4.9	<6.1 5.2
Reactivity Sulfide	mg/Kg							< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20	20	< 20 20
Reactivity	Pos/Neg							Negative		Negative		Negative		Negative		Negative		Negative		Negative	r	Negative	N	legative		Negative		Negative		Negative		Negative		Negative
Metals, Total																																		
Arsenic	mg/Kg		10	10		40	40	3.6	0.73	4.5	0.66	3.77	0.72	3.51	0.73	3.27	0.74	4.11	0.79	3.67	0.81	3.54	0.74	3.9	0.68	3.67	0.66	3.64	0.75	3.11	0.76	5.3		6.7
Barium	mg/Kg		4700	140000			1	72.4	0.37	81.9	0.33	73.9	0.36	72	0.37	52	0.37	71.3	0.39	64.2	0.40			89.2	0.34	82.3	0.33	73	0.37	57.3	0.38	81.2		114
Cadmium	mg/Kg		34	1000		80	30	< 0.37	0.37	< 0.33	0.33	< 0.36	0.36	< 0.37	0.37	< 0.37	0.37	< 0.39	0.39	< 0.40	0.40			< 0.34	0.34	< 0.33	0.33	< 0.37	0.37	< 0.38	0.38	< 0.38		< 0.36
Chromium	mg/Kg		NE	NE		1000	1000	20.5	0.37	18.4	0.33	20.6	0.36	20.4	0.37	16.9	0.37	22.5	0.39	18.5	0.40			25.7	0.34	23.1	0.33	21.1	0.37	15.6	0.38	25.4		27.5
Lead	mg/Kg		400	1000		2000	1000	12.3	0.37	21.7	0.33	10.1	0.36	9.07	0.37	7.69	0.37	10.8	0.39	10.2	0.40			10.9	0.34	10.9	0.33	13.6	0.37	11.1	0.38	17.8		51
Mercury	mg/Kg		20	610		10	10	< 0.03	0.03	0.09	0.03	< 0.03	0.03	< 0.03	0.03	< 0.03	0.03	< 0.03	0.03	< 0.03	0.03			< 0.03	0.03	< 0.03	0.03	0.03	0.03	0.03	0.03	< 0.03		0.07
Selenium	mg/Kg		340	10000				< 1.5	1.5	< 1.3	1.3	< 1.4	1.4	< 1.5	1.5	< 1.5	1.5	< 1.6	1.6	< 1.6	1.6			< 1.4	1.4	< 1.3	1.3	< 1.5	1.5	< 1.5	1.5	< 1.5		< 1.4
Silver	mg/Kg		340	10000				< 0.37	0.37	< 0.33	0.33	< 0.36	0.36	< 0.37	0.37	< 0.37	0.37	< 0.39	0.39	< 0.40	0.40			< 0.34	0.34	< 0.33	0.33	< 0.37	0.37	< 0.38	0.38	< 0.38		< 0.36
Metals, TCLP																																		
TCLP Arsenic	mg/L	0.05			5			< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01		< 0.01
TCLP Barium	mg/L	1			100			0.51	0.01	0.6	0.01	0.64	0.01	0.49	0.01	0.38	0.01	0.53	0.01	0.59	0.01		0.01	0.9	0.01	0.68	0.01	0.53	0.01	0.4	0.01	0.86		0.74
TCLP Cadmium	mg/L	0.005			1			< 0.005	0.005	< 0.005	0.005	< 0.005	0.005	< 0.005	0.005	< 0.005	0.005	< 0.005	0.005	< 0.005	0.005			< 0.005	0.005	< 0.005	0.005	< 0.005	0.005	< 0.005	0.005	< 0.005		< 0.005
TCLP Chromium	mg/L	0.05			5			< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010			< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010		< 0.010
TCLP Lead	mg/L	0.015			5			< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	0.024	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	0.111		0.01
TCLP Mercury	mg/L	0.002			0.2			< 0.0002	0.0002	< 0.0002	0.0002	< 0.0002	0.0002	< 0.0002	0.0002	0.0002	0.0002	< 0.0002	0.0002	< 0.0002	0.0002 ·	< 0.0002 0	0.0002 <	< 0.0002	0.0002	< 0.0002	0.0002	< 0.0002	0.0002	< 0.0002	0.0002	< 0.0002		< 0.0002
TCLP Selenium	mg/L	0.05			1			< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01		< 0.01
TCLP Silver	mg/L	0.036			5			< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010	0.010	< 0.010		< 0.010
ТРН Ву СТЕТРН 8015D																																		
Ext. Petroleum HC	mg/Kg	500	500	2,500		5000	2500	< 54	54	< 55	55	< 54	54	< 54	54	< 54	54	< 56	56	< 56	56	< 55	55	< 52	52	< 52	52	< 52	52	< 52	52	< 58		70
PCBs By SW8082A																																		
All PCBs < Reporting Limit								< 0.37	0.37	< 0.36	0.36	< 0.36	0.36	< 0.37	0.37	< 0.37	0.37	< 0.38	0.38	< 0.38	0.38	< 0.37	0.37	< 0.35	0.35	< 0.34	0.34	< 0.35	0.35	< 0.35	0.35	< 0.39		< 0.40
Volatiles By SW8260C																																		
Ethylbenzene	mg/Kg	10.1	500	1000				< 0.0058		< 0.0045	0.0045	< 0.0045	0.0045	< 0.0043	0.0043	< 0.0046	0.0046			< 0.0042				< 0.0044		< 0.0044	0.0044	< 0.0046	0.0046	< 0.0032	0.0032	< 0.0046		.25
m&p-Xylene	mg/Kg					1		< 0.0058	0.0058	< 0.0045	0.0045	< 0.0045	0.0045	< 0.0043	0.0043	< 0.0046	0.0046		0.0045	< 0.0042				< 0.0044	0.0044	< 0.0044	0.0044	< 0.0046	0.0046	< 0.0032	0.0032	< 0.0046		1.5
Naphthalene	mg/Kg	5.6	1000	2500		1		< 0.0058	0.0058	< 0.0045	0.0045	< 0.0045	0.0045	< 0.0043	0.0043	< 0.0046	0.0046			< 0.0042				< 0.0044		< 0.0044	0.0044	< 0.0046	0.0046	< 0.0032	0.0032	< 0.0046		10
n-Butylbenzene	mg/Kg					1		< 0.0058	0.0058	< 0.0045	0.0045	< 0.0045	0.0045	< 0.0043	0.0043	< 0.0046	0.0046		0.0045	< 0.0042				< 0.0044	0.0044	< 0.0044	0.0044	< 0.0046	0.0046	< 0.0032	0.0032	< 0.0046		.29
o-Xylene	mg/Kg	40 -		4000		1		< 0.0058	0.0058	< 0.0045	0.0045	< 0.0045	0.0045	< 0.0043	0.0043	< 0.0046	0.0046		0.0045	< 0.0042				< 0.0044	0.0044	< 0.0044	0.0044	< 0.0046	0.0046	< 0.0032	0.0032	< 0.0046		.67
Total Xylenes Total VOCs	mg/Kg mg/Kg	19.5	500	1000		10	4	< 0.0058	0.0058	< 0.0045	0.0045	< 0.0045	0.0045	< 0.0043	0.0043	< 0.0046	0.0046	< 0.0045	0.0045	< 0.0042	0.0042 ·	< 0.0046 0	0.0046 <	< 0.0044	0.0044	< 0.0044	0.0044	< 0.0046	0.0046	< 0.0032	0.0032	< 0.0046		2.17 14.88
Semivolatiles By SW8270D	he-	1		7.0				10.05	0.25	0.62	0.25	10.25	0.25	10.25	0.20	10.35	0.25	10.20	0.20	10.20	0.20	10.20	0.26	10.25	0.25	10.24	0.24	0.70	0.24	10.25	0.25	10.27		0.50
Benz(a)anthracene	mg/Kg	1	1	7.8		-		< 0.25	0.25	0.62	0.25	< 0.25	0.25	< 0.26	0.26	< 0.25	0.25	< 0.26	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	0.76	0.24	< 0.25	0.25	<0.27		0.59
Benzo(a)pyrene Benzo(b)fluoranthene	mg/Kg	1	1	7.8		+		< 0.25 < 0.25	0.25	0.67 0.59	0.25	< 0.25 < 0.25	0.25	< 0.26 < 0.26	0.26	< 0.25 < 0.25	0.25 0.25	< 0.26 < 0.26	0.26	< 0.26 < 0.26	0.26			< 0.25 < 0.25	0.25	< 0.24	0.24	0.79 0.78	0.24	< 0.25 < 0.25	0.25 0.25	<0.27 <0.27		0.6
	mg/Kg		1 NE	7.8 NE		+		< 0.25		0.59	0.25	< 0.25		< 0.26	0.26	< 0.25	0.25	< 0.26	0.26	0.42	0.26			< 0.25	0.25	< 0.24	0.24	0.78	0.24	< 0.25	0.25	<0.27		0.38
Benzo(ghi)perylene Benzo(k)fluoranthene	mg/Kg	NE 1	8.4	78			-	< 0.25	0.25	0.44	0.25	< 0.25	0.25	< 0.26	0.26	< 0.25	0.25	< 0.26	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	0.44	0.24	< 0.25	0.25	<0.27		0.38
Bis(2-ethylhexyl)phthalate	mg/Kg	1	44	0.41		1		< 0.25	0.25	< 0.25	0.25	< 0.25	0.25	0.3	0.26	< 0.25	0.25	< 0.26	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	< 0.24	0.24	< 0.25	0.25	<0.27		0.47
	mg/Kg	NE	NE	0.41 NE		1	1	< 0.25	0.25	0.68	0.25	< 0.25	0.25	< 0.26	0.26	< 0.25	0.25	< 0.26	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	0.92	0.24	< 0.25	0.25	<0.27		0.66
Chrysene Fluoranthene	mg/Kg mg/Kg	5.6	1000	2500				< 0.25	0.25	1.1	0.25	< 0.25	0.25	< 0.26	0.26	< 0.25	0.25	0.55	0.26	< 0.26	0.26			< 0.25	0.25	0.24	0.24	1.6	0.24	< 0.25	0.25	<0.27		1
Indeno(1,2,3-cd)pyrene		NE	NE	NE		1	1	< 0.25	0.25	0.45	0.25	< 0.25	0.25	< 0.26	0.26	< 0.25	0.25	< 0.26	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	0.51	0.24	< 0.25	0.25	<0.27		0.38
Phenanthrene	mg/Kg mg/Kg	4	1000	2500		1		< 0.25	0.25	0.45	0.25	< 0.25	0.25	< 0.26	0.20	< 0.25	0.25	0.32	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	0.62	0.24	< 0.25	0.25	<0.27		0.46
			1000	2500		1		< 0.25	0.25	1.1	0.25	< 0.25	0.25	< 0.26	0.26	< 0.25	0.25	0.48	0.26	< 0.26	0.26			< 0.25	0.25	< 0.24	0.24	1.4	0.24	< 0.25	0.25	<0.27		0.99
Pyrene	mg/Kg	4																																

NOTES: CT RSRs - State of Connecticut Remediation Standard Regulations (CT RSRs) per RCSA 22a-133k-1 through 22a-133k-3, adopted June 27, 2013. NE - Not Established Result Detected Result Exceeds Criteria

Result Exceeds Criteria Clean Soil: Soils within this category contain only naturally occurring concentrations of metals. Polluted Soil: Soils within this category are polluted with SVOCs at concentrations below the RES DEC and GA PMC

Contaminated Soil: Soils within this category are pointed with 300cs at contentiations below in RLS Dice and OK Find
 Contaminated Soil: Soils within this category contain concentrations of constituents in excess of RSR criteria
 * Due to its close proximity to B-10, soils at SB-2 are also considered contaminated.
 ** Denotes GeoDesign Boring Location. Results presented in this table were obtained from the summary tables presented in the March 2016 GeoDesign Report.

Table 2 – Summary of Soil Management Recommendations Kaiser Hall at CCSU New Britain, Connecticut

	Excess Excavated Soil Allowances					
Location (Note 1)	Soil Category	On-Site Reuse Option	Off-site "Disposal" Option	Cubic Yards	Tons	
B-10, SB-2	Contaminated	None	Asphalt Batch Plant (Note 2)	90	135	
B-1, SB-7	Contaminated	Only on-site option is to use under proposed building footprint.	MA Unlined Landfill (Notes 3, 5)	240	360	
SB-4, SB-6, SB-10, SB-11	Polluted	Restricted (Notes 7, 8)	MA Unlined Landfill (Notes 4, 5)	375	562	
SB-1, SB-3, SB-5, SB-8, SB-9, SB-10, SB-11, SB- 12	Clean Soil	Unrestricted (note 8)	Unrestricted (note 6)	21,000 (Note 9)	31,500 (Note 10)	

Notes:

- 1. Soil Management areas are shown on Figure 1
- 2. For off-site disposal, these soils should be reused at an approved asphalt batch facility as the samples were determined to be contaminated and exceed the Massachusetts Landfill acceptance criteria (lined or unlined).
- 3. These soils were determined to be contaminated (i.e., exceeded the GA PMC) and if not used under the building footprint, qualify for disposal at a MA landfill.
- 4. For off-site disposal, these soils should be assumed to require reuse at a Massachusetts unlined landfill considering the samples in this area were determined to be "polluted".
- 5. Massachusetts unlined landfills are often limited in availability such that reuse at Massachusetts lined landfills at a premium cost may be required.
- 6. Clean soils may be reused off-site at the contractor's discretion.
- 7. Polluted soils may be reused onsite, provided they are not placed below the water table and are not subject to erosion.
- 8. On-site reuse addresses environmental considerations only (i.e., this is not a determination of physical suitability for uses).
- 9. Calculated volume assumes an average excavation depth of 8 feet over the entire proposed building footprint. This estimate is based on design information provided to TRC by others and may be subject to significant changes based on any changes to the design, etc. The actual volume of excess soils generated in this category can likely be reduced significantly if soils are reused on-site.
- 10. This tonnage calculation is based on a conversion of 1.5 tons per cubic yard.

Utility Mark-out Site Photographs Kaiser Annex at CCSU, New Britain, Connecticut

Photo 1: Underground Surveying performing underground utility mark-out near proposed locations for SB-3 and SB-4. Note the sanitary sewer line just south of the proposed borings.

Photo 2: Underground Surveying performing underground utility mark-out near proposed location for SB-4. Note the sanitary sewer line just south of the proposed borings.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
260041	Ben Ayres August 4, 2016	1 of 6	Connecticut Division of Construction Services	Kaiser Annex at Central Connecticut State University	CIRC

Photo 3: Underground Surveying performing underground utility mark-out near proposed location for SB-5. Note the sanitary sewer line and gas line east of the proposed borings.

Photo 4: Communication and sanitary sewer lines located east of the proposed location for SB-6.

TRC J	lob No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	ATDO
260	0041	Ben Ayres August 4, 2016	2 of 6	Connecticut Division of Construction Services	Kaiser Annex at Central Connecticut State University	CIRC

Photo 5: Underground Surveying performing underground utility mark-out near proposed location for SB-7. A communication line is located just west and a sanitary sewer line is located east of the proposed boring.

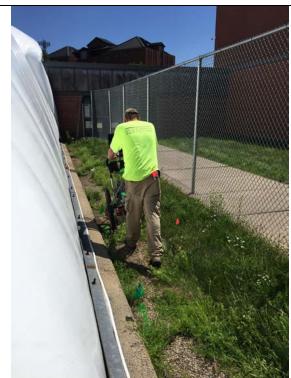


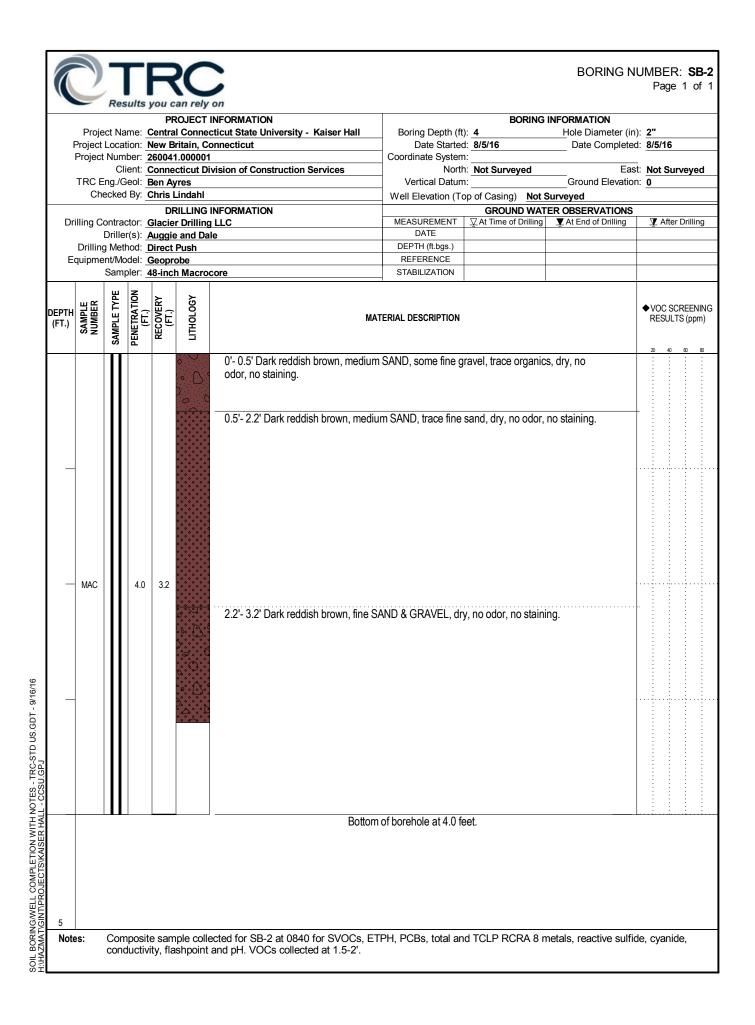
Photo 6: Underground Surveying performing underground utility mark-out near proposed location for SB-8. Sanitary sewer line located just north of the proposed boring

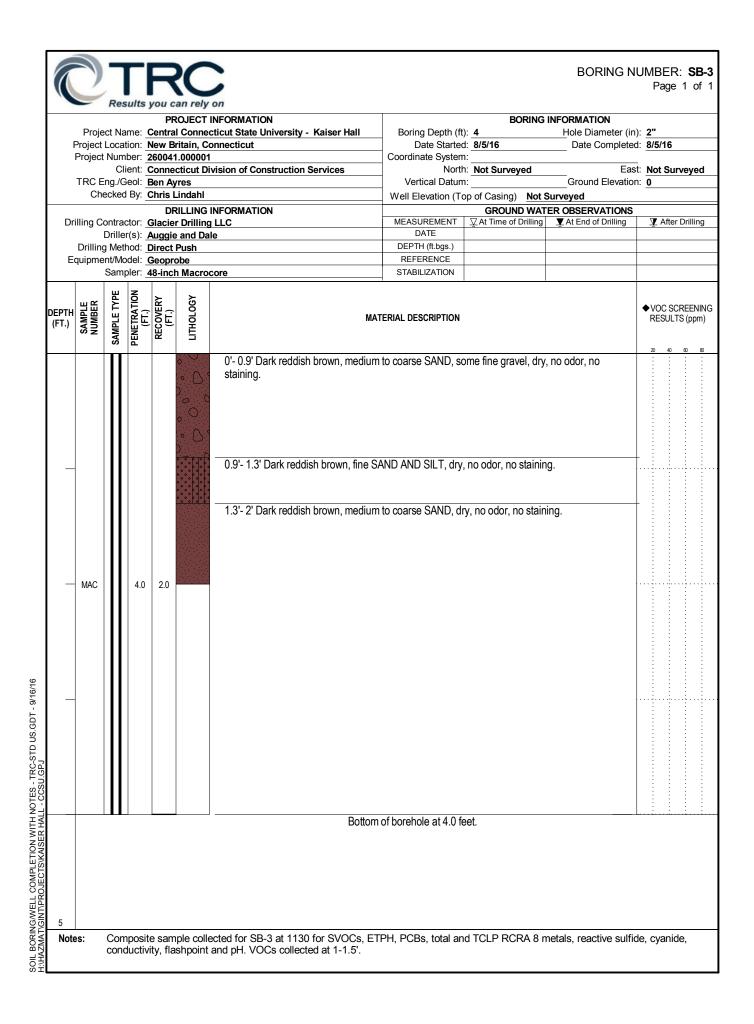
TRC Job No	Photographs Taken By:	Page No.	Client:	Site Name & Address:	0-
260041	Ben Ayres August 4, 2016	3 of 6	Connecticut Division of Construction Services	Kaiser Annex at Central Connecticut State University	C

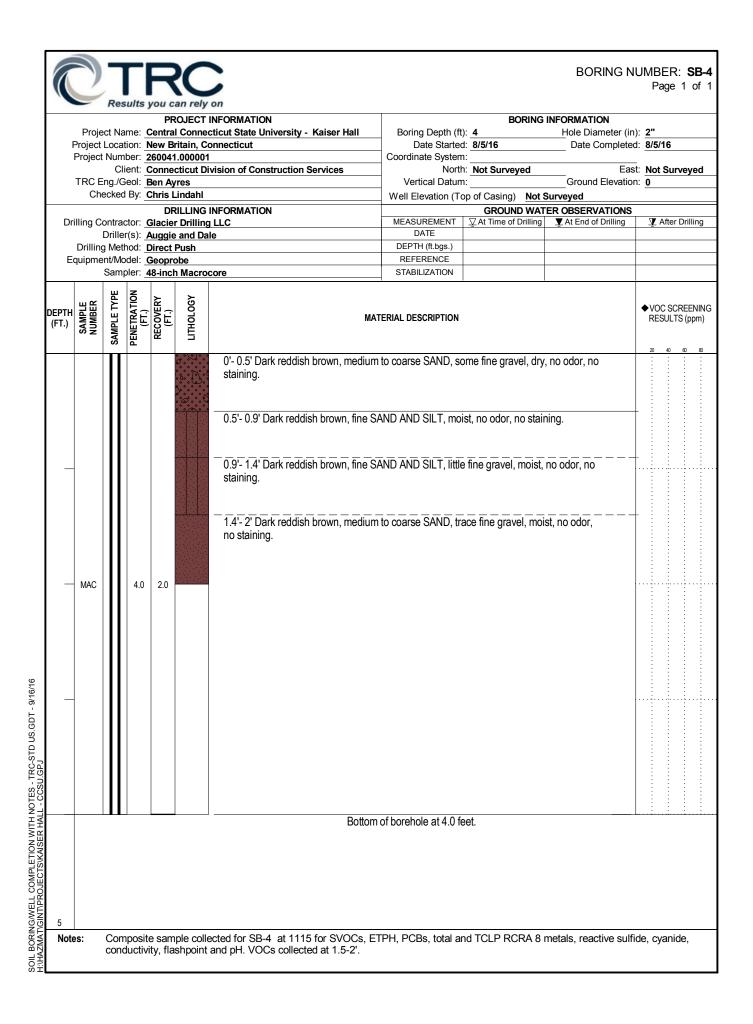
Photo 7: Underground Surveying performing underground utility mark-out near proposed location for SB-2. An electrical line is located just west of the proposed boring.

Photo 8: Sanitary sewer line located east of the proposed location for SB-1.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	A
260041	Ben Ayres August 4, 2016	4 of 6	Connecticut Division of Construction Services	Kaiser Annex at Central Connecticut State University	CTRC

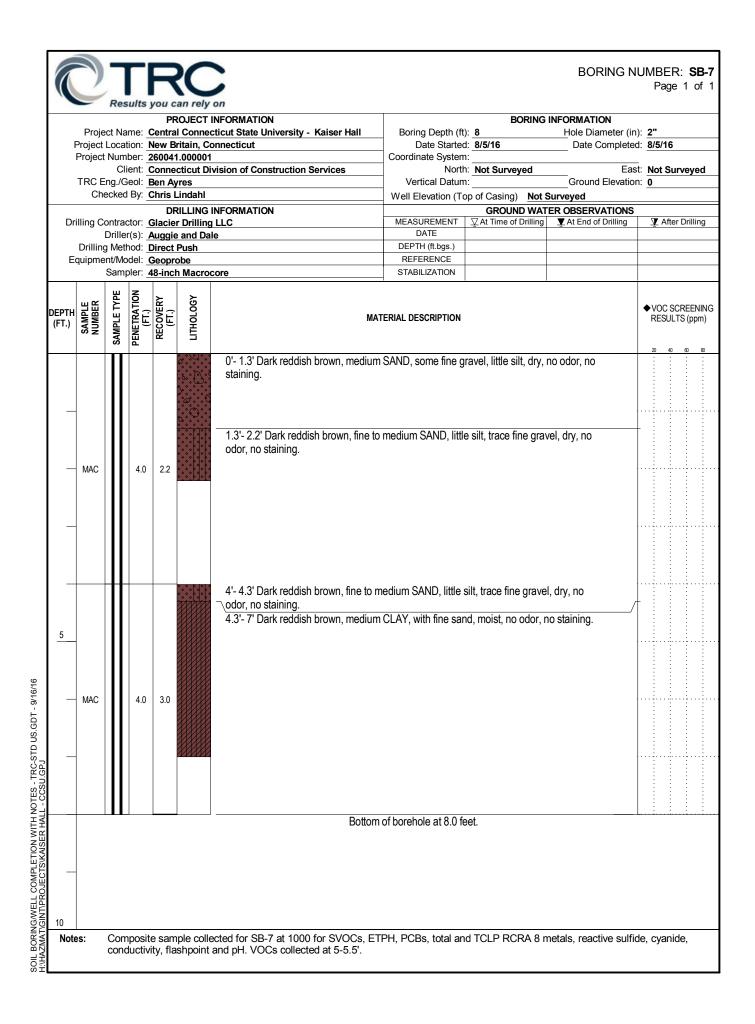

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	A
260041	Ben Ayres August 4, 2016	5 of 6	Connecticut Division of Construction Services	Kaiser Annex at Central Connecticut State University	CIRC

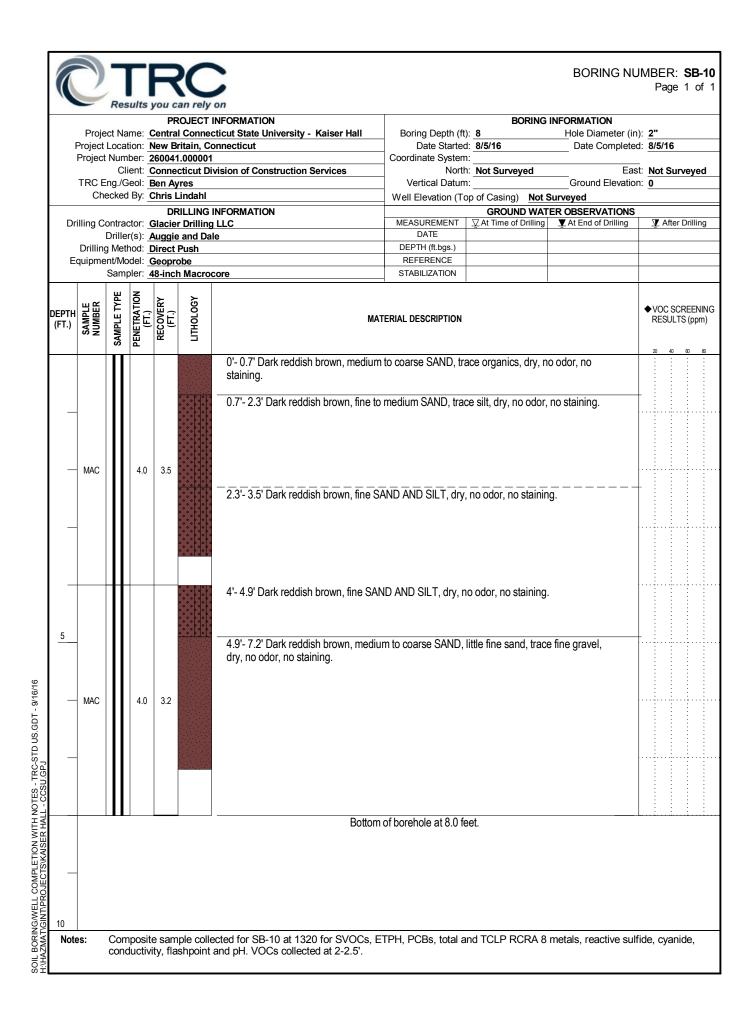



Photo 11: Sanitary sewer and water lines running north to south on the east side of the proposed location for SB-12.

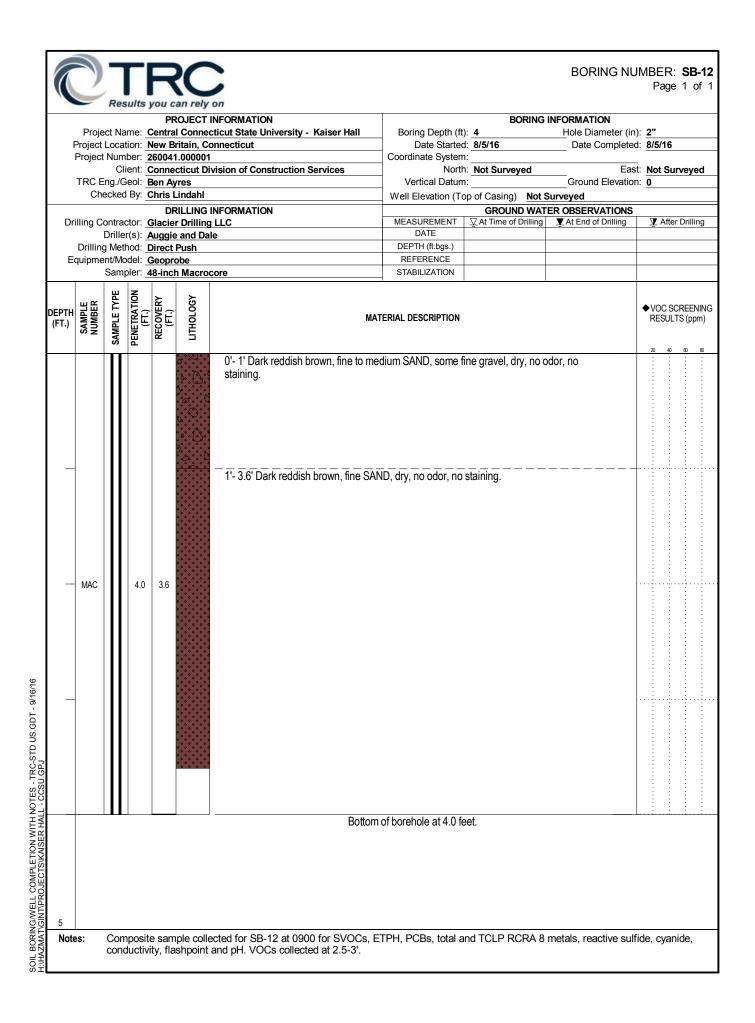
[TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	A
	260041	Ben Ayres August 4, 2016	6 of 6	Connecticut Division of Construction Services	Kaiser Annex at Central Connecticut State University	CIRC

	Project L Project	₋ocat Num Cli	ion: <u>N</u> ber: <u>2</u> ent: <u>0</u>	Centra lew Bi 60041 Conne	Connec itain, Co .000001 cticut Div	NFORMATION sticut State University - Kaiser Hall onnecticut vision of Construction Services		t): 4 d: 8/5/16 n: Not Surveyed		d: 8/5/16 st: Not Surve	yed
	TRC Er Che				res .indahl		Vertical Datum Well Elevation (To	n: op of Casing) <u>Not</u>	Ground Elevatio Surveyed	n: <u>0</u>	
Dr	illing Co E	ontrac Drille	tor: <u>(</u>	Blacie	ILLING I Drilling and Dal	NFORMATION LLC e	MEASUREMENT		ER OBSERVATIONS	⊥ After Dri	lling
E	Drilling quipmer	Meth nt/Mo	nod: <u>C</u> del: <u>C</u>)irect Geopro	Push		DEPTH (ft.bgs.) REFERENCE STABILIZATION				
DEPTH (FT.)		-	-		АЭОТОНЦІТ		ATERIAL DESCRIPTION	<u> </u>	<u> </u>	◆VOC SCRE RESULTS ()	
					σ. δ. σ. δ. δ. δ. δ. δ. δ. δ. δ. δ. δ	0'- 1' Dark reddish brown, fine SAN 1'- 3.2' Dark reddish brown, fine to dry, no odor, no staining.	-		-		
	MAC		4.0	3.2							
						Botto	m of borehole at 4.0 fr	eet.			
5 Note											




	Project I	Loca	tion:	entra lew Bi	Conne	INFORMATION cticut State University - Kaiser Hall onnecticut	Boring Depth (ft) Date Started Coordinate System	: <mark>4</mark> : 8/5/16	INFORMATION Hole Diameter (in Date Completed	·	/16	
	TRC E	Cl	ent: C	onne	cticut Di	vision of Construction Services	North	Not Surveyed	Eas Ground Elevation		t Surv	eyed
	Che	cked	By: C		indahl	INFORMATION	Well Elevation (To	op of Casing) Not	Surveyed ER OBSERVATIONS			
Dri				lacie	Drilling	LLC	MEASUREMENT		At End of Drilling	Ţ	After D	Drilling
	Drilling	Met	nod: _	irect	Push		DEPTH (ft.bgs.)					
E	quipmei				be Macro	core	REFERENCE STABILIZATION					
DEPTH (FT.)	SAMPLE NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ГІТНОГОСУ	M/	ATERIAL DESCRIPTION)C SCR SULTS	
		Π				0'- 0.5' Dark reddish brown, mediur	n SAND, some fine g	ravel, dry, no odor,	no staining.	20	40	<u>60 8</u>
						0.5'- 1' Dark reddish brown, fine to staining.	medium SAND, little f	ine gravel, dry, no	 odor, no		•	•
						¹ - 2' Dark reddish brown, fine SAN	D, dry, no odor, no st	aining			· · · · · · · · · · · · · · · · · · ·	
	MAC		4.0	2.3		2'- 2.3' Dark reddish brown, mediur	n to coarse SAND, dr	y, no odor, no stair	ing.		· · · · · · · · · · · · · · · · · · ·	
_											· · · · · · · · · · · · · · · · · · ·	
		11				Bottor	n of borehole at 4.0 fe	et.		L:	<u></u>	:
5												

	Project	Loca	ation:	Centra New Bi	Connec ritain, Co	INFORMATION cticut State University - Kaiser Hall onnecticut	Boring Depth (ft Date Started): 8 d: 8/5/16	INFORMATION Hole Diameter (in) Date Completed	
	TRC E	C Eng./(lient: (Geol: [Conne Ben Ay	res	vision of Construction Services	Coordinate System North Vertical Datum	n: Not Surveyed	East	Not Surveye
	Ch	lecke	d By: <u>(</u>		indahl	INFORMATION	Well Elevation (To	op of Casing) Not	Surveyed ER OBSERVATIONS	
Dri	illing C			Slacie	Drilling	LLC	MEASUREMENT		At End of Drilling	TAfter Drillir
		g Me	thod:	Direct	Push		DEPTH (ft.bgs.)			
Ed	quipme		odel: (obe n Macroo	core	REFERENCE STABILIZATION			
DEPTH (FT.)	SAMPLE NUMBER	м			ГІТНОГОСУ		TERIAL DESCRIPTION			◆VOC SCREEN RESULTS (ppr
						0'- 1.1' Dark reddish brown, medium staining. 				20 40 60
	MAC		4.0	3.2		2.2'- 3.2' Dark reddish brown, fine S staining.	AND AND SILT, trac	e fine gravel, mois	, no odor, no	
						4'- 4.3' Dark reddish brown, fine SA			-	
5	MAC		4.0	4.0		staining. 5.1'- 8' Dark reddish brown, fine to r odor, no staining.	nedium SAND, little :	silt, trace fine grave	l, dry, no	
					૰ૣૼ૰ૣ૾૾૾૾૾૾૾૾૾	Bottom	of borehole at 8.0 fe	eet.		
 10 Note			nnocit			ected for SB-6 at 1025 for SVOCs, ET	DH DCRs total an		natala, radativa avifid	



	,			Centra	I Connee	INFORMATION cticut State University - Kaiser Hall	Boring Depth (ft): 16	INFORMATION Hole Diameter (in	
					ritain, Co 1.000001	onnecticut	Date Started Coordinate System	d: 8/5/16 n:	Date Completed	d: <u>8/5/16</u>
		С		Conne	cticut Di	vision of Construction Services		n: Not Surveyed		t: <u>Not Survey</u> e
					indahl		-	n: op of Casing) <u>Not</u> :		I. <u>U</u>
Dri	illing C	ontra	octor: (RILLING r Drilling		MEASUREMENT		TER OBSERVATIONS ▼ At End of Drilling	▼ After Drilli
		Drille	er(s):	Auggie	and Da		DATE			
			thod: <u>I</u> odel: (DEPTH (ft.bgs.) REFERENCE			
_	40.0				n Macroo	core	STABILIZATION			
DEPTH (FT.)	SAMPLE NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ЛТНОГОСУ	MA	TERIAL DESCRIPTION			◆VOC SCREEN RESULTS (pp
_					° • • •	0'- 1.1' Dark reddish brown, medium staining.				
_	MAC		4.0	4.0		1.1'- 1.9' Dark reddish brown, mediu staining.			/	
_						1.9'- 4' Dark reddish brown, fine SAI staining.	ND, some siit, iittie fi	ne gravel, dry, no o	dor, no	· · · · · · · · · · · · · · · · · · ·
5						4'- 6' Dark reddish brown, fine SANI staining.	D, some silt, trace fin	e gravel, dry, no oc	dor, no	
_	MAC		4.0	3.4		6'- 7.4' Dark reddish brown, medium	SAND, dry, no odo	r, no staining.		
					· · · · · · · · · · · · · · · · · · ·	8'- 11' Dark reddish brown, medium	SAND, dry, no odor	, no staining.		
10	MAC		4.0	3.6						
					**********	11'- 11.6' Dark reddish brown, medi	um to coarse SAND,	, trace fine gravel, c	dry, no odor,	
_					••••••	no staining. 12'- 12.9' Dark reddish brown, medi no staining.	um SAND, little silt, t	trace fine gravel, dr	y, no odor,	
	MAC		4.0	3.5		12.9'- 15.5' Dark reddish brown, me	dium to coarse SAN	D, dry, no odor, no	staining.	+,
15	WAC		4.0	0.0						
						Bottom	of borehole at 16.0 f	eet.		
_										

ct Loca ect Nur C Eng./	ation: <u>1</u> mber: <u>2</u> Client: (New B 26004 [,] Conne	ritain, Co 1.000001				Date Complete	d: 8/5/16		
C /Eng:	Client:	Conne				Date Started: 8/5/16 Date Completed: 8/5/16 Date Completed: 8/5/16				
	Gool			vision of Construction Services	North: Not Surveyed East: Not Surveyed					
NECKE			/res Lindahl		Vertical Datum	n: op of Casing) Not \$	Ground Elevatio	n: <u>0</u>		
0				INFORMATION		GROUND WAT	ER OBSERVATIONS			
	_				DATE			⊥ After Drillin		
				core	STABILIZATION					
SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ЛОТОНЦІ	МА	TERIAL DESCRIPTION			◆VOC SCREEN RESULTS (ppr		
				0.5'- 2' Dark reddish brown, medium	n SAND AND SILT, r	noist, no odor, no si	taining.			
	4.0	2.0								
				4'- 6' Dark reddish brown, medium S	SAND, some silt, mo	ist. no odor. no staii	nina.			
							g.			
	4.0	4.0	XXXXX		o coarse SAND, son	ne fine gravel, trace	silt, dry, no			
				odor, no staining.						
			\circ	8'- 9.4' Dark reddish brown, coarse	SAND & GRAVEL, r	noist, no odor, no st	taining.			
			<u>, (0)</u> , 0							
	4.0	2.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	no staining.	IUM SAND & GRAVI	±L, trace fine sand,	ary, no odor,			
			<u>_</u> ^ ^ ^ <u> </u>							
				12'- 12.8' Dark reddish brown, no oc	dor, no staining.					
					dium to coarse SAN	D, little fine sand, d	ry, no odor,	+		
	4.0	07		_ no staining.			•	+		
´	4.0	2.1		\odor, no staining.		· ·		T : : :		
				14.1'- 14.7' Dark reddish brown, fine staining.	e SILT, little fine sand	d, trace clay, moist,	no odor, no			
				Bottom	of borehole at 16.0 f	feet.		L		
	Samuel I A A A A A A A A A A A A A A A A A A	Driller(s): 7 ing Method: 1 ing Method: 1 Sampler: 4 Sampler: 4 A.0 C 4.0 C 4.0	Driller(s): Auggie ing Method: Direct nent/Model: Geopr Sampler: 48-incl 48-incl 48-incl 48-incl 48-incl 400 2.0 4.0 2.0 4.0 4.0 2 4.0 2.6	Driller(s): Auggie and Da ing Method: Direct Push sampler: 48-inch Macroe MULYLIN Auggie and Da MULYLIN Auggie and Aug MULYLIN Auggie and Aug <td< td=""><td>Annu Pier Geoprobe Sampler: 48-inch Macrocore MA MA M</td><td>Driller(s): Auggle and Dale DATE Ing Method: Direct Push DEPTH (ft.bgs.) REFERENCE STABILIZATION Sampler: 48-inch Macrocore Sampler: 48-inch Macrocore Matterial DepTH (ft.bgs.) Matterial Depted Matterial Depted Matterial Depted Matterial Depted Matterial Depted Matterial Depted Material Depted Mat</td><td>Driller(s): Auggle and Date DATE Ing Method: Direct Push DEPTH (ft.bgs.) Sampler: 48-Inch Macrocore STABILIZATION Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Optimize Technic Description Matterial Descript</td><td>Driller(s): Auggie and Dale DATE ing Method: Direct Push Brent/Model: Geoprobe Sampler: 48-Inch Macrocore StatuLZATION Matterial DESCRIPTION Matterial Descriptin Material</td></td<>	Annu Pier Geoprobe Sampler: 48-inch Macrocore MA MA M	Driller(s): Auggle and Dale DATE Ing Method: Direct Push DEPTH (ft.bgs.) REFERENCE STABILIZATION Sampler: 48-inch Macrocore Sampler: 48-inch Macrocore Matterial DepTH (ft.bgs.) Matterial Depted Matterial Depted Matterial Depted Matterial Depted Matterial Depted Matterial Depted Material Depted Mat	Driller(s): Auggle and Date DATE Ing Method: Direct Push DEPTH (ft.bgs.) Sampler: 48-Inch Macrocore STABILIZATION Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Matterial Description Optimize Technic Description Matterial Descript	Driller(s): Auggie and Dale DATE ing Method: Direct Push Brent/Model: Geoprobe Sampler: 48-Inch Macrocore StatuLZATION Matterial DESCRIPTION Matterial Descriptin Material		

	Project I	_ocat Num	tion: 1 ber: 2	Centra lew Bi 60041	I Conne ritain, Co .000001		Boring Depth (ft Date Started Coordinate System): <u>4</u> d: <u>8/5/16</u> n:	INFORMATION Hole Diameter (ir Date Complete	d: 8/5/16
	TRC Er	ng./G	eol: E	Ben Ay		ivision of Construction Services	Vertical Datum	-	Ground Elevatio	st: <u>Not Surveye</u> n: 0
				DF	RILLING	INFORMATION			FER OBSERVATIONS	
Dr	illing Co I	ontrac Drille	ctor: <u>0</u> r(s): /	Blacie Nuggie	r Drilling and Da	g LLC Ile	MEASUREMENT DATE		▲ At End of Drilling	
E.	Drilling quipmer	Met	nod: _	Direct	Push		DEPTH (ft.bgs.) REFERENCE			
					n Macro	core	STABILIZATION			
DEPTH (FT.)	SAMPLE NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОГОСУ	MA	TERIAL DESCRIPTION			◆VOC SCREEN RESULTS (ppi
						0'- 0.4' Dark reddish brown, fine to r staining. 0.4'- 1.6' Dark reddish brown, fine S				<u>20 40 60</u>
_	MAC		4.0	3.7		 1.6'- 2' Dark reddish brown, fine to r odor, no staining. 2'- 3.7' Dark reddish brown, fine SA staining. 		-		-
						Botton	n of borehole at 4.0 fe	eet.		
						Louon				

Thursday, August 11, 2016

Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Project ID: CCSU-Kaiser Annex Sample ID#s: BN87810 - BN87821

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inforn	nation
Collected by:	BA
Received by:	SW
Analyzed by:	see

SW see "By" below
 08/05/16
 8:25

 08/05/16
 16:48

Time

Date

Laboratory Data

SDG ID: GBN87810 Phoenix ID: BN87810

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-1

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.60	0.73	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	72.4	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	20.5	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	12.3	0.37	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.5	1.5	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.51	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	90		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	9	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	7.19	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.6	5.6	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	7 SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
FCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Fotal Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum HC	ND	54	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	83		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Bipher	<u>nyls</u>						
PCB-1016	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1242	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1254	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
CB-1260	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
CB-1262	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
CB-1268	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
QA/QC Surrogates			0 0				
6 DCBP	90		%	10	08/08/16	AW	30 - 150 %
6 TCMX	81		%	10	08/08/16	AW	30 - 150 %
/olatiles							
,1,1,2-Tetrachloroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0035	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0058		1	08/06/16		SW8260C SW8260C
,3,5-Trimethylbenzene			mg/Kg	1		JLI	
,3-Dichlorobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0058	mg/Kg	T A	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
-Hexanone	ND	0.029	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.029	mg/Kg	1	08/06/16	JLI	SW8260C
cetone	ND	0.29	mg/Kg	1	08/06/16	JLI	SW8260C
crylonitrile	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
bromobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
bromoform	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
bromomethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon tetrachloride	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
Chlorobenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
Chloromethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0035	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
i&p-Xylene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.035	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.012	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.012	mg/Kg	1	08/06/16	JLI	SW8260C
laphthalene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
-Butylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
-Propylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
-Xylene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.012	mg/Kg	1	08/06/16	JLI	SW8260C
oluene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0050	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0058	mg/Kg	1	08/06/16	JLI	SW8260C
nonorounnuoroeurane		0.0000	mg/ng	I			31102000

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	92		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	08/06/16	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
•	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene		0.25			08/06/16	DD	SW8270D
2-Chloronaphthalene	ND		mg/Kg	1	08/06/16	DD	
2-Chlorophenol	ND	0.25	mg/Kg	1			SW8270D
2-Methylnaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.58	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.72	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D

Project ID: CCSU-Kaiser Annex Client ID: SB-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
	ND				08/06/16		SW8270D
Bis(2-chloroethyl)ether		0.36	mg/Kg	1		DD	
Bis(2-chloroisopropyl)ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates			5 5				
% 2,4,6-Tribromophenol	88		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	67		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	60		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	64		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	70		%	1	08/06/16	DD	30 - 130 %
	70 75		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	15		70	I	00/00/10	טט	50 - 150 /0

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inform	ation
Collected by:	BA
Received by:	SW
Analyzed by:	see

Laboratory Data

SW see "By" below 08/05/16 8:40 08/05/16 16:48

Time

Date

SDG ID: GBN87810 Phoenix ID: BN87811

Project ID: Client ID: CCSU-Kaiser Annex SB-2

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.33	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	4.50	0.66	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	81.9	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.33	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	18.4	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	0.09	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	21.7	0.33	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.3	1.3	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.60	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	91		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	31	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	7.22	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.3	5.3	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Extraction of CT ETPH	Completed				08/05/16		sw3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Total Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16	70710	SW5035A
TPH by GC (Extractab	le Products	5)					
Ext. Petroleum HC	ND	55	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates			5.5				
% n-Pentacosane	65		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Biphe	nvls						
PCB-1016	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1242	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1254	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1260	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1262	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1268	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
	ND	0.30	iiig/itg	10	00/00/10	AVV	3110002A
QA/QC Surrogates	96		%	10	08/08/16	AW	30 - 150 %
% DCBP % TCMX	90 80		%	10	08/08/16	AW	30 - 150 % 30 - 150 %
	00		70	10	00/00/10	Avv	50 - 150 //
<u>Volatiles</u>		0.0045			00/00/40		014/00000
1,1,1,2-Tetrachloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
I,1,1-Trichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0027	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
I,2,3-Trichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
I,4-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	IND	0.0045	mg/ng		00/00/10	리니	3002000

Client ID: SB-2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
P-Hexanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
cetone	ND	0.22	mg/Kg	1	08/06/16	JLI	SW8260C
crylonitrile	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
enzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romoform	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
arbon tetrachloride	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,2-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,3-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0027	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
1&p-Xylene	ND	0.0045			08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.027	mg/Kg	1 1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)		0.0089	mg/Kg		08/06/16		
lethylene chloride	ND		mg/Kg	1		JLI JLI	SW8260C
aphthalene	ND	0.0045	mg/Kg	1	08/06/16		SW8260C
Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Propylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0089	mg/Kg	1	08/06/16	JLI	SW8260C
bluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0089	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
inyl chloride	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates						-	
% 1,2-dichlorobenzene-d4	101		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	90		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	98		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
-	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.25		1	08/06/16	DD	SW8270D SW8270D
2,4-Dimethylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
2,4-Dinitrophenol	ND	0.36	mg/Kg		08/06/16		SW8270D
2,4-Dinitrotoluene			mg/Kg	1			
2,6-Dinitrotoluene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Chlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.57	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	0.62	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	0.67	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	0.59	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	0.44	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	0.47	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.72	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D

ParameterResultPQLUnitsDilutionDate/TimeByReferenceBis(2-chloroethyl)etherND0.36mg/Kg108/06/16DDSW8270D	
Bis(2-chloroethyl)ether ND 0.36 ma/Ka 1 08/06/16 DD SW8270D	
Bis(2-chloroisopropyl)ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Bis(2-ethylhexyl)phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Carbazole ND 0.36 mg/Kg 1 08/06/16 DD SW8270D	
Chrysene 0.68 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Dibenz(a,h)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Dibenzofuran ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Diethyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Dimethylphthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Di-n-butylphthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Di-n-octylphthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Fluoranthene 1.1 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Fluorene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Hexachlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Hexachlorobutadiene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Hexachlorocyclopentadiene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Hexachloroethane ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Indeno(1,2,3-cd)pyrene 0.45 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Isophorone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Naphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Nitrobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
N-Nitrosodimethylamine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D	
N-Nitrosodi-n-propylamine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
N-Nitrosodiphenylamine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D	
Pentachloronitrobenzene ND 0.36 mg/Kg 1 08/06/16 DD SW8270D	
Pentachlorophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D	
Phenanthrene 0.34 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Phenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Pyrene 1.1 0.25 mg/Kg 1 08/06/16 DD SW8270D	
Pyridine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D	
QA/QC Surrogates	
% 2,4,6-Tribromophenol 78 % 1 08/06/16 DD 30 - 130 %	
% 2-Fluorobiphenyl 63 % 1 08/06/16 DD 30 - 130 %	
% 2-Fluorophenol 51 % 1 08/06/16 DD 30 - 130 %	
% Nitrobenzene-d5 54 % 1 08/06/16 DD 30 - 130 %	
% Phenol-d5 53 % 1 08/06/16 DD 30 - 130 %	
% Terphenyl-d14 73 % 1 08/06/16 DD 30 - 130 %	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

SOLID Matrix: Location Code: **TRC-DAS** Rush Request: 48 Hour P.O.#:

Received by:	SW
Analyzed by:	see

Custody Information

Collected by: .

"By" below

ΒA

08/05/16 16:48

Time

9:00

Date

08/05/16

Laboratory Data

SDG ID: GBN87810 Phoenix ID: BN87812

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
						,		
Silver	< 0.38	0.38	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.11	0.76	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	57.3	0.38	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.38	0.38	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	15.6	0.38	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	11.1	0.38	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.5	1.5	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.40	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	94		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	21	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	7.53	0.10	pH Units	1	08/05/16 21:00	DH/KDB	s SW9045	
Reactivity Cyanide	< 5.2	5.2	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed		-		08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
		T QL	01110	Bliddon			
Extraction of CT ETPH	Completed				08/05/16 08/08/16		SW3545A SW7471B
Mercury Digestion	Completed				08/08/16	W/W W/W	SW7471B SW7470A
TCLP Digestion Mercury	Completed						
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Total Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
TPH by GC (Extractable	e Products	<u>5)</u>					
Ext. Petroleum HC	ND	52	mg/Kg	1	08/08/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	08/08/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	71		%	1	08/08/16	JRB	50 - 150 %
Polychlorinated Bipher	nyls						
PCB-1016	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1221	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1232	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1242	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1248	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1254	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1260	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1262	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1268	ND	0.35	mg/Kg	10	08/09/16	AW	SW8082A
QA/QC Surrogates		0.00					
% DCBP	85		%	10	08/09/16	AW	30 - 150 %
% TCMX	69		%	10	08/09/16	AW	30 - 150 %
Volatiles_							
1,1,1,2-Tetrachloroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.0019	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
I,1-Dichloroethene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
I,1-Dichloropropene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,3-Trichloropropane	ND			1	08/06/16	JLI	
1,2,4-Trichlorobenzene		0.0032	mg/Kg	1			SW8260C SW8260C
1,2,4-Trimethylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	
1,2-Dibromo-3-chloropropane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
I,2-Dibromoethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
-Hexanone	ND	0.016	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.016	mg/Kg	1	08/06/16	JLI	SW8260C
cetone	ND	0.16	mg/Kg	1	08/06/16	JLI	SW8260C
crylonitrile	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
enzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
romobenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
romoform	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
arbon tetrachloride	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
hlorobenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
hloroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,2-Dichloroethene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,3-Dichloropropene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0019	mg/Kg	1	08/06/16	JLI	SW8260C
bromomethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
hylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
&p-Xylene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ethyl Ethyl Ketone	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0064		1	08/06/16	JLI	SW8260C
ethyl t-butyl ether (MTBE)	ND	0.0064	mg/Kg	1	08/06/16	JLI	SW8260C
ethylene chloride	ND		mg/Kg				SW8260C
aphthalene		0.0032 0.0032	mg/Kg	1	08/06/16 08/06/16	JLI JLI	
Butylbenzene	ND		mg/Kg	1			SW8260C
Propylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
Isopropyltoluene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
rt-Butylbenzene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0064	mg/Kg	1	08/06/16	JLI	SW8260C
bluene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0064	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C
inyl chloride	ND	0.0032	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID. 36-12		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	93		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	103		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Chlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.56	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.7	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
			Dama 40 of 70				

Client ID: SB-12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	82		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	64		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	59		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	56		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	60		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	68		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inform	ation
Collected by:	BA
Received by:	SW
Analyzed by:	see

SW see "By" below
 08/05/16
 9:25

 08/05/16
 16:48

Time

Date

Laboratory Data

SDG ID: GBN87810 Phoenix ID: BN87813

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-8

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.54	0.74	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	64.3	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	22.0	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	9.89	0.37	mg/Kg	1	08/07/16	LK	SW6010C	в
Selenium	< 1.5	1.5	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.42	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	89		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	110	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	6.95	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.4	5.4	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-8

		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Total Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
TPH by GC (Extractabl	e Products	5)					
Ext. Petroleum HC	ND	55	mg/Kg	1	08/08/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	08/08/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	62		%	1	08/08/16	JRB	50 - 150 %
Polychlorinated Biphe	nyls						
PCB-1016	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1221	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1232	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1242	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1248	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1254	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1260	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1262	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
PCB-1268	ND	0.37	mg/Kg	10	08/09/16	AW	SW8082A
	ND	0.37	ilig/Kg	10	00/09/10	Avv	300002A
QA/QC Surrogates	110		0/	10	09/00/16	A)A/	20 150 0/
% DCBP	110		%	10	08/09/16	AW	30 - 150 %
% TCMX	94		%	10	08/09/16	AW	30 - 150 %
Volatiles							011/00000
1,1,1,2-Tetrachloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.0028	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dibromoethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0046	mg/Kg	' 1	08/06/16	JLI	SW8260C
1,3-Dichloropropane	ND			1	08/06/16	JLI	SW8260C SW8260C
1,4-Dichlorobenzene		0.0046	mg/Kg	1			
2,2-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-8

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
2-Hexanone	ND	0.023	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
I-Chlorotoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
I-Methyl-2-pentanone	ND	0.023	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.23	mg/Kg	1	08/06/16	JLI	SW8260C
Acrylonitrile	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Bromobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romoform	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon tetrachloride	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Chlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroform	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Chloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0028	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
lichlorodifluoromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1&p-Xylene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.028	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
•	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
laphthalene	ND	0.0046		1	08/06/16	JLI	SW8260C
-Butylbenzene			mg/Kg	1			
-Propylbenzene	ND	0.0046	mg/Kg	1	08/06/16 08/06/16	JLI	SW8260C
	ND	0.0046	mg/Kg	•		JLI	SW8260C SW8260C
-Isopropyltoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	
ec-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
oluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
/inyl chloride	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	94		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	08/06/16	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.20	mg/Kg	1	08/06/16	DD	SW8270D
•	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.20	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene		0.20			08/06/16	DD	SW8270D
2-Chloronaphthalene	ND		mg/Kg	1			
2-Chlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.58	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.73	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
			B 66 (T6				

Devenueter	Desult	RL/	1 1	Dibatian	Data /Time	D	Defense
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	84		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	70		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	67		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	71		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	78		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Collected by:	BA
Received by:	SM
Analyzed by:	see

SW see "By" below 08/05/1610:0008/05/1616:48

Time

Date

Laboratory Data

DI /

Custody Information

SDG ID: GBN87810 Phoenix ID: BN87814

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.40	0.40	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.67	0.81	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	64.2	0.40	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.40	0.40	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	18.5	0.40	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	10.2	0.40	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.6	1.6	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.59	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	0.024	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	87		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	42	5	umhos/cm	1	08/08/16	TC	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	7.55	0.10	pH Units	1	08/05/16 21:00	DH/KDB	s SW9045	
Reactivity Cyanide	< 5.7	5.7	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	sw3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Fotal Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
<u> TPH by GC (Extractab</u>	le Products	<u>5)</u>					
Ext. Petroleum HC	ND	56	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	63		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Biphe	enyls						
PCB-1016	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1242	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1248	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1254	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1260	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1262	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1268	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
QA/QC Surrogates	ND	0.00	iiig/itg	10	00/00/10	~~~	01100027
% DCBP	68		%	10	08/08/16	AW	30 - 150 %
% DCBP % TCMX	56		%	10	08/08/16	AW	30 - 150 % 30 - 150 %
<u>/olatiles</u>							
1,1,1,2-Tetrachloroethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0023			08/06/16	JLI	SW8260C
	ND		mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane		0.0042	mg/Kg	1			
I,1-Dichloroethene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
I,2,3-Trichlorobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane							

arameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-Hexanone	ND	0.021	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.021	mg/Kg	1	08/06/16	JLI	SW8260C
cetone	ND	0.21	mg/Kg	1	08/06/16	JLI	SW8260C
crylonitrile	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
enzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
romobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
romoform	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
arbon tetrachloride	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
hlorobenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
hloroethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,2-Dichloroethene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,3-Dichloropropene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0025	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
&p-Xylene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ethyl Ethyl Ketone	ND	0.025	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0084	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.0084	mg/Kg	1	08/06/16	JLI	SW8260C
aphthalene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
Butylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
Propylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
-Xylene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloropropene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene richloroethene	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0042	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
richlorotrifluoroethane	ND	0.0042	iiig/rxy	I.	00/00/10	JLI	0002000

Parameter Result PQL Units Dilution Date/Time By Reference QACC Surrogates % 1 08/06/16 JL 70 - 130 % % Bromoflourobenzene 92 % 1 08/06/16 JL 70 - 130 % % Dibromoflouromethane 97 % 1 08/06/16 JL 70 - 130 % Semivolatiles 1 08/06/16 JL 70 - 130 % 1 1.2.4.frichiorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.2.4.frichiorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.2.0iphenyllydrazine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.5richiorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.6richiorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.0richiorophenol <th></th> <th></th> <th>ע וס</th> <th></th> <th></th> <th></th> <th></th> <th></th>			ע וס					
*8 1 08/06/16 JU 70 - 130 % % Brannofluorobenzene 92 % 1 08/06/16 JU 70 - 130 % % Dibromofluoromentane 97 % 1 08/06/16 JU 70 - 130 % Y Toluene-d8 10 % 1 08/06/16 JU 70 - 130 % ZA,45-Teirtohorobenzene ND 0.26 mg/Kg 1 08/06/16 DD S/W8270D 1.2.4.5-Teirtohorobenzene ND 0.26 mg/Kg 1 08/06/16 DD S/W8270D 1.2.4.5-Trichorobenzene ND 0.26 mg/Kg 1 08/06/16 DD S/W8270D 1.3-Dichorobenzene ND 0.26 mg/Kg 1 08/06/16 DD S/W8270D 2.4.5-Trichorophenol ND 0.26 mg/Kg 1 08/06/16 DD S/W8270D 2.4-Dintophenol ND 0.26 mg/Kg 1 08/06/16 DD S/W8270D 2.4-Dintophenol ND	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Spromofiliorobenzene 92 % 1 08/06/16 JLI 70 - 130 % % Diloromethane 97 % 1 08/06/16 JLI 70 - 130 % Semivolatiles 1 0.406/16 JLI 70 - 130 % Semivolatiles 1 2.45-Trichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.2.4-Trichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.2Dichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.5-Trichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.5-Trichlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.0-Dirktylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dirktylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	QA/QC Surrogates							
Spibromofluoromethane 97 % 1 08/06/16 JLI 70 - 130 % Semicolatiles -	% 1,2-dichlorobenzene-d4	103		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8 100 % 1 08/06/16 JLI 70 - 130 % Semivolatiles	% Bromofluorobenzene	92		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles ND 0.26 mg/kg 1 08/06/16 DD SW8270D 1.2.4.5-Tetrachlorobenzene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 1.2.Dichlorobenzene ND 0.28 mg/kg 1 08/06/16 DD SW8270D 1.3.Dichlorobenzene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.Diritrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.Diritrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.Diritrophenol ND 0.26 mg/kg 1 08	% Dibromofluoromethane	97		%	1	08/06/16	JLI	70 - 130 %
12.4.4.5-Tetrachlorobenzene ND 0.26 mg/kg 1 080016 DD SW82700 1.2.4-Trichlorobenzene ND 0.26 mg/kg 1 080016 DD SW82700 1.2-Dichlorobenzene ND 0.28 mg/kg 1 080016 DD SW82700 1.2-Dichlorobenzene ND 0.28 mg/kg 1 080016 DD SW82700 2.4.5-Trichlorophenol ND 0.26 mg/kg 1 080016 DD SW82700 2.4.5-Trichlorophenol ND 0.26 mg/kg 1 080016 DD SW82700 2.4-Dinitrophenol ND 0.26 mg/kg 1 080016	% Toluene-d8	100		%	1	08/06/16	JLI	70 - 130 %
1.2.4.ch mg/Kg 1 08/06/16 DD SW8270D 1.2.Diphenylhydrazine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.3.Diphenylhydrazine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.4.Dichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.6.Diricophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.Dirikrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.Dirikrothuene ND 0.26 mg/Kg 1 08/06/16	Semivolatiles							
1.2.4.ch mg/Kg 1 08/06/16 DD SW8270D 1.2.Diphenylhydrazine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.3.Diphenylhydrazine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 1.4.Dichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.6.Diricophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.Dirikrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4.Dirikrothuene ND 0.26 mg/Kg 1 08/06/16	1,2,4,5-Tetrachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1.2-Diphenylhydrazine ND 0.38 mg/kg 1 0806/16 DD SW82700 1.3-Dichlorobenzene ND 0.26 mg/kg 1 0806/16 DD SW82700 2.4.5-Trichlorophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.4.6-Trichlorophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.4-Dichlorophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.4-Dinktrophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.4-Dinktrophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.6-Dinktrophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.Chlorophenol ND 0.26 mg/kg 1 0806/16 DD SW82700 2.Mitrophenol ND 0.26 mg/kg 1 0806/16 <td< td=""><td></td><td>ND</td><td>0.26</td><td>mg/Kg</td><td>1</td><td>08/06/16</td><td>DD</td><td>SW8270D</td></td<>		ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1.3.Dichlorobenzene ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 1.4.Dichlorobenzene ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2.4.Dichtlylphenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2.4.Dichtlylphenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2.4.Dinttylphenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2.4.Dinttydblene ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2Mitrophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2Methylphenol (~c-resol) ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2Methylphenol (~c-resol) ND 0.26 mg/kg 1	1,2-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Si-Trichlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Si-Trichlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dincthylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dincthylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinithylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinithylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinithylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2-Abtentylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol ND 0.26 mg/K		ND	0.38		1	08/06/16	DD	SW8270D
1.4-Dichlorobenzene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4.6.Trichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4-Dintrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4-Dintrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4-Dinitrotoluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Chlorophenol (-cresol) ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Methylphenol (msp-cresol) ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.38 mg/kg 1			0.26		1	08/06/16	DD	
2,4,5-Trichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2,4,6-Trichlorophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2,4-Dinkrophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2,4-Dinkrophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2,4-Dinkrotholuene ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2,Chlorophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2-Chlorophenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2-Methylphenol ND 0.26 mg/kg 1 0.8/06/16 DD SW8270D 2-Mitrophenol ND 0.38 mg/kg 1 0.8/06/16 DD SW8270D 3.4/Itrophenol ND 0.38 mg/kg 1 0.8/06/16 <			0.26		1			SW8270D
2,4,6-Trichlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dincthylphenol ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dinttylphenol ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dinitrylphenol ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2,6-Dinitrotoluene ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2.Chlorophenol ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2.Methylphenol (o-cresol) ND 0.26 mg/Kg 1 08/06/16 DD SV8270D 2.Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SV8270D 3.3'Dichlorobenzidine ND 0.38 mg/Kg 1 08/06/16 DD SV8270D 3.4'Methylphenol ND 0.38 mg/Kg 1 08/06/16 <td>•</td> <td></td> <td>0.26</td> <td></td> <td>1</td> <td>08/06/16</td> <td></td> <td></td>	•		0.26		1	08/06/16		
2.4-Dichlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4-Dimitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4-Dimitrophenol ND 0.38 mg/kg 1 08/06/16 DD SW8270D 2.4-Dimitrobluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.6-Dinitrobluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Mittylphenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Nitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.38 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.38 mg/kg 1 08/06/16 <t< td=""><td>•</td><td>ND</td><td></td><td></td><td>1</td><td>08/06/16</td><td>DD</td><td>SW8270D</td></t<>	•	ND			1	08/06/16	DD	SW8270D
2.4-Dimethylphenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.4-Dimitrophenol ND 0.38 mg/kg 1 08/06/16 DD SW8270D 2.4-Dimitrobluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Methylaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Methylaphenol (o-cresol) ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2.Nitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.26 mg/kg 1 08/06/16 DD SW8270D 4.Choron-smethylphenol ND 0.26<	-				1			
2,4-DinitrophenolND0.38mg/Kg10.806/16DDSW8270D2,4-DinitrotolueneND0.26mg/Kg108/06/16DDSW8270D2,6-DinitrotolueneND0.26mg/Kg108/06/16DDSW8270D2-ChioroaphthaleneND0.26mg/Kg108/06/16DDSW8270D2-Methylphenol (o-cresol)ND0.26mg/Kg108/06/16DDSW8270D2-NitrophenolND0.26mg/Kg108/06/16DDSW8270D2-Nitrophenol (ms/cresol)ND0.26mg/Kg108/06/16DDSW8270D3.3'DichlorobenzidineND0.26mg/Kg108/06/16DDSW8270D3.3'DichlorobenzidineND0.26mg/Kg108/06/16DDSW8270D3.3'DichlorobenzidineND0.26mg/Kg108/06/16DDSW8270D4.6-Dinitro-2-methylphenolND0.38mg/Kg108/06/16DDSW8270D4-ChioroanilineND0.26mg/Kg108/06/16DDSW8270D4-Chiorophenyl phenyl etherND0.26mg/Kg108/06/16DDSW8270D4-Chiorophenyl phenyl etherND0.26mg/Kg108/06/16DDSW8270D4-Chiorophenyl phenyl etherND0.26mg/Kg108/06/16DDSW8270D4-Chiorophenyl phenyl etherND0.26m	-							
2,4-Dinitrotoluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2,6-Dinitrotoluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Chioronaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylnaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.4-Dichorobenzidine ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichorobenzidine ND 0.26 mg/kg 1 08/06/16 DD SW8270D 4-Ghorino-2-methylphenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 4-Chioro-3-methylphenol ND 0.26 mg/kg 1								
2.6-Dinitrotoluene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Chloronphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3-Vitrophenol ND 0.38 mg/kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (m&p-cresol) ND 0.38 mg/kg 1 08/06/16 DD SW8270D 3.3'Dichlorobenzidine ND 0.38 mg/kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.38 mg/kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/kg 1 08/06/16	•							
2-Chloronaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.4-Inchorobenzidine ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.Nitroaniline ND 0.38 mg/kg 1 08/06/16 DD SW8270D 4.Chloro-anethylphenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 4.Chloropaniline ND 0.26 mg/kg 1 08/0								
2-Chlorophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.26 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3-Vitrophenol ND 0.26 mg/kg 1 08/06/16 DD SW8270D 3.4-Ucthylphenol (m&p-cresol) ND 0.38 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.38 mg/kg 1 08/06/16 DD SW8270D 4-Gbinitro-2-methylphenol ND 0.38 mg/kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/kg 1								
2-Methylnaphthalene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (m&p-cresol) ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3.Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.26 mg/Kg								
2-Methylphenol (o-cresol) ND 0.26 m/Kg 1 08/06/16 DD SW8270D 2-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m8p-cresol) ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Accenapththene ND 0.26 mg/Kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Shromophenyl phenyl ether ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.26 mg/Kg 1 <								
2-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.6 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetaphenone ND 0.26 mg/Kg 1 08/06/16								
384-Methylphenol (m&p-cresol) ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3.Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.6 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 0								
3.3-Dichlorobenzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anitine ND 0.26 mg/Kg 1 08/06/16								
3-Nitroaniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
4,6-Dinitro-2-methylphenol ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.6 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg<								
4-Bromophenyl phenyl ether ND 0.38 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetaphenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anitracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1								
4-Chloro-3-methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.6 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1								
4-Chloroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.6 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW								
4-Chlorophenyl phenyl etherND0.26mg/Kg108/06/16DDSW8270D4-NitroanilineND0.6mg/Kg108/06/16DDSW8270D4-NitrophenolND0.26mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.26mg/Kg108/06/16DDSW8270DAcetophenoneND0.26mg/Kg108/06/16DDSW8270DAnilineND0.26mg/Kg108/06/16DDSW8270DAnilineND0.26mg/Kg108/06/16DDSW8270DAnthraceneND0.26mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.26mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.26mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(ghi)peryleneND0.26mg/Kg108/06/16DDSW8270DBenzo(ghi)peryleneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluoranthene								
4-Nitroaniline ND 0.6 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
4-Nitrophenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
AcenaphtheneND0.26mg/kg108/06/16DDSW8270DAcenaphthyleneND0.26mg/Kg108/06/16DDSW8270DAcetophenoneND0.26mg/Kg108/06/16DDSW8270DAnilineND0.38mg/Kg108/06/16DDSW8270DAnthraceneND0.26mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.26mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.26mg/Kg108/06/16DDSW8270DBenz(a)pyreneND0.26mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.26mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(c acidND0.26mg/Kg108/06/16DDSW8270DBenzoic acidND0.26mg/Kg108/06/16DDSW8270DBenzoic acidND0.75mg/Kg108/06/16DDSW8270DBenzyl butyl phthalateND0.26mg/Kg108/06/16DDSW8270D								
AcenaphthyleneND0.26mg/Kg108/06/16DDSW8270DAcetophenoneND0.26mg/Kg108/06/16DDSW8270DAnilineND0.38mg/Kg108/06/16DDSW8270DAnthraceneND0.26mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.26mg/Kg108/06/16DDSW8270DBenz(a)pyreneND0.26mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.26mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(ghi)perylene0.420.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.26mg/Kg108/06/16DDSW8270DBenzoic acidND0.75mg/Kg108/06/16DDSW8270DBenzyl butyl phthalateND0.26mg/Kg108/06/16DDSW8270D								
Acetophenone ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD S								
Aniline ND 0.38 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06					1			
Anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD <td< td=""><td>-</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>	-				1			
Benz(a) anthracene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a) pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a) pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(b) fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi) perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k) fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k) fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16	Aniline				1		DD	
Benzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Anthracene				1		DD	
Benzo(a)pyrene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benz(a)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benzidine		0.26	mg/Kg	1			
Benzo(ghi)perylene 0.42 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzoit acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benzo(a)pyrene				1			
Benzo(k)fluoranthene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benzo(b)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid ND 0.75 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benzo(ghi)perylene	0.42	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benzo(k)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
	Benzoic acid	ND	0.75	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane ND 0.26 mg/Kg 1 08/06/16 DD SW8270D	Benzyl butyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
	Bis(2-chloroethoxy)methane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D

Client ID: SB-7

		RL/	11.20			-	
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	81		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	55		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	53		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	49		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	50		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	66		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inform	nation
Collected by:	BA
Received by:	SM
Analyzed by:	see

SW see "By" below
 08/05/16
 10:25

 08/05/16
 16:48

Time

Date

Laboratory Data

DI /

SDG ID: GBN87810 Phoenix ID: BN87815

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-6

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.39	0.39	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	4.11	0.79	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	71.3	0.39	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.39	0.39	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	22.5	0.39	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	10.8	0.39	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.6	1.6	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.53	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	88		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	37	5	umhos/cm	1	08/08/16	TC	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	7.56	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.6	5.6	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-6

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
CLP Extraction for Metals	Completed				08/05/16	W	SW1311
otal Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
FPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum HC	ND	56	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	57		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Bipher	<u>nyls</u>						
PCB-1016	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1242	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1254	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1260	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1262	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
CB-1268	ND	0.38	mg/Kg	10	08/08/16	AW	SW8082A
QA/QC Surrogates		0.00					0
6 DCBP	91		%	10	08/08/16	AW	30 - 150 %
6 TCMX	78		%	10	08/08/16	AW	30 - 150 %
/olatiles							
,1,1,2-Tetrachloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0027	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
	ND	0.0045			08/06/16	JLI	SW8260C SW8260C
,2-Dichlorobenzene			mg/Kg	1			SW8260C SW8260C
,2-Dichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	
,2-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-6

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
2-Hexanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
I-Chlorotoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
I-Methyl-2-pentanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.22	mg/Kg	1	08/06/16	JLI	SW8260C
Acrylonitrile	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Bromobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Bromoform	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon tetrachloride	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Chlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroform	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,2-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0027	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0045		1	08/06/16	JLI	SW8260C SW8260C
exachlorobutadiene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
opropylbenzene	ND		mg/Kg		08/06/16		SW8260C SW8260C
1&p-Xylene		0.0045	mg/Kg	1		JLI	
lethyl Ethyl Ketone	ND	0.027	mg/Kg	1	08/06/16	JLI	SW8260C
1ethyl t-butyl ether (MTBE)	ND	0.009	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.009	mg/Kg	1	08/06/16	JLI	SW8260C
laphthalene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Propylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Xylene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.009	mg/Kg	1	08/06/16	JLI	SW8260C
oluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.009	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
/inyl chloride	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Chlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.20		1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.38	mg/Kg		08/06/16	DD	SW8270D SW8270D
2-Nitrophenol			mg/Kg	1			
3&4-Methylphenol (m&p-cresol)	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.61	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.76	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate							
Denzyi butyi pritilalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	0.55	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	0.32	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	0.48	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.38	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	89		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	73		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	72		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	71		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	72		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	73		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inform	nation
Collected by:	BA
Received by:	SM
Analyzed by:	see

SW see "By" below
 08/05/16
 10:55

 08/05/16
 16:48

Time

Date

Laboratory Data

SDG ID: GBN87810 Phoenix ID: BN87816

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-5

-		RL/		B 11 (1		_	- (
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.27	0.74	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	52.0	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	16.9	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	7.69	0.37	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.5	1.5	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.38	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	90		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	26	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	8.18	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.4	5.4	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Extraction of CT ETPH	Completed				08/05/16		⁷ SW3545A
Mercury Digestion	Completed				08/08/16	W/W	
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Total Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16	NAO	SW5030B SW5035A
TPH by GC (Extractabl		:)					
Ext. Petroleum HC	ND	54	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
Identification	ND	04	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates	ND		ilig/itg	·	00/03/10	UND	OTEN HOUISD
% n-Pentacosane	58		%	1	08/09/16	JRB	50 - 150 %
			/0	I	00/09/10	JKD	50 - 150 %
Polychlorinated Bipher		0.07	114	40	00/00/40		014/00004
PCB-1016	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1242	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1254	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1260	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1262	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1268	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	89		%	10	08/08/16	AW	30 - 150 %
% TCMX	65		%	10	08/08/16	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.0028	mg/Kg	1	08/06/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,1-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dibromoethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,2-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
1,3-Dichlorobenzene				1			
1,3-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
2-Hexanone	ND	0.023	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
I-Chlorotoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
I-Methyl-2-pentanone	ND	0.023	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.23	mg/Kg	1	08/06/16	JLI	SW8260C
crylonitrile	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romoform	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
arbon tetrachloride	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,2-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,3-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0028	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0046		1	08/06/16	JLI	SW8260C SW8260C
exachlorobutadiene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
opropylbenzene	ND	0.0046	mg/Kg		08/06/16		SW8260C SW8260C
a&p-Xylene			mg/Kg	1		JLI	
lethyl Ethyl Ketone	ND	0.028	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
aphthalene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Propylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Xylene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
oluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
'inyl chloride	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter Result PQL Units Dilution Date/Time By Reference QAUCE Surrotates ** 1 08/06/16 JLI 70-130 % % Floring/floring/energend 95 % 1 08/06/16 JLI 70-130 % % Dibrom/floring/energend 98 % 1 08/06/16 JLI 70-130 % % Dibrom/floring/energend 98 % 1 08/06/16 JLI 70-130 % Semivolatiles % 1 08/06/16 DD SW82700 1.2.4-firing/involumezene ND 0.25 mg/Kg 1 08/06/16 DD SW82700 1.2-Dipenyty/hydrazine ND 0.25 mg/Kg 1 08/06/16 DD SW82700 1.4-Dichorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW82700 2.4-6-finchorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW82700 2.4-6-finchorobenzene	Client ID. 3B-3							
% 1.2. dichlorobenzene. 95 % 1 08/06/16 JL 70 - 130 % % Bronoflucrobenzene 95 % 1 08/06/16 JL 70 - 130 % % Dibromoflucromethane 98 % 1 08/06/16 JL 70 - 130 % 21, 4.5 - Tetrachlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1, 2.4 -Tichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1, 2.4 -Tichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1, 3-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4 -Tichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4 -Dintrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4 -Dintrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW82	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% 1.2. dichlorobenzene. 95 % 1 08/06/16 JL 70 - 130 % % Bronoflucrobenzene 95 % 1 08/06/16 JL 70 - 130 % % Dibromoflucromethane 98 % 1 08/06/16 JL 70 - 130 % 21, 4.5 - Tetrachlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1, 2.4 -Tichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1, 2.4 -Tichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1, 3-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4 -Tichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4 -Dintrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4 -Dintrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW82	QA/QC Surrogates							
% Dibromofluoromethane 99 % 1 08/06/16 JLI 70 - 130 % 2.4.5Tratachlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1.2.4.5.Tratachlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1.2.4.5.Tratachlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1.2.5.Dipenryllytrazine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1.3.Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4.5.Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4.0.Firotophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4.Diritophenol ND 0.25 mg/Kg	% 1,2-dichlorobenzene-d4	108		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8 98 % 1 08/06/16 JL 70 - 130 % Semivolatiles	% Bromofluorobenzene	95		%	1	08/06/16	JLI	70 - 130 %
Semiolatiles 12,4-5-Tetrachlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 12,4-5-Tetrachlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 1,2-Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 1,3-Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-5-Tichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-5-Tichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dinitrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dinitrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dinitrophenol ND 0.25	% Dibromofluoromethane	99		%	1	08/06/16	JLI	70 - 130 %
1,2,4,5-Tetrachlorobenzene ND 0.25 mg/kg 1 0800F16 DD S/W82700 1,2,4-Trichlorobenzene ND 0.25 mg/kg 1 0800F16 DD S/W82700 1,2-Dichlorobenzene ND 0.26 mg/kg 1 0800F16 DD S/W82700 1,2-Dichlorobenzene ND 0.25 mg/kg 1 0800F16 DD S/W82700 2,4,5-Trichlorophenol ND 0.25 mg/kg 1 0800F16 DD S/W82700 2,4-Dirichlorophenol ND 0.25 mg/kg 1 0800F16 DD S/W82700 2,Chloronphrol ND 0.25 mg/kg 1	% Toluene-d8	98		%	1	08/06/16	JLI	70 - 130 %
1,2.4-Trichlorobenzene ND 0.25 mg/kg 1 04/06/16 DD SW82700 1,2Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW82700 1,3Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW82700 1,4Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW82700 2,4,5-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW82700 2,4,4-Dinicrobhenol ND 0.25 mg/kg 1 08/06/16 DD SW82700 2,4-Dinicrobhenol ND 0.25	Semivolatiles							
1,2.4-Trichlorobenzene ND 0.25 mg/kg 1 04/06/16 DD SW82700 1,2Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW82700 1,3Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW82700 1,4Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW82700 2,4,5-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW82700 2,4,4-Dinicrobhenol ND 0.25 mg/kg 1 08/06/16 DD SW82700 2,4-Dinicrobhenol ND 0.25	1,2,4,5-Tetrachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1,2-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1,4-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-5.Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-5.Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinitrophenol ND 0.25		ND	0.25		1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 1,3-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4,5-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4,5-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinktrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinktrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,C-Intorophthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Aldrhythphol(loc-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Aldrhythphol(loc-cresol) ND 0.25 mg/Kg 1		ND	0.25		1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1,4-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4,6-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dichtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinthylphenol ND 0.36 mg/Kg 1 08/06/16			0.36		1		DD	
A-Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.4,5-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.4,6-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.4-Dinitrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.4-Dinitrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.4-Dinitrotoluene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.C-Iolronaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.Adthylphaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.Adthylphenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.Althrophenol ND 0.36 mg/kg 1 08/06/16					1		DD	
2,4,5-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4,6-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinklorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinklorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinklorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,6-Dinklorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Adethylphenol 0.75 mg/Kg 1 08/06/16 DD SW8270D 2.Methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.Adethylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.Adethylphenol ND 0.36 mg/Kg 1					1			
2,4,6-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinchtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinchtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinithylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinithylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (msp-cresol) ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (msp-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (msp-cresol) ND 0.36 mg/Kg					1			
2.4-Dichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dintrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dintrotoluene ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2.6-Dintrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Mitroanline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 <					1			
2.4-Dimethylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Methylphenol (c-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Mitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.Nitroaniline ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.25 mg/Kg 1 08/06/16<					1			
2,4-Dinitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,6-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chloronphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (n%c-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3.4/Methylphenol (m%c-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3.3/Dichloroberzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.6/Dinitro-2-methylphenol ND 0.36 mg/Kg 1 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
2,4-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,6-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chloropaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitropaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitropaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.Chloro-3-methylphenol ND 0.25 mg/Kg 1 <td< td=""><td>••</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	••							
Q.G. Dinitratoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chloronaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.4-Dichorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/	, ,							
2-Chloronaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitroaniline ND 0.25 mg/kg 1 08/06/16 DD SW8270D 3-Nichorobenzidine ND 0.25 mg/kg 1 08/06/16 DD SW8270D 3-Nichorobenzidine ND 0.25 mg/kg 1 08/06/16 DD SW8270D 3-Nichorobenzidine ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4-Choro-amethylphenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/kg 1								
2-Chlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitroaniline ND 0.36 mg/kg 1 08/06/16 DD SW8270D 2-Nitroaniline ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (m&p-cresol) ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.4-Methylphenol ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.4-Dichorobenzidine ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4-Chlorophinyl phenyl ether ND 0.25 mg/kg 1 08/06/16 DD SW8270D 4-Chlorophinene ND 0.25 mg/kg 1								
2-Methylnaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3-Nitrophenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3-Nitrophenol (phenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg	-							
2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg								
2-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Shromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/0								
2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-G-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetaphenone ND 0.25 mg/Kg 1								
384-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-G-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1								
3,3'-Dichlorobenzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16	•							
A-Nitroaniline ND 0.36 m/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphtylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphtylene ND 0.25								
A-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anitracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1								
4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.58 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1								
4-Chlorophenyl phenyl etherND0.25mg/Kg108/06/16DDSW8270D4-NitroanilineND0.58mg/Kg108/06/16DDSW8270D4-NitrophenolND0.25mg/Kg108/06/16DDSW8270DAcenaphtheneND0.25mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.25mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(ghi)peryleneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluo								
4-Nitroaniline ND 0.58 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
4-NitrophenolND0.25mg/Kg108/06/16DDSW8270DAcenaphtheneND0.25mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.25mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)liperyleneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzol(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzol(k)fluoranth								
AcenaphtheneND0.25mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.36mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.72mg/Kg108/06/16DDSW8270DBenzoic acidND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.								
AcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.36mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(ghi)peryleneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.72mg/Kg108/06/16DDSW8270DBenzoic acidND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.72mg/Kg108/06/16DDSW8270DBenzoic acidND0.25mg/Kg108/06/16DDSW8270D								
Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD S								
Aniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.72 mg/Kg 1 0								
Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD <	•				1			
Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 D	Aniline				1			
Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Anthracene				1			
Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benz(a)anthracene			mg/Kg	1			
ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzidine		0.25	mg/Kg	1			
Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(a)pyrene				1			
Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(b)fluoranthene		0.25		1	08/06/16		SW8270D
Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(ghi)perylene		0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(k)fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
	Benzoic acid	ND	0.72	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzyl butyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
	Bis(2-chloroethoxy)methane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D

Project ID: CCSU-Kaiser Annex Client ID: SB-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	85		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	62		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	61		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	60		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	64		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	69		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inforn	nation
Collected by:	BA
Received by:	SM
Analyzed by:	see

SW see "By" below
 08/05/16
 11:15

 08/05/16
 16:48

Time

Date

Laboratory Data

SDG ID: GBN87810 Phoenix ID: BN87817

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-4

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.51	0.73	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	72.0	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	20.4	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	9.07	0.37	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.5	1.5	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.49	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	90		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	28	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	8.27	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.5	5.5	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-4

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
ICLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
CLP Extraction for Metals	Completed				08/05/16	W	SW1311
Fotal Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum HC	ND	54	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	70		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Bipher	nyls						
PCB-1016	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1242	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1248	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1254	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1260	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1262	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
CB-1268	ND	0.37	mg/Kg	10	08/08/16	AW	SW8082A
QA/QC Surrogates		0.01		10	00,00,10	,	0110002/1
6 DCBP	66		%	10	08/08/16	AW	30 - 150 %
6 TCMX	54		%	10	08/08/16	AW	30 - 150 %
<u>/olatiles</u>							
,1,1,2-Tetrachloroethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0026	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND			1	08/06/16	JLI	
,2,3-Trichlorobenzene		0.0043	mg/Kg	1			SW8260C
,2,3-Trichloropropane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-4

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
-Hexanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
lsopropyltoluene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.22	mg/Kg	1	08/06/16	JLI	SW8260C
Acrylonitrile	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Bromobenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Bromochloromethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
bromodichloromethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Bromoform	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Bromomethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon Disulfide	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon tetrachloride	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Chlorobenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
Chloromethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0026	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
i&p-Xylene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.026	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
aphthalene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
-Butylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
-Propylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
-Xylene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
-	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0043	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
ans-1,3-Dichloropropene	ND	0.0043	mg/Kg mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
ans-1,4-dichloro-2-butene	ND	0.0087			08/06/16		
richloroethene	ND	0.0043	mg/Kg	1	08/06/16	JLI JLI	SW8260C SW8260C
richlorofluoromethane	ND	0.0043	mg/Kg	1	08/06/16		SW8260C SW8260C
richlorotrifluoroethane	ND	0.0043	mg/Kg	1	00/00/10	JLI	3002000

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	92		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	108		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	100		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
•	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol							
2,4-Dichlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Chlorophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.59	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.74	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
			Dame 46 of 72				

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	0.3	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.26	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.37	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	97		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	69		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	63		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	62		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	67		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	77		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

BA
SW
see

see "By" below

08/05/16 16:48

Date

08/05/16

Laboratory Data

Custody Information

SDG ID: GBN87810 Phoenix ID: BN87818

Time

11:30

Project ID:	
Client ID:	

CCSU-Kaiser Annex SB-3

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.36	0.36	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.77	0.72	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	73.9	0.36	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.36	0.36	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	20.6	0.36	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	10.1	0.36	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.4	1.4	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.64	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	91		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	53	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	8.41	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.3	5.3	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
CLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
CLP Extraction for Metals	Completed				08/05/16	W	SW1311
otal Metals Digest	Completed				08/05/16	X/AG	SW3050B
ield Extraction	Completed				08/05/16		SW5035A
FPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum HC	ND	54	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	60		%	1	08/09/16	JRB	50 - 150 %
olychlorinated Bipher	<u>nyls</u>						
PCB-1016	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1232	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
CB-1242	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1254	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
CB-1260	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
CB-1262	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
CB-1268	ND	0.36	mg/Kg	10	08/08/16	AW	SW8082A
A/QC Surrogates	THE	0.00		10	00,00,10	,	0110002/1
6 DCBP	82		%	10	08/08/16	AW	30 - 150 %
6 TCMX	63		%	10	08/08/16	AW	30 - 150 %
/olatiles							
,1,1,2-Tetrachloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0027	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
	ND	0.0045		1	08/06/16		SW8260C SW8260C
,2,4-Trimethylbenzene			mg/Kg	1		JLI	
,2-Dibromo-3-chloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
2-Dichloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
2-Chlorotoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
P-Hexanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.22	mg/Kg	1	08/06/16	JLI	SW8260C
Acrylonitrile	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Bromobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Bromoform	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
arbon tetrachloride	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hlorobenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0027	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
&p-Xylene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.027	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0089	mg/Kg	1	08/06/16	JLI	SW8260C
ethylene chloride	ND	0.0089	mg/Kg	1	08/06/16	JLI	SW8260C
aphthalene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
•	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Propylbenzene	ND			1			
		0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0089	mg/Kg	1	08/06/16	JLI	SW8260C
pluene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0089	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C
'inyl chloride	ND	0.0045	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter Result PQL Units Dilution Date/Time By Reference GAOC Surrogates ** 1 0800616 JLI 70-130 % % Bromollourobenzene 91 % 1 0800616 JLI 70-130 % % Ditromollourobenzene 98 % 1 0800616 JLI 70-130 % % Ditromollourobenzene ND 0.25 mgKg 1 0800616 DD SW8270D 1.2.4.5.Trichtorobenzene ND 0.25 mgKg 1 0800616 DD SW8270D 1.2.Diphorly/hydrazine ND 0.25 mgKg 1 0800616 DD SW8270D 1.4.Dichtorobenzene ND 0.25 mgKg 1 0800616 DD SW8270D 1.4.Dichtorobenzene ND 0.25 mgKg 1 0800616 DD SW8270D 2.4.5 Trichtorophenol ND 0.25 mgKg 1 0800616 DD SW8270D <tr< th=""><th>Client ID. 3B-3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	Client ID. 3B-3							
************************************	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Spannelluorobenzene 91 % 1 08/06/16 JLI 70 - 130 % % Dibuened8 98 % 1 08/06/16 JLI 70 - 130 % Semivolatiles 1 0.8/06/16 JLI 70 - 130 % 12.4.5-Tietrachlorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 1.2.4-Trichlorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 1.2.0-binlorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 1.4.0-binlorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4.5-Trichlorophenol ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4.0-bintrotyhenol ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4.0-bintrotyhenol ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4.0-bint	QA/QC Surrogates							
% Dibromofluoromethane 102 % 1 08/06/16 JLI 70 - 130 % Semicolatlles -	% 1,2-dichlorobenzene-d4	104		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8 98 % 1 08/06/16 JL 70 - 130 % Semivolatiles	% Bromofluorobenzene	91		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 1.2.4-forlorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 1.2.0-binkorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 1.2.0-binkorobenzene ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4.5-frichkorophenol ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4.5-frichkorophenol ND 0.25 mg/kg 1 0.8/06/16 DD SW8270D 2.4-Dinkophenol ND 0.25 mg/kg 1 0.8/06/16	% Dibromofluoromethane	102		%	1	08/06/16	JLI	70 - 130 %
1.2.4.5-Tetrachlorobenzene ND 0.25 mg/kg 1 0800616 DD SW82700 1.2.4-Trichlorobenzene ND 0.25 mg/kg 1 080616 DD SW82700 1.2.0-bichlorobenzene ND 0.36 mg/kg 1 080616 DD SW82700 1.3.0-bichlorobenzene ND 0.25 mg/kg 1 080616 DD SW82700 2.4.5-Trichlorophenol ND 0.25 mg/kg 1 080616 DD SW82700 2.4.0-Bichlorophenol ND 0.25 mg/kg 1 080616 DD SW82700 2.4-Dinitrophenol ND 0.25 mg/kg 1 080616	% Toluene-d8	98		%	1	08/06/16	JLI	70 - 130 %
1,2,4-Trichlorobenzene ND 0.25 mg/Kg 1 0806/16 DD SW8270D 1,2-DicherlyNydrazine ND 0.25 mg/Kg 1 0806/16 DD SW8270D 1,3-DichorlyNydrazine ND 0.25 mg/Kg 1 0806/16 DD SW8270D 1,4-Dichlorobenzene ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4,5-Trichlorophenol ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4-Dinitrophenol ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4-Dinitrophenol ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4-Dinitrobluene ND 0.25 mg/Kg	<u>Semivolatiles</u>							
1,2,4-Trichlorobenzene ND 0.25 mg/Kg 1 0806/16 DD SW8270D 1,2-DicherlyNydrazine ND 0.25 mg/Kg 1 0806/16 DD SW8270D 1,3-DichorlyNydrazine ND 0.25 mg/Kg 1 0806/16 DD SW8270D 1,4-Dichlorobenzene ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4,5-Trichlorophenol ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4-Dinitrophenol ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4-Dinitrophenol ND 0.25 mg/Kg 1 0806/16 DD SW8270D 2,4-Dinitrobluene ND 0.25 mg/Kg		ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1,2-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 1,4-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4,5-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,4-Dinitrobluene ND 0.25 mg		ND	0.25		1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine ND 0.8 mg/kg 1 0806/16 DD SW82700 1,3-Dichlorobenzene ND 0.25 mg/kg 1 0806/16 DD SW82700 2,4,5-Trichlorophenol ND 0.25 mg/kg 1 0806/16 DD SW82700 2,4,6-Trichlorophenol ND 0.25 mg/kg 1 0806/16 DD SW82700 2,4-Dinktorophenol ND 0.25 mg/kg 1 0806/16 DD SW82700 2,4-Dinktoroblene ND 0.25 mg/kg 1 0806/16 DD SW82700 2,4-Dinktoroblenel ND 0.25 mg/kg <td></td> <td>ND</td> <td>0.25</td> <td></td> <td>1</td> <td>08/06/16</td> <td>DD</td> <td>SW8270D</td>		ND	0.25		1	08/06/16	DD	SW8270D
ND 0.25 mg/Kg 1 08/08/16 DD SW8270D 1.4-Dichlorobenzene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4.5-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4.0-Endtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dindtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dindtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dindtylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2Chlorotophthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2Methylphenol (<i>b_c-cresol</i>) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2Methylphenol (<i>b_c-cresol</i>) ND 0.36 mg/Kg 1 08/06/16			0.36		1		DD	
1.4-Dichlorobenzene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2.4,5-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dintrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dintrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dintrotoluene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,C-Dintrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophenol (-c-resol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methybhenol (msp-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 3,3'Dichlorobenzidine ND 0.36 mg/kg 1 <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td>DD</td><td></td></t<>					1		DD	
2,4,5-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4,6-Trichlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dinkrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dinkrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,4-Dinkrotoluene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2,-Chlorophthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.3/ Dichlorobenzidine ND 0.36 mg/kg 1 08/06/16					1			SW8270D
2,4,6-Trichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dinthylphenol ND 0.25 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dinthylphenol ND 0.36 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dinithylphenol ND 0.25 mg/Kg 1 08/06/16 DD SV8270D 2,4-Dinithylphenol ND 0.25 mg/Kg 1 08/06/16 DD SV8270D 2-Chlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SV8270D 2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SV8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SV8270D 3.4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SV8270D 3.3-Dichorobenzidine ND 0.36 mg/Kg 1 0					1			
2.4-Dichlorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrobluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrobluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Chintrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Methylphenol 0 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Methylphenol ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 3.4-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.4-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16	•				1			
2.4-Dimethylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrobluene ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 2.4-Dimitrobluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2.6-Dinitrobluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chiorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichoroberzidine ND 0.26 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4.2-Chioroaniline ND 0.25 mg/K	-				1			
2,4-DinitrophenolND0.36mg/Kg108/06/16DDSW8270D2,4-DinitrotolueneND0.25mg/Kg108/06/16DDSW8270D2,6-DinitrotolueneND0.25mg/Kg108/06/16DDSW8270D2-ChloronaphthaleneND0.25mg/Kg108/06/16DDSW8270D2-Methylphenol (o-cresol)ND0.25mg/Kg108/06/16DDSW8270D2-NitroanilineND0.25mg/Kg108/06/16DDSW8270D2-NitrophenolND0.25mg/Kg108/06/16DDSW8270D2-NitrophenolND0.25mg/Kg108/06/16DDSW8270D2-NitrophenolND0.25mg/Kg108/06/16DDSW8270D3.3-DichlorobenzidineND0.25mg/Kg108/06/16DDSW8270D3.3-DichlorobenzidineND0.36mg/Kg108/06/16DDSW8270D4-Bromophenyl phenyl etherND0.25mg/Kg108/06/16DDSW8270D4-ChloroanilineND0.25mg/Kg108/06/16DDSW8270D4-Chlorophenyl phenyl etherND0.25mg/Kg108/06/16DDSW8270D4-ChlorophenolND0.25mg/Kg108/06/16DDSW8270D4-Chlorophenyl phenyl etherND0.25mg/Kg108/06/16DD <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
2,4-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2,6-Dinitrotoluene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chioropaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Chiorophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chioro-3-methylphenol ND 0.25 mg/Kg 1 08/								
2.6-Dinitrotoluene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Chloronaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (m&p-cresol) ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/kg 1	•							
2-Chloronaphthalene ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Chlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3-Nitrobrobenzidine ND 0.25 mg/kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4-Chloro-anethylphenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 4-Chloro-aniline ND 0.25 mg/kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2-Chlorophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol (o-cresol) ND 0.25 mg/kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 3.4' Methylphenol (m&p-cresol) ND 0.36 mg/kg 1 08/06/16 DD SW8270D 3.3' Dichlorobenzidine ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4.6' Dinitro-2-methylphenol ND 0.36 mg/kg 1 08/06/16 DD SW8270D 4.Chloro-3-methylphenol ND 0.25 mg/kg 1 08/06/16 DD SW8270D 4.Chlorophenyl phenyl ether ND 0.25 mg/kg 1 08/06/16 DD SW8270D 4.Nitrophenol ND 0.25 mg/kg								
2-Methylnaphthalene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Methylphenol (o-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4.6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg								
2-Methylphenol (o-cresol) ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.3-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3.Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1	•							
2-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Shromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06								
2-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3,3-Dichlorobenzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-G-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16								
3&4-Methylphenol (m&p-cresol) ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 3,3'-Dichlorobenzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
3,3-Dichlorobenzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anitine ND 0.25 mg/Kg 1 <								
3-Nitroaniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroa-illine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
4,6-Dinitro-2-methylphenol ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Bromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroa-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroahiline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroahiline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg								
ABromophenyl phenyl ether ND 0.36 mg/Kg 1 08/06/16 DD SW8270D 4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16								
4-Chloro-3-methylphenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1								
4-Chloroaniline ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 0.25 mg/Kg 1 08/06/16 DD SW8270D 4-Nitroaniline ND 0.58 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 0								
4-Chlorophenyl phenyl etherND0.25mg/Kg108/06/16DDSW8270D4-NitroanilineND0.58mg/Kg108/06/16DDSW8270D4-NitrophenolND0.25mg/Kg108/06/16DDSW8270DAcenaphtheneND0.25mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.25mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(c)(fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzol(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzol(k								
4-Nitroaniline ND 0.58 mg/Kg 1 08/06/16 DD SW8270D 4-Nitrophenol ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acenaphthylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16								
4-NitrophenolND0.25mg/Kg108/06/16DDSW8270DAcenaphtheneND0.25mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.25mg/Kg108/06/16DDSW8270DAnthraceneND0.36mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)lpuryleneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)lpuryleneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluoranthene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
AcenaphtheneND0.25mg/Kg108/06/16DDSW8270DAcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.36mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.72mg/Kg108/06/16DDSW8270DBenzoic acidND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.72mg/Kg108/06/16DDSW8270DBenzoic acidND0.								
AcenaphthyleneND0.25mg/Kg108/06/16DDSW8270DAcetophenoneND0.25mg/Kg108/06/16DDSW8270DAnilineND0.36mg/Kg108/06/16DDSW8270DAnthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)anthraceneND0.25mg/Kg108/06/16DDSW8270DBenz(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(b)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(ghi)peryleneND0.25mg/Kg108/06/16DDSW8270DBenzo(k)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzo(a)pyreneND0.25mg/Kg108/06/16DDSW8270DBenzo(ghi)peryleneND0.25mg/Kg108/06/16DDSW8270DBenzo(x)fluorantheneND0.25mg/Kg108/06/16DDSW8270DBenzoic acidND0.72mg/Kg108/06/16DDSW8270DBenzyl butyl phthalateND0.25mg/Kg108/06/16DDSW8270D								
Acetophenone ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Aniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8	•							
Aniline ND 0.36 mg/Kg 1 08/06/16 DD SW8270D Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzolyl putyl phthalate ND 0.25 mg/Kg 1 0					-			
Anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD	-				1			
Benz(a)anthracene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 D	Aniline				1			
Benzidine ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Anthracene				1			
Benzo(a)pyrene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benz(a)anthracene			mg/Kg	1		DD	
Benzo(b)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzidine				1			
Benzo(ghi)perylene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(a)pyrene				1			
Benzo(k)fluoranthene ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzoic acid ND 0.25 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(b)fluoranthene		0.25		1	08/06/16	DD	SW8270D
Benzoic acid ND 0.72 mg/Kg 1 08/06/16 DD SW8270D Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(ghi)perylene		0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzo(k)fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
	Benzoic acid	ND	0.72	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane ND 0.25 mg/Kg 1 08/06/16 DD SW8270D	Benzyl butyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
	Bis(2-chloroethoxy)methane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D

Client ID: SB-3

	Desult	RL/	l loite	Dibatian	Dete /Time	D	Defense
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.36	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	75		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	61		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	58		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	63		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	62		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	64		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Custody Inform	<u>nation</u>
Collected by:	BA
Received by:	SW
Analyzed by:	see

see "By" below

08/05/16 16:48

Time

12:50

Date

08/05/16

Laboratory Data

SDG ID: GBN87810 Phoenix ID: BN87819

Project ID:	(
Client ID:	:

CCSU-Kaiser Annex SB-9

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.34	0.34	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.90	0.68	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	89.2	0.34	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.34	0.34	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	25.7	0.34	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	10.9	0.34	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.4	1.4	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.90	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	93		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	290	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	9.58	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.3	5.3	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-9

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	sw3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
CLP Extraction for Metals	Completed				08/05/16	W	SW1311
Fotal Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
FPH by GC (Extractab	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	52	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	55		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Biphe	enyls						
PCB-1016	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1232	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1242	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1248	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1254	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
°CB-1260	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1262	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
CB-1268	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
	ND	0.55	iiig/itg	10	00/00/10	~~~	5110002A
QA/QC Surrogates 6 DCBP	121		%	10	08/08/16	AW	30 - 150 %
% DCBP % TCMX	95		%	10	08/08/16	AW	30 - 150 % 30 - 150 %
	00		70	10	00/00/10	/	
<u>/olatiles</u>	ND	0.0044		4	00/00/40		014/00000
,1,1,2-Tetrachloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0026	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	INLJ						

Client ID: SB-9

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Hexanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.22	mg/Kg	1	08/06/16	JLI	SW8260C
Acrylonitrile	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromochloromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromoform	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromomethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon tetrachloride	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Chlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
chloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
chloroform	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Chloromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0026	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
i&p-Xylene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.026	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0020	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
aphthalene -Butylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
-	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
-Propylbenzene							
	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ert-Butylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
oluene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
'inyl chloride	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	94		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	104		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	98		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
	ND	0.25	malka	1	08/06/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	0.25	mg/Kg		08/06/16		SW8270D
1,2,4-Trichlorobenzene			mg/Kg	1			
1,2-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Chlorophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.56	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
	ND	0.25	mg/Kg	1	08/06/16		SW8270D SW8270D
Benzo(b)fluoranthene	ND	0.25	mg/Kg	1	08/06/16		SW8270D SW8270D
Benzo(ghi)perylene	ND	0.25		1	08/06/16	DD	SW8270D SW8270D
Benzo(k)fluoranthene			mg/Kg				
Benzoic acid	ND	0.7	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D

Project ID: CCSU-Kaiser Annex Client ID: SB-9

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.25	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	89		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	56		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	52		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	55		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	52		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	65		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Collected by:	ΒA
Received by:	SW
Analyzed by:	see

Laboratory Data

Custody Information

see "By" below

08/05/16 Iow

Date

08/05/16

SDG ID: GBN87810 Phoenix ID: BN87820

Time

13:20

16:48

Project ID:	C
Client ID:	S

CCSU-Kaiser Annex SB-10

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.33	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.67	0.66	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	82.3	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.33	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	23.1	0.33	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	< 0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	10.9	0.33	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.3	1.3	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.68	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/08/16	RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	94		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	73	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	8.24	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 5.0	5.0	mg/Kg	1	08/08/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/06/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/06/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-10

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Total Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
TPH by GC (Extractabl	e Products	<u>5)</u>					
Ext. Petroleum HC	ND	52	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	80		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Biphe	<u>nyls</u>						
PCB-1016	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1242	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1254	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1260	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1262	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
CB-1268	ND	0.34	mg/Kg	10	08/08/16	AW	SW8082A
QA/QC Surrogates							
6 DCBP	101		%	10	08/08/16	AW	30 - 150 %
6 TCMX	80		%	10	08/08/16	AW	30 - 150 %
<u>/olatiles</u>							
,1,1,2-Tetrachloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0026	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
2,2-Dichloropropane	INI J						

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Hexanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
2-Isopropyltoluene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.022	mg/Kg	1	08/06/16	JLI	SW8260C
Acetone	ND	0.22	mg/Kg	1	08/06/16	JLI	SW8260C
Acrylonitrile	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Benzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromochloromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromodichloromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromoform	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Bromomethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon Disulfide	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Carbon tetrachloride	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Chlorobenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Chloroform	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
Chloromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,2-Dichloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
is-1,3-Dichloropropene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0026	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
thylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
i&p-Xylene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl Ethyl Ketone	ND	0.026	mg/Kg	1	08/06/16	JLI	SW8260C
fethyl t-butyl ether (MTBE)	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
lethylene chloride	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
aphthalene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Butylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
-Butylbenzene -Propylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
	ND	0.0044	mg/Kg mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
-Xylene	ND	0.0044	mg/Kg mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
-Isopropyltoluene	ND	0.0044		1	08/06/16	JLI JLI	SW8260C SW8260C
ec-Butylbenzene	ND	0.0044 0.0044	mg/Kg	1	08/06/16	JLI JLI	SW8260C SW8260C
tyrene			mg/Kg				
ert-Butylbenzene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,3-Dichloropropene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	0.0087	mg/Kg	1	08/06/16	JLI	SW8260C
richloroethene	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
richlorotrifluoroethane	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C
'inyl chloride	ND	0.0044	mg/Kg	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	92		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	104		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
-	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
2-Chlorophenol	ND	0.24		1	08/06/16	DD	SW8270D
2-Methylnaphthalene			mg/Kg				
2-Methylphenol (o-cresol)	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.55	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.69	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
			Dage 64 of 72				

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.35	mg/Kg	1	08/06/16		SW8270D SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
Carbazole	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	ND	0.33	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
Dibenz(a,n)aninracene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
	ND	0.24	mg/Kg		08/06/16		SW8270D SW8270D
Diethyl phthalate	ND		mg/Kg	1	08/06/16	DD	SW8270D SW8270D
Dimethylphthalate	ND	0.24 0.24		1 1	08/06/16	DD	SW8270D SW8270D
Di-n-butylphthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
Di-n-octylphthalate			mg/Kg				
Fluoranthene	0.27	0.24	mg/Kg	1	08/06/16	DD	SW8270D SW8270D
Fluorene	ND	0.24	mg/Kg	1	08/06/16	DD	
Hexachlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	86		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	64		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	51		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	52		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	57		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	71		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Analysis Report

August 11, 2016

FOR: Attn: Marya Mahoney TRC Environmental Corp. 21 Griffin Rd North Windsor, CT 06095

Sample Information

Collected by:	BA
Received by:	SV
Analyzed by:	see

_aboratory Data

Custody Information

SW See "By" below 08/05/16 14:00 08/05/16 16:48

Time

Date

SDG ID: GBN87810 Phoenix ID: BN87821

Project ID:	CCS
Client ID:	SB-

CCSU-Kaiser Annex SB-11

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Arsenic	3.64	0.75	mg/Kg	1	08/07/16	LK	SW6010C	
Barium	73.0	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Cadmium	< 0.37	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Chromium	21.1	0.37	mg/Kg	1	08/07/16	LK	SW6010C	
Mercury	0.03	0.03	mg/Kg	1	08/08/16	RS	SW7471B	
Lead	13.6	0.37	mg/Kg	1	08/07/16	LK	SW6010C	В
Selenium	< 1.5	1.5	mg/Kg	1	08/07/16	LK	SW6010C	
TCLP Silver	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Arsenic	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Barium	0.53	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Cadmium	< 0.005	0.005	mg/L	1	08/09/16	LK	SW6010C	
TCLP Chromium	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/09/16	MA/RS	SW7470A	
TCLP Lead	< 0.010	0.010	mg/L	1	08/09/16	LK	SW6010C	
TCLP Selenium	< 0.01	0.01	mg/L	1	08/09/16	LK	SW6010C	
TCLP Metals Digestion	Completed				08/08/16	W/W	SW3005A	
Percent Solid	93		%		08/05/16	W	SW846-%Solid	
Conductivity - Soil Matrix	49	5	umhos/cm	1	08/08/16	тс	SM2510B-97	
Corrosivity	Negative		Pos/Neg	1	08/05/16	DH/KDB	SW846-Corr	
Flash Point	>200	200	Degree F	1	08/08/16	Y	SW1010A	
Ignitability	Passed	140	degree F	1	08/08/16	Y	SW846-Ignit	
pH - Soil	7.94	0.10	pH Units	1	08/05/16 21:00	DH/KDB	SW9045	
Reactivity Cyanide	< 4.9	4.9	mg/Kg	1	08/09/16	BS/GD	SW846-ReactCyn	
Reactivity Sulfide	< 20	20	mg/Kg	1	08/08/16	BS/GD	SW-7.3	
Reactivity	Negative		Pos/Neg	1	08/08/16	BS/GD	SW846-React	
Soil Extraction for PCB	Completed				08/05/16	JC/V	SW3545A	
Soil Extraction for SVOA	Completed				08/05/16	JJ/CKV	SW3545A	

Project ID: CCSU-Kaiser Annex Client ID: SB-11

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				08/05/16	CC/CKV	SW3545A
Mercury Digestion	Completed				08/08/16	W/W	SW7471B
TCLP Digestion Mercury	Completed				08/08/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				08/05/16	W	SW1311
Fotal Metals Digest	Completed				08/05/16	X/AG	SW3050B
Field Extraction	Completed				08/05/16		SW5035A
FPH by GC (Extractable	e Products	s)					
Ext. Petroleum HC	ND	52	mg/Kg	1	08/09/16	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	08/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
6 n-Pentacosane	79		%	1	08/09/16	JRB	50 - 150 %
Polychlorinated Bipher	nyls						
PCB-1016	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1221	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1232	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1242	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1248	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
2CB-1240 2CB-1254	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
PCB-1260	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
CB-1260 CB-1262	ND	0.35	mg/Kg	10	08/08/16	AW	SW8082A
	ND	0.35		10	08/08/16	AW	SW8082A SW8082A
PCB-1268	ND	0.55	mg/Kg	10	00/00/10	Avv	311000ZA
QA/QC Surrogates	104		0/	40	00/00/40	A \ A /	20 450.0/
6 DCBP	104		%	10	08/08/16	AW	30 - 150 %
6 TCMX	82		%	10	08/08/16	AW	30 - 150 %
/olatiles				_			
,1,1,2-Tetrachloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,1,1-Trichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2,2-Tetrachloroethane	ND	0.0028	mg/Kg	1	08/06/16	JLI	SW8260C
,1,2-Trichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,1-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2,3-Trichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2,4-Trimethylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dibromoethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,2-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,3,5-Trimethylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,3-Dichloropropane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
,4-Dichlorobenzene	ND	0.0046		1	08/06/16	JLI	SW8260C SW8260C
2,2-Dichloropropane			mg/Kg	1			
2-Chlorotoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C

Client ID: SB-11

arameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
-Hexanone	ND	0.023	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Chlorotoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Methyl-2-pentanone	ND	0.023	mg/Kg	1	08/06/16	JLI	SW8260C
cetone	ND	0.23	mg/Kg	1	08/06/16	JLI	SW8260C
crylonitrile	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
enzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romochloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romodichloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romoform	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
romomethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
arbon Disulfide	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
arbon tetrachloride	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hlorobenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hloroethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hloroform	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hloromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,2-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
s-1,3-Dichloropropene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ibromochloromethane	ND	0.0028	mg/Kg	1	08/06/16	JLI	SW8260C
ibromomethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ichlorodifluoromethane	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
hylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
exachlorobutadiene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
opropylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
&p-Xylene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ethyl Ethyl Ketone	ND	0.028	mg/Kg	1	08/06/16	JLI	SW8260C
lethyl t-butyl ether (MTBE)	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
ethylene chloride	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
aphthalene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
Propylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Xylene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-Isopropyltoluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ec-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
tyrene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
rt-Butylbenzene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
etrachloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
etrahydrofuran (THF)	ND	0.0092	mg/Kg	1	08/06/16	JLI	SW8260C
bluene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
otal Xylenes	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
-	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
ans-1,2-Dichloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C SW8260C
ans-1,3-Dichloropropene		0.0046		1	08/06/16	JLI	SW8260C SW8260C
ans-1,4-dichloro-2-butene			mg/Kg				
richloroethene	ND	0.0046	mg/Kg	1	08/06/16	JLI	SW8260C
richlorofluoromethane richlorotrifluoroethane	ND ND	0.0046	mg/Kg mg/Kg	1	08/06/16	JLI	SW8260C
	INI J	0.0046	ma/ka	1	08/06/16	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	107		%	1	08/06/16	JLI	70 - 130 %
% Bromofluorobenzene	91		%	1	08/06/16	JLI	70 - 130 %
% Dibromofluoromethane	107		%	1	08/06/16	JLI	70 - 130 %
% Toluene-d8	96		%	1	08/06/16	JLI	70 - 130 %
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Dichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
1,3-Dichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
1,4-Dichlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dichlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dimethylphenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2,4-Dinitrotoluene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2,6-Dinitrotoluene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Chloronaphthalene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Chlorophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylnaphthalene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
2-Nitrophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
3-Nitroaniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
4-Chloroaniline	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitroaniline	ND	0.56	mg/Kg	1	08/06/16	DD	SW8270D
4-Nitrophenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Acenaphthylene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Acetophenone	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Aniline	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Anthracene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benz(a)anthracene	0.76	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzidine	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(a)pyrene	0.79	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(b)fluoranthene	0.78	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(ghi)perylene	0.44	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzo(k)fluoranthene	0.61	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Benzoic acid	ND	0.7	mg/Kg	1	08/06/16	DD	SW8270D
Benzyl butyl phthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D

Client ID: SB-11

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Carbazole	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Chrysene	0.92	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Dibenzofuran	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Diethyl phthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Dimethylphthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-butylphthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Di-n-octylphthalate	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Fluoranthene	1.6	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Fluorene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorobutadiene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Hexachloroethane	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	0.51	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Isophorone	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Naphthalene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Nitrobenzene	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Pentachlorophenol	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
Phenanthrene	0.62	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Phenol	ND	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Pyrene	1.4	0.24	mg/Kg	1	08/06/16	DD	SW8270D
Pyridine	ND	0.35	mg/Kg	1	08/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	80		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	61		%	1	08/06/16	DD	30 - 130 %
% 2-Fluorophenol	53		%	1	08/06/16	DD	30 - 130 %
% Nitrobenzene-d5	56		%	1	08/06/16	DD	30 - 130 %
% Phenol-d5	58		%	1	08/06/16	DD	30 - 130 %
% Terphenyl-d14	72		%	1	08/06/16	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 11, 2016 Reviewed and Released by: Sarah Bell, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 11, 2016

QA/QC Data

SDG I.D.: GBN87810

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 354920 (mg/kg)		•												
Mercury - Soil Comment:	BRL	0.03	0.14	0.13	NC	95.4	97.3	2.0	70.2			70 - 130	30	m
Additional Mercury criteria: LCS	acceptanc	e range f	for waters	is 80-1209	% and fo	or soils is	s 70-130°	%.						
QA/QC Batch 354922 (mg/L),	QC Sam	ble No: I	BN86935	(BN8782	21)									
Mercury - Water Comment:	BRL	0.0002	<0.0002	0.0002	NC	99.3			91.0			70 - 130	20	
Additional Mercury criteria: LCS	acceptanc	e range f	for waters	is 80-1209	% and fo	or soils is	s 70-130°	%.						
QA/QC Batch 354925 (mg/L), BN87817, BN87818, BN87819	QC Sam	ole No: I	BN87235						37813, E	3N8781	4, BN8	7815, B	N8781	6,
ICP Metals - TCLP Extra		20, 2110	,021)											
Arsenic	BRL	0.01	<0.01	<0.01	NC	112			111			75 - 125	20	
Barium	BRL	0.01	1.73	1.73	0	99.9			116			75 - 125	20	
Cadmium	BRL	0.005	0.019	0.019	NC	100			99.7			75 - 125	20	
Chromium	BRL	0.010	<0.010	<0.010	NC	102			102			75 - 125	20	
Lead	BRL	0.010	1.57	1.56	0.60	102			99.4			75 - 125	20	
Selenium	BRL	0.01	<0.01	<0.01	NC	116			115			75 - 125	20	
Silver	BRL	0.010	<0.010	< 0.010	NC	109			110			75 - 125	20	
QA/QC Batch 354919 (mg/kg) BN87817, BN87818, BN87819		ple No:	BN8731	4 (BN878	310, BN	N87811	, BN878	12, BN	87813,	BN878	14, BN	87815,	BN878	16,
Mercury - Soil	BRL	0.03	0.12	0.13	NC	98.9	99.0	0.1	121			70 - 130	30	
Comment:														
Additional Mercury criteria: LCS	acceptanc	e range f	for waters	is 80-1209	% and fo	or soils is	s 70-1309	%.						
QA/QC Batch 354846 (mg/kg) BN87817, BN87818, BN87819 ICP Metals - Soil				0 (BN878	310, BN	N87811	, BN878	12, BN	87813,	BN878	14, BN	87815,	BN878	16,
Arsenic	BRL	0.66	3.60	3.49	NC	94.8			83.6			75 - 125	30	
Barium	BRL	0.33	72.4	74.3	2.60	108			98.1			75 - 125	30	
Cadmium	BRL	0.33	<0.37	<0.33	NC	96.9			87.2			75 - 125	30	
Chromium	BRL	0.33	20.5	20.9	1.90	106			98.5			75 - 125	30	
Lead	0.38	0.33	12.3	12.5	1.60	95.8			88.5			75 - 125	30	
Selenium	BRL	1.3	<1.5	<1.3	NC	77.3			98.5			75 - 125	30	
Silver	BRL	0.33	<0.37	<0.33	NC	102			93.2			75 - 125	30	
QA/QC Batch 354921 (mg/L), BN87817, BN87818, BN87819			BN87810	(BN878 ⁻	10, BN	87811,	BN8781	2, BN8	37813, E	3N8781	4, BN8	7815, B	N8781	6,
Mercury - Water Comment:		•	<0.0002	<0.0002	NC	94.5			100			70 - 130	20	
Additional Mercury criteria: LCS	acceptanc	e range f	for waters	is 80-1209	% and fo	or soils is	s 70-130°	%.						
m = This parameter is outside labo	-	-												

m = This parameter is outside laboratory MS/MSD specified recovery limits.

QA/QC Report

August 11, 2016

QA/QC Data

SDG I.D.: GBN87810

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 354884 (mg/Kg), 0	QC San	nple No:	BN8660	1 4.95X	(BN878	10, BN	187811,	BN878	12)				
Reactivity Cyanide	BRL	0.05	<5.1	<5.2	NC	91.2						85 - 115	30
QA/QC Batch 354961 (Degree F BN87816, BN87817, BN87818,					87810,	BN878	311, BN	87812,	BN878	13, BN8	7814,	BN8781	5,
Flash Point			>200	>200	NC	100						85 - 115	30
QA/QC Batch 355043 (mg/Kg), (QC San	nple No:	BN8698	3 4.81X	(BN878	21)							
Reactivity Cyanide	BRL	0.05	<5.6	<5.5	NC	92.4						85 - 115	30
QA/QC Batch 354892 (PH), QC	Sample	No: BN	187738 (E	3N87810	, BN87	811)							
pH - Soil			9.99	9.98	0.10	100						85 - 115	20
QA/QC Batch 354893 (PH), QC BN87819, BN87820, BN87821)	Sample	e No: BN	187812 (E	3N87812	, BN878	813, BI	N87814	, BN878	315, BN	187816,	BN878	17, BN	37818,
pH - Soil			7.53	7.70	2.20	100						85 - 115	20
QA/QC Batch 354885 (mg/Kg), (BN87819, BN87820)	QC San	nple No:	BN8781	3 5X (BN	187813,	BN878	814, BN	87815,	BN878	16, BN8	37817,	BN878′	18,
Reactivity Cyanide	BRL	0.05	<5.4	<5.6	NC	90.8						85 - 115	30
QA/QC Batch 355030 (umhos/ci BN87816, BN87817, BN87818,					N87810	, BN87	'811, BN	187812	, BN878	813, BN	87814,	BN878	15,
Conductivity - Soil Matrix	BRL	1	190	200	5.10	104						85 - 115	30

QA/QC Report

August 11, 2016

QA/QC Data

SDG I.D.: GBN87810

%

%

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 354960 (mg/Kg), BN87817, BN87818, BN87819			BN87811	l, BN878	812, BN	87813,	BN878	14, BN	87815,	BN87816,
Volatiles - Solid										
1,1,1,2-Tetrachloroethane	ND	0.005	108	120	10.5	116	115	0.9	70 - 130	30
1,1,1-Trichloroethane	ND	0.005	100	107	5.8	108	104	3.8	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.003	102	111	8.5	106	101	0.9	70 - 130	30
1,1,2-Trichloroethane	ND	0.005	95	102	7.1	99	98	1.0	70 - 130	30
1,1-Dichloroethane	ND	0.005	96	102	7.0	100	99	1.0	70 - 130	30
1,1-Dichloroethene	ND	0.005	103	107	3.8	105	104	1.0	70 - 130	30
1,1-Dichloropropene	ND	0.005	100	107	6.8	102	101	0.0	70 - 130	30
1,2,3-Trichlorobenzene	ND	0.005	103	112	8.4	88	88	0.0	70 - 130	30
1,2,3-Trichloropropane	ND	0.005	100	108	7.7	111	109	1.8	70 - 130	30
1,2,4-Trichlorobenzene	ND	0.005	105	113	7.3	81	81	0.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	0.001	104	112	7.4	102	101	1.0	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	0.005	105	115	9.1	102	107	1.9	70 - 130	30
1,2-Dibromoethane	ND	0.005	102	112	9.3	108	106	1.9	70 - 130	30
1,2-Dichlorobenzene	ND	0.005	102	110	7.5	97	96	1.0	70 - 130	30
1,2-Dichloroethane	ND	0.005	99	106	6.8	106	105	0.9	70 - 130	30
1,2-Dichloropropane	ND	0.005	94	102	8.2	98	97	1.0	70 - 130	30
1,3,5-Trimethylbenzene	ND	0.001	105	114	8.2	104	103	1.0	70 - 130	30
1,3-Dichlorobenzene	ND	0.005	103	112	8.4	92	93	1.1	70 - 130	30
1,3-Dichloropropane	ND	0.005	100	109	8.6	106	105	0.9	70 - 130	30
1,4-Dichlorobenzene	ND	0.005	100	109	6.6	89	92	3.3	70 - 130	30
2,2-Dichloropropane	ND	0.005	102	110	7.5	105	102	2.9	70 - 130	30
2-Chlorotoluene	ND	0.005	102	110	7.5	101	99	2.0	70 - 130	30
2-Hexanone	ND	0.025	91	99	8.4	83	85	2.4	70 - 130	30
2-Isopropyltoluene	ND	0.005	106	115	8.1	109	107	1.9	70 - 130	30
4-Chlorotoluene	ND	0.005	100	108	7.7	93	93	0.0	70 - 130	30
4-Methyl-2-pentanone	ND	0.025	92	98	6.3	93	95	2.1	70 - 130	30
Acetone	ND	0.01	87	89	2.3	97	96	1.0	70 - 130	30
Acrylonitrile	ND	0.005	92	96	4.3	93	92	1.1	70 - 130	30
Benzene	ND	0.001	97	104	7.0	100	99	1.0	70 - 130	30
Bromobenzene	ND	0.005	102	109	6.6	100	99	1.0	70 - 130	30
Bromochloromethane	ND	0.005	99	105	6.8	103	101	2.0	70 - 130	30
Bromodichloromethane	ND	0.005	104	112	7.4	109	109	0.0	70 - 130	30
Bromoform	ND	0.005	114	126	10.0	119	119	0.0	70 - 130	30
Bromomethane	ND	0.005	96	106	9.9	105	101	3.9	70 - 130	30
Carbon Disulfide	ND	0.005	114	121	6.0	113	112	0.9	70 - 130	30
Carbon tetrachloride	ND	0.005	106	114	7.3	115	112	2.6	70 - 130	30
Chlorobenzene	ND	0.005	100	110	9.5	103	100	3.0	70 - 130	30
Chloroethane	ND	0.005	93	99	6.3	100	98	2.0	70 - 130	30
Chloroform	ND	0.005	97	104	7.0	103	100	3.0	70 - 130	30
Chloromethane	ND	0.005	79	84	6.1	79	79	0.0	70 - 130	30 30
cis-1,2-Dichloroethene	ND	0.005	96	103	7.0	99	97	2.0	70 - 130	30
cis-1,3-Dichloropropene	ND	0.005	90 99	103	6.8	99 96	97 97	2.0 1.0	70 - 130	30
Dibromochloromethane	ND	0.003	99 117	128	0.0 9.0	122	122	0.0	70 - 130	30 30
Dibromomethane	ND	0.005	96	120	9.0 8.0	102	122	1.0	70 - 130	30 30
Dichlorodifluoromethane	ND	0.005	96 86	90	8.0 4.5	87	86	1.0 1.2	70 - 130	30 30
	ND	0.005	80 102	90 112	4.5 9.3	87 106	80 104	1.2 1.9	70 - 130	30 30
Ethylbenzene	ND	0.001	102	112	7.3	100	104	1.9	10 - 130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Hexachlorobutadiene	ND	0.005	106	115	8.1	101	98	3.0	70 - 130	30	
Isopropylbenzene	ND	0.001	101	110	8.5	103	103	0.0	70 - 130	30	
m&p-Xylene	ND	0.002	102	112	9.3	104	104	0.0	70 - 130	30	
Methyl ethyl ketone	ND	0.005	88	94	6.6	88	85	3.5	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	0.001	89	95	6.5	96	93	3.2	70 - 130	30	
Methylene chloride	ND	0.005	94	100	6.2	104	102	1.9	70 - 130	30	
Naphthalene	ND	0.005	105	116	10.0	99	98	1.0	70 - 130	30	
n-Butylbenzene	ND	0.001	106	114	7.3	94	96	2.1	70 - 130	30	
n-Propylbenzene	ND	0.001	101	109	7.6	98	98	0.0	70 - 130	30	
o-Xylene	ND	0.002	101	110	8.5	106	105	0.9	70 - 130	30	
p-Isopropyltoluene	ND	0.001	108	116	7.1	104	104	0.0	70 - 130	30	
sec-Butylbenzene	ND	0.001	108	116	7.1	108	107	0.9	70 - 130	30	
Styrene	ND	0.005	105	115	9.1	105	105	0.0	70 - 130	30	
tert-Butylbenzene	ND	0.001	104	112	7.4	106	105	0.9	70 - 130	30	
Tetrachloroethene	ND	0.005	100	107	6.8	98	99	1.0	70 - 130	30	
Tetrahydrofuran (THF)	ND	0.005	90	95	5.4	93	92	1.1	70 - 130	30	
Toluene	ND	0.001	96	104	8.0	98	98	0.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	0.005	102	107	4.8	105	101	3.9	70 - 130	30	
trans-1,3-Dichloropropene	ND	0.005	101	110	8.5	101	101	0.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	0.005	113	123	8.5	105	104	1.0	70 - 130	30	
Trichloroethene	ND	0.005	98	105	6.9	102	101	1.0	70 - 130	30	
Trichlorofluoromethane	ND	0.005	94	100	6.2	102	100	2.0	70 - 130	30	
Trichlorotrifluoroethane	ND	0.005	98	104	5.9	101	100	1.0	70 - 130	30	
Vinyl chloride	ND	0.005	90 102	96	6.5	93 102	91 101	2.2	70 - 130	30	
% 1,2-dichlorobenzene-d4	103	%	103	101	2.0	102	101	1.0	70 - 130	30	
% Bromofluorobenzene % Dibromofluoromethane	93 102	% %	102 104	102	0.0	102	103	1.0	70 - 130	30	
	102 99	%		100	3.9	101	101	0.0	70 - 130	30	
% Toluene-d8 Comment:	99	70	101	100	1.0	100	101	1.0	70 - 130	30	
Additional 8260 criteria: 10% of LC											
QA/QC Batch 354835 (mg/Kg), BN87817, BN87818, BN87819, TPH by GC (Extractable I	QC San BN8782 Produc	nple No: BN87214 (BN87810, 20, BN87821) <u>ts) - Solid</u>	BN87811	, BN878	312, BN	87813,	BN878	14, BN			16,
Ext. Petroleum H.C.	ND	50	63	55	13.6		80		60 - 120		l,r
% n-Pentacosane	63	%	71	60	16.8	63	89	34.2	50 - 150	30	r
Comment:											
Additional criteria: LCS acceptanc QA/QC Batch 354843 (mg/Kg),	-				87812.	BN878	813. BN	87814.	BN878	15.	
BN87816, BN87817, BN87818, Polychlorinated Biphenyls	BN878	9, BN87820, BN87821)	-, -	- ,	,		-,	,			
PCB-1016	<u>ND</u>		6.4	70	10.1	74	69	0.7	40 140	20	
PCB-1016 PCB-1221	ND	0.033 0.033	64	73	13.1	76	07	9.7	40 - 140 40 - 140	30 30	
PCB-1221 PCB-1232	ND	0.033							40 - 140	30	
PCB-1232 PCB-1242	ND	0.033							40 - 140	30	
PCB-1242 PCB-1248	ND	0.033							40 - 140	30	
PCB-1248	ND	0.033							40 - 140	30	
PCB-1254 PCB-1260	ND	0.033	75	84	11.3	81	76	6.4	40 - 140	30	
PCB-1260	ND	0.033	15	04	11.5	01	70	0.4	40 - 140	30	
PCB-1268	ND	0.033							40 - 140	30	
% DCBP (Surrogate Rec)	89	%	85	94	10.1	87	81	7.1	30 - 150	30	
% TCMX (Surrogate Rec)	84	%	70	82	15.8	85	77	9.9	30 - 150	30	
QA/QC Batch 354841 (mg/Kg), BN87821)											20,
Semivolatiles - Solid											
1,2,4,5-Tetrachlorobenzene	ND	0.23	67	71	5.8	61	73	17.9	30 - 130	30	
1,2,4-Trichlorobenzene	ND	0.23	64	66	3.1	61	67	9.4	30 - 130	30	
1,2-Dichlorobenzene	ND	0.18	54	56	3.6	49	55	11.5	30 - 130	30	
								-	-		

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2-Diphenylhydrazine	ND	0.23	79	85	7.3	69	80	14.8	30 - 130	30	
1,3-Dichlorobenzene	ND	0.23	53	57	7.3	50	54	7.7	30 - 130	30	
1,4-Dichlorobenzene	ND	0.23	53	54	1.9	48	52	8.0	30 - 130	30	
2,4,5-Trichlorophenol	ND	0.23	70	79	12.1	61	73	17.9	30 - 130	30	
2,4,6-Trichlorophenol	ND	0.13	66	72	8.7	60	67	11.0	30 - 130	30	
2,4-Dichlorophenol	ND	0.13	68	66	3.0	61	71	15.2	30 - 130	30	
2,4-Dimethylphenol	ND	0.23	62	68	9.2	50	62	21.4	30 - 130	30	
2,4-Dinitrophenol	ND	0.23	16	18	11.8	37	44	17.3	30 - 130	30	I
2,4-Dinitrotoluene	ND	0.13	75	75	0.0	68	78	13.7	30 - 130	30	
2,6-Dinitrotoluene	ND	0.13	75	74	1.3	67	79	16.4	30 - 130	30	
2-Chloronaphthalene	ND	0.23	67	68	1.5	59	72	19.8	30 - 130	30	
2-Chlorophenol	ND	0.23	59	60	1.7	55	61	10.3	30 - 130	30	
2-Methylnaphthalene	ND	0.23	66	72	8.7	66	75	12.8	30 - 130	30	
2-Methylphenol (o-cresol)	ND	0.23	55	56	1.8	47	59	22.6	30 - 130	30	
2-Nitroaniline	ND	0.33	75	76	1.3	65	75	14.3	30 - 130	30	
2-Nitrophenol	ND	0.23	64	59	8.1	59	59	0.0	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	0.23	65	62	4.7	60	63	4.9	30 - 130	30	
3,3'-Dichlorobenzidine	ND	0.13	68	71	4.3	56	64	13.3	30 - 130	30	
3-Nitroaniline	ND	0.33	69	70	1.4	62	68	9.2	30 - 130	30	
4,6-Dinitro-2-methylphenol	ND	0.23	48	53	9.9	59	61	3.3	30 - 130	30	
4-Bromophenyl phenyl ether	ND	0.23	68	67	1.5	65	69	6.0	30 - 130	30	
4-Chloro-3-methylphenol	ND	0.23	71	73	2.8	67	78	15.2	30 - 130	30	
4-Chloroaniline	ND	0.23	63	68	7.6	64	66	3.1	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	0.23	72	76	5.4	62	76	20.3	30 - 130	30	
4-Nitroaniline	ND	0.23	75	77	2.6	66	79	17.9	30 - 130	30	
4-Nitrophenol	ND	0.23	69	77	11.0	66	75	12.8	30 - 130	30	
Acenaphthene	ND	0.23	74	70	5.6	66	73	10.1	30 - 130	30	
Acenaphthylene	ND	0.13	66	65 55	1.5	59	70	17.1	30 - 130	30	
Acetophenone		0.23	56	55	1.8	56	60	6.9	30 - 130	30	
Aniline		0.33 0.23	50	50	0.0	37	42	12.7	30 - 130	30	
Anthracene Benz(a)anthracene	ND ND	0.23	69 68	74 73	7.0 7.1	62 54	74 58	17.6 7.1	30 - 130	30	
Benzidine		0.23	28	73 31	10.2	<10	-30 <10	NC	30 - 130 30 - 130	30	
Benzo(a)pyrene		0.33	20 67	70	4.4	< 10 52	< 10 58	10.9	30 - 130	30 30	l,m
Benzo(b)fluoranthene	ND	0.13	72	70	4.4 1.4	52	61	10.9	30 - 130	30	
Benzo(ghi)perylene	ND	0.23	72	70	0.0	61	65	6.3	30 - 130	30	
Benzo(k)fluoranthene	ND	0.23	68	70	4.3	59	63	6.6	30 - 130	30	
Benzoic Acid	ND	0.33	19	13	4.5 37.5	24	27	11.8	30 - 130	30	l ma r
Benzyl butyl phthalate	ND	0.23	71	72	1.4	67	76	12.6	30 - 130	30	l,m,r
Bis(2-chloroethoxy)methane	ND	0.23	69	73	5.6	61	69	12.3	30 - 130	30	
Bis(2-chloroethyl)ether	ND	0.13	51	47	8.2	46	51	10.3	30 - 130	30	
Bis(2-chloroisopropyl)ether	ND	0.23	46	47	2.2	43	51	17.0	30 - 130	30	
Bis(2-ethylhexyl)phthalate	ND	0.23	66	71	7.3	68	75	9.8	30 - 130	30	
Carbazole	ND	0.23	73	71	2.8	66	77	15.4	30 - 130	30	
Chrysene	ND	0.23	74	77	4.0	56	57	1.8	30 - 130	30	
Dibenz(a,h)anthracene	ND	0.13	70	68	2.9	63	73	14.7	30 - 130	30	
Dibenzofuran	ND	0.23	72	73	1.4	65	73	11.6	30 - 130	30	
Diethyl phthalate	ND	0.23	75	75	0.0	66	78	16.7	30 - 130	30	
Dimethylphthalate	ND	0.23	74	75	1.3	63	74	16.1	30 - 130	30	
Di-n-butylphthalate	ND	0.23	74	78	5.3	67	78	15.2	30 - 130	30	
Di-n-octylphthalate	ND	0.23	71	74	4.1	68	74	8.5	30 - 130	30	
Fluoranthene	ND	0.23	71	74	4.1	38	40	5.1	30 - 130	30	
Fluorene	ND	0.23	72	78	8.0	65	79	19.4	30 - 130	30	
Hexachlorobenzene	ND	0.13	72	72	0.0	67	85	23.7	30 - 130	30	
Hexachlorobutadiene	ND	0.23	64	72	11.8	64	70	9.0	30 - 130	30	
Hexachlorocyclopentadiene	ND	0.23	59	66	11.2	54	63	15.4	30 - 130	30	
Hexachloroethane	ND	0.13	47	57	19.2	49	54	9.7	30 - 130	30	
	ND										
Indeno(1,2,3-cd)pyrene	ND	0.23	69	69	0.0	59	63	6.6	30 - 130	30	

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Naphthalene	ND	0.23	63	68	7.6	61	69	12.3	30 - 130	30
Nitrobenzene	ND	0.13	60	57	5.1	54	63	15.4	30 - 130	30
N-Nitrosodimethylamine	ND	0.23	54	55	1.8	48	52	8.0	30 - 130	30
N-Nitrosodi-n-propylamine	ND	0.13	60	60	0.0	59	62	5.0	30 - 130	30
N-Nitrosodiphenylamine	ND	0.13	77	79	2.6	69	82	17.2	30 - 130	30
Pentachloronitrobenzene	ND	0.23	68	71	4.3	76	81	6.4	30 - 130	30
Pentachlorophenol	ND	0.23	50	53	5.8	47	55	15.7	30 - 130	30
Phenanthrene	ND	0.13	70	74	5.6	57	63	10.0	30 - 130	30
Phenol	ND	0.23	62	61	1.6	58	64	9.8	30 - 130	30
Pyrene	ND	0.23	74	76	2.7	48	51	6.1	30 - 130	30
Pyridine	ND	0.23	44	54	20.4	35	42	18.2	30 - 130	30
% 2,4,6-Tribromophenol	82	%	84	86	2.4	75	88	16.0	30 - 130	30
6 2-Fluorobiphenyl	60	%	64	62	3.2	55	64	15.1	30 - 130	30
6 2-Fluorophenol	56	%	60	59	1.7	53	57	7.3	30 - 130	30
6 Nitrobenzene-d5	52	%	60	57	5.1	54	58	7.1	30 - 130	30
6 Phenol-d5	58	%	61	54	12.2	56	64	13.3	30 - 130	30
5 Terphenyl-d14	70	%	67	71	5.8	65	78	18.2	30 - 130	30

Comment:

Semivolatiles - Solid

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

53

52

47

61

60

54

14.0

14.3

13.9

70

68

60

56

56

49

22.2 30 - 130

19.4 30 - 130

20.2 30 - 130 30

30

30

QA/QC Batch 354851 (mg/Kg), QC Sample No: BN87920 (BN87810, BN87811, BN87812, BN87813)

1,2,4,5-Tetrachlorobenzene	ND	0.23
1,2,4-Trichlorobenzene	ND	0.23
1,2-Dichlorobenzene	ND	0.18
1,2-Diphenylhydrazine	ND	0.23
1,3-Dichlorobenzene	ND	0.23
1,4-Dichlorobenzene	ND	0.23
2,4,5-Trichlorophenol	ND	0.23
2,4,6-Trichlorophenol	ND	0.13
2,4-Dichlorophenol	ND	0.13

1,2-Diphenylhydrazine	ND	0.23	58	68	15.9	74	64	14.5	30 - 130	30	
1,3-Dichlorobenzene	ND	0.23	44	51	14.7	57	46	21.4	30 - 130	30	
1,4-Dichlorobenzene	ND	0.23	45	53	16.3	59	48	20.6	30 - 130	30	
2,4,5-Trichlorophenol	ND	0.23	58	66	12.9	72	62	14.9	30 - 130	30	
2,4,6-Trichlorophenol	ND	0.13	59	68	14.2	74	62	17.6	30 - 130	30	
2,4-Dichlorophenol	ND	0.13	55	64	15.1	73	60	19.5	30 - 130	30	
2,4-Dimethylphenol	ND	0.23	54	64	16.9	72	57	23.3	30 - 130	30	
2,4-Dinitrophenol	ND	0.23	13	15	14.3	59	45	26.9	30 - 130	30	I
2,4-Dinitrotoluene	ND	0.13	61	70	13.7	75	65	14.3	30 - 130	30	
2,6-Dinitrotoluene	ND	0.13	60	70	15.4	74	63	16.1	30 - 130	30	
2-Chloronaphthalene	ND	0.23	56	65	14.9	73	61	17.9	30 - 130	30	
2-Chlorophenol	ND	0.23	52	61	15.9	68	56	19.4	30 - 130	30	
2-Methylnaphthalene	ND	0.23	57	65	13.1	75	61	20.6	30 - 130	30	
2-Methylphenol (o-cresol)	ND	0.23	54	63	15.4	70	58	18.8	30 - 130	30	
2-Nitroaniline	ND	0.33	59	72	19.8	73	65	11.6	30 - 130	30	
2-Nitrophenol	ND	0.23	54	63	15.4	71	60	16.8	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	0.23	55	66	18.2	73	60	19.5	30 - 130	30	
3,3'-Dichlorobenzidine	ND	0.13	51	62	19.5	61	53	14.0	30 - 130	30	
3-Nitroaniline	ND	0.33	57	66	14.6	69	60	14.0	30 - 130	30	
4,6-Dinitro-2-methylphenol	ND	0.23	30	32	6.5	68	57	17.6	30 - 130	30	
4-Bromophenyl phenyl ether	ND	0.23	60	69	14.0	74	62	17.6	30 - 130	30	
4-Chloro-3-methylphenol	ND	0.23	60	68	12.5	76	63	18.7	30 - 130	30	
4-Chloroaniline	ND	0.23	59	69	15.6	73	59	21.2	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	0.23	57	66	14.6	71	61	15.2	30 - 130	30	
4-Nitroaniline	ND	0.23	62	71	13.5	78	67	15.2	30 - 130	30	
4-Nitrophenol	ND	0.23	53	64	18.8	79	67	16.4	30 - 130	30	
Acenaphthene	ND	0.23	59	68	14.2	75	62	19.0	30 - 130	30	
Acenaphthylene	ND	0.13	56	65	14.9	71	60	16.8	30 - 130	30	
Acetophenone	ND	0.23	52	61	15.9	66	56	16.4	30 - 130	30	
Aniline	ND	0.33	50	58	14.8	58	48	18.9	30 - 130	30	
Anthracene	ND	0.23	61	70	13.7	75	65	14.3	30 - 130	30	
Benz(a)anthracene	ND	0.23	60	69	14.0	77	65	16.9	30 - 130	30	
Benzidine	ND	0.33	21	30	35.3	<10	<10	NC	30 - 130	30	l,m,r

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Benzo(a)pyrene	ND	0.13	57	67	16.1	72	61	16.5	30 - 130	30	
Benzo(b)fluoranthene	ND	0.16	58	72	21.5	76	69	9.7	30 - 130	30	
Benzo(ghi)perylene	ND	0.23	60	70	15.4	69	64	7.5	30 - 130	30	
Benzo(k)fluoranthene	ND	0.23	60	67	11.0	74	59	22.6	30 - 130	30	
Benzoic Acid	ND	0.33	<10	<10	NC	40	39	2.5	30 - 130	30	I
Benzyl butyl phthalate	ND	0.23	60	70	15.4	77	66	15.4	30 - 130	30	
Bis(2-chloroethoxy)methane	ND	0.23	57	68	17.6	74	62	17.6	30 - 130	30	
Bis(2-chloroethyl)ether	ND	0.13	48	56	15.4	62	51	19.5	30 - 130	30	
Bis(2-chloroisopropyl)ether	ND	0.23	45	54	18.2	59	49	18.5	30 - 130	30	
Bis(2-ethylhexyl)phthalate	ND	0.23	59	69	15.6	77	65	16.9	30 - 130	30	
Carbazole	ND	0.23	59	68	14.2	75	63	17.4	30 - 130	30	
Chrysene	ND	0.23	66	75	12.8	81	70	14.6	30 - 130	30	
Dibenz(a,h)anthracene	ND	0.13	58	69	17.3	68	64	6.1	30 - 130	30	
Dibenzofuran	ND	0.23	58	66	12.9	72	61	16.5	30 - 130	30	
Diethyl phthalate	ND	0.23	62	71	13.5	77	65	16.9	30 - 130	30	
Dimethylphthalate	ND	0.23	60	70	15.4	74	63	16.1	30 - 130	30	
Di-n-butylphthalate	ND	0.23	63	74	16.1	77	66	15.4	30 - 130	30	
Di-n-octylphthalate	ND	0.23	60	71	16.8	80	68	16.2	30 - 130	30	
Fluoranthene	ND	0.23	60	70	15.4	71	60	16.8	30 - 130	30	
Fluorene	ND	0.23	60	69	14.0	75	63	17.4	30 - 130	30	
Hexachlorobenzene	ND	0.13	60	69	14.0	75	63	17.4	30 - 130	30	
Hexachlorobutadiene	ND	0.23	50	57	13.1	67	53	23.3	30 - 130	30	
Hexachlorocyclopentadiene	ND	0.23	52	63	19.1	66	55	18.2	30 - 130	30	
Hexachloroethane	ND	0.13	44	52	16.7	57	47	19.2	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	0.23	57	66	14.6	68	62	9.2	30 - 130	30	
Isophorone	ND	0.13	51	61	17.9	68	55	21.1	30 - 130	30	
Naphthalene	ND	0.23	53	62	15.7	70	57	20.5	30 - 130	30	
Nitrobenzene	ND	0.13	52	61	15.9	68	57	17.6	30 - 130	30	
N-Nitrosodimethylamine	ND	0.23	44	52	16.7	59	45	26.9	30 - 130	30	
N-Nitrosodi-n-propylamine	ND	0.13	55	65	16.7	73	60	19.5	30 - 130	30	
N-Nitrosodiphenylamine	ND	0.13	63	73	14.7	79	68	15.0	30 - 130	30	
Pentachloronitrobenzene	ND	0.23	61	69	12.3	75	63	17.4	30 - 130	30	
Pentachlorophenol	ND	0.23	57	66	14.6	83	69	18.4	30 - 130	30	
Phenanthrene	ND	0.13	60	69	14.0	69	56	20.8	30 - 130	30	
Phenol	ND	0.23	56	66	16.4	72	59	19.8	30 - 130	30	
Pyrene	ND	0.23	63	71	11.9	73	62	16.3	30 - 130	30	
Pyridine	ND	0.23	32	34	6.1	36	28	25.0	30 - 130	30	m
% 2,4,6-Tribromophenol	65	%	63	73	14.7	81	71	13.2	30 - 130	30	
% 2-Fluorobiphenyl	55	%	54	62	13.8	68	58	15.9	30 - 130	30	
% 2-Fluorophenol	56	%	54	64	16.9	70	57	20.5	30 - 130	30	
% Nitrobenzene-d5	51	%	49	59	18.5	64	54	16.9	30 - 130	30	
% Phenol-d5	58	%	55	66	18.2	72	60	18.2	30 - 130	30	
% Terphenyl-d14 Comment:	64	%	60	68	12.5	72	62	14.9	30 - 130	30	

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director August 11, 2016

Thursday, A	August 11, 2016		Sample Criteria	Exceedences Report				Page 1 of 1	
Criteria: None			•	GBN87810 - TRC-DAS					
State:	СТ						RL	Analvsis	
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units	
	· D' · ***								

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:Phoenix Environmental Labs, Inc.Project Location:CCSU-KELSER ANNEXLaboratory Sample ID(s):BN87810-BN87821

Client: TRC Environmental Corp. Project Number: Sampling Date(s): 8/5/2016

List RCP Methods Used (e.g., 8260, 8270, et cetera) 1311/1312, 6010, 7470/7471, 8082, 8260, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: ETPH Narration, ICP Narration, SVOA Narration.	🗆 Yes 🗹 No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	🗆 Yes 🗹 No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗌 Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗆 Yes 🗹 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penal knowledge and belief and based upon my personal information contained in this analytical report, such	inquiry of those responsible for providing the									
Authorized Signature: Than See Position: Project Manager										
Printed Name: Ethan Lee	Date: Thursday, August 11, 2016									
Name of Laboratory Phoenix Environmental Labs, Inc										

This certification form is to be used for RCP methods only.

RCP Certification Report

August 11, 2016

SDG I.D.: GBN87810

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

Cyanide Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

LACHAT 08/08/16-1 Dustin Harrison, Greg Danielewski, Chemist 08/08/16

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820 The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

LACHAT 08/09/16-1 Brian Sheriden, Greg Danielewski, Chemist 08/09/16

BN87821

The samples were distilled in accordance with the method. The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

QC (Batch Specific):

Batch 354884 (BN86601)

BN87810, BN87811, BN87812

All LCS recoveries were within 80 - 120 with the following exceptions: None.

Batch 354885 (BN87813)

BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820 All LCS recoveries were within 80 - 120 with the following exceptions: None.

Batch 355043 (BN86983)

BN87821

All LCS recoveries were within 80 - 120 with the following exceptions: None.

ETPH Narration

RCP Certification Report

August 11, 2016

SDG I.D.: GBN87810

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 354835 (Samples: BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Ext. Petroleum H.C.)

Instrument:

AUFID-D1 08/08/16-2 Jeff Bucko, Chemist 08/08/16

BN87810, BN87811, BN87818, BN87820, BN87821

The initial calibration (ETPH720I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36 74.9%L (20%) The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL1 08/08/16-2

Jeff Bucko, Chemist 08/08/16

BN87812, BN87813, BN87814, BN87815, BN87816

The initial calibration (ETPH720I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36 60.7%L (20%) The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 08/09/16-1

Jeff Bucko, Chemist 08/09/16

BN87817, BN87819

The initial calibration (ETPH808I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 354835 (BN87214)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821 All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: Ext. Petroleum H.C.(55%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 08/08/16 08:03 Mike Arsenault, Rick Schweitzer, Rick Schweitzer, Chemist 0

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

Certification Report

August 11, 2016

SDG I.D.: GBN87810

Mercury Narration

MERLIN 08/09/16 08:10

Mike Arsenault, Rick Schweitzer, Rick Schweitzer, Chemist 0

BN87821

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 354919 (BN87314)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 354920 (BN86102)

BN87820, BN87821

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 354921 (BN87810)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820 All LCS recoveries were within 70 - 130 with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 354922 (BN86935)

BN87821

All LCS recoveries were within 70 - 130 with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

QC Batch 354846 (Samples: BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821): -----

A trace amount of an analyte was found in blank. Due to the concentration in the blank relative to the samples, no bias is suspected. (Soil- Lead(BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821))

Instrument:

Certification Report

August 11, 2016

SDG I.D.: GBN87810

ICP Metals Narration

ARCOS 08/07/16 19:06

Laura Kinnin, Chemist 08/07/16

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 08/09/16 05:44

Laura Kinnin, Chemist 08/09/16

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 354846 (BN87810)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821 All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 354925 (BN87235)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821 All LCS recoveries were within 75 - 125 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD5 08/08/16-1

Adam Werner, Chemist 08/08/16

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

The initial calibration (PC0729AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0729BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 354843 (BN87810)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

RCP Certification Report

August 11, 2016

SDG I.D.: GBN87810

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. QC Batch 354841 (Samples: BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821): -----

One or more analytes is below the method criteria. A low bias for these analytes is possible. (2,4-Dinitrophenol)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Benzoic Acid)

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (Benzidine, Benzoic Acid)

QC Batch 354851 (Samples: BN87810, BN87811, BN87812, BN87813): -----

The QC recoveries for one or more analytes are below method criteria. A low bias is possible. (Benzidine)

One or more analytes is below the method criteria. A low bias for these analytes is possible. (2,4-Dinitrophenol, Benzoic Acid)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Benzidine)

Instrument:

CHEM06 08/05/16-2 Damien Drobinski, Chemist 08/05/16

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821 The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM06/SV_0727):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dimethylphenol 23% (20%), 2-Nitrophenol 21% (20%) The following compounds did not meet recommended response factors: None. The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/0805_32A-SV_0727):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 354841 (BN87821)

BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

All LCS recoveries were within 30 - 130 with the following exceptions: 2,4-Dinitrophenol(16%), Benzidine(28%), Benzoic Acid(19%)

All LCSD recoveries were within 30 - 130 with the following exceptions: 2,4-Dinitrophenol(18%), Benzoic Acid(13%)

RCP Certification Report

August 11, 2016

SDG I.D.: GBN87810

SVOA Narration

All LCS/LCSD RPDs were less than 30% with the following exceptions: Benzoic Acid(37.5%)

Batch 354851 (BN87920)

BN87810, BN87811, BN87812, BN87813

All LCS recoveries were within 30 - 130 with the following exceptions: 2,4-Dinitrophenol(13%), Benzidine(21%), Benzoic Acid(<10%)

All LCSD recoveries were within 30 - 130 with the following exceptions: 2,4-Dinitrophenol(15%), Benzoic Acid(<10%) All LCS/LCSD RPDs were less than 30% with the following exceptions: Benzidine(35.3%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM03 08/05/16-2

Jane Li, Chemist 08/05/16

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

Initial Calibration Verification (CHEM03/VT-L0801):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Bromoform 24% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM03/0805L34-VT-L0801):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

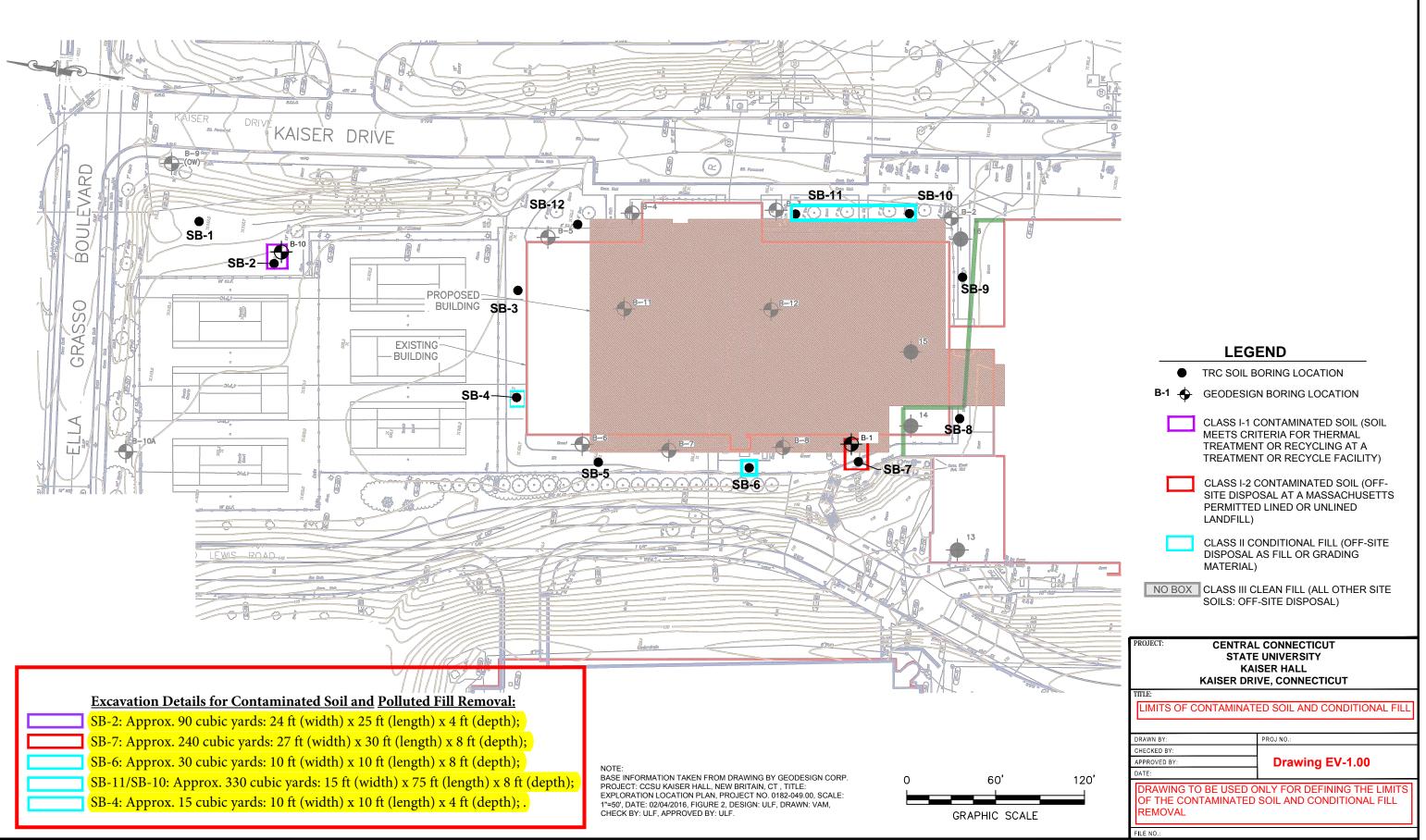
QC (Batch Specific):

Batch 354960 (BN86624)

BN87810, BN87811, BN87812, BN87813, BN87814, BN87815, BN87816, BN87817, BN87818, BN87819, BN87820, BN87821

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.


All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples were received at 2C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

										, T				- 1	- 1		1										٦
Coolant: IPK TICE TVIO	Temp D°C	Eax# Email: bayresettRCS0144.055.60m //www.grac.	Project P.O.	This section MUST	be completed with Bottle Quantities.		A State A Stat		641 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0												MA Data Format	- Certification X Excel -1 X PDF -2 GISIKey			s-3		
		Data Delivery:	ď				\sum		03 HOS												¥ ₩		GW.3	5 5 5	other S:3	ted:	
									4077103	33	2	Í	-	- 1-	_			3	3	3		ction	ty .	ity al DEC	_	e collec	ļ
		340	SC AMACK	٩Ĵ.	692	10		XAT DE LA	×4		ر ۲	~							<u>ئ</u>			 KCP Cert GW Protection SW Protection 		GB Mobility		State where samples were collected:	
	RD	r, CT 060 5-0823 6	- Kci Sec	Maharch			1 21	ATX 4	$\mathcal{N}_{\mathbf{k}}$		~ _~	X	× ×	$\overline{\mathbf{x}}$	x > x >	< <u> </u>	× >	× γ	×	× ×	L	uireat exposure (Residential) GW				vhere s	
	RECC	ancheste (860) 64) 45-872		1-	<u> 860 - 298 -</u>			ふみく) C		×	\times		-+-	/) X X	<u> </u>	\times	× र	× ×	X	: عنال	(Residential) (Residential) (GW	□ Other			State v	
	N OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Cilent Services (860) 645-8726	CCSU					States and the states		, ×	×	×	×		x × x >	<u> </u>	×	× ×	×	× ×		मुप्त				<u>ي</u>	
	CUS	ke, P.O. I nixlabs.co rvices		eto:	; ; ;	'	t s			+	×	×	Y	y /	××	1 .	×	×	×	X X	Time:	اوًا		• • †	•	IGE APPL	
	N OF	lle Turnpil fo@phoei ent Sei	Project:	Report to: Invoice to:	Phone #	гах #.	Analysis Request	¥	X		× ×	× ×	×	×.	× × × 3	$4 \times$	×	×	ע ע	×	á	1 I I I I I I	•	naround 1 Day	X 2 Days* 3 Days* Standard	Other Other	
	CHAI	ast Midd Email: Inf CII			11		و		8	× ريا	T T	<u> </u>				<u> </u>	\times	\times	 ✓ O 	<u>ب</u> 0	Date:	8	,		<u>×</u>	I∟ "	-
:		587 E					8/2/16	te Water De	Time Sampled	0835	0840	0900	2995		1045		1130	1250	1330	1460				いまた	q)	
			-14	2000			ate	ww =Was W =Wi _f	Date	8-5-16	-			+	_					>				with S	s sit		
				1			ntificatio	ce Water ¹ SD=Solid	Sample											5		X	2	3	twis	-	
		es, In	Solutions	10 20 04			tion - Ide	W=Surfac S≂Soil	S.a		-								-		i by:	$\left \right $		pulations: Confract	From	-	:
		X	DC	al (soit			Client Sample - Information - Identification Systems Aref D	Water St ⊨=Sludge	Samole cation			ھ]			~		Accepted by:	ľ		DAS C	Contracted From truis Site	Ś	
	1		F	ر ه ا			Sample	t⊨Ground liment SI	Customer Sample Identification	58-1	58-32	7	8.82	58-1	9 - 7 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	58-4	. 8 . 3	58-9	58-10	 				quirements Per D	Collec		
	(OENIX nental Laborato					Client Sample	'ater GW r SE⊨Sed k L=Liqui			~					-				<u> </u>	ž		$\left\ \right\ $	cial Requ			
		PHOENIX Structures, Inc.	Customer:	Address:			Y	Matrix Code: DW=Drnkling Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S≂Soil SD=Solid W=Wipc OIL=Oil B=Bulk L=Liquid	PHOENIX USE	1810	- 1 8	2186	7813	1-01-0	8-18-12	1817	81818	87819	87820	8782)	Relinquished by		3) /	Comments, Special Requirements or Regulations: - Priclay Per DAS Contra	to to	197	
	ļ	Ent	Suo :	ΡΥ			Sampler's Signature	Matrix DW=D RW=R OIL=0	PHOE	5		63	6	Ø	٥Ġ	00	8	8	8	8	Relind	N.		l Comme	1 1 1	Ē	

APPENDIX C

Appendix C - TRC

Pre-Renovation Investigative Survey for Asbestos-Containing Materials Central Connecticut State University – Kaiser Hall New Britain, Connecticut Project No. RC-12-10, DPW No. 39744 Dated September 5, 2012 23 pages

REPORT

the generation of the

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL NEW BRITAIN, CONNECTICUT

Project No. RC-12-10 DPW No. 39744

Prepared for

State of Connecticut Department of Construction Services

Hartford, Connecticut

Prepared by

TRC Windsor, Connecticut

September 5, 2012

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL NEW BRITAIN, CONNECTICUT

Project No. RC-12-10 DPW No. 39744

Prepared for State of Connecticut Department of Construction Services Hartford, Connecticut

> Prepared by TRC Windsor, Connecticut

e Page onale

Donald LePage Project Manager

TRC Project No. 164560-5330-0001 September 5, 2012

TRC

21 Griffin Road North Windsor, Connecticut 06095 Telephone (860) 298-9692 Facsimile (860) 298-6399

TABLE OF CONTENTS

EXECUTIVE SUMMARY

PROJECT OUTLINE

TABLES

1	BULK SAMPLE SUMMARY OF SUSPECT ASBESTOS CONTAINING
	MATERIALS
2	IDENTIFIED ASBESTOS CONTAINING MATERIALS
3	CONFIRMED NON-ASBESTOS CONTAINING MATERIALS

APPENDICES

А	SITE NOTES
В	LABORATORY AND INSPECTOR ACCREDITATIONS
С	ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS
D	PLM LABORATORY ANALYSIS DATA

EXECUTIVE SUMMARY

On August 23, 2012 TRC of Windsor, Connecticut conducted an inspection for suspect asbestoscontaining materials (ACM) at Central Connecticut State University – Kaiser Hall in New Britain, Connecticut. The inspection was initiated prior to planned renovation activities in accordance with USEPA Asbestos National Emissions Standard for Hazardous Air Pollutants (NESHAPS) requirements.

The scope of the inspection was limited to the fire door areas at the subject buildings. A Connecticut licensed asbestos inspector from TRC conducted the inspection in accordance with USEPA AHERA protocols and ASTM Standard E2356-04. Bulk samples of suspect materials were collected and analyzed via polarized light microscopy (PLM) method at a CTDPH/NVLAP accredited laboratory. No ACM was identified in the subject area. ACM to be impacted by renovation activities must be removed prior to disturbance in accordance with OSHA, USEPA, CTDPH, and CTDEP standards for asbestos abatement/disposal. Detailed results of the asbestos survey can be found in Tables 1-3 and Appendices A through D.

PROJECT OUTLINE

Project Address:	Central Connecticut State University Kaiser Hall New Britain, CT
DCS Contract No.	08PSX0202
DCS Project Manager:	Michael Sanders
DCS Project No.:	RC-12-10
DCS Building No:	39744
TRC Project No.:	164560-5330-0001
TRC Project Manager:	Don LePage
Asbestos Inspector:	Christopher Gaines (LIC #000689)
Date of Inspection:	6/23/12
Asbestos Identified:	No

Additional Notes:

The site investigation was limited to the collection and analysis of suspect asbestos-containing fire door materials from within Kaiser Hall.

TABLES

BU	CENTRAL CONNECTICU	TABLE 1 SPECT ASBESTOS CONTAINING MAT IT STATE UNIVERSITY – KAISER HALL TAIN, CONNECTICUT	
Sample No.	Sample Location	Homogeneous Material	% and Type Asbestos
1	Kaiser Hall – Room 029 door	White fire door insulation (FD1)	ND<1%
2	Kaiser Hall – Room 029 door	White fire door insulation (FD1)	ND<1%
3	Kaiser Hall – Room 0135 door	Metal fire door insulation – black tar over fiberglass (FD2)	ND<1%
4	Kaiser Hall – Room 0135 door	Metal fire door insulation – black tar over fiberglass (FD2)	ND<1%

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

ND<1% Non-detected, less than 1%

NAD No asbestos detected

+ Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive

1 NOB material; result confirmed by TEM analyses

* Quantified by PLM Point Counting techniques

	TRAL CONNEC	ESTOS CONTAINING FICUT STATE UNIVE V BRITAIN, CONNEC	ERSITY - KAIS		
Material	Sampled- Assumed (mo/yr)	General Location	NESHAP Category	AHERA Category	Estimated Quantity

AHERA Categories = thermal system insulation (TSI), surfacing material or miscellaneous NESHAP Categories = friable, category I non-friable or category II non-friable Friable = crumbled, pulverized or reduced to powder by hand pressure when dry Category I Non-friable = packings, gaskets, resilient floor covering and asphalt roofing Category II Non-friable = all non-friable that is not Category I

TABLE 3 CONFIRMED NON-ASBESTOS CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL NEW BRITAIN, CONNECTICUT

Material	General Location
White fire door insulation (FD1)	Kaiser Hall – Room 029 door
Metal fire door insulation – black tar over fiberglass (FD2)	Kaiser Hall – Room 0135 door

APPENDIX A

SITE NOTES

SHEET NO. OF PROJECT NO. 164560. 5330, 0001 DATE \$ 23/12 **OTRC** BY Chn3 Genes CCSU -SUBJECT Waiser Hall & Darnard HalbHK'D. Fire Door inspection FDI - Word door with window Kaiser Insulation (if any) Rooms that has notal casing wood FD2 - Metal Door w/ insulation 40 South -037 - wood 029 - FD 1 - wood door w window 026 - wood 031-wood 032 - wood. (weight room 030 - word 033 - 6000 034 - Wood 035 - wood 036 - Wood 016 - Wood 012 - wood 122 pood 124 - wood FOR (outside main entrance) 135 - Metal Door Barnard insulation (if any) Rooms 101 - New Door 102 - New Door - FD4 - wood door w/ window 117 118 - Metal Door w/ Fiber glands 119 - Solid wood doos w/ white prinsulation FDR 772 - wood 336 - New 20201 - Wood 20202 - Wood 33701 - New 33702 -New 33703 -New 123 A door New 2 Solid wood A FDS 014

101	Office	RFP	Get from Locknetics New
102	Office	RFP	Get from Locknetics New
117	Office	RFP	Get from Locknetics - FD4 wood door w/ window
118	Classroom	RFP	Get from Locknetics - Metel W/ F.G.
119	banner room	RFP	Get from Locknetics = FD 3 solid wood w/ white
222	Meeting Room	RFP	Get from Locknetics - Weed
336	Classroom	RFP	Banner load - New
20201	Conference	RFP	Get from Locknetics Ward
20202	Office	RFP	Get from Locknetics
33701	Office	RFP	Ethan Einen – New
33702	Office	RFP	Susan Sieder ~
33703	Office	RFP	Sheldon watson
123A	, Office	RFP	Get from Locknetics
014	office/ custodiar	1	FDS - solid wood

solid wood FDS ----

APPENDIX B

LABORATORY AND INSPECTOR ACCREDITATIONS

State of Connecticut

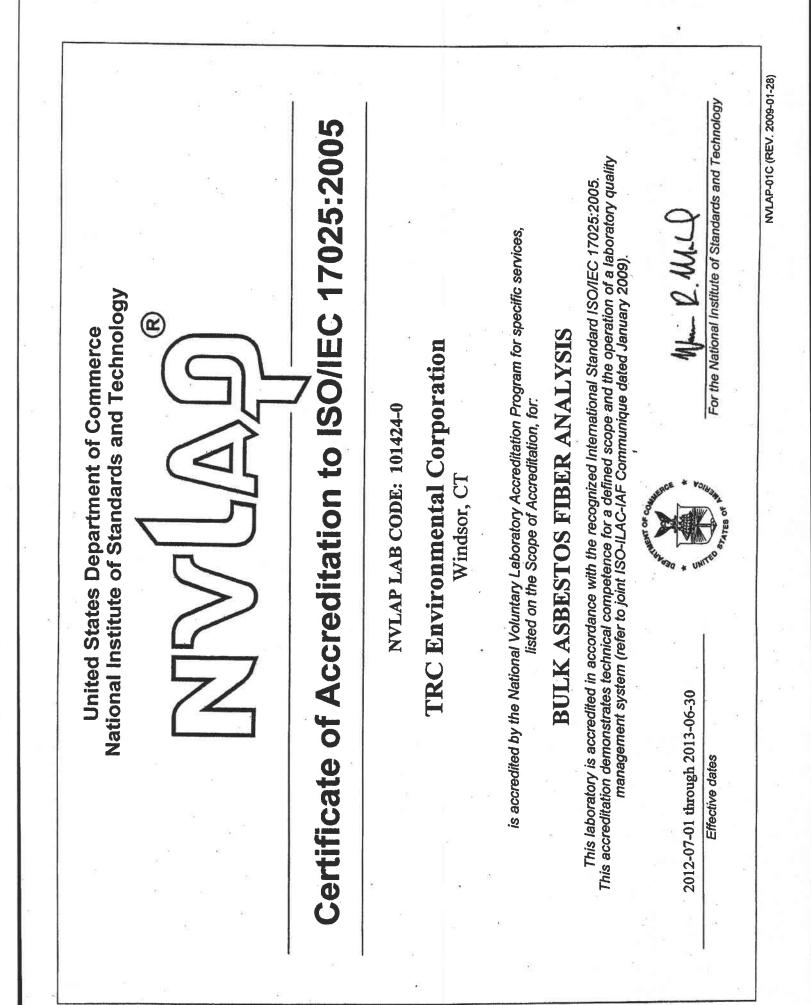
Lookup Detail View

Name	
------	--

Name	
CHRISTOPHER A GAINES	

License Information

License Type	License	Expiration	Granted	License	License	Licensure Actions or
	Number	Date	Date	Name	Status	Pending Charges
Asbestos Consultant-Inspector	689	06/30/2013	11/14/2007	Christopher A. Gaines	ACTIVE	None


Generated on: 8/30/2012 9:57:29 AM

CERTIFICATE OF ACHIEVEMENT This certifies that This certifies that CERTIFICATE OF ACHIEVEMEN This certifies that Creations on an end of the and an end of the and an ender the associated the associated the associated the and an ender training associates for an and an ender training associates for an and an ender training associates for a springfield, Mu ender training associates for a springfield associates for a springfield associates for a springfield associates for a spring associ		CERTIFICATE OF ACHIEVEMENT	This certifies that	Chris Gaines		conducted by	ATC Associates Inc. 73 William Franks Drive West Springfield, MA 01089 West Springfield, MA 01089 (413) 781-0070 (413) 781-0070 ber 22, 2011	
---	--	----------------------------	---------------------	--------------	--	--------------	--	--

State of Connecticut, Department of Public Health <i>Hpproved Environmental Laboratory</i> <i>Hpproved Environmental Laboratory</i> Persis is to ceretry than the LABORATORY DESCRIPTED BELOW HAS DERVERIANT OF PUBLIC HEALTH Pression Ceretry than the LABORATORY DESCRIPTED BELOW HAS DERVERAL STARTTED ON ESTATE DEPARTMENT OF PUBLIC HEALTH Pression of the Pression of the Public Content of Public Health Pression of the Public Content of Public Content of Public Health Pression of the Public Content of Public Content of Public Health Pression of the Public Content of Public Content of Public Health Public Content of Content of the Public Content of Public Content	ASBESTOS ARE-FIBER COUNTING - PCM BULK IDENTIFICATION - PLM EBULK IDENTIFICATION - PLM SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED THIS CERTIFICATE EXTING 1410 DATED AT HARTFORD, CONNECTICUT, THIS DATED AT HARTFORD, CONNECTICU
--	---

1

۲.,

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

TRC Environmental Corporation 21 Griffin Road North Windsor, CT 06095 Ms. Kathleen Williamson Phone: 860-298-6392 Fax: 860-298-6214 E-Mail: kwilliamson@trcsolutions.com URL: http://www.trcsolutions.com

BULK ASBESTOS FIBER ANALYSIS (PLM)

NVLAP LAB CODE 101424-0

NVLAP Code

le Designation / Description

18/A01

EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

2012-07-01 through 2013-06-30

Effective dates

Page 1 of 1

For the National Institute of Standards and Technology

NVLAP-01S (REV. 2005-05-19)

APPENDIX C

ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS

Time: Printed Printed Printed P 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
11 svr

APPENDIX D

PLM LABORATORY ANALYSIS DATA

Page 1 of 2 41240.DCS.doc

21 Griffin Road North Windsor, CT 06095 (860) 298-6308

BULK ASBESTOS ANALYSIS REPORT

CLIENT:

CT Department of Construction Services

 Site:
 CCSU, Barnard Hall & Kaiser Hall, New Britain, CT

 Lab Log #:
 41240

 Project #:
 164560.5330.0001

 Date Received:
 08/23/12

 Date Analyzed:
 08/24/12

RESULTS

Sample No.	Color	Homogeneous	Multi- Layered	Layer No.	Other Matrix Mat'ls	Asbestos %	Asbestos Type
01	White	Yes	No		30% cellulose	ND<1%	None
02	White	Yes	No		30% cellulose	ND<1%	None
03	Black	Yes	No		10% fiberglass	ND<1%	None
04	Black	Yes	No		10% fiberglass	ND<1%	None
05	White/Yellow	Yes	No		80% cellulose	5%	Chrysotile
06				(111)		NA/PS	
07	Light Grey	Yes	No	1.55	60% cellulose	ND<1%	None
08	Light Grey	Yes	No	1.00	60% cellulose	ND<1%	None
09	Grey/Tan	Yes	No	177	30% cellulose	ND<1%	None
10	Grey/Tan	Yes	No	1772	30% cellulose	ND<1%	None

NA/PS- Not Analyzed/Positive Stop

Reporting limit- asbestos present at 1% ND<1% - asbestos was not detected

Trace- asbestos was observed at level of less than 1%

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. In those cases, negative results must be confirmed by quantitative transmission electron microscopy.

The Laboratory at TRC follows the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation (1982), and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials (EPA/600/R-93/116), July 1993, R.L. Perkins and B.W. Harvey which utilizes polarized light microscopy (PLM). Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2013. TRC is an American Industrial Hygiene Association (AIHA) accredited lab for PLM effective through October 1, 2012. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and the QC data related to the samples is available upon written request from the client.

		TRC LA	BORATORY ASBES	TOS ANALYTICAL	ACCREDITATIONS	5	
NVLAP Lab Code 1		AIHA #100122	+ +	ME LA-0075, LB-0071		NY #10980	WV# LT000356 CA #10275CA
RI #AAL-007C3	TX #300354	VT #AL014538	VA #3333 000283	AZ #A20944	HI #L-09-004	NJ #CT004	CA #102/3CA

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Analyzed by

Kathleen Williamson, Laboratory Manager

Reviewed by

1 Rims Kathleen Williamson, Laboratory Manager or other approved signatory

8

Date Issued:

WV# LT000356 CA #10275CA

APPENDIX D

Appendix D - TRC

Letter of Asbestos Bulk Sampling Central Connecticut State University – Kaiser Hall New Britain, Connecticut DPW Project No. RC-10-09, DPW Building No. 39744, TRC Project No. 164560-1990-0001 Dated August 18, 2010 9 pages

21 Griffin Road North Windsor, CT 06095-1512

860.298.9692 PHONE 860.298.6380 FAX

www.TRCsolutions.com

August 18, 2010

Mr. Robert LeBaron Central Connecticut State University 1615 Stanley Street New Britain, CT 06050

Subject: Letter of Asbestos Bulk Sampling Central Connecticut State University – Kaiser Hall, New Britain, Connecticut DPW Project No. RC-10-09 DPW Building No. 39744 TRC Project No. 164560-1990-0001

Dear Mr. LeBaron:

On July 1, 2010, bulk samples of suspected asbestos containing materials (ACM) in the form of glue daubs were taken from Room 127 at Kaiser Hall by a State of Connecticut licensed asbestos inspector from TRC. The samples were analyzed by Polarized Light Microscopy (PLM) gravimetric analysis in TRC's laboratory and were found to be negative, containing trace (<1%) amounts of chrysotile asbestos.

Enclosed please find the results of this bulk sampling and as well as associated TRC/laboratory certifications.

If you have any questions, please call TRC at (860) 298-9692.

Very Truly Yours,

TRC

Donald Le Page

Donald LePage Project Manager

BULK ASBESTOS ANALYSIS REPORT

CLIENT: CT Department of Public Works

Site: CCSU, Kaiser Hall, New Britain, CT Lab Log #: 38451 164560.1990.0001 Project #: Date Received: 07/01/10 Date Analyzed: 07/02/10

RESULTS

Sample No.	Color	Homogeneous	Multi- Layered	Layer No.	Other Matrix Mat'ls	Asbestos %	Asbestos Type
01*	Brown	Yes	No		0220	Trace	Chrysotile
02*	Brown	Yes	No			Trace	Chrysotile

* Samples analyzed by EPA/600/R-93/116 with gravimetric reduction

NA/PS- Not Analyzed/Positive Stop

Reporting limit- asbestos present at 1% ND<1% - asbestos vas not detected Trace- asbestos was observed at level of less than 1%

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. In those cases, negotive results must be confirmed by quantitative transmission electron microscopy.

The Laboratory at TRC follows the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation (1982), and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials (EPA/600/R-93/116), July 1993, R.L. Perkins and B.W. Harvey which utilizes polarized light microscopy (PLM). Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2011. TRC is an American Industrial Hygiene Association (AIHA) accredited lab for PLM effective through August 1, 2010. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and the QC data related to the samples is available upon written request from the client.

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Kathleen Williamson Analyst:

QC Analyst: Kathleen Williamson

Reviewed by:

Laboratory Analyst

Kathleen Williamson

Kuiselin

Approved

Signatory:

Laboratory Manager

Date Issued:

7/8/10

NVLAP Lab Code 101424-0 RI #AAL-007C3 TX #300354

AIHA #100122 VT #AL014538

CT #PH-0426 VA #3333 000283

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS ME LA-0075, LB-0071 MA #AA000052 AZ #A20944 HI #L-09-004

NY #10980 NJ #CT004 WV# LT000356 CA #10275CA

ber 2009 Edition		3day	Sday				1		T		-						Τ	
Edition: October 2009 Supersede Previous Edition	SYS/ DTIME	48hr	3day		L		on he									Signature)	-	
er	S NUC	24hr	48hr		MATERIAL		dart									Received by: (Signature)	(Printed)	
	TURNAR(8hr	24hr		M		ala	-										
	-	PLM:	TEM:			K	Brow									Date:	Time:	
				иес) 88'¢	LEW NA NOB I	I)						1	1			0		1 - 37 1000
ŊĊ		PARAMETERS		(%) L1	POINT COUN 16 >1% & <10											Signature		distan of 6
PLII V		AME	╞		ANALYZE BY L	/	-		-				-			ed by: (100
ASBESTOS BULK SAMPLING CHAIN OF CUSTODY		PAR		(notion)	PLM EPA 600/RJ VI gravimetric red (POSITIVE ST	n) [X								Relinquished by: (Signature)	(Printed)	
CUS				.OB) 63/116	ELM EPA 600/R		X									2	1	
S BUI					NC											11/2	1005	
STOS HAIN	11 14	キー	-	- î	SAMPLE LOCATION											gnature)	llan	
SBE	ME	Haist C		Traint	PLEL	7										Received by: (Signature)		
A	5	.0	TOR	den P	1920	6	2-2-	1								Receive	(Printed)	
	PROJE	Nen	INSPECTOR	Sig	CKVB B	5	_		$\left \right $	-	+	+	$\left \right $	_	-	1/10	02	
560		-	T		COMP TY											Date: $7/_{1}$	Time: 1 Υ 2.0	
CTRC 21 GRIFFIN ROAD NORTH WINDSOR, CONNECTICUT 06095 TELEPHONE (860) 298-9692 FAX (860) 298-6380		1000.1990.0001		ſ	TIME	50 52	1250											
D NOR VECTI(0) 298-9	ER	20.		N	DATE	1	2									(j)	hient.	
I ROA CON 98-638	NUMB	5. 19	Е	\/	<u>q</u>	r	-									(Signatu	A	
21 GRIFFIN ROAD NORTH WINDSOR, CONNECTICUT TELEPHONE (860) 298-9692 FAX (860) 298-6380	PROJECT NUMBER	Jarsi	SIGNATURE		FIELD SAMPLE NUMBER											Relinquished by: (Signature)	rech	:ks:
21 G WIN FAX	PRO,	101	SIGN	Y	SAN	0	0	"								Relinqu	(minited)	Kemarks:

e 8

Weigh samples with HK160 Balance

PLM Gravimetric Analysis

4

% Asb	in residue total Sample	0.0
% Asb	in residue	00.00
decimal	Residue	0.805
	g after 480°	20.8974
g crucible	plus sample g after 480°	20.9156
	g crucible	20.8225
	Crucible ID	2
	Sample ID	2
	Lab Log #	38451
	Analyst	КW
	Date	7/2/2010

H:\Lab\Asbestos\2010\July\38451.DPW gravimetric.xls

Dear Licensed/Certified Professional,

Attached you will find your validated license/certification for the coming year. Should you have any questions about your license/certificate renewal, please do not hesitate to write or call:

Department of Public Health P.O. Box 340308 M.S.#12MQA

(860) 509-7603

http://www.dph.state.ct.us

Hartford, CT 06134-0308

1

Sincerely,

SPotent Aluer, MD, NPH, MBA

J. ROBERT GALVIN, MD, MPH, COMMISSIONER DEPARTMENT OF PUBLIC HEALTH

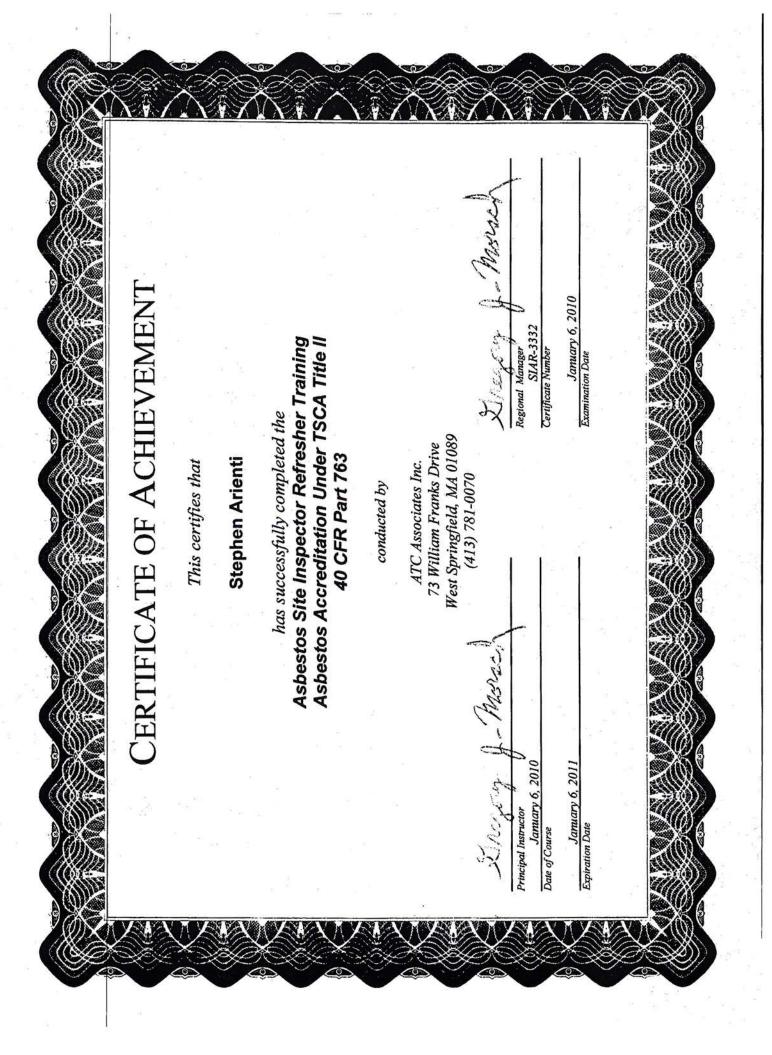
INSTRUCTIONS:

0002604

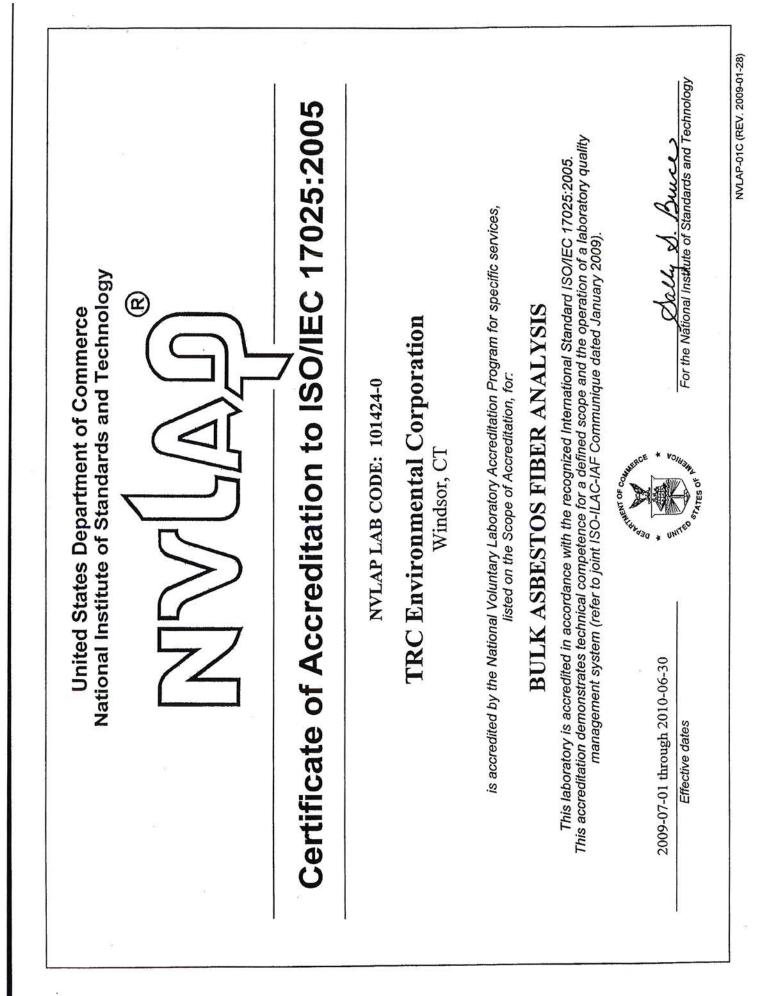
FP

STEPHEN R. ARIENTI 21 GRIFFIN ROAD, NORTH

WINDSOR CT 06095


Detach and sign each of the cards on this form.
 Display the large card in a prominent place in your office or place of business.
 The wallet card is for you to carry on your person. If you do not wish to carry the wallet card, place it in a secure place.

4. The employer's copy is for persons who must demonstrate current licensure/certification in order to retain employment or privileges. The employer's card is to be presented to the employer and kept by them as a part of your personnel file. Only one copy of this card can be supplied to you.


	OF CONNECTICUT
PURSUANT TO THE PROVISIO	NS OF THE GENERAL STATUTES OF CONNECTICUT
	UAL NAMED BELOW IS LICENSED THIS DEPARTMENT AS A
ASBESTOS	CONSULTANT - INSPECTOR
Stephen R. Arienti	LICENSE NO. 000583 CURRENT THROUGH 04/30/11 VALIDATION NO. 03 - 045453
SIGNATURE	Shotut Soluce NO, MER MAR

**PRSRT T8 0 0964 06095

8	EMPLOYER'S COPY	
STAT	TE OF CONNECTION	CUT
DEPAR	TMENT OF PUBLIC HE	ALTH
	NAME	
ALIDATION NO. 03-045453	STEPHEN R. ARIENTI LICENSE NO. 000583 PROFESSION	CURRENT THROUGH
ASBES	TOS CONSULTANT-INSPEC	CTOR
	- JRotut,	Almer no, was not

State of Connecticut. Department of Public Health Approved Environmental Laboratory THES IS TO CERTER THE LABORATORY DESCRIBED BELOW HAS BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH FURSUANT TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT.	TRC ENVIRONMENTAL CORPORATION LOCATED AT 21 Griffin Road North IN Windsor, CT 06095 AND REGISTERED IN THE NAME OF Erik Plimpton THIS CERTIFICATE IS ISSUED IN THE NAME OF Kathleen Williamson BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF APPROVAL AS FOLLOWS: CORPORATION WORK COVERED BY THIS CERTIFICATE OF	AIR-FIBER COUNTING - PCM AIR-FIBER COUNTING - PCM BULK IDENTIFICATION - PLM SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED THIS CERTIFICATE EXPIRES December 31, 2011 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH DATED AT HARTFORD, CONNECTICUT, THIS 2nd DAT OF December 31, 2011 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH	Registration No. PH- 0426 CHIEF, ENVIRONMENTAL HEALTH SECTION
---	---	---	--

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

TRC Environmental Corporation 21 Griffin Road North Windsor, CT 06095 Ms. Kathleen Williamson Phone: 860-298-6392 Fax: 860-298-6214 E-Mail: kwilliamson@trcsolutions.com URL: http://www.trcsolutions.com

BULK ASBESTOS FIBER ANALYSIS (PLM)

NVLAP LAB CODE 101424-0

NVLAP Code Designation / Description

18/A01

EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

2009-07-01 through 2010-06-30

Effective dates

For the National Institute of Standards and Technology

Page 1 of 1

NVLAP-01S (REV. 2005-05-19)

APPENDIX E

Appendix E - TRC

Letter of Asbestos Bulk Sampling Central Connecticut State University – Kaiser Hall, Room 104 New Britain, Connecticut DPW Project No. RC-10-06, DPW Building No. 39744, TRC Project No. 164560-1880-0003 Dated June 23, 2010 10 pages

21 Griffin Road North Windsor, CT 06095-1512

860.298.9692 PHONE 860.298.6380 FAX

www.TRCsolutions.com

June 23, 2010

Mr. Robert LeBaron Central Connecticut State University 1615 Stanley Street New Britain, CT 06050

Subject:

 Letter of Asbestos Bulk Sampling Central Connecticut State University – Kaiser Hall, Room 104, New Britain, Connecticut DPW Project No. RC-10-06 DPW Building No. 39744 TRC Project No. 164560-1880-0003

Dear Mr. LeBaron:

On June 14, 2010, bulk samples of suspected asbestos containing materials (ACM) in the form of ceiling tiles and glue daubs were taken from Room 104 of Kaiser Hall at Central Connecticut State University by a State of Connecticut licensed asbestos inspector from TRC. The samples were analyzed by Polarized Light Microscopy (PLM) in TRC's laboratory. All of the bulk samples were found to be negative via PLM analysis.

Enclosed please find the results of this bulk sampling and as well as associated TRC/laboratory certifications.

If you have any questions, please call TRC at (860) 298-9692.

Very Truly Yours,

TRC

onald Le Page

Donald LePage Project Manager

Industrial Hygiene Laboratory 21 Griffin Road North Windsor, CT 06095 (860) 298-6308

BULK ASBESTOS ANALYSIS REPORT

CLIENT: CT Department of Public Works

CCSU, Kaiser Hall, Rm, 104 Site: Lab Log #: 38384 Project #: 164560.1880.0001 Date Received: 06/14/10 Date Analyzed: 06/14/10

RESULTS

Sample No.	Color	Homogeneous	Multi- Layered	Layer No.	Other Matrix Mat'ls	Asbestos %	Asbestos Type
1	White/Brown	Yes	No		90% cellulose	ND<1%	None
2	White/Brown	Yes	No		90% cellulose	ND<1%	None
3	White/Brown	Yes	No		90% cellulose	ND<1%	None
4	Brown/Beige	Yes	No			ND<1%	None
5	Brown/Beige	Yes	No			ND<1%	None
6	Brown/Beige	Yes	No			ND<1%	None

Reporting limit- asbestos present at 1%

ND<1% - asbestos was not detected

Trace- asbestos was observed at level of less than 1%

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. In those cases, negative results must be confirmed by quantitative transmission electron microscopy.

The Laboratory at TRC follows the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation (1982), and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials (EPA/600/R-93/116), July 1993, R.L. Perkins and B.W. Harvey which utilizes polarized light microscopy (PLM). Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2010. TRC is an American Industrial Hygiene Association (AIHA) accredited lab for PLM effective through August 1, 2010. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and the QC data related to the samples is available upon written request from the client.

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Analyst: Kathleen Williamson

OC Analyst: Kathleen Williamson

Reviewed by:

11/2 Laboratory Analyst

Vuller

Approved

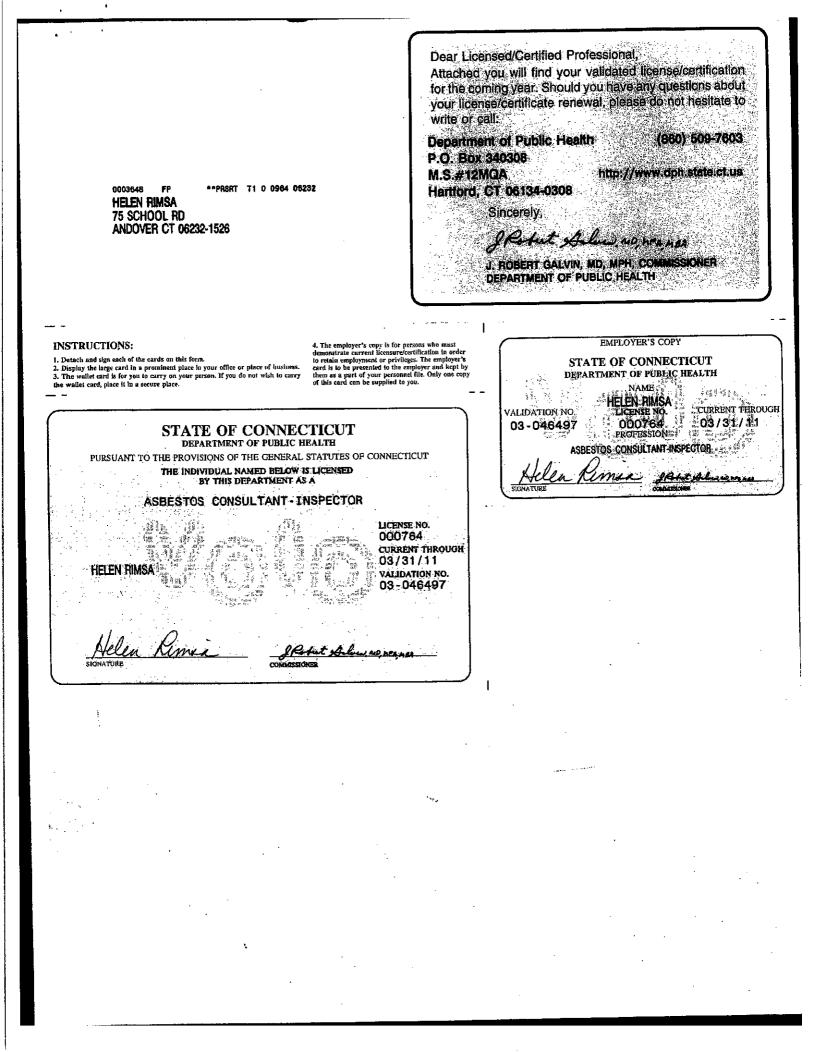
Signatory:

Kathleen Williamson Laboratory Manager

Date Issued:

AIHA #100122

VT #AL014538


NVLAP Lab Code 101424-0 TX #300354 RI #AAL-007C3

CT #PH-0426 VA #3333 000283

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS ME LA-0075, LB-0071 MA #AA000052 A7.#A20944 HI #L-09-004

NY #10980 NJ #CT004 WV# LT000356 CA #10275CA

Contract and the second fragments Contract Contract and the second fragments Contract and the second fragments Contract Contract Contract and the second fragments Contract Contract and the second fragments Contract Con		\bigcirc			\mathbf{C}					7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ž		
Group Landons and the construction Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons Group Landons		С И С	21 Griffin Road North Windsor, Connecticut 06095	AIR SAMPLE CHAIN OF CUSTO	ا ک		Turr	ר Around נ	Time Rec	juested		Edition: / ersedes Pre	August 2007 vious Edition
CTDFUJ - CLSU sameLer nam Hellen Rivisa Gate Hauft Kanise Hall Kan I Kan sammure Aullan Rivisa mo. 1(147560.1880.0001 ROMMERER MANNAR no. 1(147560.1880.0001 ROMMERER MANNAR no. 1(147560.1880.0001 ROMMERER MANNAR no. 1(147560.1880.0001 ROMMERER MANNAR no. 1147560.1880.0001 ROMMERER MANNAR Sample Location/Description ROMMERER MANNAR Sample ROMMERER MANNAR ROMMERER MANNAR MANNAR A Cliling Hile ROMMERER MANNAR Cliling Hile ROMMERER MANNAR Cliling Hile ROMMERER MANNAR Cliling Hile ROMMERER MANNAR Cliling Hile ROMMERER MANNAR A Cliling Hile ROMMERER MANNAR).) ,	Telephone 860-298-9692			-		□ 24 Hou		8 Hour	12 Hou		4-5 Days
Extr Hold Kariner Hall En Lev sourrune. Sourrune. Alber Runt. Extr Hold Kariner Hall En Lev sourrune. Romeny Fé No.: Sourrent Labor. Nome: Din Labor. Dare or optionants Sourrent Labor. In Marine Din Labor. Dare or optionants Sourrent Labor. Sample Location/Description Flow Sample I Celling Hile Location/Description Elow Sample Location/Description Elow Sample I Celling Hile Location/Description Row Sample Location/Description Elow Sample I Celling Hile Notione Notione I Celling Hile Notione Notione I Celling Hile Notione Notione I Celling Hile			CESU		141 ma		MGC		Ā	naiyses R	equested	۲	PE OF SAMPL
No.: 1(14560.1880.001 ROTONE) FENO.: No.: 1(14560.1880.001 ROTONE) FENO.: Rotone) FENO Sample Description FEON Start Find Volume of the cation/Description (Immin) Time Time Volume of the cation of the cation of the cation (Tatuge team) (Immin)		1	Kaine Hall Pm		TIRE. ELEC	len K	emis	L	(÷ .	3ackground Pren.
Andres: Den lefting Den lefting Dent to cation Description Town Start End Notime 0: Sample LocationDescription Flow Start End Notime Start 0: Z Ceiling Hile Internet X X X 0: Z Ceiling Hile Notime X X 0: Z Ceiling Hile X X X 0: S Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: b Glua daub (Tauga tan) X X X 0: <t< td=""><td></td><td>1104510</td><td>, (880.0001</td><td>NOTO4</td><td>CN CN</td><td></td><td></td><td></td><td>def</td><td></td><td></td><td>'n</td><td>Nork Area</td></t<>		1104510	, (880.0001	NOTO4	CN CN				def			'n	Nork Area
Olimptical Ansamplie ad Isingle Location/Description ad I Celling Hile ad 2 Celling Hile ad 3 Celling Hile b 5 Clue b 6 Clue b 6 Clue call Don Lalage Hanh b 6 Clue call Don Lalage Hanh b 6 Clue datub (Tauge Hanh) b Clue	VIECT NO	ME: Don	leke	DATE OF CA	SUBRATION:				5.50%			4 vi	Environmental ^o ersonal
ad Sample Location/Description Flow Start End Volume Start 0 2 Ceiling tile (Imm) Time Location/Description X 0 2 Ceiling tile (Imm) X X 0 3 (eiling tile X X 0 4 Clua daub (taupe tenn) X X 0 6 Glua daub (taupe tenn) X X 0 1 Blua Mu X X 0 1 Blua	ONE NO.:		0) L				Clearance
0 1 Ceiling tile X X 0 2 Ceiling tile X X 0 3 Ceiling tile X X 0 5 Clua daub (tauge tan) X X 0 6 Clua daub (tauge tan) X X 0 10 Lafe Association X 0 10 Lafe Date: 6 10 10 Lafe Association 10 10 10 Lafe Date: 10	Date	Sample I.D.	Sample Location/Desc			Air Sam Start Time	pling Inform End Time	ation Volume Liters	ind				Lab I.D.
0 2 Ceiling tile 0 3 Ceiling tile 0 4 Glua daub (tauge tim) 0 5 Glua daub (tauge tim) 0 6 Glua daub (tauge tim) 0 6 Glua daub (tauge tim) 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1	14/10		Calling tile						 ×				
3 (eiltrag tile 0 4 5 Glue daub (taugetan) 0 5 6 Glue daub (taugetan) 10 6 6 6 10 6 10 6 11 10 12 6 13 14 14 14 15 14 16 14 17 14 18 14 19 14 10 14 10 14 10 14 10 14 10 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 14 14 <td>1410</td> <td>2</td> <td>Ceiling tile</td> <td></td>	1410	2	Ceiling tile										
0 4 Glue daub (tauge tam) X X 0 5 Glue daub (tauge tam) X X 10 6 Glue daub (tauge tam) A 11 6 6 A 12 6 1 1 13 1 1 1 14 0 1 1 15 1 1 1 14 0 1 1 14 1 1 1 15 1 1 1 16 1 1 1 17 1 1 1 18 1 1 1 19 1 1 1 18 1 1 1 18 1 1 1 19 1 1 1	114/10	m	Ceiling tile										
5 Glue daub (Fauge Han) 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 7 0 7 0	14/10	4	(office dauls)	tauve + low)					×				
10 6 Glue daulo (truge tan) Call Don Lelage ASAP w/the vesults, bate: b//f/10 Time: 1500 hed By: Hellen Kimiel Date: ce/w/co Time: 1500 By: Lecense Yes No Comments: ce/w/co Time: 1500	//4/(0	5	Alue daub	taupton)		\searrow							
Call Don Lelace ASAP w/the vesults, bate: 6/14/10 Time: 1500 the bate: 10/14/10 Time: 1500 the bate: 20/14/10 Time: 1500 the bate: 20/14/10 Time: 1500 the bate: 20/14/10 Comments: 20/14/10 Comments: 20/14/14	1410	9	Olue daub	(tauge tan)									
Could Done Le Lage ASAP w/the results, Date: 6/14/10 Time: 500 thed By: Hellen Limited Date: 6/14/10 Time: 500 By: Lee Lee Longe See No Comments: 101 Comments				0									
Call Don Leface ASAP w/the vesults, Date: 6/14/10 Time: 1500 thed By: 2000 Date: 6/14/10 Time: 1500 By: 2000 Date: 2014/10 Time: 1500 By: 2000 Date: 2014/10 Time: 1500													
Call Don letter ASAP w/the results.													
thed By: <u>Hulbu Lunia</u> By: <u><i>Lue eee</i></u> Date: <u><i>Left</i>/10</u> Time: <u>500</u> Date: <i>Left</i> /10 Time: <u>500</u> Time: <u>100</u>		•	- Lelace	a									
Samples:Acceptable: Yes No Comments:	1 5 5		Hulen Re		Dat Dat		6/14/1/ 2017					500 15	30
	dition of	Samples:		Yes	Cor	mments:							

This certifies that

Helen Rimsa

Asbestos Accreditation Under TSCA Title II Asbestos Site Inspector Refresher Training has successfully completed the 40 CFR Part 763

conducted by

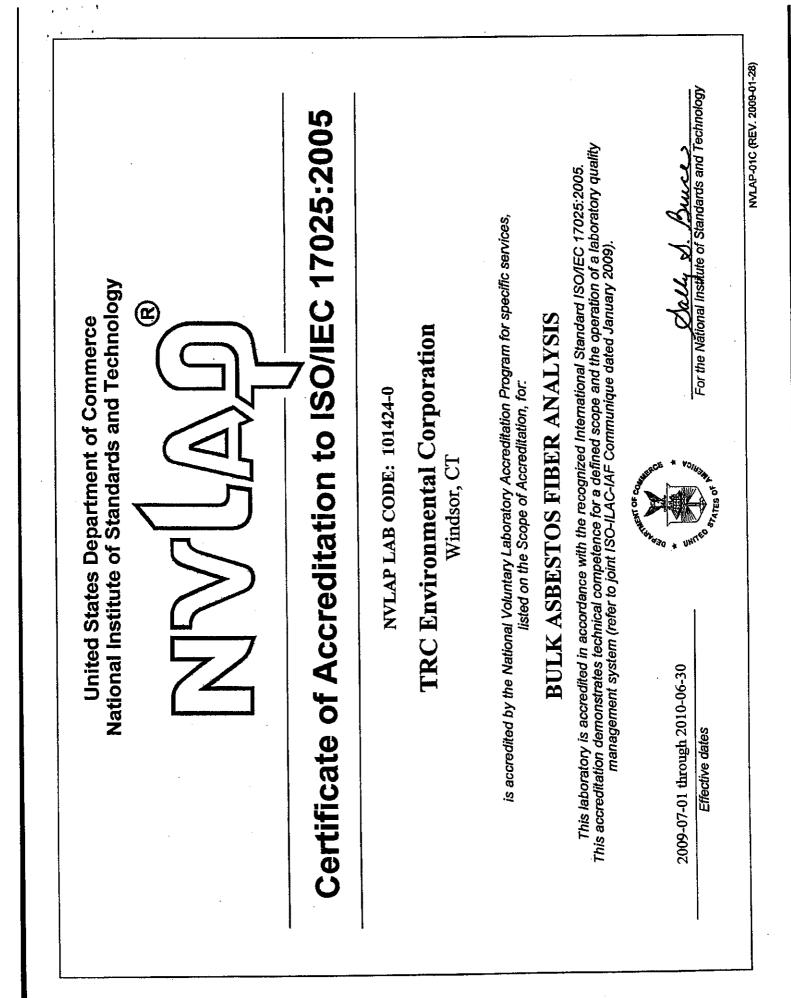
West Springfield, MA 01089 73 William Franks Drive ATC Associates Inc. (413) 781-0070

Dregay (). Provacl

Dregory (). morael SIAR-3431 Certificate Number Regional Manager

March 25, 2010 Examination Date

<u>March 25, 2011</u>


March 25, 2010

Date of Course

Principal Instructor

Expiration Date

State of Counceticut, Department of Public Health Approved Environmental Laboratory This is to certify that the laboratory described below has been approved by the state department of public Health PUBLIC APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT.		BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF APPROVAL AS FOLLOWS: AIR-FIBER COUNTING - PCM BULK IDENTIFICATION - PLM	SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED THIS CERTIFICATE EXPIRES December 31, 2011 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH DATED AT HARTFORD, CONNECTICUT, THIS 2nd DAT OF December 2009	Registration No. PH- 0426 CHIEF, ENVIRONMENTAL HEALTH SECTION
--	--	---	---	--

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

TRC Environmental Corporation 21 Griffin Road North Windsor, CT 06095 Ms. Kathleen Williamson Phone: 860-298-6392 Fax: 860-298-6214 E-Mail: kwilliamson@trcsolutions.com URL: http://www.trcsolutions.com

BULK ASBESTOS FIBER ANALYSIS (PLM)

NVLAP LAB CODE 101424-0

NVLAP Code Designation / Description

18/A01

 $\mathbb{N}\mathbb{V}$

EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

2009-07-01 through 2010-06-30

Effective dates

For the National Institute of Standards and Technology

Page 1 of 1

NVLAP-01S (REV. 2005-05-19)

١.,

SITE LOG

Page _

Site / Station CTDPW-CCSU East Hall . .

Month / Year JUNE/2010 Project No 164560. 1880.0001

Date	Time	Instrument and TRC ID	Comments	Initials
400	1100		Don Lellage (TRC) phones HRimsa C. CLSU	
· <u> </u>			Willard Hall to take a sample of	
			ceiling tile and possible glue daub in	
			East Hall. To meet Neil Palmese of	
			CLSU to show TRC affected area of	
			question.	AN
	1184-0		It Rimsa meets with Plalmese and sample	<u></u>
			glue daub/ceiling tile in room 100gin	
			the swim team section. There appears	
			to be no access to the above reiling	
· · ·			thes are afixed directly to the	
			convent with glue days. Samples of	
			both materials were take and will	
			be transported to TRC laboratory	<u>, , , , , , , , , , , , , , , , , , , </u>
			later in the day for results 6/15/10.	Hr
	1134		Heimsa calls Dieka to iday the	
			Information.	Arc
			-	
				•
				<u></u>
	·			
	<u> </u>			

21 Griffin Road North Windsor, CT 06095-1512 (860) 298-9692 FAX: (860) 298-6399 FEDERAL I.D. #06-0861618

INVOICE

PLEASE REMIT TO: P.O. BOX 8500-53878 Philadelphia, PA 19178-3878

July 21, 2010 Project No: 164560.1880.0000 Invoice No: 40736 Project Manager Donald Lepage

State of Connecticut Department of Public Works Room 275 165 Capitol Ave. Hartford, CT 06106

Asbestos/Lead Abatement design consultant's on-call contract DPW/DAS Term contract work DPW Project No: RC-10-06 Building No: 39744

Professional Services from May 29, 2010 to July 9, 2010

Phase	000001	CCSU Kaiser Hall room 104 SRV	YY .	
	<u>ltem #</u>	Units	<u>Rate</u>	Amount
	ACM-004	2	\$58.50	\$117.00
	ACM-006	['] 1	\$45.00	\$45.00
	Engineer-in-Charge	e 1	\$135.00	\$135.00
	PLM-003	6	\$19.80	\$118.80
			Total this Invoice	\$415.80

Reference Invoice No. On Your Payment

APPENDIX F

Appendix F - TRC

Pre-Renovation Investigative Survey for Asbestos-Containing Materials and Lead Based Paint Central Connecticut State University – Harrison J. Kaiser Hall New Britain, Connecticut, Project No. RC-08-13, DPW No. 39744 Dated October 1, 2008 35 pages

REPORT

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS AND LEAD BASED PAINT CENTRAL CONNECTICUT STATE UNIVERSITY – HARRISON J. KAISER HALL NEW BRITAIN, CONNECTICUT

> Project No. RC-08-13 DPW No. 39744

> > Prepared for

State of Connecticut Department of Public Works

Hartford, Connecticut

Prepared by

TRC Windsor, Connecticut

October 1, 2008

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS AND LEAD BASED PAINT CENTRAL CONNECTICUT STATE UNIVERSITY – HARRISON J. KAISER HALL NEW BRITAIN, CONNECTICUT

Project No. RC-08-13 DPW No. 39744

Prepared for State of Connecticut Department of Public Works Hartford, Connecticut

> Prepared by TRC Windsor, Connecticut

e Page onald

Donald LePage Project Manager

TRC Project No. 106957-9095-0001 October 1, 2008

> TRC 21 Griffin Road North Windsor, Connecticut 06095 Telephone (860) 298-9692 Facsimile (860) 298-6399

TABLE OF CONTENTS

EXECUTIVE SUMMARY

PROJECT OUTLINE

TABLES

1	BULK SAMPLE SUMMARY OF SUSPECT ASBESTOS CONTAINING
	MATERIALS
2	IDENTIFIED ASBESTOS CONTAINING MATERIALS
3	CONFIRMED NON-ASBESTOS CONTAINING MATERIALS
4	SUMMARY OF LEAD PAINT XRF MEASUREMENTS

APPENDICES

А	SITE SKETCH
В	LABORATORY AND INSPECTOR ACCREDITATIONS
С	ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS
D	PLM LABORATORY ANALYSIS DATA
E	TEM LABORATORY ANALYSIS DATA
F	LEAD PAINT XRF MEASUREMENT TABLE

EXECUTIVE SUMMARY

On September 3, 2008 TRC of Windsor, Connecticut conducted an inspection for suspect asbestoscontaining materials (ACM) and lead based paint (LBP) at Central Connecticut State University – Harrison J. Kaiser Hall in New Britain, Connecticut. The inspection was initiated prior to planned window replacement activities in accordance with USEPA Asbestos National Emissions Standard for Hazardous Air Pollutants (NESHAPS) requirements. This work was part of a large project for window replacement at Sanford Hall, Barnard Hall and Welte Hall as well as Kaiser Hall. The overall project was conducted from August 27 to September 3, 2008.

The scope of the inspection was limited to all exterior windows and all interior/exterior building materials that might be impacted during window replacement activities at the subject building. A Connecticut licensed asbestos inspector from TRC conducted the inspection in accordance with USEPA AHERA protocols and ASTM Standard E2356-04. Bulk samples of suspect materials were collected and analyzed via polarized light microscopy (PLM) and transmission electron microscopy (TEM) methods at CTDPH/NVLAP accredited laboratories. ACM was identified as transite paneling, exterior white window glaze and tan interior window caulk in the subject area. ACM to be impacted by renovation activities must be removed prior to disturbance in accordance with OSHA, USEPA, CTDPH, and CTDEP standards for asbestos abatement/disposal. Detailed results of the asbestos survey can be found in Tables 1-3 and Appendices A through E.

A Connecticut licensed lead inspector from TRC conducted a LBP survey throughout the exterior window areas and interior/exterior areas at Kaiser Hall that might be impacted during window replacement activities and lead paint was identified on various components on the structures that are scheduled for impact. Exposure levels for lead in the construction industry are regulated by OSHA 29 CFR 1926.62. Construction activities disturbing surfaces containing lead paint which are likely to be employed, such as grinding, cutting, and demolishing, has been known to expose workers to airborne levels of lead in excess of the permissible exposure limit (PEL). The Contractor shall conduct demolition work in conformance with the OSHA regulations, utilizing engineering controls and personal protective equipment. In addition, disposal of construction waste containing lead paint is

subject to regulation under both the CTDEP Hazardous and Special Waste Management (22a-209-1 through 16; 22a-449(c)-11; 22a-449(c)-13; 22a-449(c)-100 through 110; and 22a-454) and USEPA RCRA Hazardous Waste Management (40 CFR Parts 260 through 274) regulations. Prior to the removal of the window systems a TCLP analysis should be performed to determine if windows can be disposed of as asbestos waste or hazardous waste. However, scrap metal is exempt from regulation under the CTDEP/USEPA Hazardous Waste Regulations provided it is properly recycled. The Contractor shall recycle any lead painted scrap metal at an approved scrap metal recycling facility. Detailed results of the lead survey can be found in Table 4 and Appendix F.

PROJECT OUTLINE

Project Address:	Central Connecticut State University Harrison J. Kaiser Hall New Britain, CT
DAS Contract No.	03PSX0346E
DPW Project Manager	James Sinclair
DPW Project No.:	RC-08-13
DPW Building No:	39744
TRC Project No.:	106957-9095-0001
TRC Project Manager:	Don LePage
Asbestos Inspector:	Gregory Kaczynski (LIC #000550)
Lead Inspector:	Bryce Aston (LIC #001838)
Date of Inspection:	9/3/08
Asbestos Identified:	Yes
Lead Based Paint Identified:	Yes

Additional Notes:

The site investigation was limited to the collection and analysis of suspect asbestos-containing materials and lead based paint from the exterior windows and all interior/exterior building materials that might be impacted during window replacement activities. If the transite panel on the underside of the roof overhang is impacted during window replacement, further investigation is required.

TABLES

.

TABLE 1 BULK SAMPLE SUMMARY OF SUSPECT ASBESTOS CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – HARRISON J. KAISER HALL NEW BRITAIN, CONNECTICUT					
Sample No.	Sample Location	Homogeneous Material	% and Type Asbestos		
01	Roof overhang – D-side	Transite panel	25% chrysotile		
02	Roof overhang – D-side	Transite panel	NA/PS		
03	Roof overhang – D-side	Transite panel	NA/PS		
04	Roof overhang – D-side	Insulation behind transite panel	ND<1%		
05	Roof overhang – D-side	Insulation behind transite panel	ND<1%		
06	Roof overhang – D-side	Insulation behind transite panel	ND<1%		
07	Room 1130600	Spray-on insulation	ND<1%		
08	Room 1270000	Spray-on insulation	ND<1%		
09	Room 1270000	Spray-on insulation	ND<1%		
10	Exterior-vestibule overhang-building	Grey sheetrock (SHR1)	ND<1%		
10	entrance	Joint compound (JC1)	ND<1%		
11	Exterior-vestibule overhang-building	Grey sheetrock (SHR1)	ND<1%		
11	entrance	Joint compound (JC1)	ND<1%		
12	Exterior-vestibule overhang-building	Grey sheetrock (SHR1)	ND<1%		
12	entrance	Joint compound (JC1)	ND<1%		
13	Room 1130600	Light grey sheetrock (SHR2)	ND<1%		
15		Joint compound (JC2)	ND<1%		
14	Room 1120200	Light grey sheetrock (SHR2)	ND<1%		
		Joint compound (JC2)	ND<1%		
15	Room 1270000	Light grey sheetrock (SHR2)	ND<1%		
		Joint compound (JC2)	ND<1%		
16	Exterior-vestibule overhang-building entrance	TC1-textured ceiling coating	ND<1%		
17	Exterior-vestibule overhang-building entrance	TC1-textured ceiling coating	ND<1%		
18	Exterior-vestibule overhang-building entrance	TC1-textured ceiling coating	ND<1%		
19	Room 1100000-Men's bathroom	Yellow grout under ceramic tile (GR1)	ND<1%		
		White grout between tiles (GR2)	ND<1%		

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

- ND<1% Non-detected, less than 1%
- NAD No asbestos detected
- + Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive
- 1 NOB material; result confirmed by TEM analyses
- * Quantified by PLM Point Counting techniques

	ILK SAMPLE SUMMARY OF SUSP ENTRAL CONNECTICUT STATE U	1 (continued) ECT ASBESTOS CONTAINING MATE NIVERSITY – HARRISON J. KAISER IN, CONNECTICUT	
Sample No.	Sample Location	Homogeneous Material	% and Type Asbestos
20	Room 1100000-Men's bathroom	Yellow grout under ceramic tile (GR1)	ND<1%
20	Room 1100000-Men's bathroom	White grout between tiles (GR2)	ND<1%
21	Room 1100000-Men's bathroom	Yellow grout under ceramic tile (GR1)	ND<1%
21		White grout between tiles (GR2)	ND<1%
22	Room 1130600	G1-yellow glue under laminate window sill	ND<1% ¹
23	Room 1270000	G1-yellow glue under laminate window sill	ND<1%
24	Room 1130600-Type I window	WG1-grey window glaze	ND<1% ¹
25	Exterior-D-side-Type I window	WG1-grey window glaze	ND<1%
26	Exterior-D-side-bathroom windows	WG2-grey window glaze	ND<1% ¹
27	Exterior-D-side-bathroom windows	WG2-grey window glaze	ND<1%
28	Room 0090000-window	WG3-exterior white window glaze	1.32% anthophyllite ¹
29	Room 0090000-window	WG3-exterior white window glaze	ND<1%
30	Exterior-Type I window-between metal frame and side wall	BC1-grey building caulk	ND<1% ¹
31	Exterior-Type I window-between metal frame and wall	BC1-grey building caulk	ND<1%
32	Exterior-Type I window-on window sill	BC2-grey building caulk	ND<1% ¹
33	Exterior-Type I window-on window sill	BC2-grey building caulk	ND<1%
34	Exterior-Type I window-between the blue metal panels above windows	BC3-grey building caulk	ND<1% ¹
35	Exterior-Type I window-between the blue metal panels above windows	BC3-grey building caulk	ND<1%
36	Exterior-Type I window-on the top and bottom of blue panels above the windows	BC4-grey building caulk	ND<1% ¹
37	Exterior-Type I window-on the top and bottom of blue panels above the windows	BC4-grey building caulk	ND<1%

NA/PVA $\,$ Not analyzed/positive via inseparable association with a confirmed positive ACM $\,$

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

- ND<1% Non-detected, less than 1%
- NAD No asbestos detected
- + Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive
- 1 NOB material; result confirmed by TEM analyses
- * Quantified by PLM Point Counting techniques

	ILK SAMPLE SUMMARY OF SUSP ENTRAL CONNECTICUT STATE U		
Sample No.	Sample Location	Homogeneous Material	% and Type Asbestos
38	Room 1130600-between window sill and window	BC5-grey building caulk	ND<1% ¹
39	Room 1270000-between window sill and window	BC5-grey building caulk	ND<1%
40	Room 1260000-vertical bead between window and concrete wall	BC6-light grey building caulk	ND<1% ¹
41	Room 1260000-vertical bead between window and concrete wall	BC6-light grey building caulk	ND<1%
42	Room 1110000-vertical bead between window and metal wall panel	BC7-light grey window caulk	ND<1% ¹
43	Room 1260000-vertical bead between window and metal wall panel	BC7-light grey window caulk	ND<1%
44	Room 1100000-window	BC8-tan window caulk	5.21% chrysotile ¹
45	Room 1100000-window	BC8-tan window caulk	ND<1%
46	Exterior-window caulk from room 0090000	BC9-white window caulk	ND<1% ¹
47	Exterior-window caulk from room 0090000	BC9-white window caulk	ND<1%

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

- ND<1% Non-detected, less than 1%
- NAD No asbestos detected
- + Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive
- 1 NOB material; result confirmed by TEM analyses
- * Quantified by PLM Point Counting techniques

	NNECTICUT 8	TABLE 2 ESTOS CONTAINING STATE UNIVERSITY V BRITAIN, CONNEC	- HARRISON		n
Material	Sampled- Assumed (mo/yr)	General Location	NESHAP Category	AHERA Category	Estimated Quantity
Transite panel	Sampled 9/08	Roof overhang	Category II Non-friable	Miscellaneous	800 SF**
WG3-exterior white window glazeSampled 9/08Room 0090000- exterior windowsCategory II Non-friableMiscellaneous2 E				2 EA	
BC8-tan interior window caulk	Sampled 9/08	Room 1160100, Room 1100000, Room 1320000, Room 1250100	Category II Non-friable	Miscellaneous	112 LF

* Roof tars have been completely exempted from OSHA Asbestos regulations and, as a Category I Non-friable material, do not need to be removed from a structure prior to renovation/demolition under EPA Asbestos NESHAP regulations and, so long as the materials are exterior to a structure and will remain Category I Non-friable materials during renovation/demolition, are not covered under the CTDPH Asbestos Abatement standards. In addition, as Category I Non-friable materials, the roof tars do not need to be disposed of as asbestos waste under the EPA Asbestos NESHAP regulations; however, the CTDEP special waste regulations would not allow the material to be disposed of as general construction waste within the State of Connecticut. Disposal of the roof tars as general construction waste (so long as the materials are not rendered into a state which would define them as regulated asbestos-containing materials (RACM), i.e., friable) is, however, allowed in other states such as Massachusetts.

** This quantity represents only the square footage of transite above the windows that are going to be replaced. The total quantity of transite panel at the entire building is greater.

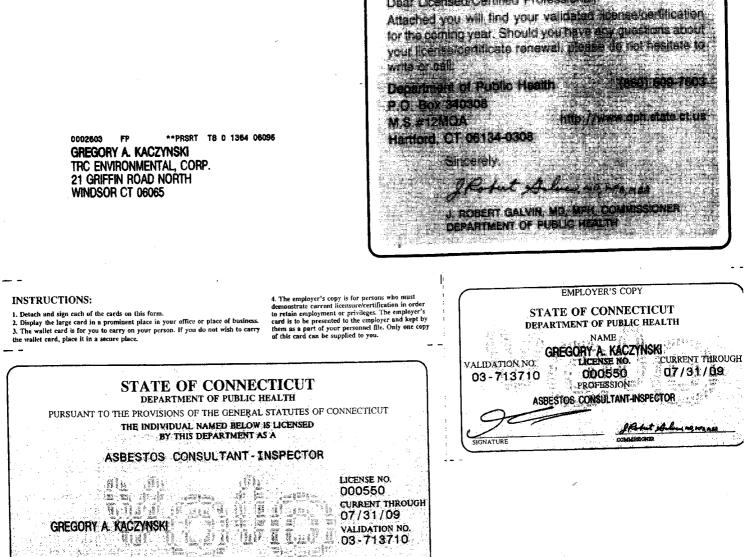
AHERA Categories = thermal system insulation (TSI), surfacing material or miscellaneous NESHAP Categories = friable, category I non-friable or category II non-friable Friable = crumbled, pulverized or reduced to powder by hand pressure when dry Category I Non-friable = packings, gaskets, resilient floor covering and asphalt roofing Category II Non-friable = all non-friable that is not Category I

TABLE 3 CONFIRMED NON-ASBESTOS CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – HARRISON J. KAISER HALL

h	l	.	l	ľ	l		2	j		ł	2000		l		ļ			ŝ	l	l	ĺ	Ĭ	Į	l	ŝ	ĺ.		l	l	l		b	l		0	ļ			l	l		Į	ļ			Ì				

Material	General Location
Insulation behind transite panel	Roof overhang
Spray-on insulation	Throughout 1 st floor
Grey sheetrock/joint compound (SHR1/JC)	Exterior-vestibule overhang-NE building entrance
Light grey sheetrock/joint compound (SHR2/JC)	Throughout 1 st floor
TC1-textured ceiling coating	Exterior-vestibule overhang-NE building entrance
Yellow grout under ceramic tile (GR1)/White grout between tiles (GR2)	1 st floor bathrooms
WG1-grey window glaze	Type I windows
WG2-grey window glaze	Exterior bathroom/locker room windows
BC1-grey building caulk	Exterior-Type I windows-between metal frame and wall
BC2-grey building caulk	Exterior-Type I windows-on window sill
BC3-grey building caulk	Exterior-Type I window-between the blue metal panels above windows
BC4-grey building caulk	Exterior-Type I window-on the top and bottom of blue panels above the windows
BC5-interior grey building caulk	Rooms 1130600, 1270000, 1260000, 1280000, - between window sill and window
BC6-interior light grey building caulk	Rooms 1260000, 1120000, 1110000, 1160101, 1310000, 1000400-vertical bead between window and concrete wall
BC7-interior light grey window caulk	Rooms 1110000, 1260000, 1270000, 1280000, 1120000, 1290000, 1120100, 1120200, 1130600- vertical bead between window and metal wall panel
BC9-white window caulk	Interior/exterior window-room 0090000

	SUMMARY OF LEA NNECTICUT STAT NEW BRI		– HARRI		HALL
Structure	No. of Measurements	Calibrations	Void	Lead Detected	No Lead Detected
One-story academic building and basement	18	4	1	4	9


See Lead Paint XRF Measurement Table in Appendix F.

APPENDIX A

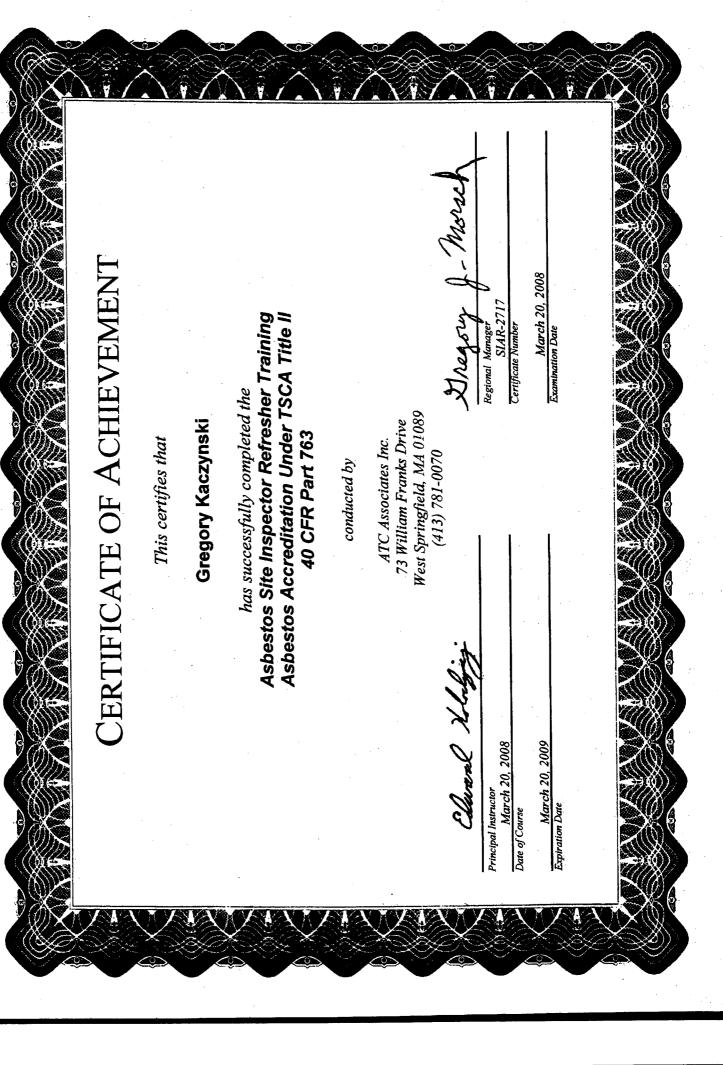
SITE SKETCH

APPENDIX B

LABORATORY AND INSPECTOR ACCREDITATIONS

03-713710

Repet Al


NINC:

IONATURE

1

AD SPA MAA

Dear Licensed/Certified Professional

Dear Licensed/Certified Professional, Attached you will find your validated license/certification for the coming year. Should you have any questions about your license/certificate renewal, please do not hesitate to write or call: Department of Public Health (860) 509-7603 P.O. Box 340308 http://www.dph.state.ct.us M.S.#12MQA 0002861 FP **PRSRT H9 0 1564 06238 Hartford, CT 06134-0308 BRYCE A. ASTON 24 HERBERT DR. Sincerely, **COVENTRY CT 06238** I Robert Aluce, NO, NO , MAA J. ROBERT GALVIN, MD, MPH, COMMISSIONER DEPARTMENT OF PUBLIC HEALTH TRUCTIONS: 4. The employer's copy is for persons who must demonstrate current Reensure/certification in order to retain employment or perivilegas. The comployer's card is to be presented to the employer and kept hy them as a part of your personnel file. Only one copy of this card can be supplied to you. EMPLOYER'S COPY 05.32s 22 tach and sign each of the cards on this form. Way the large card in a prominent place in your office or place of business. c wallet card is for you to carry on your person. If you do not wish to carry sillet card, place it in a recure place. STATE OF CONNECTICUT <u>7</u>. 4. 33. DEPARTMENT OF PUBLIC HEALTH \mathbb{Z}_{\otimes} NAME BRYCE A ASTON CERTIFICATION NO. CURRENT THROUGH 9.96 M VALIDATION NO. Konoriški hr STATE OF CONNECTICUT DEPARTMENT OF PUBLIC HEALTH 001838 10/31/08 PROFESSION 03-560649 5.28 1 and S LEAD INSPECTOR RISK ASSESSOR PURSUANT TO THE PROVISIONS OF THE GENERAL STATUTES OF CONNECTICUT THE INDIVIDUAL NAMED BELOW IS CERTIFIED BY THIS DEPARTMENT AS A 200 <u>.</u> S. JAt the states of the second * 7 8 ζ. ŝ. 8788 ್ ಜನ್ಮಾತ್ ಕ à. LEAD INSPECTOR RISK ASSESSOR 32.5° (** K CERTIFICATION NO 32.94 1.138. a. $\mathcal{S} \neq \mathcal{S} = \mathcal{S}$ 001838 19 j. CURRENT THROUGH N. Zo 👸 ÷2 ŧ. 10/31/08 BRYCE A. ASTON 223^{-2} VALIDATION NO. 03-560649 2 20.5 12 3 D MANA SIGNATURE 20 Si Sandi ŝ. 6 ×3 § Same and Same ે છે. જે 28.88 . www.

Arrest of the constraint of th	
--	--

APPENDIX C

ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS

CREETA ROLD ORTH ABBESTOS BULK SAMPLING CUNTOR CUNCTICUT 6005 TLAIN OF CUSTODY TLAIN CONVECTION OF CUSTODY TLAIN CONVECTION OF CUSTODY TLAIN CONVECTION OF CUSTODY TLAIN CONVECTION POLICT NUBER POLICT NUBR		0									S	Editio. upersedo	Edition: September 2007 Supersede Previous Edition	er 2007 Edition
LAIN OF CUSTODY LAIN OF CUSTON LAIN OF CUSTON LAIN OF CUSTON CURNITED CURNITED <	21 GRIFFIN	ROAD NOR	ΓH			K SA	MPL	ING						
LABID #. 3372 % LABID #. 3372 % PROJECT NAME PROJECT NAME Hall CCSU-Harrison J. Kaiser Hall CCSU-Harrison J. Kaiser Hall New Britain, CT New Britain, CT PROJECT NAME Cregory Kaczynski Error 1, Kaiser M Revol overhang Droverhang District overhang M Revol overhang <td>WINDSOR, (</td> <td>CONNECTIC</td> <td>5090 LN:</td> <td>5</td> <td>CHAIN OF C</td> <td>UST</td> <td>YODY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	WINDSOR, (CONNECTIC	5090 LN:	5	CHAIN OF C	UST	YODY							
PROJECT NAME THENARCIND TIME PPW-CCSU-Harrison J. Kaiser Harver 24m X 4m 34m 1 Harver Cregory Kaczynski Cregory Kaczynski 1	TELEPHON	E (860) 298-90 8-6380	692							Γ	AB ID		5g28	
DPW-CCSULHarrison J. Kaiter PARAMETERS PLM: 24hr X datu July use New Brithin, CT New Brithin, CT Transit Transit 24hr X datu July use New Brithin, CT (PRUNTED) (PRUNTED) (PRUNTED) Adv July use	PROJECT N	UMBER		PR	OJECT NAME					TU	RNA	ROUND	TIME	
Hail New Hitain, CT Teni. Jair X Abir X				DP	ison J.		PARAM	ETERS			×	48hr	3day	5day
Image: Construction of the image of the	106957-9095-	0001		Ha Ne	ul w Britain, CT						×	48hr	3day	5day
Gregory Kaczynski TIME TVPE SAMPLE LOCATION TIME TVPE TIME TVPE SAMPLE LOCATION TOPE OPINT COUNT TIME TVPE SAMPLE LOCATION PLAN EVENTION PLAN EVENTION SAMPLE LOCATION Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION POINT COUNT SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION POINT COUNT SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION PLAN EVENTION SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION PLAN EVENTION SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION PLAN EVENTION SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION PLAN EVENTION SAM Roof overhang – D-side X ANALYSE BY LAVE PLAN EVENTION PLAN EVENTION	INSPECTOF	: (SIGNATU	BE	E)	RINTED)		(uo							
TIME TYPE TIME TIME TIME From 1 SAMPLE LOCATION Roof overhang - D-side S AM Roof overhang - D-side X S AM Roof overhang - D-side X Roon 1270000	$\sum_{i=1}^{n}$			G	egory Kaczynski	(90T	itoubs (4OT)	LN C	*861 8					
Time File Time Time Time File Time File S AM Roof Overhang<-D-side				TYPE		S B	rie re Z I	100	ION		Z	ATERIA	Ĩ	
8 AM Roof overhang - D-side X N 8 AM Roon 1130600 X N N 8 AM Room 1270000 X X N 8 AM Room 1270000 X X X 9 AM Room 1270000 X X X 9 AM Room 1270000 X <td>FIELD SAMPLE NUMBER</td> <td>DATE</td> <td>TIME</td> <td></td> <td>r</td> <td>VITI2O9)</td> <td>ttamivara (w) VITISOJ)</td> <td>TNIO9</td> <td>AN WƏL</td> <td></td> <td></td> <td></td> <td></td> <td></td>	FIELD SAMPLE NUMBER	DATE	TIME		r	VITI2O9)	ttamivara (w) VITISOJ)	TNIO9	AN WƏL					
8 AM Roof overhang - D-side X N No N No N	01	09/03/08	AM		Roof overhang – D-side	X				Transite panel				
8 AM Roof overhang – D-side X N N 8 AM Roof overhang – D-side X N N 8 AM Roof overhang – D-side X N N 8 AM Roof overhang – D-side X N N 8 AM Roof overhang – D-side X N N 8 AM Room 1270000 X N N N 8 AM Boom 1270000 X N N N 8 AM Boom 1270000 X N N N 9 ON0808 Houn 1270000 X N N N 9 AM Boom 1270000 X N <t< td=""><td>02</td><td>09/03/08</td><td>AM</td><td></td><td>Roof overhang – D-side</td><td>X</td><td></td><td></td><td></td><td>Transite panel</td><td></td><td></td><td></td><td></td></t<>	02	09/03/08	AM		Roof overhang – D-side	X				Transite panel				
8AMRoof overhang - D-sideXA8AMRoof overhang - D-sideXA8AMRoof overhang - D-sideXA8AMRoom 1130600XA8AMRoom 1270000XA8AMRoom 1270000XX8AMRoom 1270000XX8AMRoom 1270000XX8AMRoom 1270000XX8AMRoom 1270000XX909/08/08Room 1270000XX909/08/08 <i>M. M. M. K. K.</i>	03	09/03/08	AM		Roof overhang – D-side	x				Transite panel				
8 AM Roof overhang – D-side X N Roof overhang – D-side X N N 8 AM Room 1130600 X N N N N 8 AM Room 1270000 X N N N N 8 AM Room 1270000 X N N N N 8 AM Room 1270000 X N N N N 8 AM Room 1270000 X N N N N 8 AM Room 1270000 X N N N N 8 AM Room 1270000 X N N N N 8 AM Room 1270000 X X X X N 9 ON Bate Room 1270000 X X X X 9 ON Date Room 1270000 X X X X 9 ON ON Date Room 1270000 X X <td>04</td> <td>09/03/08</td> <td>AM</td> <td></td> <td>Roof overhang – D-side</td> <td>X</td> <td></td> <td></td> <td></td> <td>Insulation behin</td> <td>id trar</td> <td>isite pane</td> <td>I</td> <td></td>	04	09/03/08	AM		Roof overhang – D-side	X				Insulation behin	id trar	isite pane	I	
8AMRoof overhang - D-sideXN8AMRoom 1130600XN8AMRoom 1270000XN8AMRoom 1270000XN8AMRoom 1270000XN8AMRoom 1270000XN8AMRoom 1270000XN9Date:Room 1270000XN909/08/08MMN1615MMM1615MMM6 are positive, the material should be resampled. The samples may haveCondition of Samples: Ves	05	09/03/08	AM		Roof overhang – D-side	Х				Insulation behin	nd trar	isite pane	1	
8AMRoom 1130600XN8AMRoom 1270000XN8AMRoom 1270000XN8AMRoom 1270000XN8AMReceived by: (Signature overhang- building entranceXN8AMDate:Received by: (Signature)XN909/08/08 \mathcal{M} \mathcal{M} NN1615 \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} 6 are positive, the material should be resampled. The samples may haveCondition of Samples: Ves	90	09/03/08	AM			X				Insulation behin	nd tran	isite pane	I I	
8 AM Room 1270000 X X N 8 AM Room 1270000 X X X X 8 AM Exterior-vesibule overhang- X X X X 8 AM Exterior-vesibule overhang- X X X X 8 AM Exterior-vesibule overhang- X X X X 9 Date: Received by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) 09/08/08 M. M	07	09/03/08	AM		Room 1130600	x				Spray-on insulat	tion			
8 AM Room 1270000 X X X 8 AM Exterior-vesibule overhang- X X X X 8 AM building entrance X X X X X 9 09/08/08 Allow Received by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) 09/08/08 Allow Roma Relinquished by: (Signature) Relinquished by: (Signature) 1015 Hellew Roma (Printed) (Printed) 1 1615 Hellew Roma Signature) 6 are positive, the material should be resampled. The samples may have Condition of Samples: Ves	08	09/03/08	MM		Room 1270000	X				Spray-on insula	tion			
8 AM Exterior-vesibule overhang- X X X Building entrance X X X X Date: Date: Received by: (Signature) Relinquished by: (Signature) 09/08/08 Allon Rome Relinquished by: (Signature) 1615 Heln Rome (Printed) 1615 Heln Rome Relinquished by: (Signature) 6 are positive, the material should be resampled. The samples may have Condition of Samples: Ves	60	09/03/08	AM		Room 1270000	Х				Spray-on insula	tion			
Date: Date: Received by: (Signature) Date: Received by: (Signature) 09/08/08 <i>Holon Comesci</i> Reinquished by: (Signature) Date: Received by: (Signature) 1615 <i>Helen Comesci</i> (Printed) (Printed) Time: (Printed) 6 are positive, the material should be resampled. The samples may have Condition of Samples: 0 0	10	09/03/08	AM		Exterior-vesibule overhang- building entrance	×				SHR/JC1-grey s compound	sheetr	ock/asso	ciated joint	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(Strentting)		Date	Reveived hv. (Signature)	R	elinquished	bv: (Sign:	iture)	Date:		teceived by	r: (Signature)	
Time:Time:(Printed)Time:(Printed)y Kaczynski1615 $Hele_n$ R^{m} (Printed)(Printed)cs:If samples 4- 6 are positive, the material should be resampled. The samples may haveCondition of Samples: 0				0/60		<u></u>	•) , ,			· .			
y Kaczynski 1615 Helen Rima Condition of Sumples: $0k$ cs: If samples 4-6 are positive, the material should be resampled. The samples may have Condition of Sumples: $0k$ Acceptable: Yes No	(Printed)	-		Time:	(Printed)		Printed)			Time:		Printed)		
es 4- 6 are positive, the material should be resampled. The samples may have Condition of Samples OK	Gregory Kac	zynski		16	Helen R.					20				-
	Remarks: If	samples 4- 6 a	tre positiv	/e, the 1	material should be resampled. The san	aples ma	y have	Condition Acceptat	n of Samples de: Yes	2			Page 1 of 7	

9/9/08 0800

ASBESTOS BULK SAMPLING CHAIN OF CUSTODY IL IL PROJECT NAME PROJECT	<u>р</u>										Supersede Previous Edition
OLDAIN OF CUSTODY L CHAIN OF CUSTODY PROJECT NAME PPROJECT NAME PPROJECT NAME PPROJECT NAME PPROJECT NAME PROJECT NOT NO PROJECT NO NO 1120200	1 GRIFFIN ROA	D NORT				ASBESTOS BUL	K S.	AMPL	N,	IJ	
PROJECT NAME PROJECT NAME PROJECT NAME DPW-CCSULHarrison J. Kaiser PROJECT NAME PROJECT NAME New Britain, CT New Britain, CT PROJECT NAME New Britain, CT New Britain, CT 24tr New Britain, CT New Britain, CT 24tr New Britain, CT Cregory Kaczynskii 24tr New Britain, CT (PRINTED) 24tr M Exterior-vesibule overhang- X X M Room 1130600 X X X M Room 1130600 X X X M Room 1130000 X X X SHRJGC-light M Room 1130000 X X X SHRJGC-light M Room 1130200 X X X SHRJGC-light M Room 1130200 X X X Compo	VINDSOR, CON	NECTIC	UT 0609.	ŝ		CHAIN OF (CUS	TODY	κ.		Ì
R PROJECT NAME DPW-CCSU-flarrison J. Kaiser PARAMETERS PLM: PLM	TELEPHONE (86 JAX (860) 298-63	60) 298-9(80	692								LABID#, 35928
Hall TEM: 24r New Britain, CT (PRINTED) Regory Kaczynski Gregory Kaczynski Corgory Kaczynski (IF PLM SERIES VEG) Referint, CT (IF PLM SERIES VEG) M Exterior-vesibule overhang- X M Exterior-vesibule overhang- X M Exterior-vesibule overhang- X M Boulding entrance X M Room 1130600 X M Room 1130600 X M Room 1120200 X M Boom 1120200 X </td <td>ROJECT NUMI</td> <td>3ER</td> <td></td> <td></td> <td>RO</td> <td>ison I</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ROJECT NUMI	3ER			RO	ison I					
Image: Legent Kaczynski (FRINTED) Gregory Kaczynski Gregory Kaczynski TVPE TVPE TVPE TVPE M Exterior-vesibule overhang- X X M Exterior-vesibule overhang- X X SHRJG1-grey M Exterior-vesibule overhang- X X SHRJG1-grey M Exterior-vesibule overhang- X X X SHRJG1-grey M Room 1130600 X X X X SHRJG1-grey M Room 1120200 X X X X SHRJG1-grey M Room 1120200 X X X X X SHRJG2-light M Room 1120200 X X X X X SHRJG2-light M Room 1120200 X X X X X X M Room 1120200 X X X X X X M Room 1120200 <td>06957-9095-0001</td> <td></td> <td></td> <td></td> <td>Iall [ew]</td> <td></td> <td></td> <td>PARAN</td> <td>ИЕТ</td> <td>ERS</td> <td>24hr X 48hr 3day</td>	06957-9095-0001				Iall [ew]			PARAN	ИЕТ	ERS	24hr X 48hr 3day
American Time Gregory Kaczynski TIME TVPE TIME TVPE SAMPLE LOCATION SAMPLE LOCATION R AM Exterior-vesibule overhang- 8 AM Exterior-vesibule overhang- X X 8 AM Exterior-vesibule overhang- X X SHR/JC1-grey 8 AM Exterior-vesibule overhang- X X X SHR/JC1-grey 8 AM Room 1130600 X X X SHR/JC1-grey 8 AM Room 1120200 X X X X SHR/JC1-grey 8 AM Room 1120200 X X X SHR/JC1-grey 8 AM Room 1120200 </td <td>NSPECTOR: (SI</td> <td>GNATU</td> <td>RE)</td> <td><u> </u></td> <td>PRI</td> <td>VTED)</td> <td></td> <td>(ua</td> <td>ধ</td> <td></td> <td></td>	NSPECTOR: (SI	GNATU	RE)	<u> </u>	PRI	VTED)		(ua	ধ		
TWE TYPE TIME TWE SAMPLE LOCATION PLAIN CONTRUCTION 8 AM Exterior-vesibule overhang- building entrance X X SHR/JCI-grey 8 AM Exterior-vesibule overhang- building entrance X X X SHR/JCI-grey 8 AM Exterior-vesibule overhang- building entrance X X X SHR/JCI-grey 8 AM Room 1130600 X X X X SHR/JCI-grey 8 AM Room 1130600 X X X X SHR/JCI-grey 8 AM Room 1120200 X X X X SHR/JCI-grey 8 AM Room 1120200 X X X X X X SHR/JCI-grey 8 AM Room 1120200 X X X X X X X X X Y Y Y Y Y Y Y Y X X	5	$\left(\right)$		9	reg	ory Kaczynski		itoubo	ауал	*861 8 	
Time AM SAMPLE LOCATION PLAIL V R AM Exterior-vesibule overhang- building entrance X X SHRJCL-grey compound 8 AM Exterior-vesibule overhang- building entrance X X X SHRJCL-grey compound 8 AM Exterior-vesibule overhang- building entrance X X X SHRJCL-grey compound 8 AM Room 1130600 X X X SHRJCL-grey compound 8 AM Room 1130600 X X X SHRJCL-grey compound 8 AM Room 1120200 X X X SHRJCL-grey compound 8 AM Room 1120200 X X X X SHRJCL-grey compound 8 AM Room 1120200 X X X X X SHRJC2-light 9 AM Room 1120200 X X X X X SHRJC2-light 8 AM Room 1120200 X X X X X TC1-textured 9 AM Exterior-vesibule overhang- building entrance X X X TC1-textured 9 AM Exterior-vesibule overhang- building entrance <td></td> <td></td> <td></td> <td>TYP</td> <td>ш</td> <td></td> <td></td> <td>n oint</td> <td>783</td> <td>10N > 39 '</td> <td>MATERIAL</td>				TYP	ш			n oint	783	10N > 39 '	MATERIAL
8 AM Exterior-vesibule overhang- X X X SHR/JC1-grey compound compound compound 8 AM Exterior-vesibule overhang- X X X X SHR/JC1-grey compound 8 AM Exterior-vesibule overhang- X X X X SHR/JC1-grey compound 8 AM Room 1130600 X X X X X SHR/JC2-light compound 8 AM Room 1120200 X X X X X SHR/JC2-light compound 8 AM Room 1120200 X X X X X X X SHR/JC2-light compound 8 AM Room 120000 X <th< td=""><td></td><td>DATE</td><td>TIME</td><td>сомь</td><td>CBAB</td><td></td><td></td><td>tomiverg (w)</td><td>VANTAZE</td><td>LEW NA </td><td></td></th<>		DATE	TIME	сомь	CBAB			tomiverg (w)	VANTAZE	LEW NA 	
8 AM Exterior-vesibule overhang- X X SHR/JC1-grey 8 AM building entrance X X X compound 8 AM Room 1130600 X X X X SHR/JC2-light 8 AM Room 1120200 X X X X SHR/JC2-light 8 AM Room 1270000 X X X X SHR/JC2-light 9 AM Room 1270000 X X X X SHR/JC2-light 08 AM Room 1270000 X X X X SHR/JC2-light 08 AM Exterior-vesibule overhang- X X X X TC1-textured compound 08 AM Exterior-vesibule overhang- X X X TC1-textured compound 08 AM Exterior-vesibule overhang- X X X TC1-textured compound 09/08/08 AM Exterior-vesibule overhang- X X X TC1-textured compound 09/08/08 AM <td>+</td> <td>0/03/08</td> <td>AM</td> <td>1</td> <td>+</td> <td>Exterior-vesibule overhang- building entrance</td> <td>x</td> <td></td> <td>X</td> <td>×</td> <td>SHR/JC1-grey sheetrock/associated joint compound</td>	+	0/03/08	AM	1	+	Exterior-vesibule overhang- building entrance	x		X	×	SHR/JC1-grey sheetrock/associated joint compound
8 AM Room 1130600 X X X X SHR/JC2-light 08 AM Room 1120200 X X X X SHR/JC2-light 08 AM Room 1120200 X X X X SHR/JC2-light 08 AM Room 1270000 X X X X SHR/JC2-light 08 AM Building entrance X X X X SHR/JC2-light 08 AM Exterior-vesibule overhang- X X X X TC1-textured c 08 AM Building entrance X X X TC1-textured c 08 AM Exterior-vesibule overhang- X X X TC1-textured c 08 AM Building entrance X X X TC1-textured c 09/08/08 Mont N X X X TC1-textured c 1615 Time: 09/08/08 Mont N N TC1-textured c 1615 AM N N)/03/08	AM	1	1	Exterior-vesibule overhang- huilding entrance	×		×	×	SHR/JC1-grey sheetrock/associated joint compound
M Room 1120200 X X X SHR/JC2-light M Room 1270000 X X X X SHR/JC2-light M Room 1270000 X X X X X SHR/JC2-light M Room 1270000 X X X X X X SHR/JC2-light M Exterior-vesibule overhang- X X X X X Compound M Building entrance X X X X X X TC1-textured c M Building entrance X X X X X TC1-textured c M Building entrance X X X X TC1-textured c M Building entrance X X X X TC1-textured c M Building entrance X X X TC1-textured c M Building entrance X X X TC1-textured c M Building entrance X X X TC1-)/03/08	MM	1	<u> </u>	Room 1130600	×		×	X	ight
8AMRoom 1270000XXXSHR/JC2-light 98 AMExterior-vesibule overhang-XXXCompound 98 AMExterior-vesibule overhang-XXTC1-textured c 98 AMExterior-vesibule overhang-XXTC1-textured c 98 AMExterior-vesibule overhang-XYTC1-textured c 98 AMExterior-vesibule overhang-XTC1-textured c $90/08/08$ MExterior-vesibule overhang-XDate:TC1-textured c 1615 Date:Received by: (Signature)Relinquished by: (Signature)Date: 1615 Time:(Printed)(Printed)Time:	-)/03/08	AM	1		Room 1120200	×		X	x	SHR/JC2-light grey sheetrock/associated joint compound
88 AM Exterior-vesibule overhang- X X 08 AM Building entrance X X 08 AM Exterior-vesibule overhang- X X 08 Date: Received by: (Signature) Refinquished by: (Signature) 09/08/08 Adduct Admediance Interduct 1615 Time: (Printed) (Printed)		<u>)/03/08</u>	AM	1		Room 1270000	x		X	X	SHR/JC2-light grey sheetrock/associated joint compound
38 AM Exterior-vesibule overhang- X X 38 AM Building entrance X X 38 AM Building entrance X X 39/08/08 Heller Received by: (Signature) Relinquished by: (Signature) 1615 Heller Rinted (Printed)		9/03/08	AM		1	6	×			х	TC1-textured ceiling coating
38 AM Exterior-vesibule overhang- X X 30 building entrance X X X 31 building entrance X X X 32 Date: Received by: (Signature) Relinquished by: (Signature) 33 09/08/08 Hele Remaind X 34 Time: (Printed) Relinquished by: (Signature)		9/03/08	WV			õ	x			x	TC1-textured ceiling coating
Date: Received by: (Signature) 09/08/08 Helen Come Time: (Printed) 1615 Helen Rinned		9/03/08	AM			6	X			X	TC1-textured ceiling coating
Time: (Printed) (Printed)	Relinquished by: (Sigr	nature)		Date 09,	/08/0		*	Relinquíshe	i nya ba	Signature)	Date: Received by: (Signature)
	(Printed)		$\overline{\left(\begin{array}{c} \end{array} \right)}$	Tim	ذة	2		(Printed)			Time: (Printed)
	Gregory Kaczynski	ki			1615	Helen Kimsa					
Remarks: If samples 4- 6 are positive, the material should be resampled. The samples may have Condition of Samples: Ver No heen contaminated during collection (due to transite panel).	Remarks: If sample heen contaminated	oles 4- 6 a	ure positiv	e, the	2 mai	terial should be resampled. The same ansite namel)	mples n	ay have	Coi Acc	idition of Samp eptable: Yes	7

168 0800

30/6/6

Eatton: September 2007 Supersede Previous Edition		(LAB ID #. 35928	TURNAROUND TIME	PLM: 24hr X 48hr 3day 5day	TEM: 24hr X 48hr 3day 5day			MATERIAL		GR1-yellow grout under ceramic tile GR2-white grout between tiles	GR1-yellow grout under ceramic tile GR2-white grout between tiles	GR1-yellow grout under ceramic tile GR2-white grout between tiles	G1-yellow glue under laminate window sill	G1-yellow glue under laminate window sill	WG1-grey window glaze	WG1-grey window glaze	WG2-grey window glaze	WG2-grey window glaze	Date: Received by: (Signature)	Time: (Printed)	••••••••••••••••••••••••••••••••••••••	0800
					_		((IE BEW RI LEW RA				X		Х		x		IIC)		Condition of Samples: Acceptable: Yes Comments:	19/08
	U V				TERS					%I< ЛI) тиод										Relinquíshed by: (Signature)		Condition of Sam Acceptable: Yes Comments:	19
	TLI	X			PARAMETERS					VAVEASE	×	×	×							shed by			0
	AMP	TOD			PAR		(1	noitouba	n oin	PLM NY (w) gravimet VITISOY)										Relinqui:	(Printed)	The samples may have	
	K S	CUS								PLN EPA	×	×	×	Х	x	Х	Х	X	×	4.		mples t	
	ASBESTOS BULK SAMPLING	CHAIN OF CUSTODY		BBO FECT NAME	PRUJECT NAME DPW-CCSU-Harrison J. Kaiser	Hall New Britain, CT	(PRINTED)	Gregory Kaczynski		SAMPLE LOCATION	Room 1100000-Men's bathroom	Room 1100000-Men's bathroom	Room 1100000-Men's bathroom	Room 1130600	Room 1270000	Room 1130600-Type I window	Exterior-D-side-Type I window	Exterior-D-side-bathroom windows	Exterior-D-side-bathroom windows	18 Aller Reman	(Frinted) Helen Rimsa	be resampled.	
					DPW-	Hall New H	(PRIN	Grego	TVPE	евув										Date: 09/08/08	Time: 1615	he mat	
		095					۱ ۱		≿ [сомр										Date: 09/	Ē.	itive, tl on (du	
	ΗI	3UT 06	692				E			TIME	AM	AM	AM	AM	AM	AM	AM	AM	AM			are posi collecti	
	ROAD NOR	ONNECTIC	5 (860) 298-9. 2-6380	0000-0	UMBER	001	(SIGNATH			DATE	09/03/08	09/03/08	09/03/08	09/03/08	09/03/08	09/03/08	09/03/08	09/03/08	09/03/08	(Signature)	ynski	vamples 4- 6 a	
S H	21 GRIFFIN ROAD NORTH	WINDSOR, CONNECTICUT 06095	TELEPHONE (860) 298-9692 FAX (860) 298-6380	FAA (ouu) 250	PROJECT NUMBER	106957-9095-0001	INSPECTOR: (SIGNATURE)	9		FIELD SAMPLE NUMBER	19	20	21	22	23	24	25	26	27	Relinquished by: (Signature)	(Printed) Gregory Kaczynski	Remarks: If samples 4- 6 are positive, the material should the been contaminated during collection (due to transite panel).	

												Sup	Edition	Edition: September 2007 Supersede Previous Edition	er 2007 Edition
21 GRIFFIN ROAD NORTH	ROAD NORC				ASBESTOS BULK SAMPLING	LK S	AMPL	UNG							
WINDSOR, CONNECTICUT 06095	DUNECTIC	UT 0609	5		CHAIN OF CUSTODY	CUS	TODY	•							
TELEPHONE (860) 298-9692 FAX (860) 298-6380	E (860) 298-90 8-6380	592									LA J	LAB ID #.	56	35928	
PROJECT NUMBER	UMBER		F	PRO	PROJECT NAME						TUL	RNAR	TURNAROUND TIME	TIME	
				DPW	DPW-CCSU-Harrison J. Kaiser		PARAN	PARAMETERS	S	PLM:	24hr	×	48hr	3day	5day
106957-9095-0001	0001			Hall New	Hall New Britain, CT					TEM:	24hr	× &	48hr	3day	5day
INSPECTOR: (SIGNATURE)	: (SIGNATU	RE)	Ē	(PRI	(PRINTED)	9	(u	ž	(!						
	Å		<u> </u>	Greg	Gregory Kaczynski		oitouba	JN	7.861 8						
			TYPE	PE			ər əi	100				L VI V	MATEDIAL	-	
FIELD SAMPLE NUMBER	DATE	TIME	сомр	€ВУВ	SAMPLE LOCATION	(POSITIV) PLM EPA 6	PLM VERIMAN (POSITIV) PLM VY V	FOINT C	(IE BFW ZEI LEW NA Z (IE >1% ?			M	I EKIA	2	
28	09/03/08	AM			Room 0090000-window	×			×	WG3-e	WG3-exterior white window glaze	nite wi	ndow g]	laze	
29	09/03/08	AM		1	Room 0090000-window	×				WG3-e	WG3-exterior white window glaze	nite wi	g wobn	laze	
30	09/03/08	AM			Exterior-Type I window- between metal frame and side wall	×			×	BC1-g1	BC1-grey building caulk	ıg caul	k		
31	09/03/08	AM			Exterior-Type I window- between metal frame and wall	×				BC1-g1	BC1-grey building caulk	ng caul	lk		
32	09/03/08	AM				Х			×	BC2-gi	BC2-grey building caulk	ng cau	Ik		
33	09/03/08	AM			Exterior-Type I window-on window sill	х				BC2-gi	BC2-grey building caulk	ng cau	lk		
34	09/03/08	AM			Exterior-Type I window- between the blue metal panels above windows	×			×	BC3-g	BC3-grey building caulk	ng cau	IK		
Dolinanichad hv-1 Simutum	I Simutum		Date	ام	Received hv: (Signature)		Relinquished by: (Signature)	d by: (Sig	nature)		Date:	Re	ceived by	Received by: (Signature)	
		\bigwedge	õ	80/80/60)									
(Printed)			Time:	ne:	(Printed)		(Printed)				Time:	(Pr	(Printed)		
Gregory Kaczynski	zynski			1615	Helen Kinsa	Ľ	مر مربع			10	7				
Remarks: If	samples 4- 6 a	re positiv	ve, th	le ma	Remarks: If samples 4- 6 are positive, the material should be resampled. The samples may have	unples 1	may have	Conditi Accepta	Condition of Samples: Acceptable: Yes	2	J			Page 4 of 7	
рееп сощань	naleu uuruy v	מוומריוהיי	I (nn		been contantinated during contection (due to transite parter).			Comments:	ents:			_			

9/9/08 0800

13. CRITER ROUNDRITT WUNSIONE CONVECTICT IONO WUNSIONE CONVECTICT MONE WINDOWST-OWNECTICT IONO WINDOWST-OWNECTICT MONE FROMECTIONINGRAM FROME FROMECTIONINGRAM FROME FROMECTIONINGRAM FROME FROMECTIONINGRAM FROME FROMECTIONINGRAM FROME FROMECTIONINGRAM FROME FROME FROME FROME FROME FROMECTIONINGRAM FROME FROM	L L L L												S	Editic upersed	Edition: September 2007 Supersede Previous Edition	nber 200 s Edition
CELICIC 10605 CELICIC 10605 CELICIC 10605 CELICIC 10605 CELICIC 1060 CELICIC 107 CELICIC 1	21 GRIFFIN	ROAD NOR	ΤH			ASBESTOS BUL	K SAN	MPL	INC	r 🛏						
R PROJECT NME Influence PROJECT NME Influence PROJECT NME Influence PROJECT NME Influence PROMISECTION Influence PROMISECTIONE Influence PROMISECTIONE Inf	WINDSOR, (CONNECTIC E (860) 298-9	CUT 060 692	95		CHAIN OF C	CUSIC	λαί						-	5978	
R PROJUCT NAME PARAMETERS PARAMETERS <td>FAX (860) 29</td> <td>8-6380</td> <td></td>	FAX (860) 29	8-6380														
Hait Hait <th< td=""><td>PROJECT N</td><td>UMBER</td><td></td><td></td><td>PRC</td><td>DJECT NAME V-CCSU-Harrison J. Kaiser</td><td>£</td><td></td><td></td><td>Q</td><td>PLM:</td><td>T 24hr</td><td>URNA X</td><td>48hr 48hr</td><td>D TIME 3day</td><td>5da</td></th<>	PROJECT N	UMBER			PRC	DJECT NAME V-CCSU-Harrison J. Kaiser	£			Q	PLM:	T 24hr	URNA X	48hr 48hr	D TIME 3day	5da
TERIAL TERMINED Cregory Kaczyuski Cregory Kaczyuski Image: Construct the second sec	[06957-9095-	0001			Hall New	l Britain. CT	<u>,</u>	AKAM	LIER	3	TEM:	24hr		48hr	3day	5da
MATERIAL MATERIAL ANTIFLE DATE TYPE SAMTLE LOCATION PLAN VERY DATE MATERIAL ANTIFLE DATE TWPE SAMTLE LOCATION PLAN VERY DATE MATERIAL ANTIFLE DATE TWPE SAMTLE LOCATION PLAN VERY DATE MATERIAL ANTIFLE DO0308 AM Exercicit Type L windows PLAN VERY DATE BC3-grey building caults 090308 AM Exercicit Type L windows Notation Panels X RC4-grey building caults 090308 AM Exercicit Type L windows Notation Panels X BC3-grey building caults 090308 AM Exercicit Type L windows Notation Panels X BC4-grey building caults 090308 AM Exercicit Type L windows X BC4-grey building caults 090308 AM Boow the windows X BC4-grey building caults 090308 AM Boow the windows X BC5-grey building caults 090308 AM Boow the windows X BC6-iight grey building caults	NSPECTOF	t: (SIGNATU	RE)	\top	[PR]				<u> </u>							
FIELD THE TOPE SAMPLE LOCATION REAL MATERIAL CVRBER DATE TIME FIELD REAL PLAINER TO PLAINER	, M			\mathbb{N}	Gree		(90T 1.891	(4OT)		198.4 (%01						
FIELD AWPLE DATE TIME OI EXAMPLE LOCATION EVALUTOR (10) EVALU				É	/PE		NOB	S Э /		90N			M	ATERI	AL	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FIELD SAMPLE NUMBER	DATE	TIME	СОМЬ	CKAB		VITISO9) 	VITI2O9)		LEW NA (IE >1%						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35	09/03/08	AM			Exterior-Type I window- between the blue metal panels above windows	×				BC3-g	trey build	ling ca	ulk		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	09/03/08	MA	ļ		Exterior-Type I window-on the top and bottom of blue panels above the windows	×			x	BC4- <u>ę</u>	grey build	ding ca	uılk		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	37	09/03/08	AM			Exterior-Type I window-on the top and bottom of blue panels above the windows	X				BC4-5	grey build	ding cí	aulk		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	09/03/08	AM			Room 1130600-between window sill and window	x			×	BC5-{	grey buil	ding ci	aulk		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	09/03/08	AM			Room 1270000-between window sill and window	X				BC5-{	grey buil	ding ca	aulk		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	09/03/08	AM			n 1260000-vertic een window and	X			×	BC6-	light grey	y build	ing caul	<u></u>	
y Kaczynski Time: (Printed) y Kaczynski 1615 Helen Rim Samples 1615 Helen Rim Samples Condition of Samples: OL cs: If samples 4- 6 are positive, the material should be resampled. The samples may have beceptable: Yes Condition of Samples: OL ontaminated during collection (due to transite panel). $q/p/n F$ $0 S UO$	Relinquished by	: (Signature)		ă	ite: 9/08/	Received	Rei	inquished	by: (Si	gnature)		Date:		Received F	y: (Signatui	(a
es 4- 6 are positive, the material should be resampled. The samples may have $\begin{array}{c c} Condition of Samples: OL \\ Acceptable: Yes U No \\ Comments: \\ Q / P / 0 F U \\ 0 & 0 & 0 \end{array}$	(Printed) Gregory Kac	zvnski		i = 	me: 161;	(Printed) Holen		inted)				Time:		(Printed)		-
	Remarks: If been contam	samples 4- 6 a inated during	are positi collectio	n (dt	he m le to t	iaterial should be resampled. The san transite panel).	nples may 1	have	Condit Accept Comm	ion of Sample able: Yes ents:	67				Page 5 0	L.
-								-	6	19/0 8	e d	00	200	2		

									Edition	Edition: September 2007	
	<i>2</i>								Supersede	Supersede Previous Edition	anter a statet at
21 GRIFFIN ROAD NORTH	ROAD NOR	ΗT			ASBESTOS BULK SAMPLING	IPLIN	0				
WINDSOR, CONNECTICUT 06095	ONNECTIC	CUT 060	95		CHAIN OF CUSTODY	λΠ				,	
TELEPHONE (860) 298-9692 FAX (860) 298-6380	E (860) 298-9 3-6380	692							LAB ID #. 35	35928	
PROJECT NUMBER	UMBER		\square	PRC	PROJECT NAME				TURNA		
	FOOT			DPW	/-CCSU-Harrison J. Kaiser	PARAMETERS	ERS		24hr X		
1000-2606-726001	TANC			New	нан New Britain, CT	F			TEM: 24hr X 48hr	3day 5day	
INSPECTOR: (SIGNATURE)	: (SIGNATL	RE)		(PR	(uoi 	(
$\overline{\langle}$				Gre	(90T8 1.861 8 1.991 8	(40T8	:10%) 1NN				
			TVPF	PE	с г 90 5 2	5 E	> ? 10:			•	
FIELD SAMPLE NUMBER	DATE	TIME	сомь	СВАВ	SAMPLE LOCATION PLM ELOCATION PLM EPA 60 (POSITIVE PLM EPA 60 (W/ gravimetri	ANALYZE B AUTIZOT) AUTIZOT)	POINT C 8 %1< 71)	(IE BFW ZEI LEW NA N	MATERIAL	-	<u>-</u>
41	09/03/08	AM			Room 1260000-vertical bead between window and concrete X wall				BC6-light grey building caulk		
42	09/03/08	AM			Room 1110000-vertical bead between window and metal wall X panel			х	BC7-light grey window caulk		T
43	09/03/08	WW			Room 1260000-vertical bead between window and metal wall X panel				BC7-light grey window caulk		т
44	09/03/08	AM	L		Room 1100000-window X			х	BC8-tan window caulk		T
45	09/03/08	AM	 		Room 1100000-window X				BC8-tan window caulk		1
46	09/03/08	AM			Exterior-window caulk from X room 0090000			×	BC9-white window caulk		Т
47	09/03/08	AM			Exterior-window caulk from X room 0090000				BC9-white window caulk		
Relinquished by: (Signature)	(Signature)		Date:	Date: 09/08/08	Received by: (Signature)	Relinquished by: (Signature)	(Signatt	ure)	Date: Received by	Received by: (Signature)	I
(Printed)			Ē	Time:	(Printed)	ited)			Time: (Printed)		
Gregory Kaczynski	rynski			1615	s Heley Kinsa				7		T
Remarks: If : heen contami	samples 4- 6 nated during	are positi collection	ive, tl n (du	le m e to	Remarks: If samples 4- 6 are positive, the material should be resampled. The samples may have been contaminated during collection (due to transite panel).		Condition of San Acceptable: Yes.	Condition of Samples: Acceptable: Yes	No	Page 6 of 7	
	0					5					1

.

9/9/08 0800

XT (05 70		
Proscience Analytical Services, Inc.	22 Cummings Park, Woburn, MA 01801 Ph. 781-935-3212 Fax 781-932-4857	TEM Bulk Chain of Custody Record

Date: 09/09/08

Analysis Type: Chatfield N.O.B N.Y.S Qualitative

Client Job Ref./Loc.: CT DPW- CCSU, Harrison J. Kaiser Hall, New Britain, CT 106957.9095.0001 TRC Relinquished by: Received by: Client Job#: Report to: Client:

H. Rinsa Kathuy autone 9-10-08 11:15AA D. LéPage G. Kaczynski

Turn Around Time:

Samplers Name:

<12 Hour

5 Day <3 Day <48 Hour <24 Hour

Other:

For Lab Use Only	Comments														
For La	able eipt														Comments
	n Acceptable on Receipt														Results Reported
	Location														Batch # R(
	Description	Glue	Glaze	Glaze	Glaze	Caulk	Cauilk	Caulk	Client # Bat						
	#00	28	28	28	28	28	28	128	128	28	28	28	35928	35928	Total
	Lab ID#	35928	35928	35928	35928	35928	35928	35928	35928	35928	35928	35928	359	355	# Spics
	Client ID #	22	24	26	28	30	32	34	36	38	40	42	44	46	For Lab Use Only

APPENDIX D

PLM LABORATORY ANALYSIS DATA

BULK ASBESTOS ANALYSIS REPORT

CLIENT: CT Department of Public Works

z

ı.

Site:CCSU, Harrison J. Kaiser Hall, New Britain, CTLab Log #:35928Project #:106957.9095.0001Date Received:09/09/08Date Analyzed:09/09/08

RESULTS

Sample No.	Color	Homogeneous	Multi- Layered	Layer No.	Other Matrix Mat'ls	Asbestos %	Asbestos Type
01	Grey	Yes	No			25%	Chrysotile
02						NA/PS	
03						NA/PS	
04	White	Yes	No			ND<1%	None
05	White	Yes	No			ND<1%	None
06	White	Yes	No			ND<1%	None
07	White	Yes	No		30% mineral wool	ND<1%	None
08	White	Yes	No		30% mineral wool	ND<1%	None
09	White	Yes	No		30% mineral wool	ND<1%	None
10	White (joint compound)	No	Yes	1		ND<1%	None
10	Grey (sheet rock)	No	Yes	2	10% cellulose	ND<1%	None
11	White (joint compound)	No	Yes	1		ND<1%	None
11	Grey (sheet rock)	No	Yes	2	10% cellulose	ND<1%	None
12	White (joint compound)	No	Yes	1		ND<1%	None
12	Grey (sheet rock)	No	Yes	2	10% cellulose	ND<1%	None
13	White (joint compound)	No	Yes	1		ND<1%	None
13	Light Grey (sheet rock)	No	Yes	2	10% cellulose	ND<1%	None
14	White (joint compound)	No	Yes	1		ND<1%	None

NVLAP Lab Code 101424-0 NY #10980
 TRC LABORATORY ASBESTOS ANALYTICAL CERTIFICATIONS

 AIHA #100122
 CT #PH-0426
 ME LA-0075, LB-0071

 RI #AAL-007C3
 TX #300354
 VT #AL014538

MA #AA000052 VA #3333 000283

Page 2 of 3 35928.DPW.doc

						33	928.DPW.doc
14	Light Grey (sheet rock)	No	Yes	2	10% cellulose	ND<1%	None
15	White (joint compound)	No	Yes	1		ND<1%	None
15	Light Grey (sheet rock)	No	Yes	2	10% cellulose	ND<1%	None
16	White	Yes	No			ND<1%	None
17	White	Yes	No			ND<1%	None
18	White	Yes	No			ND<1%	None
19	Yellow (grout)	No	Yes	1		ND<1%	None
19	White (grout)	No	Yes	2		ND<1%	None
20	Yellow (grout)	No	Yes	1		ND<1%	None
20	White (grout)	No	Yes	2		ND<1%	None
21	Yellow (grout)	No	Yes	1		ND<1%	None
21	White (grout)	No	Yes	2		ND<1%	None
22	Yellow	Yes	No			ND<1%	None
23	Yellow	Yes	No			ND<1%	None
24	Grey	Yes	No			ND<1%	None
25	Grey	Yes	No			ND<1%	None
26	Grey	Yes	No			ND<1%	None
27	Grey	Yes	No			ND<1%	None
28	White	Yes	No			ND<1%	None
29	White	Yes	No			ND<1%	None
30	Grey	Yes	No			ND<1%	None
31	Grey	Yes	No			ND<1%	None
32	Grey	Yes	No			ND<1%	None
33	Grey	Yes	No			ND<1%	None
34	Grey	Yes	No			ND<1%	None
35	Grey	Yes	No			ND<1%	None
36	Grey	Yes	No			ND<1%	None
37	Grey	Yes	No			ND<1%	None
38	Grey	Yes	No			ND<1%	None
39	Grey	Yes	No			ND<1%	None
40	Light Grey	Yes	No			ND<1%	None
41	Light Grey	Yes	No			ND<1%	None
42	Light Grey	Yes	No			ND<1%	None
43	Light Grey	Yes	No			ND<1%	None

TRC LABORATORY ASBESTOS ANALYTICAL CERTIFICATIONSAIHA #100122CT #PH-0426ME LA-0075, LB-0071RI #AAL-007C3TX #300354VT #AL014538

MA #AA000052 VA #3333 000283

44	Tan	Yes	No	 	ND<1%	None
45	Tan	Yes	No	 	ND<1%	None
46	White	Yes	No	 	ND<1%	None
47	White	Yes	No	 41 7 9.	ND<1%	None

NA/PS- Not Analyzed/Positive Stop

Reporting limit- asbestos present at 1% ND<1% - asbestos was not detected Trace- asbestos was observed at level of less than 1%

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. In those cases, negative results must be confirmed by quantitative transmission electron microscopy.

The Laboratory at TRC follows the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation (1982), and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials (EPA/600/R-93/116), July 1993, R.L. Perkins and B.W. Harvey which utilizes polarized light microscopy (PLM). Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2009. TRC is an American Industrial Hygiene Association (AIHA) accredited lab for PLM effective through August 1, 2010. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and the QC data related to the samples is available upon written request from the client.

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Helen Rimsa Analyst:

Kathleen Williamson QC Analyst:

Reviewed by:

Laboratory Analyst

Approved

Signatory:

Kuiselian

Kathleen Williamson Laboratory Manager

Date Issued:

9/9/08

APPENDIX E

TEM LABORATORY ANALYSIS DATA

nt #: nt Project: nt Reference: nt Name:		297 108957,9095,0001 CT DPW - Harrison J. Kaiser Hall, New Britain, CT TRC Environmental Corp. (CT)	ain, CT									I.	Metho Batch: Date A Date R Date of	Method: Batch: Date Analyzed: Date Received: Date of Report:	TEM NOB NT 10570 9/12/2008 E 9/10/2008 E 9/12/2008	40B 570 008 008 008 008
0,8	Field D	Description	Color	Initial		8	% Asbesl	Asbestos Types	2 2		%	z	3	· ·		Prened/
				Sample Weight	С Н К Н	AMO	ACT	CRO	ANT	TRE	Other Non-asb.	0	Carb.	Total % Astestos	Analyzed /Charged	Charged
1047	22	Yellow glue		-0150	8	ß	8	8	00	8	\$		32.67	Ę	Yes	Ŷ
048	24	Gray window glaze		.1268	8	8	8	8	00	8	27.41	37.91	34.68	Ŷ	Yes	ę
670	26	Grey window glaze		.0771	8	8	8	8	B	00	32.04	38.26	29.70	2	Yes	Ł
050	28	Exterior while window glaze		.1057	00.	8	8	8	1.32	8	5.31	7.47	85.90	1.32	Yes	2
051	30	Gray building caulk		.3424	8	8	8	8	00	00	18.16	38.33	43,46	Q	Yes	Ŷ
052	32	Gray building caulk		.3197	8	8	8	00	8	8	13.83	45.23	40.94	Q	Yes	Ŷ
063	34	Gray building caulk		.2976	B	8	B	g	00	8	10.92	52.35	36.73	Ð	Yes	ß
054	36	Gray building caulk		.1128	8	8	8	8	.00	00	10.99	54.79	34,22	QN	Yes	ŝ
055	38	Gray building caulk		1181	8	8	00.	00.	8	8,	8 .	25.83	73.33	Đ	Yes	Ŷ
056	40	Light gray building caulx		.1686	00	00.	00.	8	8	S	18.44	39.98	41.58	Ð	, Yes	No No
057	42	Light gray window caulk		.3342	8	8	8	8	8	00-	11.10	57.00	31.90	Q	Yes	Ŷ
058	44	Tan window caulk		.1921	5.21	8	9	8	8	00.	2.81	26.13	65.85	5.21	Yes	Ŷ
959	46	White window caulk		.1008	8	8	8	8	8	8	5.85	25.00	69 15		Yes	8

nd Holacsek, Analyst

toos Codes: CHR = Chrysotile AMO = Amosile CRO = Crocidofite ACT = Actinolite TRE = Tremolite AMT = Anthophyllite TR = Trace = < 1% ND = None Detected

ProScience Analytical Services, Inc

22 Cummings Park, Woburn, Massachusetts 01801 781-935-3212 ~ Fax: 781-932-4857 ~ E.Mail general@proscience.net PROSCIENCE

Page 1 of 1

	TRO		Lei	ad Base	d Paint I	Measu	rement (Summa	Lead Based Paint Measurement Summary Table				
Device(s): Site: Project # :		ay Fluor Fluores ticut St 31	Niton XL-309 X Ray Fluorescence (XRF) Spectrum Analyzer, Serial #U68 Niton 7007 X Ray Fluorescence (XRF) Spectrum Analyzer, Serial #V1044 Central Connecticut State University - Harrison J. Kaiser Hall, Ne 106957-9095-0001	pectrum An ctrum Analy Harrison J	Analyzer, Serial #U688 alyzer, Serial #V1044 n J. Kaiser Hall, New Britain, Connecticut	#U688 /1044 I, New Br	itain, Conn	ecticut					
Date(s): Inspector: Ranges:	9/3/2008 Bryce Aston (St (NEG <inc<pos)< th=""><th>ate of C): 0.0<0</th><th>9/3/2008 Bryce Aston (State of Connecticut License #00 (NEG<inc<pos): (osha="" 0.0<0.05<0.05="" compl<="" th=""><th>ense #0018 A Compliar</th><th>1838) liance)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></inc<pos):></th></inc<pos)<>	ate of C): 0.0<0	9/3/2008 Bryce Aston (State of Connecticut License #00 (NEG <inc<pos): (osha="" 0.0<0.05<0.05="" compl<="" th=""><th>ense #0018 A Compliar</th><th>1838) liance)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></inc<pos):>	ense #0018 A Compliar	1838) liance)								
Number	Room	Side	Structure	Feature	Material	Color	Condition	Result	Reading	Precision	Depth	Duration	Date/Time
									(mg/cm2)	(mg/cm2)	Index	(sec)	
-			Shutter Calibration	uc				***			0	32.3	9/3/2008 7:02
2	and some and the second s		3.5 Calibration		-			***	3.2	0.3	1.1	11.9	9/3/2008 7:04
ر د	and the second		3.5 Calibration					***	3.8	0.3	1.2	14.4	9/3/2008 7:05
4		1 1 1 1	3.5 Calibration					***	3.5	0.3	1.1	11.9	9/3/2008 7:05
5	Exterior entrance	۵	ceiling		sheetrock	white	intact	NEG	0.0	0.0	-	6.2	9/3/2008 7:25
9	Exterior entrance	Δ	ceiling overhang			grey	intact	POS	4 0	0.1	<u>1</u> .3	<u>6</u> .6	9/3/2008 7:25
7				VOID		-							9/3/2008 8:13
æ	Room 1270000		wall		sheetrock	blue	intact	NEG	0.0	0.0	-	4.8	9/3/2008 8:13
о	Room 1270000		column		metal	blue	intact	NEG	0.0	0.0	-	10.2	9/3/2008 8:34
10	Room 1260000		wall		concrete	blue	intact	POS	0.1	0.4	3.5	4.9	9/3/2008 8:43
11	Room 1280000		column		metal	lt. brown	intact	NEG	0.0	0.1	1.4	4.8	9/3/2008 8:44
12	Room 1280000		wall		sheetrock	It. brown	intact	NEG	0.0	0.1	1.5	4.9	9/3/2008 8:44
13	Room 1120000		wall		sheetrock	lt. brown	intact	NEG	0.0	0.1	1.1	10.1	9/3/2008 8:59
14	Room 1120000	-	column		metal	lt. brown	intact	POS	0.5	0.1	2.4	14.1	9/3/2008 9:01
15	Room 1120100		wall		concrete	lt. brown	intact	NEG	0.0	0.1	-	4.9	9/3/2008 9:03
16	Room 1130600		window	divider	metal	metal	intact	POS	0.1	0.2	5.9	4.8	9/3/2008 9:07
17	Room 1160101		wall		concrete	It. brown	intact	NEG	0.0	0.1	1.5	6.3	9/3/2008 9:36
18	Room 1160100		wall		concrete	lt. brown	intact	NEG	0.0	0.1	-	6.2	9/3/2008 9:38

APPENDIX G

Appendix G - TRC Environmental Corporation

Pre-Renovation Investigative Survey for Asbestos-Containing Materials Central Connecticut State University – Kaiser Hall Annex New Britain, Connecticut, Project No. RC-05-05, Building no. 39744 Dated May 11, 2005 83 pages

REPORT

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL ANNEX NEW BRITAIN, CONNECTICUT

PROJECT NO. R**6**-05-05 BUILDING NO. 39744

Prepared for

State of Connecticut Department of Public Works

Hartford, Connecticut

Prepared by

TRC Environmental Corporation Windsor, Connecticut

May 11, 2005

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL ANNEX NEW BRITAIN, CONNECTICUT

PROJECT NO. RS-05-05 BUILDING NO. 39744

> Prepared for State of Connecticut Department of Public Works Hartford, Connecticut

Prepared by TRC Environmental Corporation Windsor, Connecticuty

Donald LePage

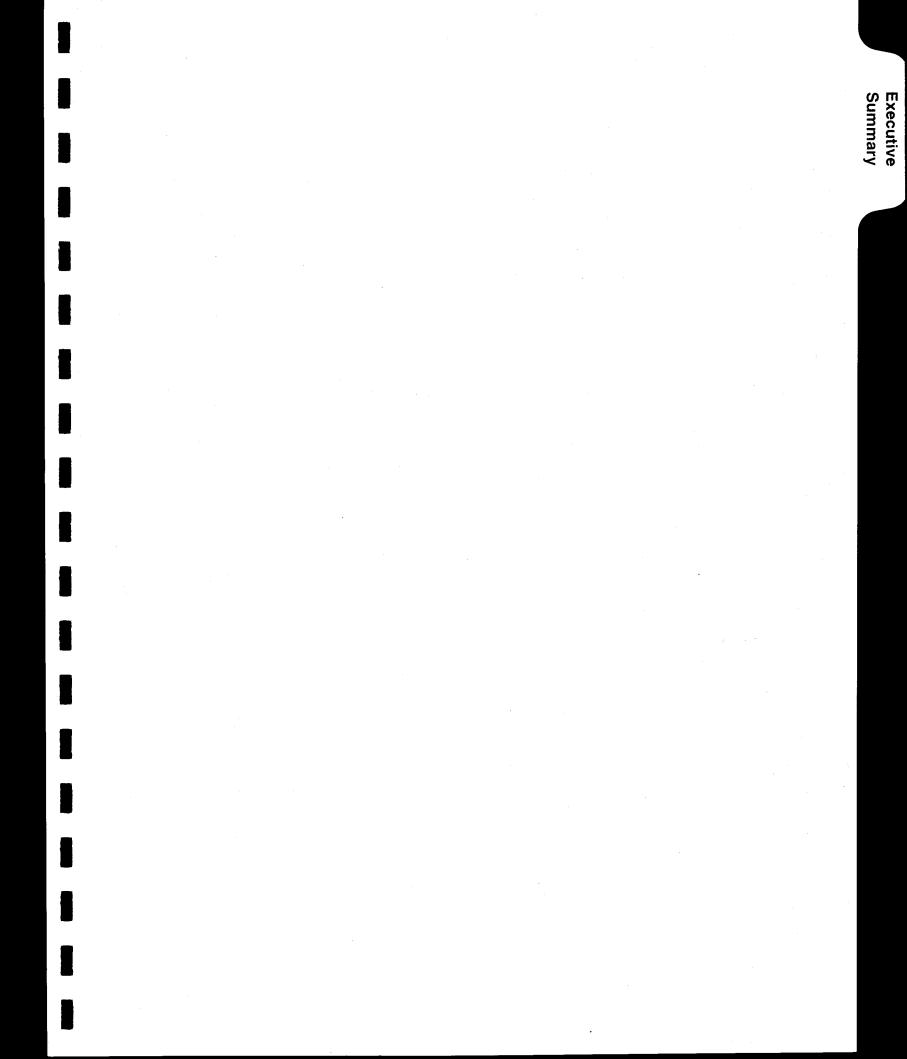
Project Manager

TRC Project No. 43500-1340-00001 May 11, 2005

> TRC Environmental Corporation 5 Waterside Crossing Windsor, Connecticut 06095 Telephone (860) 298-9692 Facsimile (860) 298-6399

TABLE OF CONTENTS

EXECUTIVE SUMMARY

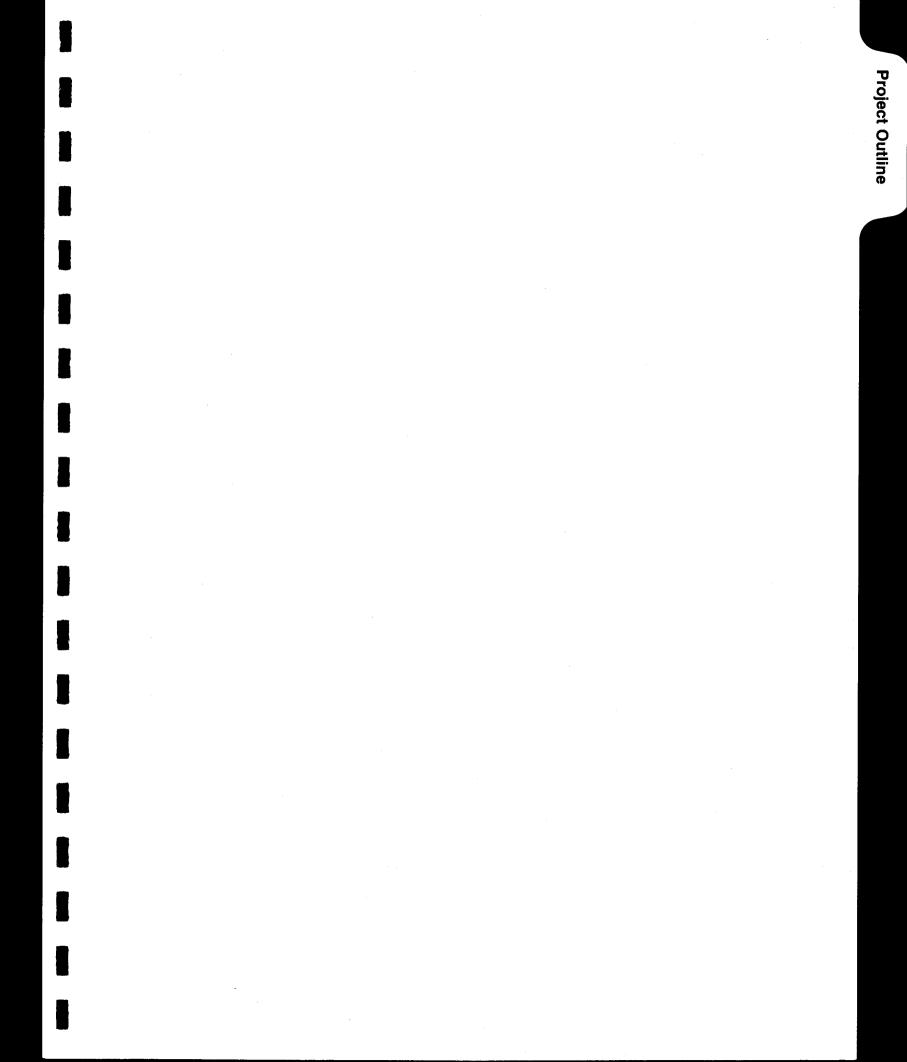

PROJECT OUTLINE

TABLES

1	BULK SAMPLE SUMMARY OF SUSPECT ASBESTOS CONTAINING
	MATERIALS
2	IDENTIFIED ASBESTOS CONTAINING MATERIALS
3	CONFIRMED NON-ASBESTOS CONTAINING MATERIALS
4	SUMMARY OF GYMNASIUM FLOORING MATERIAL - HAZARDOUS
	WASTE CHARACTERIZATION

APPENDICES

Α	SITE SKETCH
В	LABORATORY AND INSPECTOR ACCREDITATIONS
С	ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS
D	PLM LABORATORY ANALYSIS DATA
E	TEM LABORATORY ANALYSIS DATA
F	GYMNASIUM FLOORING MATERIAL WASTE CHARACTERIZATION DATA



EXECUTIVE SUMMARY

On April 14,2005 TRC Environmental Corporation (TRC) of Windsor, Connecticut conducted an inspection for suspect asbestos-containing materials (ACM) at Central Connecticut State University, Kaiser Hall Annex "Bubble" in New Britain, Connecticut. The inspection was initiated prior to planned renovation activities in accordance with USEPA Asbestos National Emissions Standard for Hazardous Air Pollutants (NESHAPS) requirements.

The scope of the inspection was limited to the gymnasium floor area at the Kaiser Hall Annex "Bubble". A Connecticut licensed asbestos inspector from TRC conducted the inspection in accordance with USEPA AHERA protocols and ASTM Standard E2356-04. Bulk samples of suspect materials were collected and analyzed via polarized light microscopy (PLM) and/or transmission electron microscopy (TEM) methods at CTDPH/NVLAP accredited laboratories. No ACM was identified in gymnasium floor. Asbestos-Containing Materials (ACM) to be impacted by renovation activities must be removed prior to disturbance in accordance with OSHA, USEPA, CTDPH, and CTDEP standards for asbestos abatement/disposal. Detailed results of the asbestos survey can be found in Tables 1-3 and Appendices A through E.

TRC also sampled the floor to be tested for Total Mercury (Hg) and for a Toxicity Characteristic Leaching Procedure (TCLP) for Mercury to determine if the gymnasium floor has to be disposed of as hazardous waste. Both Total Mercury and TCLP for Mercury were below the detection limits and the material can be disposed of as normal construction waste. Detailed results of these tests can be found in Table 4 and Appendix F.

PROJECT OUTLINE

DAS Contract No.

Project No.:

DPW Building No:

Project Address:

TRC Project No.:

Asbestos Inspector:

Date of Inspection:

Asbestos Identified:

Hazardous Material:

RS-05-05

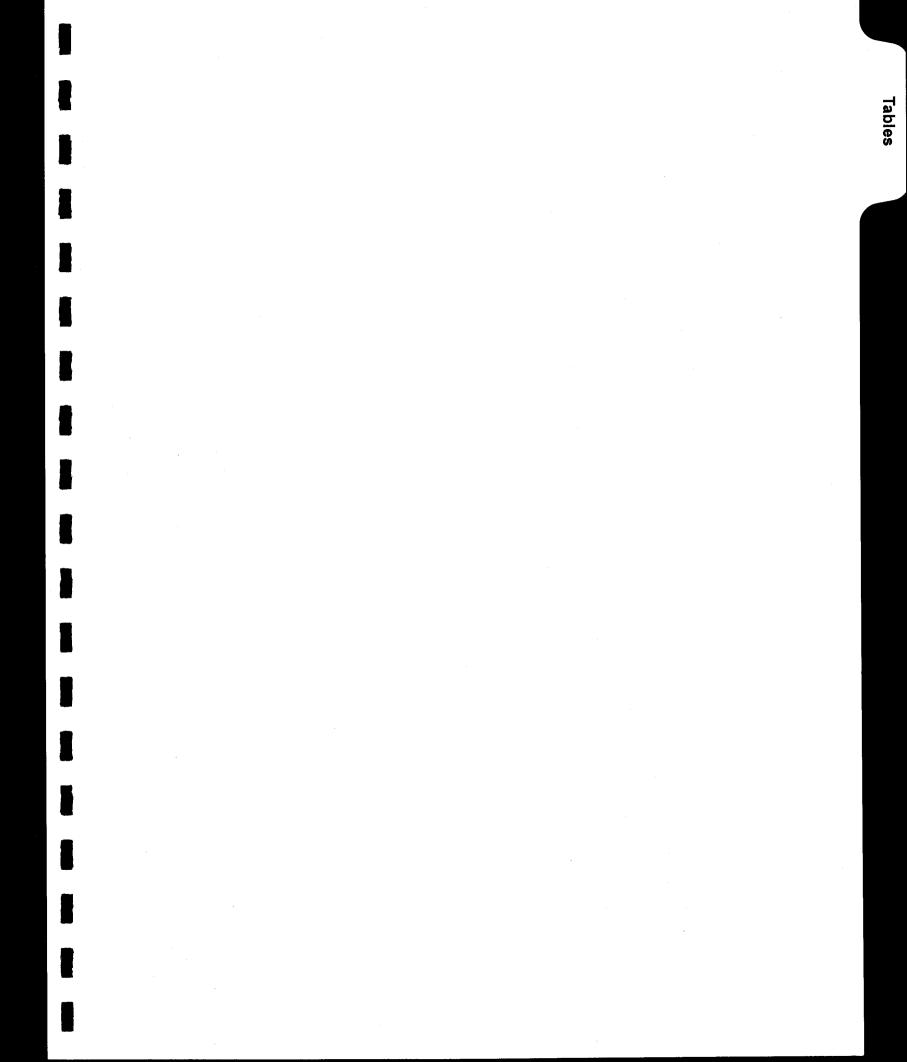
03PSX0346E

39744

Kaiser Hall Annex Central Connecticut State University Stanley Street, New Britain, CT

43500-1340-00001

Stephen Arienti (LIC #000583)

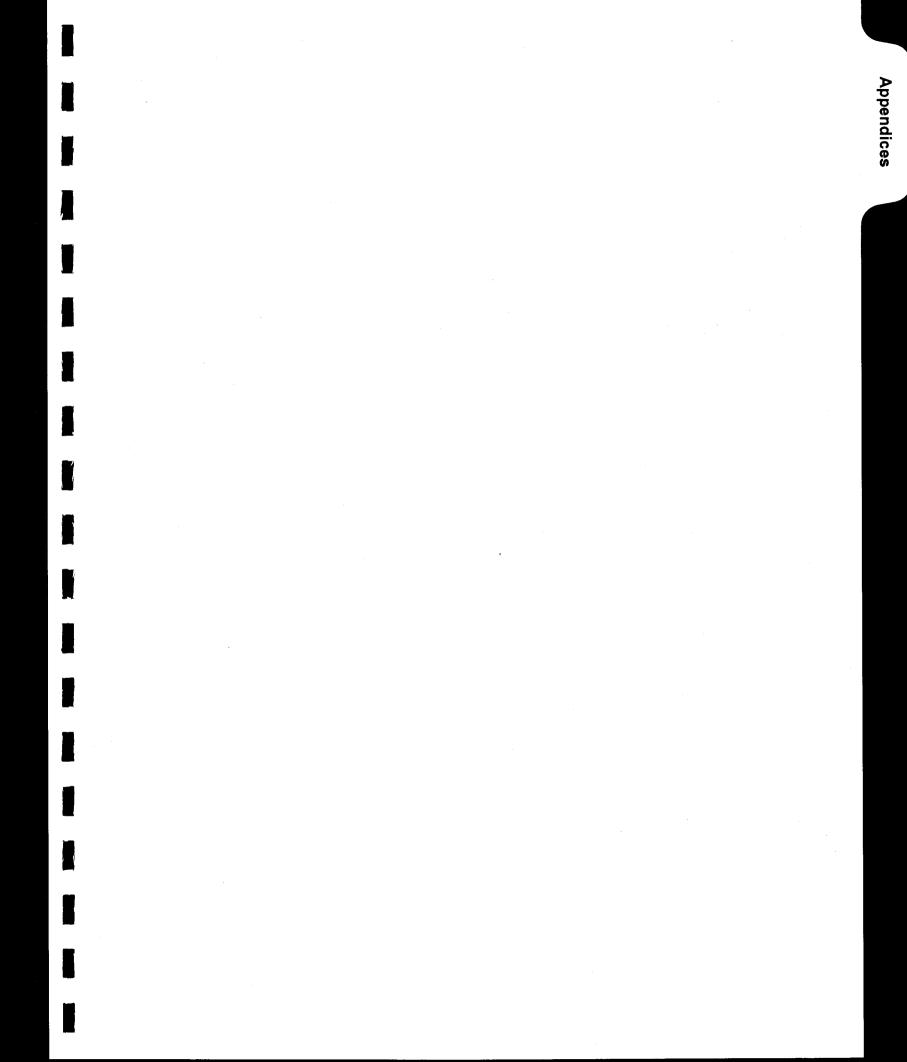

April 14, 2005

None

No

Additional Notes:

The site investigation was limited to the collection and analysis of suspect asbestos-containing materials and analysis for mercury associated with renovations to the gymnasium floor at the Kaiser Hall Annex "Bubble" at Central Connecticut State University.

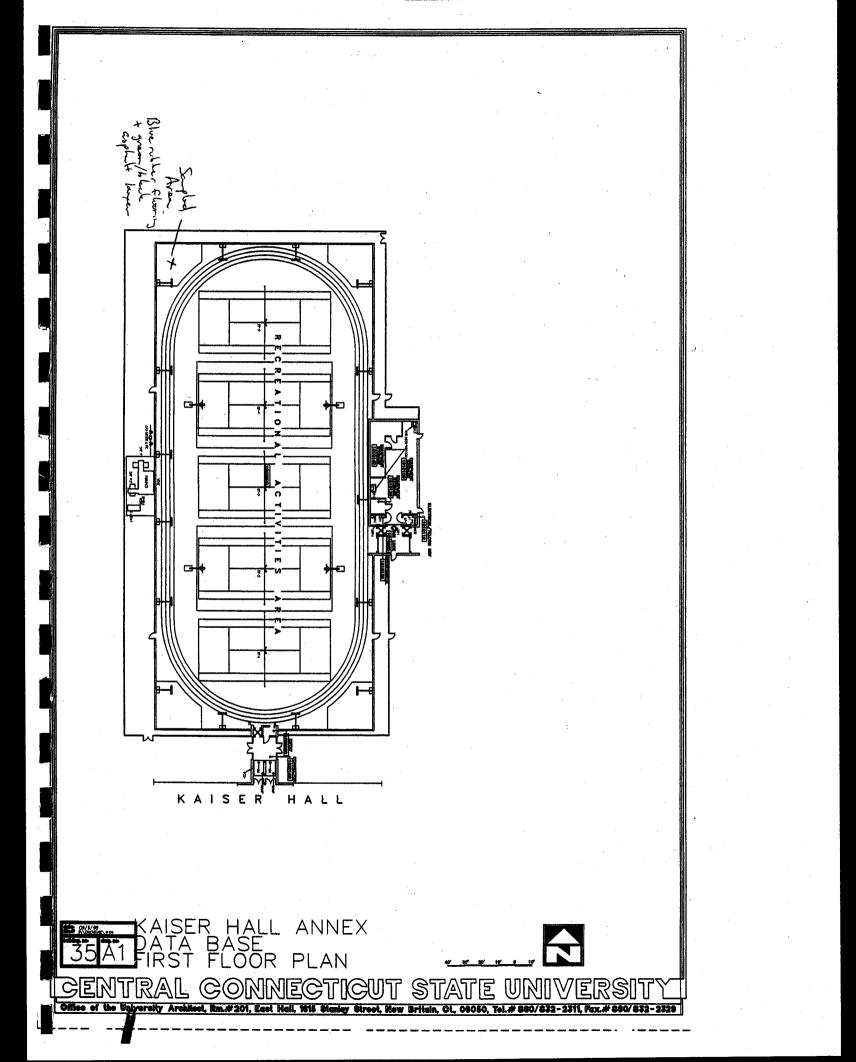


TABLES

ľ

Ì

Į

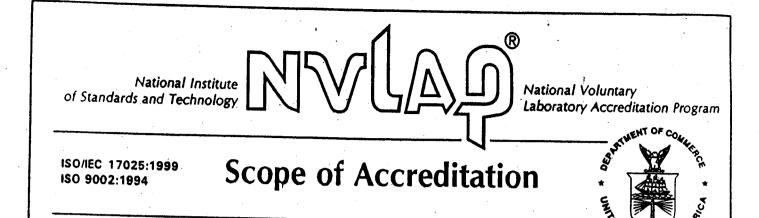


APPENDIX A

Ì

Ĩ

SITE SKETCH



APPENDIX B

I

I

LABORATORY AND INSPECTOR ACCREDITATIONS

BULK ASBESTOS FIBER ANALYSIS

Page: 1 of 1 NVLAP LAB CODE 101424-0

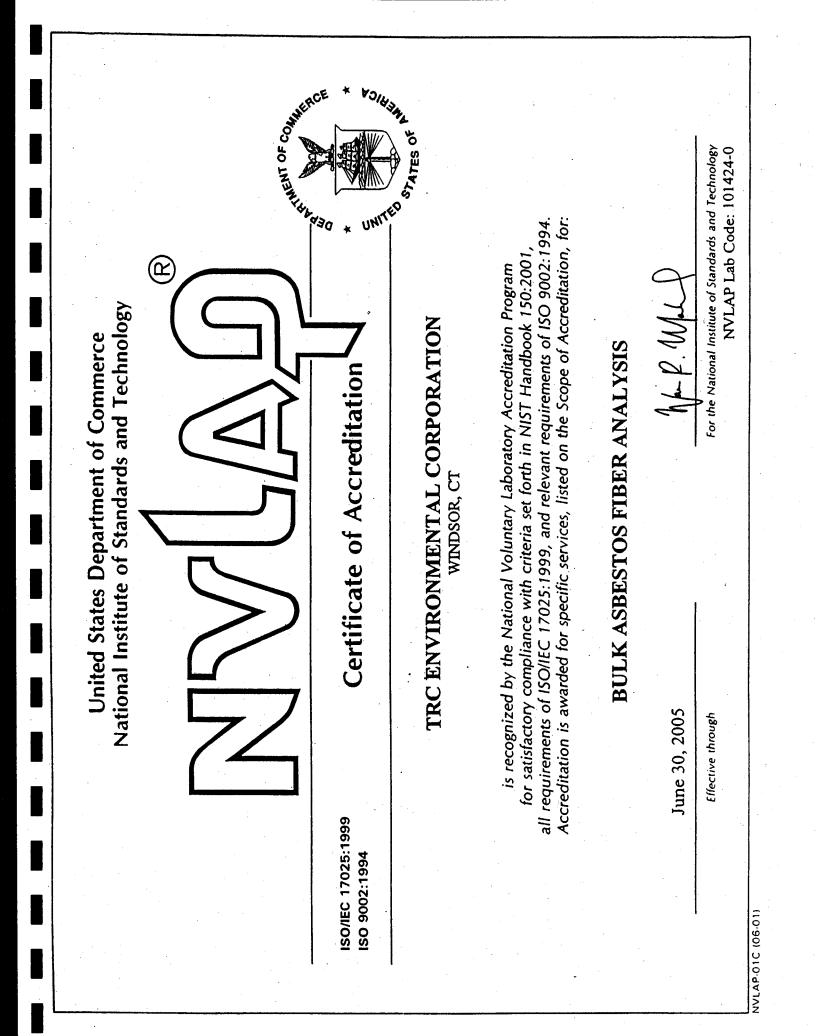
STATES OF

TRC ENVIRONMENTAL CORPORATION

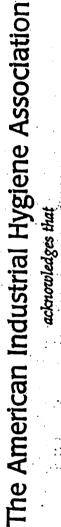
5 Waterside Crossing Windsor, CT 06095 Mr. Henry Laliberte Phone: 860-298-9692 Fax: 860-298-6399 E-Mail: hlaliberte@TRCSolutions.com URL: http://www.trcsolutions.com

NVLAP Code 18/A01

Designation


EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

June 30, 2005


Effective through

For the National Institute of Standards and Technology

NVLAP-015 (06-01)

AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH THIS IS TO CERTIFY THAT THE LABORATORY DESCRIBED BELOW HAS BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH State of Connecticut. Department of Public Health WHO HAS BEEN DESIGNATED PURSUANT TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT. THIS CERTIFICATE IS ISSUED IN THE NAME OF HEALY LAIIDERTE WHO HAS BEEN DESIGNATED BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF DIRECTOR, DIVISION OF ENVIRONMENTAL HEALTH Ellen J. Blaschinski DECEMBER, 2003 Approved Environmental Laboratory Windsor, CT 06095 TRC ENVIRONMENTAL CORPORATION SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED -DAY OF BULK IDENTIFICATION AIR-FIBER COUNTING Henry Laliberte ASBESTOS 30th 5 Waterside Crossing December 31, 2005 DATED AT HARTFORD, CONNECTICUT, THIS PH-0426 AND REGISTERED IN THE NAME OF THIS CERTIFICATE EXPIRES LOCATED AT

TRC Environmental Corporation

Windsor, CT

AND DECK

Laboratory #100122

has fulfilled the requirements of the AIHA Laboratory Quality Assurance Programs (LOAP), thereby, conforming to the ISO/IEC 17025 international standard, General Registrements for the Competence of Testing and Calibration Laboratories. The above named laboratory has been accredited by AIHA in the following

ACCREDITATION PROGRAMS

S INDUSTRIAL HYGIENE

D ENVIRONMENTAL LEAL

C ENVIRONMENTAL MICROBIOLOGY D FOOD

D OTHER

Accreditation Expires: 09/01/05 Accreditation Expines:

Accreditation Expires: Accreditation Expires: Acceditation Expines: Specific categories of testing, within each Accreditation Program, for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with LQAP requirements. This certificate is not valid without the attached Scope of Accreditation

Knuch Jan Cl. Almer

Dawn D. Thomas, ASQ Certified Quality Mgr. Chairperson, Analytical Accreditation Board

Henry Britch, CIH, CSP, PHD, ROH

sident, AIHA

· B.C.

National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

NVLAP LAB CODE

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

200090-0

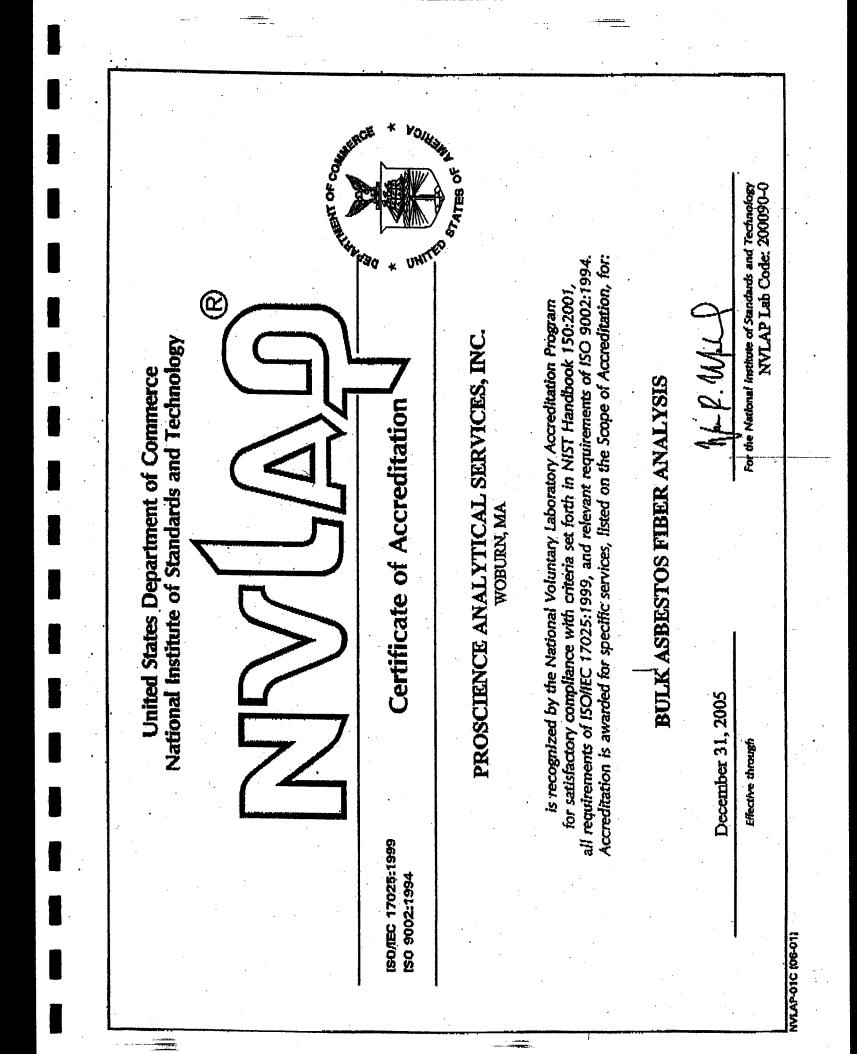
BULK ASBESTOS FIBER ANALYSIS

PROSCIENCE ANALYTICAL SERVICES, INC.

22 Cummings Park Woburn, MA 01801-2122 Mr. Adrian Stanca Phone: 781-935-3212 Fax: 781-932-4857 E-Mail: PASI96@aol.com URL: http://www.proscience.net

NVLAP Code Designation

18/A01


EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

December 31, 2005

Effective through

For the National Institute of Standards and Technology

NVLAP-015 (06-01)

DECEMBER 31, 2006 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH WHO HAS BEEN DESIGNATED THIS IS TO CERTIFY THAT THE LABORATORY DESCRIBED BELOW HAS BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF PURSUANT TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MANING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BLEN AUTHORIZED IN WRITING BY THAT DEPARTMENT. State of Connecticut. Department of Public Health PAINT, SOIL, DUST WIPES DIRECTOR, DIVISION OF ENVIRONMENTAL HEALTH Examination for: Eller J Geschinst PROSCIENCE ANALYTICAL SERVICES, INC. Woburn, MA 01801 LEAD SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED Approved Environmental Laboratory WASTEWATER. SOLID WASTE/SOIL Adrian Stanca, Director TO TAG Adrian Stanca TRACE METALS Examination for: 2 29th 22 Commings Park Air-Fiber Counting (PCM + TEM) DATED AT HARTFORD, CONNECTICUT, THIS Bulk Identification (PLM) PH-0209 and registered in the name of ASBESTOS THIS CERTIFICATE EXPIRES APPROVAL AS FOLLOWS: Water (TEM) LOCATED AT

State of Connecticut, Department of Public Health Approved Environmental Laboratory PURSUART TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL BTATUTES OF CONNECTICUT, FOR MAKING THE PURSUART TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE PURSUART TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE PURSUART TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE PURSUART TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE	COMPLETE ENVIRONMENTAL TESTING, INC. LOCATED AT Stratford, CT 06615 LOCATED AT SO Lupes Drive IN IN THE NAME OF David P. Ditta (Chemistry) THIS CERTIFICATE IS ISSUED IN THE NAME OF David P. Ditta (Chemistry) BY THIS REGISTRANT TO BE IN THE NAME OF David P. Ditta (Chemistry) WHO HAB BEEN DESIGNATED BY THIS REGISTRANT TO BE IN THE NAME OF David P. Ditta (Chemistry) WHO HAB BEEN DESIGNATED BY THIS REGISTRANT TO BE IN THE NAME OF David P. Ditta (Chemistry) WHO HAB BEEN DESIGNATED BY THIS REGISTRANT TO BE IN THE NAME OF TIMOTHAP FUENCOIDIOGY) WHO HAB BEEN DESIGNATED BY THIS REGISTRANT TO BE IN THE NAME OF TIMOTHAP RECIPICATE OF APPROVAL AS POLIDOWS: BRINKING WATER, NON-POTABLE WATER/WASTEWATER, SOLID WASTE/SOLID MASTE/SOLID BRACTERIA BAACTERIA BAACTERIA INORGANIC CHEMICALS BAACTERIA SOLID WASTE/SOLID RACTERIA BAACTERIA BAACTERIA INORGANIC CHEMICALS SOLID WASTE/SOLID SEE COMPUTER PRINT-OUT FOR SEFCIFIC TESTS APPROVED THIS CERTIFICATE EXPIRES September 30, 2006 AND FOR COLDER FOR CONSERT FOR OUTOR ENTR	EULL J. BLASCLINSL DIRECTOR, DIVISION OF ENVIRONMENTAL HEALTH
State of Councel Approued Approued IS IS TO CERTIFY THAT THE LABORATORY DESC REVART TO APPLICABLE PROVISIONS OF THE PL AMINATIONS, DETERMINATIONS OR TESTS SPEC	COMPLETE ENV LOCATED AT LOCATED AT AND REGISTERED IN THE NAME OF AND REGISTERED IN THE NAME OF THIS CERTIFICATE IS ISSUED IN THE NAME OF BY THE REGISTRANT TO BE IN CHARGE OF THE LABORAT DRINKING WATER, NOM-POT IN SEE COMPUTER PR IN THE REGISTRANT TO BE IN CHARGE OF THE LABORAT DRINKING WATER, NOM-POT IN THE REGISTRANT TO BE IN CHARGE OF THE LABORAT DRINKING WATER, NOM-POT IN THE REGISTRANT TO BE IN CHARGE OF THE LABORAT DRINKING WATER, NOM-POT IN THE REGISTRANT TO BE IN CHARGE OF THE LABORAT DRINKING WATER, NOM-POT IN THE REGISTRANT TO BE IN CHARGE OF THE LABORAT IN IN IN IN IN IN IN <t< td=""><td>9110 - Hd</td></t<>	9110 - Hd

01/24/2005 13:37 **203-377-9952**

•

COMPLETE ENV TESTING

PAGE 02

Dear Licensed/Certified Professional, Attached you will find your validated license/certification for the coming year. Should you have any questions about your license/certificate renewal, please do not hesitate to write or call: **Department of Public Health** (860) 509-7603 P.O. Box 340308 or M.S.#12MQA (860) 509-7596 0004489 FP **PRSRT T1 0 0564 06450 Hartford, CT 06134-0308 STEPHEN R. ARIENTI **63 PINEHURST DRIVE** Sincerely, MERIDEN CT 06450 Potest & Duin M.D., M. R.K. J. ROBERT GALVIN, MD, MPH, COMMISSIONER DEPARTMENT OF PUBLIC HEALTH **INSTRUCTIONS:** 4. The employer's copy is for persons who must demonstrate current licensure/certification in order to retain employment or privileges. The employer's card is to be presented to the employer and kept by them as a part of your personnel file. Only one copy of this card can be supplied to you. EMPLOYER'S COPY ach and sign each of the cards on this form. ch and sign each of the cards on this form. Iay the large card in a prominent place in your office or place of business. wallet card is for you to carry on your person. If you do not wish to carry STATE OF CONNECTICUT DEPARTMENT OF PUBLIC HEALTH et card, place it in a secure place. NAME STEPHEN R. ARIENTI VALIDATION NO. LICENSE NO. CURRENT THROUGH 03-015629 000583 04/30/05 STATE OF CONNECTICUT DEPARTMENT OF PUBLIC HEALTH PROFESSION PURSUANT TO THE PROVISIONS OF THE GENERAL STATUTES OF CONNECTICUT ASBESTOS CONSULTANT-INSPECTOR THE INDIVIDUAL NAMED BELOW IS LICENSED BY THIS DEPARTMENT AS A Robert Arloin HD, MER. ASBESTOS CONSULTANT-INSPECTOR LICENSE NO. 000583 CURRENT THROUGH 04/30/05 STEPHEN R. ARIENTI 32 38 VALIDATION NO. 1 03-015629 Polent Aplain M.D M.LK GNATL

APPENDIX C

ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS

TRC												
5 WATERSIDE CROSSING	DE CROSSII	DN			ASBESTOS BULK SAMPLING	BU	LK SA	MF	ILIN	ß		
WINDSOR, CONNECTICUT 06095	CONNECTIO	CUT 06(95		CHAIN OF CUSTODY	OF	CUST	ÍQ.	X			
TELEPHONE (860) 298-9692	E (860) 298-9	692										
FAX (860) 298-6399	8-6399					,					LABID#. 30/03	
PROJECT NUMBER	UMBER			PRC	PROJECT NAME						TURNAROUND TIME	
47500 1240 A0A01	0001			CL	CT DPW – CCSU, Kaiser Hall		PARAMETERS	AETI	JRS		PLM: X 24hr 48hr 3day 50	5day
0-0+CT-00CC+	TANA			Ann	Annex (Bubble)						TEM: 24hr X 48hr 3day 50	5day
INSPECTOR: (SIGNATURE)	: (SIGNATU	IRE)		(PR	(PRINTED)		(u			· (
K	N	4		Step	Stephen Arienti		tottoub					
			L _L	TYPE			ic re					
FIELD	DATE	TIME	۸P	8	SAMPLE LOCATION	ALLISC 9 VAE I	I YN M 119miur VITISC	TXTE	9 %I< 3	TW 2E W N. I.	MALEKIAL	
NUMBER	· ·		COI	CB/			1g \w)					
01	4/14/05	1100			Kaiser Hall Annex Bubble Flooring	Х		х		х	Blue rubber flooring and associated dark green/black asphalt layer	
02	4/14/05	1100			Kaiser Hall Annex Bubble Flooring	х		Х			Blue rubber flooring and associated dark green/black asphalt layer	
03	4/14/05	1100			Kaiser Hall Annex Bubble Flooring	х		x			Blue rubber flooring and associated dark green/black asphalt layer	

Ĩ

Ļ

Received by: (Signature) Page 1 of 1 (Printed) Time: Date: 4/k4/o5 Relinquished by: (Signature) (Printed) 1300 Kathleen Williamson Received by: (Signature) Printed) 4/14/05 13:00 Date: Time: 4 ٨ Relinquished by: (Signature) Stephen Arienti Remarks: (Printed) Ņ

•

AT: 18602986399

15**6** 5.5

.

. سخبر

u ·

•

÷

•

/

.

•

,

- ,

. .

,

.

. .

. 🔨

2

.

APPENDIX D

PLM LABORATORY ANALYSIS DATA

TRC ENVIRONMENTAL CORPORATION

Environmental Chemistry Laboratory 5 Waterside Crossing - Windsor, CT 06095 (860) 298-6308 AIHA Laboratory Certificate No. 259, Lab ID #100122 NIST-NVLAP Code #101424-0

BULK ASBESTOS ANALYSIS REPORT

CLIENT: CT Department of Public Works

Site:	CCSU, Kaiser Hall Annex (Bubble)
Lab Log #:	30103
Project #:	43500-1340-00001
Date Received:	04/15/05
Date Analyzed:	04/15/05
-	

RESULTS

Color	Homogeneous	Multi- Layered	Layer No.	Other Matrix Mat'ls	Asbestos %	Asbestos Type
Blue (flooring)	No	Yes	1		ND<1%	None
Black/Green (asphalt)	No	Yes	2		ND<1%	None
Blue (flooring)	No	Yes	1		ND<1%	None
	No	Yes	2		ND<1%	None
	No	Yes	1		ND<1%	None
	No	Yes	2		ND<1%	None
	Blue (flooring)	Blue (flooring)NoBlack/Green (asphalt)NoBlue (flooring)NoBlack/Green (asphalt)NoBlue (flooring)No	ColorHomogeneousLayeredBlue (flooring)NoYesBlack/Green (asphalt)NoYesBlue (flooring)NoYesBlack/Green (asphalt)NoYesBlue (flooring)NoYesBlue (flooring)NoYesBlue (flooring)NoYes	ColorHomogeneousLayeredNo.Blue (flooring)NoYes1Black/Green (asphalt)NoYes2Blue (flooring)NoYes1Black/Green (asphalt)NoYes2Blue (flooring)NoYes2Blue (flooring)NoYes1Blue (flooring)NoYes1	ColorHomogeneousHunn LayeredMatMat'lsBlue (flooring)NoYes1Black/Green (asphalt)NoYes2Blue (flooring)NoYes1Black/Green (asphalt)NoYes2Black/Green (asphalt)NoYes2Blue (flooring)NoYes1Blue (flooring)NoYes1	ColorHomogeneousLayeredNo.Mat'ls%Blue (flooring)NoYes1ND<1%

The Laboratory at TRC utilizes Polarized Light Microscopy (PLM) following the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation Samples (EPA/600/M4-82-020, 1982), and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials (EPA/600/R-93/116), July 1993, R.L. Perkins and B.W. Harvey. Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2005. TRC is an American Industrial Hygiene Association (AIHA) accredited lab for PLM effective through September 1, 2005. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and the QC data related to the samples is available upon written request from the client.

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound (NOB) materials. In those cases, negative results should be confirmed by quantitative transmission electron microscopy as recommended by the EPA.

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Kathleen Williamson Analyst:

OC Analyst:

Reviewed by:

Ulle Laboratory Analyst

Kathleen Williamson

Approved

Signatory:

Henry J. Laliberte Laboratory Manager

Henry J. Saliberte

Date Issued:

4/15/05

MA #AA000052

APPENDIX E

Î

R

TEM LABORATORY ANALYSIS DATA

ProScience Analytical Services, Inc

Î

22 Cummings Park, Woburn, Massachusetts 01801 781-835-3212 ~ Fax: 781-932-4857 ~ E-Mail PASi96@adt.com

Client #:	297	Method:	TEM NOB	
Client Project:	43500-1340-00001	Batch:	NT 6666	
Client Reference:	DPW - CCSU - Kaiser Hall Annex (Bubble)	Date Analyzed:	4/20/2005	
Client Name:	TRC Environmental Corp. (CT)	Date Received:	4/18/2005	
		Date of Report:	4/20/2005	

	Ciaid ID	Contraction			%	% Asbestos Types	os Type	5		*	5	3			Prened/
			Veight	CHR	AMO	ACT CRO ANT	CRO	ANT	TRE	Other Non-ash.	Other " Diganic Carb.	e din Osti	Lotal % Aulayzed	Analyzed : /Charged	Charged
NT53433 01T		Blue rubber flooring	.3452	8	8	ß	8	8	. 8	.84	81.05 18.11	18.11	Q	Yes	No
NT53434 01A		Gm./bik. Asphalt layer assoc. w/01T	.6721	00	g	8	00		8	92.93	5.73	1.3 1	Q	Yes	No

Comments:

Allison Small, Analyst

1

Asbestra Codes: CHR = Chrysotile AMO = Amosite CRO = Crecitolite ACT = Actinolite TRE = Tremolite ANT = Anthophylite TR = Trace = < 1% ND = None Detected

APPENDIX F

Ĩ

GYMNASIUM FLOORING MATERIAL WASTE CHARACTERIZATION DATA

80 Lupes Drive Stratford, CT 06615

April 20, 2005

Mr. Donald LePage TRC Environmental Consultants 5 Waterside Crossing Windsor, CT 06095

Project: CT DPW-CCSU Kaiser Hall Annex Project #: 43500-0000 CET #: 05040452 Floorin: 01 Collection Date(s): 4/14/05

PREP ANALYSIS:

TCLP, Metals [EPA 1311]

01 TCLP, Metals Completed [4/20/05]

ANALYSIS:

TCLP Mercury BY ICPMS [EPA 6020A] Units: mg/1 Analysis Date: 4/20/05

01 TCLP Mercury BY ICPMS ND < 0.002

Total Mercury [EPA 7471] Units: mg/kg (Dry Wt) Analysis Date: 4/18/05

01Total MercuryND < 0.20</td>

NOTES:

[] Indicates Date Prep Test Completed; ND is Not Detected.

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Laboratory Certification 199 Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet@cetlabs.com Project#: 43500-0000 Cet#: 05040452 Project: CT DPW-CCSU Kaiser Hall Annex -2-

Total Solids [EPA 160.3 mo] Units: percent Analysis Date: 4/18/05

01 Total Solids 100*

*Assumed 100% solids.

Sincerely,

/

. 1

David Ditta Laboratory Director

Notes: []Indicates Date Prep Test Completed; ND is Not Detected.

Complete Environmental Testing, Inc.

k

CHAIN OF CUSTODY

80 Lupes Drive Stratford, CT 06615 Tel (203) 377-9984 Fax (203) 377-9952

		T	-	-	_			T			1	[1	Τ	Ţ	<u> </u>	1	697
SAMPLED BY:	3				_		-	\rightarrow					<u> </u>		<u> </u>	 		BEV 4/02
MPLE	Ź	-	_					\downarrow			<u> </u>		ļ	ļ	<u> </u>	ļ	 	
N ^S	2							_									-	
													• *]
ASE #								\rightarrow									<u>†</u>	
PURCHASE ORDER #:		<u>e</u>						\rightarrow					<u> </u>			<u> </u>	<u> </u>	4
26		BRI						\rightarrow			<u> </u>		<u> </u>	ļ		· ·	ļ	
		ы С																
ECT TION		S RE												-				
PROJECT LOCATION:		ANALYSIS REQUIRED																1
		AL						\neg		•			<u> </u>		+		+	1
#	00001	AN						\neg					<u> </u>			<u> </u>		-
JECI	30										<u> </u>					ļ		
REPORT TO: PROJECT #:	001															<u> </u>		
					- G.					ŕ								ļ
اقص م	Ş				E TI	d	$\overline{7}$	\Box	$\overline{\checkmark}$		-		1		1	1	1	COMMENTS
POR	6				11	1	270	$\overline{1}$	>		+				+			
۳¢	<u>Č</u>			<u>r</u>	Q.		\sim	+	\times	<u> </u>		<u> </u>			<u> </u>			+
	X	·	TIME	TIME		TIME	# OF	CONTAINERS	2									
Ŧ	25).						CONT	- V N						<u> </u>			
1			DATE	DATE	Ŵ	DATE	ARD	TURNAROUND	1									
ÿ					£		TANDARD	RNAR								-		
5	Br.				Ş					<u> </u>		<u> </u>						┥.
0PW - CCSU Ka. 50 14-11	WenBr.		÷	5	= Z	ž	PRIORITY TURNAROUND	2.3 Day	X							<u> </u>	<u> </u>	
Ŭ	\prec	. .	RECEIVED BY:		Clark	RECEIVED BY:	TURN	24 HR	MAK									
3			CEIV	ACM.	<i>H</i>	CEN	VIIIN		<u>~~~</u>	1				-	-	+	-	1
0			Ъ.		$\overline{\lambda}$	μ α ζ	_	SAME	<u> </u>			ļ						4
5			TIME	g	W	TIME	SAMPLE	MATRIX	Rubber									
			╎╒╎	뙷		1 1	SAN	MA	22	ļ			·					_
ŝ			DATE TIME	011	DATE	DATE	TIME		4/14/00									
RES		کی ا		7			<u> </u>		=	<u> </u>							+	-
ADD	fy ,	2000	2				DATE		114									
QN	1	ŝ	,	. :	ť				1 2	+				_				
COMPANY NAME AND ADDRESS	BC Pry res 1-4	\mathcal{F}	. .	KI.	λ													
YNAME AND ADDRESS CI	ير ا	ふい	RELINQUISHED BY:			RELINQUISHED BY:	ġ											
Ň	Li,	۲. ۲ ۲	BHE	11	<u>E</u>		SAMPLE I.D.		0									
MPA	2		INGU	λ	₫Ţ)	INOU	SAMI									· .		
8	で	n Z	실盟	Ŵ	E)	REL						1	<u> </u>					_

. ~

TABLES

Ì

Ŧ

	LK SAMPLE SUMMARY OF SUS TRAL CONNECTICUT STATE UN	TABLE 1 PECT ASBESTOS CONTAINING MATE IVERSITY – KAISER HALL ANNEX "B AIN, CONNECTICUT	
Sample No.	Sample Location	Homogeneous Material	% and Type Asbestos
01	Kaiser Hall Annex Gymnasium	Green/black asphalt layer associated with blue rubber flooring	ND<1% ¹
	flooring	Blue rubber flooring	ND<1% ¹
02	Kaiser Hall Annex Gymnasium	Green/black asphalt layer associated with blue rubber flooring	ND<1% ¹
	flooring	Blue rubber flooring	ND<1% ¹
03	Kaiser Hall Annex Gymnasium	Green/black asphalt layer associated with blue rubber flooring	ND<1% ¹
	flooring	Blue rubber flooring	ND<1% ¹

*

NA/PVA	Not analyzed/positive via inseparable association with a confirmed positive ACM
NA/PS	Not analyzed/positive stop, homogeneous to sample proven to contain asbestos
ND<1%	Non-detected, less than 1%
NAD	No asbestos detected
+	Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must
	be considered positive
1	NOB material: result confirmed by TEM analyses

NOB material; result confirmed by TEM analyses Quantified by PLM Point Counting techniques

	ONNECTICUT,S	TABLE 4 F GYMNASIUM FLOORING DOUS WASTE DETERMINA IATE UNIVERSITY – KAISE W BRITAIN, CONNECTICU	TION R HALL ANNEX "BUBDLE?"
Waste Stream	Metal	mg/L Leachate	Hazardous/Non-Hazardous
	Arsenic		Analyte not tested
	Barium		Analyte not tested
_	Cadmium		Analyte not tested
Gymnasium Floor	Chromium		Analyte not tested
Material	Lead		Analyte not tested
	Mercury	ND<0.002	Non-Hazardous
Γ	Selenium		
	Silver		Analyte not tested
			Analyte not tested

Each sample was analyzed following the Toxicity Characteristic Leaching Procedure (TCLP) for the Resource Conservation Recovery Act (RCRA). If mercury (Hg) levels exceed 0.2 mg/L for TCLP Mercury, then the waste is identified as hazardous waste.

See Appendix G for results.

13500-13-10-00001

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet@cctlabs.com

80 Lupes Drive Stratford, CT 06615

April 20, 2005

Mr. Donald LePage TRC Environmental Consultants 5 Waterside Crossing Windsor, CT 06095

Project: CT DPW-CCSU Kaiser Hall Annex Project #: 43500-0000 CET #: 05040452 Floorin: 01 Collection Date(s): 4/14/05

PREP ANALYSIS:

TCLP, Metals [EPA 1311]

01 TCLP, Metals Completed [4/20/05]

ANALYSIS:

TCLP Mercury BY ICPMS [EPA 6020A] Units: mg/1 Analysis Date: 4/20/05

01 TCLP Mercury BY ICPMS ND < 0.002

Total Mercury [EPA 7471] Units: mg/kg (Dry Wt) Analysis Date: 4/18/05

	01
Total Mercury	ND < 0.20

NOTES:

[] Indicates Date Prep Test Completed; ND is Not Detected.

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Laboratory Certification 199 Project#: 43500-0000 Cet#: 05040452 Project: CT DPW-CCSU Kaiser Hall Annex

April 20, 2005

Total Solids [EPA 160.3 mo] Units: percent Analysis Date: 4/18/05

-2-

	01
Total Solids	100*

*Assumed 100% solids.

Sincerely,

ą

David Ditta Laboratory Director

Notes: []Indicates Date Prep Test Completed; ND is Not Detected.

Complete Environmental Testing, Inc.

	.
\mathbf{O}	\rangle

CHAIN OF CUSTODY

80 Lupes Drive Stratford, CT 06615 Tel (203) 377-9984 Fax (203) 377-9952

04/20/2005 16:50

COMPLETE ENV TEST

5 Waterside Crossing Windsor, CT 06095-1563 (860) 298-9692 FAX: (860) 298-6399 FEDERAL I.D. #06-0861618

PLEASE REMIT TO: P.O. BOX 8500-53878 Philadelphia, PA 19178-3878

INVOICE

JUNE 15, 2005 INVOICE NO. 138942 PROJECT 43500 CLIENT NO. 0001050 LEPAGE, DONALD PROJ. MGR. CONTRACT NO.03PSX0346AE DPWM1-0000001904 P.O. NO. TERMS NET 30 DAYS PAGE 1 OF 1

CONNECTICUT, STATE OF DEPARTMENT OF PUBLIC WORKS 165 CAPITOL AVENUE HARTFORD, CT 06106

ATTN: MIKE SANDERS

ASBESTOS/LEAD ABATEMENT DESIGN CONSULTANT'S ON-CALL CONTRACT DPW/DAS TERM CONTRACT WORK DPW PROJECT NO.: RC-05-05 BUILDING NO.: 39744

PROFESSIONAL SERVICES FOR PERIOD ENDING MAY 27, 2005

PROJECT-TASK: 43500134000001 CCSU KAISER HALL BUBBLE LT SVY

ITEM #	UNITS	ITEM UNIT COSTS	AMOUNT
ACM-001		\$178.29	178.29
ACM-002	1	\$356.58	356.58
ACM-006	1 .	\$106.13	106.13
ACM-007	1.5	\$ 38.21	59.31
PLM-001	6	\$ 12.74	76.44
TEM-001	2	\$ 50.94	101.88
	TASK TOT	AT.	\$876.63

ASK TUTAL

TOTAL THIS INVOICE

\$876.63

REFERENCE CLIENT # AND INVOICE # ON YOUR PAYMENT

Seller represents that with respect to the production of the articles and or the performance of the services covered by this invoice, it has fully complied with Section 12(A) and other provisions of the Fair Labor Standards Act of 1938 as amended. WHITE - CLIENT YELLOW - FILE COPY - PINK - PROJECT MANAGER

	TR Customer-Focuse	C d Solution:		ETTER OF TRANSMITTAL / /
			DATE	6/15/05
	······		ATTE	Mr. Michael Sanders
ros	tate of Con	nectic	it DPW	INVOICES
S	tate Office	Build:	ing, Room 275	
Н	lartford, CI	° [
ve are si	ending you	🗆 Attac	hed Dinder separate cover via	the following items:
	□ Shop drawing	gs	Prints Plans	□ Samples □ Specifications
	Copy of lette	er	Change order	
COPIES	DATE	NO.		DESCRIPTION
2	6/14/05	1	INVOICE RC-04-	11 Gallaudit #40032 -420
2		2	2B-04-2	14 SOB # 19263 -310
2		?	Rt-04-1	08 WL KOXRUTS #34925 -43
2		4	RT-05-0.	7 Windken RITS # 68080 - 133
2		5	126-05-0	5 Kaisa (SU # 39744 - 13
2		6	QB-05-	11 Health Lub #00304 -143
	l	<u></u>		
HESE AR				Resubmit copies for approval
	 For approv For your us 		 Approved as submitted Approved as noted 	Submit copies for distribution
	□ As request		Returned for corrections	Return corrected prints
		DUE	19	PRINTS RETURNED AFTER LOAN TO US
EMARKS				· · · · · · · · · · · · · · · · · · ·
REMARKS				
Remarks			·	
REMARKS				

Document Review She	et
Document Name/Type DPW Survey	
Project Name NPW- CCSU Ka.	e Ital (
Project Job Number 73500 - 1350 -	CKKUI
Computer Location of Text H / H/s / PM	1B50/B50 Trapel. de
1	
Date Submitted for Review 4127105	Author's Initials
Technical Review Date 5/11/05	Reviewer's Initials
Project Manager's Review Date	PM's Initials

Comments/Corrections:

Date Submitted for Second Review	Author's Initials
Second Technical Review Date	Reviewer's Initials
Project Manager Review Date	PM's Initials

Comments/Corrections:

Release Date 5/12/05 Approved By D

REPORT

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL ANNEX NEW BRITAIN, CONNECTICUT

PROJECT NO. RS-05-05 BUILDING NO. 39744

Prepared for

State of Connecticut Department of Public Works

Hartford, Connecticut

Prepared by

TRC Environmental Corporation

Windsor, Connecticut

May 11, 2005

PRE-RENOVATION INVESTIGATIVE SURVEY FOR ASBESTOS-CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL ANNEX NEW BRITAIN, CONNECTICUT

PROJECT NO. RS-05-05 BUILDING NO. 39744

Prepared for State of Connecticut Department of Public Works Hartford, Connecticut

Prepared by TRC Environmental Corporation Windsor, Connecticut

> Donald LePage Project Manager

TRC Project No. 43500-1340-00001 May 11, 2005

> TRC Environmental Corporation 5 Waterside Crossing Windsor, Connecticut 06095 Telephone (860) 298-9692 Facsimile (860) 298-6399

TABLE OF CONTENTS

EXECUTIVE SUMMARY

PROJECT OUTLINE

TABLES

BULK SAMPLE SUMMARY OF SUSPECT ASBESTOS CONTAINING
MATERIALS
IDENTIFIED ASBESTOS CONTAINING MATERIALS
CONFIRMED NON-ASBESTOS CONTAINING MATERIALS
SUMMARY OF GYMNASIUM FLOORING MATERIAL - HAZARDOUS
WASTE CHARACTERIZATION

APPENDICES

Α	SITE SKETCH
В	LABORATORY AND INSPECTOR ACCREDITATIONS
С	ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS
D	PLM LABORATORY ANALYSIS DATA
E	TEM LABORATORY ANALYSIS DATA
F	GYMNASIUM FLOORING MATERIAL WASTE CHARACTERIZATION DATA

EXECUTIVE SUMMARY

On April 14,2005 TRC Environmental Corporation (TRC) of Windsor, Connecticut conducted an inspection for suspect asbestos-containing materials (ACM) at Central Connecticut State University, Kaiser Hall Annex "Bubble" in New Britain, Connecticut. The inspection was initiated prior to planned renovation activities in accordance with USEPA Asbestos National Emissions Standard for Hazardous Air Pollutants (NESHAPS) requirements.

The scope of the inspection was limited to the gymnasium floor area at the Kaiser Hall Annex "Bubble". A Connecticut licensed asbestos inspector from TRC conducted the inspection in accordance with USEPA AHERA protocols and ASTM Standard E2356-04. Bulk samples of suspect materials were collected and analyzed via polarized light microscopy (PLM) and/or transmission electron microscopy (TEM) methods at CTDPH/NVLAP accredited laboratories. No ACM was identified in gymnasium floor. Asbestos-Containing Materials (ACM) to be impacted by renovation activities must be removed prior to disturbance in accordance with OSHA, USEPA, CTDPH, and CTDEP standards for asbestos abatement/disposal. Detailed results of the asbestos survey can be found in Tables 1-3 and Appendices A through E.

TRC also sampled the floor to be tested for Total Mercury (Hg) and for a Toxicity Characteristic Leaching Procedure (TCLP) for Mercury to determine if the gymnasium floor has to be disposed of as hazardous waste. Both Total Mercury and TCLP for Mercury were below the detection limits and the material can be disposed of as normal construction waste. Detailed results of these tests can be found in Table 4 and Appendix F.

PROJECT OUTLINE

DAS Contract No.	03PSX0346E
Project No.:	RS-05-05
DPW Building No:	39744
Project Address:	Kaiser Hall Annex
	Central Connecticut State University
	Stanley Street, New Britain, CT
TRC Project No.:	43500-1340-00001
Asbestos Inspector:	Stephen Arienti (LIC #000583)
Date of Inspection:	April 14, 2005
Asbestos Identified:	None
Hazardous Material:	No

Additional Notes:

The site investigation was limited to the collection and analysis of suspect asbestos-containing materials and analysis for mercury associated with renovations to the gymnasium floor at the Kaiser Hall Annex "Bubble" at Central Connecticut State University.

TABLES

TABLE 1 BULK SAMPLE SUMMARY OF SUSPECT ASBESTOS CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL ANNEX "BUBBLE" NEW BRITAIN, CONNECTICUT				
Sample No.	Sample Location	Homogeneous Material	% and Type Asbestos	
01 Kaiser Ha flooring	Kaiser Hall Annex Gymnasium	Green/black asphalt layer associated with blue rubber flooring	ND<1% ¹	
	flooring	Blue rubber flooring	ND<1% ¹	
02	Kaiser Hall Annex Gymnasium	Green/black asphalt layer associated with blue rubber flooring	ND<1% ¹	
·	flooring	Blue rubber flooring	ND<1% ¹	
03	Kaiser Hall Annex Gymnasium	Green/black asphalt layer associated with blue rubber flooring	ND<1% ¹	
	flooring	Blue rubber flooring	ND<1% ¹	

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

ND<1% Non-detected, less than 1%

NAD No asbestos detected

+ Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive

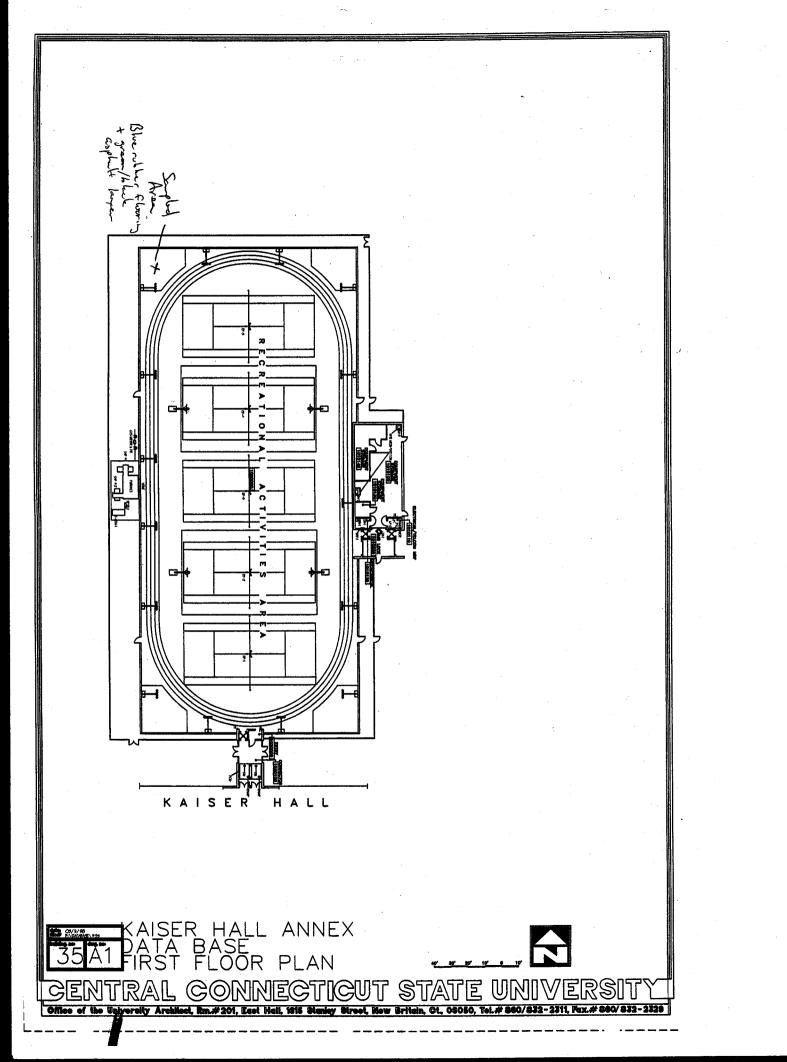
1 NOB material; result confirmed by TEM analyses

* Quantified by PLM Point Counting techniques

	DNNECTICUT ST	BESTOS CONTAININ ATE UNIVERSITY – W BRITAIN, CONNE	KAISER HALI		BBLE"
Material	Sampled- Assumed (mo/yr)	General Location	NESHAP Category	AHERA Category	Estimat Quanti

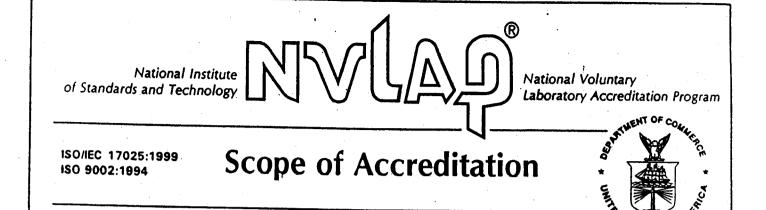
AHERA Categories = thermal system insulation (TSI), surfacing material or miscellaneous NESHAP Categories = friable, category I non-friable or category II non-friable Friable = crumbled, pulverized or reduced to powder by hand pressure when dry Category I Non-friable = packings, gaskets, resilient floor covering and asphalt roofing Category II Non-friable = all non-friable that is not Category I

TABLE 3 CONFIRMED NON-ASBESTOS CONTAINING MATERIALS CENTRAL CONNECTICUT STATE UNIVERSITY – KAISER HALL ANNEX "BUBBLE" NEW BRITAIN, CONNECTICUT	
Material	General Location
Blue rubber flooring	Kaiser Hall Annex "Bubble"
Green/black asphalt layer associated with blue rubber flooring	Kaiser Hall Annex "Bubble"


CENTRAL (HAZARI CONNECTICUT ST	TABLE 4 GYMNASIUM FLOORING M DOUS WASTE DETERMINAT ATE UNIVERSITY – KAISER W BRITAIN, CONNECTICUT	TON HALL ANNEX "BUBBLE"						
Waste Stream	Metal	Metal mg/L Leachate Hazardous/Non-Hazardo							
	Arsenic		Analyte not tested						
	Barium		Analyte not tested						
· · · · · · · · · · · · · · · · · · ·	Cadmium		Analyte not tested						
Gymnasium Floor	Chromium		Analyte not tested						
Material	Lead		Analyte not tested						
	Mercury	ND<0.002	Non-Hazardous						
	Selenium		Analyte not tested						
	Silver		Analyte not tested						

Each sample was analyzed following the Toxicity Characteristic Leaching Procedure (TCLP) for the Resource Conservation Recovery Act (RCRA). If mercury (Hg) levels exceed 0.2 mg/L for TCLP Mercury, then the waste is identified as hazardous waste.

See Appendix G for results.


APPENDIX A

SITE SKETCH

APPENDIX B

LABORATORY AND INSPECTOR ACCREDITATIONS

BULK ASBESTOS FIBER ANALYSIS

Page: 1 of 1 NVLAP LAB CODE 101424-0

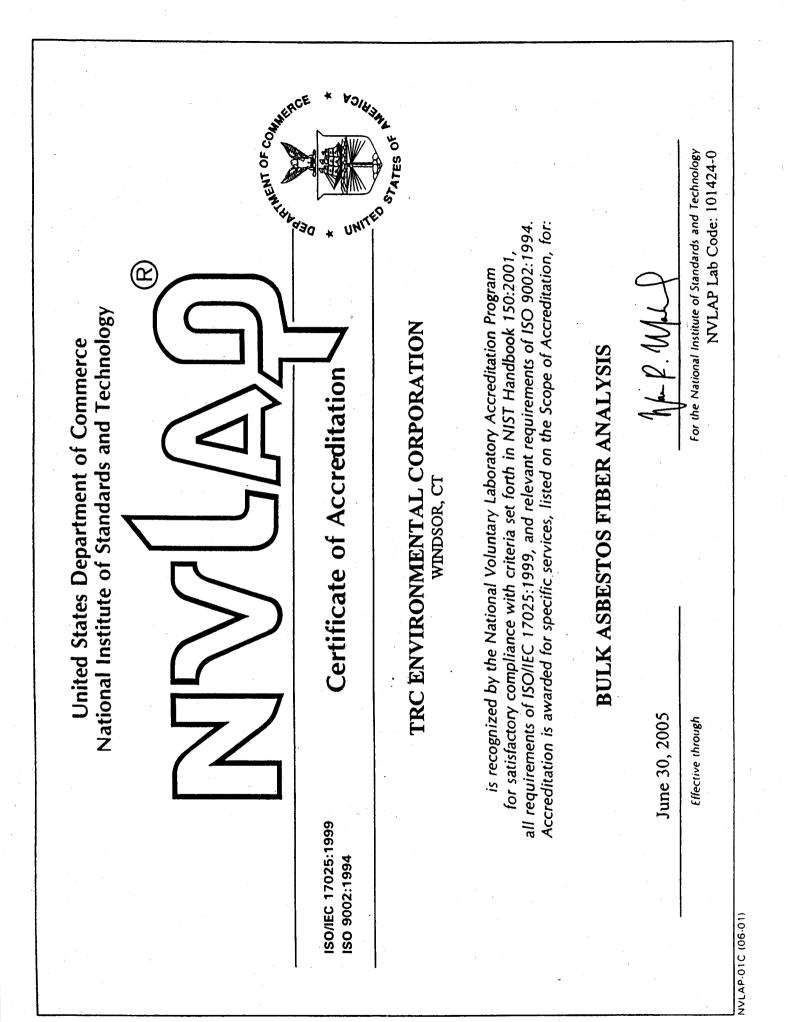
ES OF

TRC ENVIRONMENTAL CORPORATION

5 Waterside Crossing Windsor, CT 06095 Mr. Henry Laliberte Phone: 860-298-9692 Fax: 860-298-6399 E-Mail: hlaliberte@TRCSolutions.com URL: http://www.trcsolutions.com

NVLAP Code Designation

18/A01


EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

June 30, 2005

Effective through

For the National Institute of Standards and Technology

NVLAP-01S (06-01)

State of Connecticut, Department of Public Health Approved Environmental Laboratory HERS THAT THE LABORATORY DESCRIBED BELOW HIGH HAVE BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH EXAMINATIONS, DETERMINATIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONVECTICUT, FOR MAKING THE TTDC ENVIRONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONVECTICUT, FOR MAKING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT.	LOCATED AT <u>5 Waterside Crossing</u> IN <u>Windsor, CT 06095</u> AND REGISTERED IN THE NAME OF <u>Henry Laliberte</u> WHO HAS BEEN DESIGNATED THIS CERTIFICATE IS ISSUED IN THE NAME OF <u>Henry Laliberte</u> WHO HAS BEEN DESIGNATED BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF APPROVAL AS FOLLOWS: APPROVAL AS FOLLOWS: ARR-FIBER COUNTING BULK IDENTIFICATION BULK IDENTIFICATION	SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED THIS CERTIFICATE EXPIRES DATED AT HARTFORD, CONNECTICUT, THIS DATED AT HARTFORD, CONNECTICUT, THIS 30 ¹⁴ DAT OF DECEMBER, 2003 DATED AT HARTFORD, CONNECTICUT, THIS 30 ¹⁴ DAT OF DECEMBER, 2003 PH- 0426 810.1 DATED OF PUBLIC HEALTH PH- 0426 EULL Magchingkingkingkingkingkingkingkingkingkingk
---	--	--

•

.

<u>,</u>

acknowledges that

TRC Environmental Corporation

Windsor, CT Laboratory #100122

A THE A

ISO/IBC 17025 international standard, General Registrements for the Competence of Testing and Calibration Laboratories. The has fulfilled the requirements of the AIHA Laboratory Quality Assurance Programs (LOAP), thereby, conforming to the above named laboratory has been accredited by AIHA in the following \mathbb{R}^n

ACCREDITATION PROGRAMS

E INDUSTRIAL HYGIENE

D ENVIRONMENTAL LEAD

CI ENVIRONMENTAL MICROBIOLOGY

D OTHER

Accreditation Expires: 09/01/05 Accreditation Expires: Accreditation Expires: Accreditation Expires:

Accreditation Expires: Accreditation Expires: Accreditation Expires:

outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with Specific categories of testing, within each Accreditation Program, for which the above named laboratory maintains accreditation is LQAP requirements. This certificate is not valid without the attached Scope of Accreditation.

Daum D. Thomas, ASQ Certified Quality Mgr. Chairperson, Analytical Accreditation Board

Uck, CIH, CSP, PhD, ROH

Henry Br

sident, AIHA

i.B.tc

ISO/IEC 17025:1999 ISO 9002:1994

BULK ASBESTOS FIBER ANALYSIS

Designation

PROSCIENCE ANALYTICAL SERVICES, INC.

Scope of Accreditation

22 Cummings Park Woburn, MA 01801-2122 Mr. Adrian Stanca Phone: 781-935-3212 Fax: 781-932-4857 E-Mail: PASI96@aol.com URL: http://www.proscience.net

NVLAP Code 18/A01

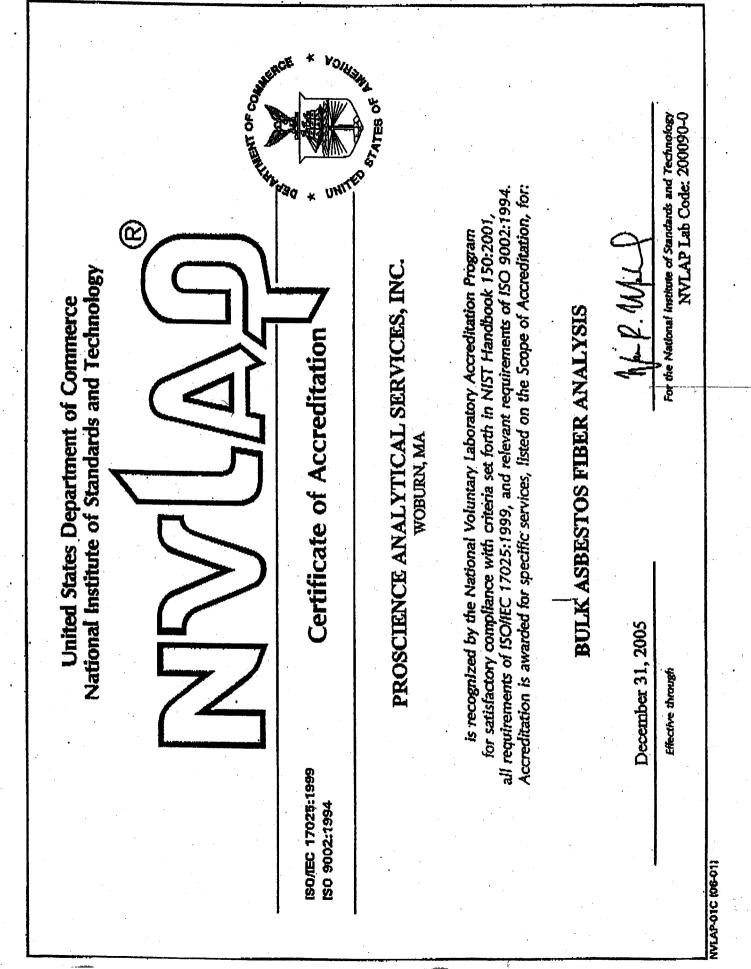
EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples

December 31, 2005

Effective through

For the National Institute of Standards and Technology

National Voluntary


NVLAP LAB CODE 200090-0

Laboratory Accreditation Program

CAT OF CA

^{STATES OF} Page: 1 of 1

NVLAP-015 (06-01)

DECEMBER 31, 2006 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH WHO HAS BEEN DESIGNATED THIS IS TO CERTIFY THAT THE LABORATORY DESCRIBED BELOW HAS BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH PURSUANT TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MANING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT. BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF State of Connecticut. Department of Public Health PAINT, SOIL, DUST WIPES DIRECTOR, DIVISION OF ENVIRONMENTAL HEALTH Examination for: Ellen J. Glaschinst PROSCIENCE ANALYTICAL SERVICES, INC. Woburn, MA 01801 IRAD SEE COMPUTER PRINT-OUT FOR SPECIFIC TESTS APPROVED Approved Environmental Laboratory Stephen Chaoe, Co-Director (Chemistry) WASTEWATER. SOLID WASTE/SOLL Adrian Stanca, Director Adrian Stanca TRACE METALS Examination for: Z 29th 22 Cummings Park Air-Fiber Counting (PCM + TEM) THIS CERTIFICATE IS ISSUED IN THE NAME OF DATED AT HARTFORD, CONNECTICUT, THIS Bulk Identification (PLM) PH-0209 AND REGISTERED IN THE NAME OF ASBESTOS THIS CERTIFICATE EXPIRES APPROVAL AS FOLLOWS: Water (TEM) LOCATED AT

	COMPLETE ENVIRONMENTAL TESTING, INC. 80 Lupes Drive In Stratford, CT 06615	David P. Ditta David P. Ditta (Chemis David P. Ditta (Chemis RAME OF Timothy Fusco (Microbi ARGE OF THE LABORATORY WORK COVERED BT THIS WATER, NON-POTABLE WATER/WASTEW Examination For: BACTERIA INORGANIC CHEMICALS ORGANIC CHEMICALS ORGANIC CHEMICALS	EXPIRES September 30, 2006 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH ID, CONNECTICUT, THIS 20th DAY OF OCTOBER 2004	PH-0116 DIRECTOR, DIVISION OF ENVIRONMENTAL HEALTH
State State THIS IS TO CERTIFY THA PURSUANT TO APPLICAB EXAMINATIONS, DETERN	LOCATED AT	AND REGISTERED IN THE NAME OF THIS CERTIFICATE IS ISSUED IN TE BY THE REGISTRANT TO BE IN CH DRINKING 1	THIS CERTIFICATE EXPIRES Septembe DATED AT HARTFORD, CONNECTICUT, THIS	

.

PAGE 02

0004489 FP **PRSRT T1 0 0564 06450 STEPHEN R. ARIENTI 63 PINEHURST DRIVE MERIDEN CT 06450 Dear Licensed/Certified Professional,

VALIDATION NO.

SIGNATUR

03-015629

Attached you will find your validated license/certification for the coming year. Should you have any questions about your license/certificate renewal, please do not hesitate to write or call:

Department of Public Health	(860) 509-7603
P.O. Box 340308	or or
M.S.#12MQA	(860) 509-7596
Hartford, CT 06134-0308	
Sincerely	a second a s

J Robert Silvin M.D. M.R. J. ROBERT GALVIN, MD, MPH, COMMISSIONER

DEPARTMENT OF PUBLIC HEALTH

EMPLOYER'S COPY

STATE OF CONNECTICUT DEPARTMENT OF PUBLIC HEALTH

> NAME STEPHEN R. ARIENTI

LICENSE NO.

000583

PROFESSION

ASBESTOS CONSULTANT-INSPECTOR

CURRENT THROUGH

04/30/05

Robert Almin HD, MER.

INSTRUCTIONS:

Detach and sign each of the cards on this form.
 Display the large card in a prominent place in your office or place of business.
 As The waller card is for you to carry on your person. If you do not wish to carry the wallet card, place it in a secure place.

4. The employer's copy is for persons who must demonstrate current licensure/certification in order to retain employment or privileges. The employer's card is to be presented to the employer and kept by them as a part of your personnel file. Only one copy of this card can be supplied to you. 1

STATE OF CONNECTICUT DEPARTMENT OF PUBLIC HEALTH PURSUANT TO THE PROVISIONS OF THE GENERAL STATUTES OF CONNECTICUT THE INDIVIDUAL NAMED BELOW IS LICENSED

BY THIS DEPARTMENT AS A

ASBESTOS CONSULTANT-INSPECTOR

STEPHEN R. ARIENTI

LICENSE NO. 000583 CURRENT THROUGH 04/30/05 VALIDATION NO. 03-015629

SIGNAT

M.D. N.E.

This certifies that

Stephen Arienti

Asbestos Accreditation Under TSCA Title II Asbestos Site Inspector Refresher Training has successfully completed the 40 CFR Part 763

conducted by

West Springfield, MA 01089 (413) 781-0070 73 William Franks Drive ATC Associates Inc.

Clural Kolubring.

January 6, 2005 Date of Course Principal Instructor

January 6, 2006 Expiration Date

January 6, 2005 Examination Date

SIAR-1832 Certificate Number

Regional Manager

Shepory J- Morae

APPENDIX C

ASBESTOS BULK SAMPLE CHAIN OF CUSTODY FORMS

5)
Q.	4

5 WATERSIDE CROSSING

ASBESTOS BULK SAMPLING CHAIN OF CUSTODY

WINDSOR, CONNECTICUT 06095

		y	Ŷ							
		5day	5day							
	E	y	y					dark	dark	dark
M	TURNAROUND TIME	3day	3day			F	3	Blue rubber flooring and associated dark green/black asphalt layer	Blue rubber flooring and associated dark green/black asphalt layer	Blue rubber flooring and associated dark green/black asphalt layer
30103	OUNI	48hr	48hr			MATEDIAL		l assoc r	l assoc r	l assoc r
Ň	NAR	48	X 48					ng and It laye	ng and It laye	ng and It laye
	TUR	24hr	24hr					floori aspha	floori aspha	floori aspha
D #.		X 2	5					Blue rubber flooring and green/black asphalt layer	Blue rubber flooring and green/black asphalt layer	ubber black
LAB ID #.	ántha an	PLM:	TEM:					Blue r green/	Blue r green/	Blue rubber flooring and green/black asphalt layer
				((IE BFW RE LEW NA I	×		
		ERS					IS (IE >1%			
		METI		2	FAYER	BX I	AVALYZE	×	x	х
	-	PARAMETERS		(u	oitouba	n sit	I YN MJA tiamiverg (w) VITIZOA)			
							PLM EPA 6 VITI20)	×	x	x
	PROJECT NAME	CT DPW – CCSU, Kaiser Hall	Annex (Bubble)	(PRINTED)	Stephen Arienti		SAMPLE LOCATION	Kaiser Hall Annex Bubble Flooring	Kaiser Hall Annex Bubble Flooring	Kaiser Hall Annex Bubble Flooring
	PRO	CTI	Anne	(PRI	Step	TYPE	СКАВ			
						Υ	COMP			
1692				IRE)	4		TIME	1100	1100	1100
c (860) 298-9 3-6399	JMBER	100	1000	: (SIGNATU	\mathbb{N}		DATE	4/14/05	4/14/05	4/14/05
TELEPHONE (860) 298-9692 FAX (860) 298-6399	PROJECT NUMBER		43500-1340-00001	INSPECTOR: (SIGNATURE)	A	2	FIELD SAMPLE NUMBER	01	02	03

Page 1 of 1 Received by: (Signature) (Printed) Time: Date: $\frac{1}{\lambda/\lambda}\frac{1}{\lambda/\delta}$ Relinquished by: (Signature) (Printed) 1300 Kathleen Williamson Received by: (Signature) 11 (Printed) 4/14/05 13:00 Time: Date: Relinquished by: (Signature) Stephen Arienti Remarks: (Printed) Ŋ

	Date: 4/15/05		· · ·	<5 Day Other For Lab Use Only	Comments									
· · ·	Inc. 932-4857	Chaliteki N.O.B., N.Y.S. Cualitative	_	<3 Day <5 Day For	Acceptable on receipt					1 1 1 1 1				
	ProScience Analytical Services, Inc. 22 Cummings Park, Wolum MA 01801 Ph 781-035-3212 Fx 781-032-4857 TEM Bulk Sample Chain Of Custody Record	Analysis Type:	Du 4/18/05 940AM	<12 Hour <24 Hour <48 Hour	Location	Kaiser Hell	•						ſ	
	SCIENCE ANA mixes Park, Woltum Md 01 TEM Bulk Sample C	CUNICITAL 10-00001 - Kaiser Hall	Recleved By X	(Circle)	Description	Floor / Aspirelt	Z Layers							
NIecep		-1-RC EMUR 43500-134 DPW- CSU	1. llowerson	S, Anzent	Lab I.D.#	30103	•							
4	•	Client: Client Job # Client Job Ref./Loc		Sampler's Name IMPORTANTII T	Client I.D.#	ō			-	•			For Lab Use Ority	

AT: 18602986399

•

الكاني المراجع

APPENDIX D

PLM LABORATORY ANALYSIS DATA

TRC ENVIRONMENTAL CORPORATION

Environmental Chemistry Laboratory 5 Waterside Crossing - Windsor, CT 06095 (860) 298-6308 AIHA Laboratory Certificate No. 259, Lab ID #100122 NIST-NVLAP Code #101424-0

BULK ASBESTOS ANALYSIS REPORT

CLIENT: CT Department of Public Works

Site:CCSU, Kaiser Hall Annex (Bubble)Lab Log #:30103Project #:43500-1340-00001Date Received:04/15/05Date Analyzed:04/15/05

RESULTS

Sample No.	Color	Homogeneous	Multi- Layered	Layer No.	Other Matrix Mat'ls	Asbestos %	Asbestos Type
01	Blue (flooring)	No	Yes	1		ND<1%	None
01	Black/Green (asphalt)	No	Yes	2		ND<1%	None
02	Blue (flooring)	No	Yes	1		ND<1%	None
02	Black/Green (asphalt)	No	Yes	2		ND<1%	None
03	Blue (flooring)	No	Yes	1		ND<1%	None
03	Black/Green (asphalt)	No	Yes	2	*=	ND<1%	None

The Laboratory at TRC utilizes Polarized Light Microscopy (PLM) following the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation Samples (EPA/600/M4-82-020, 1982), and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials (EPA/600/R-93/116), July 1993, R.L. Perkins and B.W. Harvey. Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2005. TRC is an American Industrial Hygiene Association (AIHA) accredited lab for PLM effective through September 1, 2005. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and the QC data related to the samples is available upon written request from the client.

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound (NOB) materials. In those cases, negative results should be confirmed by quantitative transmission electron microscopy as recommended by the EPA.

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Analyst: Kathleen Williamson

QC Analyst:

Kathleen Williamson

Reviewed by:

Lilelica Laboratory Analyst

Approved

Signatory:

Henry J. Saliberte Henry J. Laliberte Laboratory Manager

Date Issued:

4/15/05

APPENDIX E

TEM LABORATORY ANALYSIS DATA

ProScience Analytical Services, Inc

22 Cummings Park, Woburn, Massachusetts 01801 781-935-3212 ~ Fax 781-932-4857 ~ E-Mail PASi96@aol.com

Client #: Client Project: Client Reference: Client Name:	297 43500-1340-00001 DPW - CCSU - Kaiser Hall Annex (Bubble) TRC Environmental Corp. (CT)								Method: Batch: Date Analyzed: Date Received: Date of Report:	yzed: eived: eport:	TEM NOB NT 6666 4/20/2005 4/18/2005 4/20/2005	05 05 05 05		
		Initial		*	Asbesi	% Asbestos Types	s S				*	76_	T-4-1 & Anahrad Preped/	Preped/
		Sample Weight	CHR	AMO ACT CRO ANT	ÅCT	CRO	ANT	TRE	Olher Non-asb, Organic Carb.	anic		sbestos	Asbestos (Charged	Charged
NT53433 01I	Blue rubber flooring	.3452	00	8	8	00	8	8	.84 81	81.05 18.11	18.11	Q	Yes	Ŷ
NT53434 01A	Grn./blk. Asphalt layer assoc. w/01T	.6721	00	00,	00	00 00	2	Q	92.93	573 134	1 37	ĊZ	Yes	No

Comments:

Allison Small, Analyst

Ashestos Codes: CHR = Chrysotile AMO = Amosite CRO = Crecidolite ACT = Actinolite TRE = Tremolite ANT = Anthophyllite TR = Trace = < 1% ND = None Detected

APPENDIX F

GYMNASIUM FLOORING MATERIAL WASTE CHARACTERIZATION DATA

80 Lupes Drive Stratford, CT 06615

April 20, 2005

Mr. Donald LePage TRC Environmental Consultants 5 Waterside Crossing Windsor, CT 06095

Project: CT DPW-CCSU Kaiser Hall Annex Project #: 43500-0000 CET #: 05040452 Floorin: 01 Collection Date(s): 4/14/05

PREP ANALYSIS:

TCLP, Metals [EPA 1311]

	01
TCLP, Metals	Completed [4/20/05]

ANALYSIS:

TCLP Mercury BY ICPMS [EPA 6020A] Units: mg/1 Analysis Date: 4/20/05

	01
TCLP Mercury BY ICPMS	ND < 0.002

Total Mercury [EPA 7471] Units: mg/kg (Dry Wt) Analysis Date: 4/18/05

	01
Total Mercury	ND < 0.20

NOTES:

[] Indicates Date Prep Test Completed; ND is Not Detected.

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Laboratory Certification 199 Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet@cetlabs.com

Total Solids [EPA 160.3 mo] Units: percent Analysis Date: 4/18/05

	01
Total Solids	100*

*Assumed 100% solids.

Sincerely,

David Ditta Laboratory Director

CHAIN OF CUSTODY

80 Lupes Drive Stratford, CT 06615 Tel (203) 377-9984 Fax (203) 377-9952 •

	SAJTS	-													REV. 4/02
	ORDER #:	RED									•	-			
	LOCATION:	ANALYSIS REQUIRED			-									•	
	73SUU - 73SUU - 70001	ANAI													
	Don Leter 13500 -				TH H	0	27		XX						COMMENTS
Γ	I Yey	 ر	DATE TIME	DATE TIME	\downarrow		RD # OF	UND CONTAINERS	Z	-					Lech & relays
1	~	Centra Rev.			<u>.</u> 2	<u> </u>	AROUND STANDARD	2-3 TURNAROUND DAY	X						the guilt
	- 0PW - CCS U		RECEIVED BY:	REGEIVED BY:	거	RECEIVED BY:	_	X SAME 24 Day Hr							58-6399
COMPLETE ENVIRONMENTAL TESTING, INC.	ESS CI		DATE TIME	DATE TIME		DATE TIME	TIME SAMPLE	MATRIX	4/Has 1100 Fleering		-				2(07) J
E ENVIRONMEN	AND ADDR	wossing and		ـــــــــــــــــــــــــــــــــــــ		<u> </u>	DATE		4/Hlas						FTIONS F
COMPLETI	COMPANY NAME AND ADDRESS	5 Watersive (RELINQUISHED BY:	RELINQUISHED BY:	FUL	RELINQUISHED BY:	SAMPLE I.D.		0						SPECIAL INSTRUCTIONS Prove Que)298 6399

Date: 4/15/05	Comments												
\ <u>≻</u> ₽ %	Acceptable on receipt				 •			•					
ProScience Analytical Services, Inc. 22 cummings Park, Woburn MA 01801 Phi 781-835-3212 Fx 781-832-4857 22 cummings Park, Woburn MA 01801 Phi 781-835-3212 Fx 781-832-4857 TEM Bulk Sample Chain Of Custody Record <i>Inviron Pricidal</i> Analysis Type: <i>Inviron Pricidal</i> Analysis Type: <i>Inviron Pricidal Analysis Type: Analysis Type:</i>	Location	Kaiser Hell										xuted Convnents	
ProScience And 22 Cummings Park, Woburn MA 22 Cummings Park, Woburn MA TEM Bulk Sample PC Environ Parchal 3500 - 1340 - 06001 3500 - 1340 - 06001 2011 2011 2011 2011 2011 2011 2011	Description	Floor / Aspirelt	2 Layers							4		Batch # Results RejxHtxH	
TPC 1 13500 DPW - 12500 DPW - 12500 S. AME	#(0.1 de.)	30103	•				•					Total Client#	
Client: Client Job # Client Job Ref./Loc Client P.O. # Relinquished By Report to Sampler's Name IMPORTANTII Tu	Client I.D.#	ō				-					For Lab Use Only	· # Sples .	

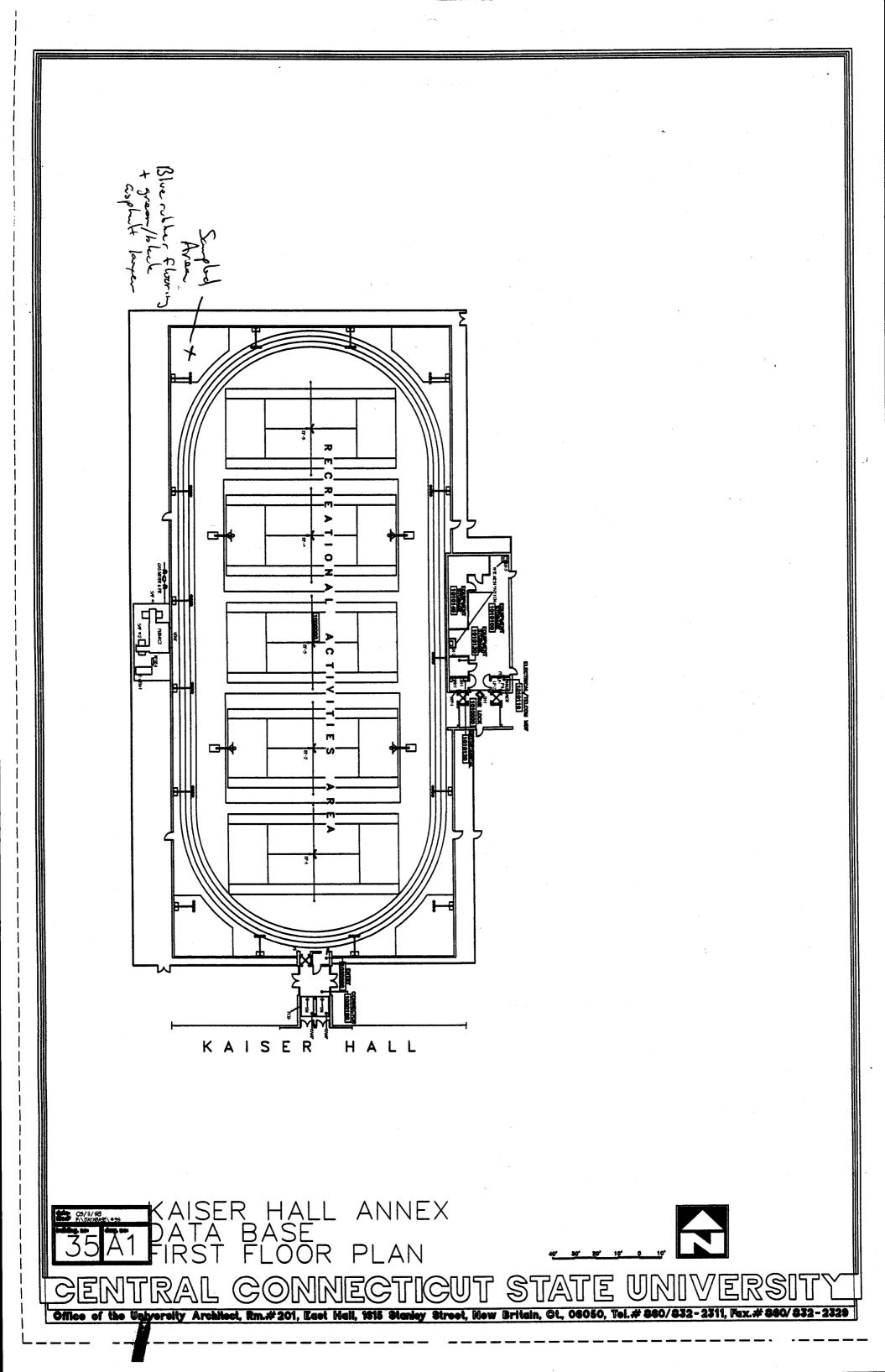
. 🍝

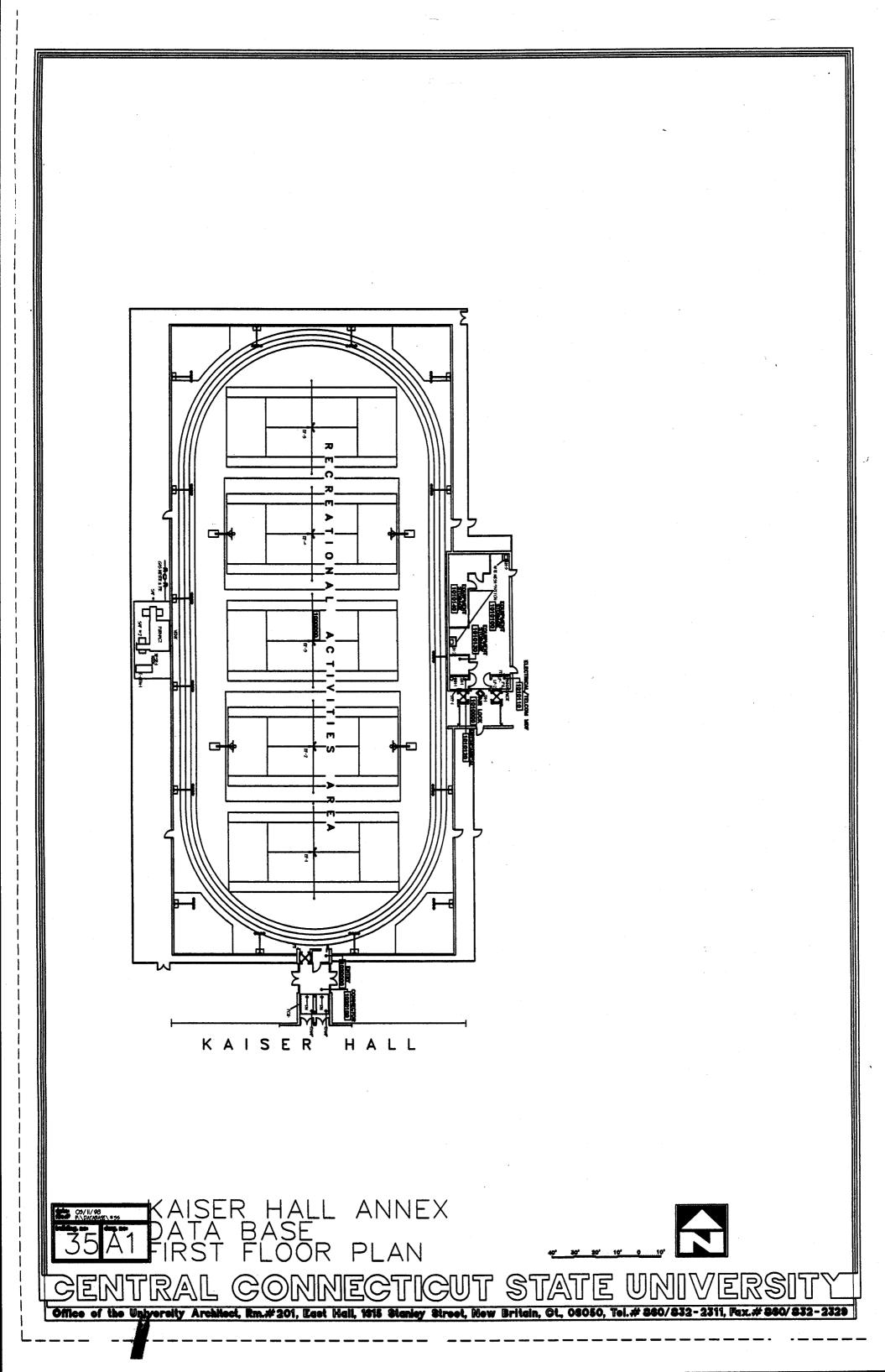
J

AT: 18602986399

٠

LI FAC


JN
OTTIND.
ENMONIALITY TRATIL INC
Γ


CHAIN OF CUSTODY

80 Lupes Drive Stratford, CT 06615 Tel (203) 377-9984 Fax (203) 377-9952

	SAMPLED BY: SA/JTS		_					_							REV. 4/02
	SAM SAM														
	PURCHASE ORDER #:	D													
-		REQUIRED													
	PROJECT LOCATION:	YSIS REQ													
-	1	ANALYSIS													
-	55 (135)	-			 			_							
	Don Letes 13500 -			5	H	2	カー	Γ	\mathbf{X}						COMMENTS
f			TIME	TIME	TIME	\square	# OF	CONTAINERS	R	5	u.	·			
	Karse Hall		DATE	DATE	DATE			TURNAROUND							
1		in the	،	÷	×			2-3 DAY	X				x		
	CT ()PW - CCS () 11. R	2	RECEIVED BY:	RECEIVED BY:	RECEIVED BY:		~	24 HR	_ ~ · · ·						
	NDON				BEC			SAME		 				 	
ING, INC.	5		TIME	4/14/05/1500	TIME		SAMPLE	MATRIX	Rubber Flewir						
TAL TEST	ESS	,	DATE	HIM 05	DATE		TIME		1100						
WIRONMEN	ND ADDR	0551-5 01.025					DATE		4/H/05/1100 Fliering						
COMPLETE ENVIRONMENTAL TESTING, INC.	COMPANY NAME AND ADDRESS			RELINQUISHED BY:	DEI INGLIEUED RV.		SAMPLE I.D.		10						

TO:	Jerry Glassman/	John Wytas		Tel. 860 713-57(0
	Statewide Service	es – Room 280		Tel.:860-713-57	na 🦱
	DPW-Asbestos/L	ead Management		FAX: 860-713-7	250
	165 Capitol Aven	ue, Htfd., CT 06106	,		
FROM	1: <u> </u>	Diloggi	· .		
	<u>University</u>		TEL.:	860 832-2311	V
		Alchitect		aller .	
		ey Street, New Brita	in CT 06050	<i>y</i> , •	
	(Mailing Address))		· · ·	
DATE	:Mai	<u>rch 17, 2005</u>	, 200		
DITT					
BUIL	JING NAME: Kais	<u>ser Hall Annex ("Bu</u>	bble")	DPV	V -#
ADDR	<u>40112</u>				
ADDR	Loo: <u>205</u>	Ella Grasso Blvd.			
· · · · · ·					
PROJ	ECT TYPE: <u>Asba</u>	estos	(Ashart		
			(ASDESTOS/L	ad/Outdoor/Indoo	<u>r/Air Qu</u>
	Capital (>\$50K)	Term (<\$50K and	or time issue	Not known	1 1/04
		(Circle One)	for third issue		<u>i yet</u>
		ABATEMENT REC	SPECTION: 05 JUEST:	/21/05	
TYPE <u>XXX</u> A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof,	ABATEMENT REC Dne) : Roof, Floor, Tile, Pi please complete the	UEST: iping, Ceiling Ti following:	le, Transite, or Oth	ier:
TYPE <u>XXX</u> A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty;	ABATEMENT REQ Dne) : Roof, Floor, Tile, Pi please complete the i	UEST: iping, Ceiling Ti following:	le, Transite, or Oth	ier:
TYPE <u>XXX</u> A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty;	ABATEMENT REC Dne) : Roof, Floor, Tile, Pi please complete the	UEST: iping, Ceiling Ti following:	le, Transite, or Oth	ıer:
TYPE <u>XXX</u> A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain	ABATEMENT REQ Dae) : Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Ti following:	le, Transite, or Oth 	
TYPE <u>XXX</u> A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain	ABATEMENT REQ Dae) : Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Ti following:	le, Transite, or Oth 	
ТҮРЕ <u>XXX</u> А	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE	ABATEMENT REQ Dae) : Roof, Floor, Tile, Pi please complete the : : nt, Piping, Soil, Wate FUNDING SOURCE	QUEST: iping, Ceiling Ti following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
ТҮРЕ <u>XXX</u> А	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE	ABATEMENT REQ Dne) : Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Ti following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
TYPE <u>XXX</u> A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE 1 NDOOR AIR QUA	ABATEMENT REQ Dne) : Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly):	le, Transite, or Oth erial, or Other:	
TYPE <u>XXX</u> A 	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA	ABATEMENT REQ Dae) Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Ti following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
TYPE <u>XXX</u> A 	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA	ABATEMENT REQ Dae) Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Ti following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
TYPE <u>XXX</u> A 	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I	ABATEMENT REQ Dae) : Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Tr following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
TYPE <u>XXX</u> A 	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I	ABATEMENT REQ Dae) Roof, Floor, Tile, Pi please complete the :	QUEST: iping, Ceiling Tr following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
TYPE <u>XXX</u> A SCOPE (OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I	ABATEMENT REQ Dne) Roof, Floor, Tile, Piplease complete the final second secon	QUEST: iping, Ceiling Tr following: er, Roofing Mat	le, Transite, or Oth erial, or Other:	
TYPE XXX A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I DF ASB. ABATEMENT	ABATEMENT REQ Dne) Roof, Floor, Tile, Pi please complete the 	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly):	le, Transite, or Oth 	
TYPE XXX A	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I DF ASB. ABATEMENT OF ASB. ABATEMENT	ABATEMENT REQ Dne) Roof, Floor, Tile, Piplease complete the final second secon	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly):	le, Transite, or Oth 	
TYPE XXX A 	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I DF ASB. ABATEMENT	ABATEMENT REQ Dne) Roof, Floor, Tile, Pi please complete the 	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly):	le, Transite, or Oth 	
TYPE XXX A XXX A CONTRACTOR CONTRACTICON CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CON	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I DF ASB. ABATEMENT OF ASB. ABATEMENT NG AREA DESCH pecific Area in Qua attached	ABATEMENT REQ Dne) Roof, Floor, Tile, Pi please complete the 	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly): ring system incli	le, Transite, or Oth 	base cou
TYPE XXX A XXX A COPE C C COPE	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I DF ASB. ABATEMENT OF ASB. ABATEMENT NG AREA DESCH pecific Area in Qua attached	ABATEMENT REQ Dne) Roof, Floor, Tile, Pi please complete the 	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly): ring system incli	le, Transite, or Oth 	base cou
TYPE XXX A XXX A COMPECT SCOPE C SCOPE C SUILDI S Tawing DN SIT 37-440	OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I OF ASB. ABATEMENT OF ASB. ABATEMENT NG AREA DESCH pecific Area in Qua attached	ABATEMENT REQ Dne) Roof, Floor, Tile, Pi please complete the 	QUEST: iping, Ceiling Ti following: er, Roofing Mat iefly): ring system incli	le, Transite, or Oth 	
TYPE XXX A XXX A COPE (OF INSPECTION/ (Circle O SBESTOS (circle): If asbestos in roof, Bond or Warranty: Access to roof from LEAD (circle): Pain PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I NDOOR AIR QUA PLEASE INDICATE I OF ASB. ABATEMENT OF ASB. ABATEMENT NG AREA DESCH pecific Area in Qua attached E/CONTACT PER Cell REV (33)	ABATEMENT REQ Dne) Roof, Floor, Tile, Pi please complete the 	QUEST: iping, Ceiling Tr following: er, Roofing Mata iefly): ring system inclu- rgi	le, Transite, or Oth 	base cou . #

PART 1 – GENERAL

1.01 SUMMARY

- A. SECTION INCLUDES
 - 1. The work in this section includes furnishing, installing and commissioning all access control hardware as hereinafter specified or obviously necessary for all swinging doors.
- B. RELATED DOCUMENTS
 - 1. Related documents, drawings and general provisions of contract, including General and Supplementary Conditions and Division 1 specification sections apply to this section.
- C. RELATED SECTIONS
 - 1. 062000 Finish Carpentry
 - 2. 080100 Operations and Maintenance
 - 3. 081113 Metal Doors and Frames
 - 4. 081416 Flush Wood Doors
 - 5. 087100 Door Hardware
 - 6. Division 26 Electrical
 - 7. Division 27 Communications

1.02 REFERENCES

A. STANDARDS

- 1. AIA A201 1997 General Conditions of the Contract
- 2. ANSI A156.1 Butts and Hinges
- 3. ANSI A156.13 Bored and Preassembled Locks and Latches
- 4. ANSI A156.3 Exit Devices
- 5. ANSI A156.7 Template Hinge Dimensions
- 6. ANSI A156.18 Material and Finishes
- 7. UL10C Positive Pressure Fire Tests of Door Assemblies
- 8. UL294 Access Control Systems
- 9. UL1076 Proprietary Burglar Alarm Units and Systems

B. CODES

- NFPA 101 Life Safety Code
 ANSI A117.1 Accessible and Usable Buildings and Facilities
 ADA Americans with Disabilities Act
- 1.03 SUBMITTALS
 - A. GENERAL REQUIREMENTS
 - 1. Submit copies of finish hardware schedule in accordance with Division 1, General Requirements.
 - B. SCHEDULES AND PRODUCT DATA

Page 2 of 16

- 1. Schedules to be in vertical format, listing each door opening, and organized into "hardware sets" indicating complete designations of every item required for each door opening to function as intended. Hardware schedule shall be submitted within two (2) weeks from date the purchase order is received by the finish hardware supplier. Furnish four (4) copies of revised schedules after approval for field and file use. Note any special mounting instructions or requirements with the hardware schedule. Schedules to include the following information:
 - a. Location of each hardware set cross-referenced to indications on drawings, both on floor plans and in door and frame schedule.
 - b. Handing and degree of swing of each door.
 - c. Door and frame sizes and materials.
 - d. Keying information.
 - e. Type, style, function, size, and finish of each hardware item.
 - f. Elevation drawings and operational descriptions for all electronic openings.
 - g. Name and manufacturer of each hardware item.
 - h. Fastenings and other pertinent information.
 - i. Explanation of all abbreviations, symbols and codes contained in schedule
 - j. Mounting locations for hardware when varies from standard.
- 2. Submit catalog cuts and/or product data sheets for all scheduled access control hardware.
- 3. Submit copy of manufacturer's official certification or accreditation document indicating proof of status as a qualified and authorized provider of the primary access control components.
- C. SAMPLES
 - 1. Upon request, samples of each type of hardware in finish indicated shall be submitted. Samples are to remain undamaged and in working condition through submittal and review process. Items will be returned to the supplier or incorporated into the work within limitations of keying coordination requirements.
- D. TEMPLATES
 - 1. Furnish a complete list and suitable templates, together with finish hardware schedule to contractor, for distribution to necessary trades supplying materials to be prepped for finish hardware.

E. ELECTRONIC HARDWARE SYSTEMS

- 1. Provide complete wiring diagrams prepared by an authorized factory employee for each opening requiring electronic hardware, except openings where only magnetic hold-open devices are specified. Provide a copy with each hardware schedule submitted after approval.
- 2. Provide complete operational descriptions of electronic components listed by opening in the hardware submittals. Operational descriptions to detail how each electrical component functions within the opening incorporating all conditions of ingress and egress. Provide a copy with each hardware schedule submitted for approval.
- 3. Provide elevation drawings of electronic hardware and systems identifying locations of the system components with respect to their placement in the door opening. Provide a copy with each hardware schedule submitted for approval.
- 4. Prior to installation of electronic hardware, arrange conference between supplier, installers and related trades to review materials, procedures and coordinating related work.
- 5. The electrical products contained within this specification represent a complete engineered system. If alternate electrical products are submitted, it is the responsibility of the distributor to bear the cost of providing a complete and working system including re-engineering of electrical diagrams and system layout, as well as power supplies, power transfers and all

Page 3 of 16

required electrical components. Coordinate with electrical engineer and electrician to ensure that line voltage and low voltage wiring is coordinated to provide a complete and working system.

 For each item of electrified hardware specified, provide standardized molex plug connectors to accommodate up to twelve (12) wires. Molex plug connectors shall plug directly into through-door wiring harnesses, frame wiring harnesses, electric locking devices and power supplies.

F. OPERATIONS AND MAINTENANCE MANUALS

- 1. Upon completion of construction and building turnover, furnish two (2) complete maintenance manuals to the owner. Manuals to include the following items:
 - a. Approved hardware schedule, catalog cuts and keying schedule.
 - b. Hardware installation and adjustment instructions.
 - c. Manufacturer's written warranty information.
 - d. Wiring diagrams, elevation drawings and operational descriptions for all electronic openings.

1.04 QUALITY ASSURANCE

- A. SUBSTITUTIONS
 - 1. No substitution on any of the access control products specified in this section are allowed.
- B. ACCESS CONTROL SUPPLIER
 - 1. Supplier/Dealers, verifiably authorized and in good standing with the primary product manufacturers, with a minimum [3] years experience supplying integrated access control systems similar in material, design, and scope to that indicated for this Project and whose work has resulted in construction with a proven record of successful in-service performance.

C. ACCESS CONTROL INSTALLER QUALIFICATIONS

- Systems Integrators, verifiably factory trained and certified by the primary product manufacturers, with a minimum [3] years documented experience installing complete integrated access control systems similar in material, design, and scope to that indicated for this Project and whose work has resulted in construction with a proven record of successful in-service performance. Qualifications include, but are not necessarily limited, to the following:
 - a. References: Provide a list of references for similar projects including contact name, phone number, name and type of project.
 - b. Professional Staffing: Firms to have a dedicated access control systems integration department with full time, experienced professionals on staff experienced in providing on site consulting services for both electrified door hardware and integrated access control systems installations.
 - c. Factory Training: Installation and service technicians are to be competent factory trained and certified personnel capable of maintaining the system.
 - d. Service Center: Firms to have a service center capable of providing training, in-stock parts, and emergency maintenance and repairs at the Project site with 24-hour/7-days a week maximum response time.

2. Persona IP-Enabled Access Control products are required to be supplied and installed only through designated ASSA ABLOY "Certified Integrator" (CI) accounts.

1.05 FIRE-RATED OPENINGS

- 1. Provide door hardware for fire-rated openings that comply with NFPA 80 and requirements of authorities having jurisdiction. Provide only items of door hardware that are listed by Underwriters Laboratories (UL) or Warnock Hersey (WH) for use on types and sizes of doors indicated.
- 2. Project requires door assemblies and components that are compliant with positive pressure and S-label requirements. Specifications must be cross-referenced and coordinated with door manufacturers to ensure that total opening engineering is compatible with UL10C Standard for Positive Pressure Fire Tests of Door Assemblies.
 - a. Hardware required for fire doors shall be listed with Underwriters Laboratories for ratings specified.
 - b. Certification(s) of compliance shall be made available upon request by the Authority Having Jurisdiction.

1.06 DELIVERY, STORAGE AND HANDLING

- A. MARKING AND PACKAGING
 - 1. Properly package and mark items according to the approved access control hardware schedule, complete with necessary screws and accessories, instructions and installation templates for spotting mortising tools. Contractor shall check deliveries against accepted list and provide receipt for them, after which he is responsible for storage and care. Any shortage or damaged good shall be made without cost to the owner.
 - 2. Packaging of door hardware is the responsibility of the supplier. As hardware supplier receives material from various manufacturers, sort and repackage in containers clearly marked with appropriate hardware set and door numbers to match the approved hardware schedule. Two or more identical sets may be packed in same container.
- B. DELIVERY
 - 1. The supplier shall deliver all hardware to the project site as required to meet the project schedule.
- C. STORAGE
 - 1. Do not store electronic access control hardware, software or related accessories at Project site without prior authorization.
 - a. Access control firmware and software: Where approved and directed, inventory upon receipt and store electronic access control equipment in a secure, temperature and humidity controlled environment in original manufacturer's sealed containers.
 - 2. If authorized provide secure lock-up for access control hardware delivered to the Project, but not yet installed. Control handling of access control hardware items that are not immediately replaceable so that completion of work will not be delayed by hardware losses both before and after installation.

1.07 COORDINATION

- A. Coordinate quantity and arrangement of assemblies with ceiling space configuration and with components occupying ceiling space, including structural members, pipes, air-distribution components, raceways, cable trays, recessed lighting fixtures, and other items.
- B. Access Control System Electrical Coordination: Coordinate the layout and installation of scheduled electrified door hardware, and related access control equipment, with required connections to source power junction boxes, power supplies, detection and monitoring hardware and fire alarm system.
- C. Door Hardware Interface: The access control system to interface and be connected to electronic door control hardware (electromechanical locks, electric strikes, magnetic locks, door position switches, other monitoring contacts, and related auxiliary control devices) as described under Division 8 "Door Hardware". Coordinate the installation and configuration of specified door hardware being monitored or controlled with the controls, software and access control hardware specified in this Section.

1.08 WARRANTY

- A. All items, except as noted below, shall be warranted in writing by the manufacturer against failure due to defective materials and workmanship for a minimum period of one (1) year commencing on the date of final completion and acceptance. In the event of product failure, promptly repair or replace item with no additional cost to the owner.
 - 1. Exit Devices: Five (5) years
 - 2. Proximity Locksets: Two (2) years
- B. Access Control Software Upgrades: Version upgrades and "fix" releases to the access control system software are available at no extra charge as long as the version of software provided under this specification remains the current manufacturer's version or for up to (2) years after a new version release.
 - 1. Major access control software revisions that provide new functionality to the product provided free of charge for up to one (1) year from the date of substantial completion.
 - 2. Access control system software is to be upgradable as may be required or as necessary, to expand and manage the owner's site or sites. Upgrades are to be offered at a published flat fee for the primary system software, with single license modules included in the primary fee structure. System upgrades offered at a costing structure based upon the original number of licensed modules issued, or on those to be purchased at a future date, are not allowed.
 - As part of the submittal package, provide a list of available software upgrades and/or expansions modules. List to identify related costs for upgrades, or expansions to the original system, up to the next qualifying operational level.

1.09 ACCESS CONTROL SCOPE OF WORK

- A. Furnish and install at the indicated locations the specified electrified and integrated door hardware and access control firmware and software for a completely operational access control and security site management system. System includes, but is not necessarily limited, to the following:
 - 1. Electrified integrated card reader locks and exit hardware, [permanent and temporary override cylinders], network control processors, reader controller panels, I/O monitor/control interfaces, door position switches, remote card readers, keypads, and display terminals,

access cards and credentials, system application software, special tools, operating manuals, and required cabling and accessories as detailed below and listed in the Hardware Sets at the end of Part 3.

- a. Provide the appropriate number of reader controller panels and I/O monitoring/control expansion interfaces as needed to handle the number of card readers, locking devices, door status devices, and identified alarm inputs specified in this section, and as shown on the security drawings.
- b. Provide manufacturer approved integrated card reader locks, exit hardware, and remote [mullion, jamb, wall] mounted card readers, keypads, and display terminals that are functionally compatible with the specified access control equipment interfaces.
- 2. Access control system equipment to be installed in an enclosure box compatible with the specified components. This enclosure to include, but is not necessarily limited to, the network control processor, I/O monitor/control interface panels, power supplies, terminal strips, wire ducts, keyed lock cylinder, integrated outlet for A/C power, and standoffs.
 - a. Enclosure box to be located in the designated IT/Telecom room(s) with connection to the [campus wide, district wide, enterprise wide] local area network for communication back to the central server host.
- 3. Owner to provide the following:
 - a. Computer hardware and peripherals to be from an approved, major line computer manufacturer. The following manufacturers will be considered "pre-approved", however, specific information detailing compliance with the manufacturer's requirements must be included within the project submittal package as specified.
 - 1) Compaq
 - 2) Dell
 - 3) Hewlett-Packard
 - 4) IBM
 - b. Central Server Host Computer:
 - System Server to include the following minimal requirements: Windows Server 2003 (Service Pack 1 or higher) or later Operating System, Intel Pentium IV 1 GHz (equivalent or greater), SQL Server 2005 Express Edition or SQL 2005, 1GB Ram or larger, 120GB hard disk space available or more as needed, CRT or LCD minimum 15" display Monitor, CD/RW Drive. Single serial port, or multiple USB ports, and one parallel port, keyboard and mouse.
 - c. Client Workstations:
 - Client Workstation to include the following minimal requirements: Windows XP Professional (Service Pack 2 or higher) or Windows Vista Business, Intel Pentium III 500 MHz (equivalent or greater), SQL Server 2000 Client Access License, 1GB Ram or larger, 30GB hard disk space available or more as needed, CRT or LCD minimum 15" display Monitor, CD/RW Drive. Single serial port, or multiple USB ports, and one parallel port, keyboard and mouse.
 - d. Owner will be responsible for ensuring that each computer hardware component includes the required interfaces, expansion boards, and peripherals that will be necessary to allow

the system to operate as described within this specification and as indicated on the drawings.

- e. Power Sourcing and Network Switches: Quantity as required to accommodate installed access control (and video surveillance) devices.
- f. Network Control Processor Connections:
 - LAN/Ethernet communication ports (jacks) and network interface cards as needed, CAT5e cabling from network router/switch to network control processor, outlet and cover plates and/or patch cables required for network connection within each designated IT/Telecom room.
 - 2) Required static IP addresses.
- 4. Power Supplies, including battery back up and separately fused surge protection, required for the electrified door hardware and access control equipment.
- 5. Installation, final configuration and commissioning of electrified door and access control system hardware, communication firmware, power supplies and related accessories.
- 6. System application software including installation, programming, and end user training of the access control system demonstrating operating, repair, and maintenance procedures. Include no fewer than 16 hours of on-site central server training for designated personnel (facilities maintenance, security, IT, administration) by a factory certified representative.
 - a. Include minimum of 8 hours of Client Software Application (client workstation) training at each of the remote installed facilities for local administrative staff.
- 7. Provide manufacturer required power controllers, interface boards, and programming that may be required for approved electric latch retraction exit devices supplied under this Section.
- 8. Electrical contractor, Division 26, to provide the following:
 - a. Source power wiring (120VAC) as required for the electrified locking and access control hardware, equipment, accessories and power supplies. This includes quad outlets as required on a dedicated circuit in the designated IT/Telecom room(s) and the related conduit, stub-in, junction boxes and connectors required for the source power delivery and connections.
 - b. Provide required conduit, stub-in, junction and back boxes for both the electrified locking hardware and access control equipment at each of the access controlled or monitored openings per plan drawings and specs. Supply and install conduit between each of the aforementioned devices and between the electrical junction boxes, power supplies and access control equipment located on or above the door opening.
 - 1) At wall mounted remote readers, provide conduit on the secured side of the door, 36" from the finish floor and 6" from the edge of the frame, to the related power supplies and access control equipment.
 - 2) At electrical hardware power transfers provide conduit on the secured side of the opening from the power transfer, thru-wire hinge, or serviceable panel location on the frame jamb to the related power supplies and access control equipment.
 - c. Electrical Contractor to provide all 120VAC cabling connections and terminations from the electrical junction boxes to these electrical devices.
- 9. Access Control System Integrator to provide the following:

- a. Low voltage wiring (12/24VDC) and communication cabling (RS-232/RS-485) from network control processors to reader controllers, I/O monitor/control interface panels, electrified and integrated locking hardware, remote card readers, keypads, or display terminals, monitoring and signaling switches, and power supplies. Work includes related connectors, final terminations, and hook-ups required for a complete and functional access controlled opening in accordance with applicable codes and specified system operational narratives.
- 10. Full and seamless integration of the site intrusion alarm service and motion detector systems, Division 28 if applicable, with the installed site access control system software.
- 11. Final connections to fire alarm system, if required, by electrical and fire alarm system contractors.
- 12. Provide permits, submittals and approvals required by the authority having jurisdiction, prior to commencing with work.

PART 2 – PRODUCTS

- 2.01 SYSTEM ARCHITECTURE ACCESS CONTROL AND SITE MANAGEMENT SYSTEM (ACSMS)
 - A. General: All access control hardware is to tie into the owners' existing Persona site management system.
- 2.02 MANUFACTURERS
 - A. Only manufacturers as listed below shall be accepted. Obtain each type of finish hardware and access control (hinges, latch and locksets, proximity locksets, access control software and components, exit devices, door closers, etc.) from a single manufacturer.
- 2.03 MATERIALS
 - A. SCREWS AND FASTENERS
 - 1. All required screws shall be supplied as necessary for securing finish hardware in the appropriate manner. Thru-bolts shall be supplied for exit devices and door closers where required by code and the appropriate blocking or reinforcing is not present in the door to preclude their use.
 - B. HANGING DEVICES
 - 1. POWER TRANFER HINGES
 - a. Power-over-Ethernet (PoE) Data Hinges: Provide PoE hinges allowing for both power and Ethernet data to be transferred from an incoming source to the door opening and linked with electrified door hardware via Molex[™] standardized plug connectors and wire harnesses.
 - Each hinge features two 6-position and two 4-position Molex connectors, 9 multistrand wires; 2 twisted pairs (26 AWG), 4 straight conductors (28 gauge) and 1 straight conductor (22 AWG) with concealed plug connectors eliminating the need for

separate or exposed wiring. Rated 350 mA continuous @ 48 volts DC nominal, the hinge is capable of two PoE wiring configurations:

- a) Power over Data (5 wire): Power and Data supplied together over the 2 twisted (26 AWG) pairs. The 22 AWG conductor is used for the earth ground connection.
- b) Data with Power over Spares (9 wire): Data over 2 twisted (26 AWG) pairs with Power over spare pairs 94 straight 28 AWG conductors). The 22 Awg conductor is used for earth ground connection.
 - 1. Specified Manufacturer: McKinney PoE Series
 - 2. Approved Substitutes: NONE
- C. ACCESS CONTROL DEVICES ON LINE ELECTRONIC ACCESS CONTROL SYSTEM
 - 1. PoE MORTISE LOCKSETS
 - a. Power-over-Ethernet (PoE) Access Control Mortise Locks.
 - BHMA certified extra heavy duty, lever type cylindrical lock conforming to ANSI 156.13 Series 1000, Grade 1 standard and ANSI A117.1 accessibility guidelines. Motorized locking control of lever handle trim (solenoids not acceptable) with ³/₄" antifriction deadlocking latch, UL listed and labeled for up to 3 hour fire rated openings.
 - 2) Power-over-Ethernet intelligent access control locking devices interface using standard IEEE 802.3af Ethernet for data and power communication directly from the locking unit back to a host server over an existing or newly installed TCP/IP network facilitating centralized control via a Software Development Kit (SDK) to an online electronic access control system without the need for additional interfaces or components (excluding PoE Endspan and Midspan devices). Provide access control products with non-volatile memory.
 - 3) Fully-encrypted AES-128 (IEEE 802.3af) communication between IP Enabled lock and electronic access control system platform via SDK. Programmable time zone periods, blocked holidays, automatic unlock with or without first entry, minimum of 2,400 user codes and the ability to audit the last 10,000 transactions (event type, date, time, user ID and name). Distributed intelligence allows stand alone functional operation of lock in absence of network communication or slowdown allowing for system operational redundancy.
 - 4) Integrated reader supports High Coercivity (HiCo) magnetic swipe credentials, HID® 125 kHz proximity credentials or ISO 14443 A/B and ISO 15693 13.56 MHz contactless credentials: HID® iCLASS / iCLASS SE (full authentication, all formats), MIFARE Classic and DESFire EV1 (full authentication, all formats); NFC (Near Field Communications) and HID® SIO-Enabled[™].
 - a) Valid/ Invalid credential presentation viewable by means of LED indicators on outside escutcheon.
 - b) Dual factor keypad authentication function optional.
 - 5) Environmental Conditions: Conformally coated weather resistant electronic controller shall meet the following minimum requirements:
 - a) Operating temperature: -31 to 150 degrees F (-35 to 65 degrees C)
 - b) Operating humidity: 5% to 95% relative humidity non-condensing
 - c) Weatherized design suitable to withstand harsh environments with a certified rating of IP55
 - 6) Configuration: Programming of time zone periods, blocked holidays, automatic unlock with or without first entry, and listing 10,000 event transaction history consisting of event type, date, time, user ID and name is required.

- a) Provide network and lock configuration CD tool kit for initial lock set-up and programming via USB connection.
- b) Monitoring: Software accessible monitoring (via SDK) of inside lever handle (Request-to-Exit), door position switch (DPS) integral to the lock (door open/closed status), forced door, unknown card, door held open, battery and tamper.
- c) Standard privacy function initiated from push button on inside escutcheon and cancelled upon activation of valid Request-To-Exit (REX) or user defined credentials.
 - 1. Activation of privacy function is indicated by LED notification on inside escutcheon.
 - 2. Redundant actuation of privacy button does not deactivate privacy mode.
- 7) Emergency override access capability by mechanical key cylinder retraction of lock latch bolt without electronic activation necessary.
- 8) Power Source: PoE Class 2; Max 7 W.
 - a) PoE Endspan/Midspan, electrical hard wiring, grounding, connections, mounting boxes, and structured cabling framework are required for complete system functionality (by others).
 - b) Network Cabling (by others) Requirements: Meet or exceed ANSI/TIA/EIA-568-C; CAT5e or higher as set forth by AHJ.
 - c) Bonding and Grounding Requirements: Meet or exceed TIA-607-B to ensure proper operation; Connect locking device ground cable to building electrical earth ground.
 - Network Surface Mount Box: Meet or exceed ANSI/TIA/EIB-568-B; CAT5e or higher (RJ45).
 - 1. Specified Manufacturer: Sargent 8200 Line PoE Series with Bluetooth
 - 2. Approved Substitutes: NONE
- 2. PoE CYLINDRICAL LOCKSETS
 - a. Power-over-Ethernet (PoE) Access Control Cylindrical Locks.
 - BHMA certified extra heavy duty, lever type cylindrical lock conforming to ANSI 156.2 Series 4000, Grade 1 standard and ANSI A117.1 accessibility guidelines. Motorized locking control of lever handle trim (solenoids not acceptable) with ½" anti-friction deadlocking latch, UL listed and labeled for up to 3 hour fire rated openings.
 - 2) Power-over-Ethernet intelligent access control locking devices interface using standard IEEE 802.3af Ethernet for data and power communication directly from the locking unit back to a host server over an existing or newly installed TCP/IP network facilitating centralized control via a Software Development Kit (SDK) to an online electronic access control system without the need for additional interfaces or components (excluding PoE Endspan and Midspan devices). Provide access control products with non-volatile memory.
 - 3) Fully-encrypted AES-128 (IEEE 802.3af) communication between IP Enabled lock and electronic access control system platform via SDK. Programmable time zone periods, blocked holidays, automatic unlock with or without first entry, minimum of 2,400 user codes and the ability to audit the last 10,000 transactions (event type, date, time, user ID and name). Distributed intelligence allows stand alone functional operation of lock in absence of network communication or slowdown allowing for system operational redundancy.
 - 4) Integrated reader supports High Coercivity (HiCo) magnetic swipe credentials, HID® 125 kHz proximity credentials or ISO 14443 A/B and ISO 15693 13.56 MHz contactless credentials: HID® iCLASS / iCLASS SE (full authentication, all formats),

MIFARE Classic and DESFire EV1 (full authentication, all formats); NFC (Near Field Communications) and HID® SIO-Enabled[™].

- c) Valid/ Invalid credential presentation viewable by means of LED indicators on outside escutcheon.
- d) Dual factor keypad authentication function optional.
- 5) Environmental Conditions: Conformally coated weather resistant electronic controller shall meet the following minimum requirements:
 - d) Operating temperature: -31 to 150 degrees F (-35 to 65 degrees C)
 - e) Operating humidity: 5% to 95% relative humidity non-condensing
 - f) Weatherized design suitable to withstand harsh environments with a certified rating of IP55
- 6) Configuration: Programming of time zone periods, blocked holidays, automatic unlock with or without first entry, and listing 10,000 event transaction history consisting of event type, date, time, user ID and name is required.
 - d) Provide network and lock configuration CD tool kit for initial lock set-up and programming via USB connection.
 - e) Monitoring: Software accessible monitoring (via SDK) of inside lever handle (Request-to-Exit), door position switch (DPS) integral to the lock (door open/closed status), forced door, unknown card, door held open, battery and tamper.
 - f) Standard privacy function initiated from push button on inside escutcheon and cancelled upon activation of valid Request-To-Exit (REX) or user defined credentials.
 - 3. Activation of privacy function is indicated by LED notification on inside escutcheon.
 - 4. Redundant actuation of privacy button does not deactivate privacy mode.
- 7) Emergency override access capability by mechanical key cylinder retraction of lock latch bolt without electronic activation necessary.
- 8) Power Source: PoE Class 2; Max 7 W.
 - e) PoE Endspan/Midspan, electrical hard wiring, grounding, connections, mounting boxes, and structured cabling framework are required for complete system functionality (by others).
 - f) Network Cabling (by others) Requirements: Meet or exceed ANSI/TIA/EIA-568-C; CAT5e or higher as set forth by AHJ.
 - g) Bonding and Grounding Requirements: Meet or exceed TIA-607-B to ensure proper operation; Connect locking device ground cable to building electrical earth ground.
 - h) Network Surface Mount Box: Meet or exceed ANSI/TIA/EIB-568-B; CAT5e or higher (RJ45).
 - 1. Specified Manufacturer: Sargent 10 Line PoE Series with Bluetooth
 - 2. Approved Substitutes: NONE

3. PoE EXIT DEVICES

- a. Power-over-Ethernet (PoE) Access Control Rim Exit Devices.
 - BHMA certified panic and exit device hardware conforming to ANSI 156.3, Grade 1 standard and ANSI A117.1 accessibility guidelines. Electronic motorized locking control of lever handle (solenoids not acceptable) contained completely within the body of the outside trim control. U.L. listed and labeled for either panic or "Fire Exit Hardware" for use on up to 3 hour fire rated openings.
 - 2) Power-over-Ethernet intelligent access control locking devices interface using standard IEEE 802.3af Ethernet for data and power communication directly from the locking unit back to a host server over an existing or newly installed TCP/IP network

facilitating centralized control via a Software Development Kit (SDK) to an online electronic access control system without the need for additional interfaces or components (excluding PoE Endspan and Midspan devices).

- a) Provide access control products with non-volatile memory.
- 3) Fully-encrypted AES-128 (IEEE 802.3af) communication between IP Enabled lock and electronic access control system platform via SDK. Programmable time zone periods, blocked holidays, automatic unlock with or without first entry, minimum of 2,400 user codes and the ability to audit the last 10,000 transactions (event type, date, time, user ID and name). Distributed intelligence allows stand alone functional operation of lock in absence of network communication or slowdown allowing for system operational redundancy.
- 4) Integrated reader supports High Coercivity (HiCo) magnetic swipe credentials, HID® 125 kHz proximity credentials or ISO 14443 A/B and ISO 15693 13.56 MHz contactless credentials: HID® iCLASS / iCLASS SE (full authentication, all formats), MIFARE Classic and DESFire EV1 (full authentication, all formats); NFC (Near Field Communications) and HID® SIO-Enabled[™].
 - a) Valid/ Invalid credential presentation viewable by means of LED indicators on outside escutcheon.
 - b) Dual factor keypad authentication function optional.
- 5) Environmental Conditions: Conformally coated weather resistant electronic controller shall meet the following minimum requirements:
 - a) Operating temperature: -31 to 150 degrees F (-35 to 65 degrees C)
 - b) Operating humidity: 5% to 95% relative humidity non-condensing
 - c) Weatherized design suitable to withstand harsh environments with a certified rating of IP55
- 6) Configuration: Programming of time zone periods, blocked holidays, automatic unlock with or without first entry, and listing 10,000 event transaction history consisting of event type, date, time, user ID and name is required.
 - a) Provide network and lock configuration CD tool kit for initial lock set-up and programming via USB connection.
- 7) Monitoring: Software accessible monitoring (via SDK) of inside push rail (Request-to-Exit), integral door position switch (DPS) integral to the lock (door open/closed status), forced door, unknown card, door held open, battery and tamper.
 - a) Standard privacy function initiated from push button on inside escutcheon and cancelled upon activation of valid Request-To-Exit (REX) or user defined credentials.
 - 1. Activation of privacy function is indicated by LED notification on inside escutcheon.
 - 2. Redundant actuation of privacy button does not deactivate privacy mode.
 - b) Emergency override access capability by mechanical key cylinder retraction of lock latch bolt without electronic activation necessary.
- 8) Power Source: PoE Class 2; Max 7 W.
 - a) PoE Endspan/Midspan, electrical hard wiring, grounding, connections, mounting boxes, and structured cabling framework are required for complete system functionality (by others).
 - b) Network Cabling (by others) Requirements: Meet or exceed ANSI/TIA/EIA-568-C; CAT5e or higher as set forth by AHJ.
 - c) Bonding and Grounding Requirements: Meet or exceed TIA-607-B to ensure proper operation; Connect locking device ground cable to building electrical earth ground.
 - Network Surface Mount Box: Meet or exceed ANSI/TIA/EIB-568-B; CAT5e or higher (RJ45).

Specified Manufacturer: Sargent 80 PoE Series with Bluetooth

1.

2. Approved Substitutes: NONE

D. WALL CARD READERS

- 1. Keypad/Magnetic Stripe Card Readers:
 - a. The system to have the ability to support ABA standard, Track 1 or 2 high or low coercivity magnetic stripe cards. Card readers constructed of a rugged, weatherized casing suitable for either indoor or outdoor applications. Reader to have multi-color LED status display and meet the following specifications:
 - 1) Power: Card reader powered from its associated controller, including its standby power source.
 - 2) Output: Wiegand protocol interface compatibility.
 - 3) Optional card slot heater required for exterior applications.
 - a) Specified Manufacturer: HID Global Model RP/RPK 40 with Bluetooth.
 - b) Approved Substitutes: None

2.04 CABLES AND WIRING

- A. Comply with Division 27 Section "Conductors and Cables for Electronic Safety and Security."
- B. Data Line Supervision: System to include alarm initiation capability in response to opening, closing, shorting, or grounding of data transmission lines.
- C. Install appropriate number of conductor pairs, in the wire gage (AWG) recommended by manufacturer, corresponding to the electronic locking functions specified, amperage drawn and distances covered between the power supplies, power transfer devices, electrified hardware and access control equipment.

2.05 ACCESS CONTROL HARDWARE FINISHES

- A. The designations used in schedules and elsewhere to indicate hardware finishes are those listed in ANSI/BHMA A156.18 or traditional U.S. finishes shown by certain manufacturers for their products.
- B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware.
- C. Where specified hardware shall have an antimicrobial coating which permanently suppresses the growth of bacteria, algae, fungus, mold and mildew applied. The finish shall control the spread and growth of bacteria, mold and mildew and shall be FDA listed for use in medical and food preparation equipment.

PART 3 – EXECUTION

3.01 EXAMINATION

- A. Contractor shall ensure that the building is secured and free from weather elements prior to installing access control door hardware. Examine hardware before installation to ensure it is free of defects.
- B. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance of the installed access control system.
- C. Examine roughing-in for electrical source power to verify actual locations of wiring connections before electrified and integrated access control door hardware installation.
- D. Examine roughing-in for LAN and control cable conduit systems to PCs, controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- E. Notify architect of any discrepancies or conflicts between the specifications, drawings and scheduled access controlled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.02 PREPARATION

A. Doors and frames at scheduled access controlled openings to be properly prepared to receive specified electrified and access control hardware connections without additional in-field modifications.

3.03 INSTALLATION

- A. Mount hardware units at heights indicated in the following applicable publications, except as specifically indicated or required to comply with the governing regulations.
 - 1. "Recommended Locations for Builders Hardware for Standard Steel Doors and Frames" by the Door and Hardware Institute (DHI.)
 - 2. NWWDA Industry Standard I.S.1.7, "Hardware Locations for Wood Flush Doors."
- B. All hardware shall be applied and installed in accordance with best trade practice by an experienced hardware installer. Care shall be exercised not to mar or damage adjacent work.
- C. Install each hardware item in compliance with the manufacturer's instructions and recommendations. Where cutting and fitting is required to install hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation or application of surface protection with finishing work specified in the Division 9 Sections. Do not install surface-mounted items until finishes have been completed on the substrates involved.
- D. Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

- E. Install each item of electrified door hardware and access control equipment to comply with manufacturer's written instructions and according to specifications.
- F. Mounting Heights: Mount integrated access control door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:
 - 1. Standard Steel Doors and Frames: DHI's "Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames."
 - 2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
 - 3. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."
- G. Boxed Power Supplies: Verify locations.
 - 1. Configuration: Provide the least number of power supplies required to adequately serve doors with access control equipment.
- H. Final connect the system control switches (integrated card key locking hardware, remote readers, keypads, display terminals, biometrics), and monitoring, and signaling equipment to the related Controller devices at each opening to properly operate the electrified door and access control hardware according to system operational narratives.
 - 1. System Application Software: Install, and test application(s) software and databases for the complete and proper operation of systems involved. Assign software license(s) to Owner.

3.04 FIELD QUALITY CONTROL

- A. The Contractor shall comply with AIA A201 1997 section 3.3.1 which reads as follows: "The Contractor shall be solely responsible for and have control over construction means, methods, techniques, sequences and procedures and for coordinating all portions of the Work under the Contract, unless the contract Documents give other specific instructions concerning these matters."
- B. Prior to the installation of hardware, manufacturer's representatives for locksets, closers, and exit devices shall arrange and hold a jobsite meeting to instruct the installing contractor's personnel on the proper installation of their respective products. A letter of compliance, indicating when this meeting is held and who is in attendance, shall be sent to the Architect and Owner.
- C. The hardware supplier shall do a final inspection prior to building completion to ensure that all hardware was correctly installed and is in proper working order.
- D. The manufacturer's representative shall do a final inspection prior to building completion to ensure that all hardware was correctly installed and is in proper working order.
- E. Commissioning and Testing Schedule: Prior to final acceptance of the access control system installation, the following testing and documentation to be performed and provided to the Owner.
 - 1. Inspection: Verify that units and controls are properly installed, connected, and labeled and that interconnecting wires and terminals are identified.

- 2. Pre-testing: Program and adjust the system and pretest all components, wiring, and functions to verify they conform to specified requirements. Provide testing reports indicating devices tested, pass/fail status, and actions taken to resolve problem(s) on failed tests.
- 3. Acceptance Test Schedule: Correct deficiencies identified by tests and observations and retest until specified requirements are met.
- 4. Provide "as designed" drawings showing each device and wiring connection and electronic enclosure legends showing cabling in and out.
- 5. Provide a complete set of operating instructions for access control hardware devices and a complete software user manual. The documentation includes module reference guides for each electronic enclosure.

3.05 ADJUSTING, CLEANING, AND DEMONSTRATING

- A. Adjust and check each operating item of hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate freely and smoothly or as intended for the application made.
- B. Where door hardware is installed more than one month prior to acceptance or occupancy of a space or area, return to the installation during the week prior to acceptance or occupancy and make final check and adjustment of all hardware items in such space or area. Clean operating items as necessary to restore to proper function and finish of hardware and doors. Adjust door control devices to compensate for final operation of heating and ventilating equipment.
- C. Instruct owner's personnel in the proper adjustment and maintenance of door hardware and hardware finishes and usage of any electronic devices.

3.06 PROTECTION

A. Contractor shall protect all hardware, as it is stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

3.07 HARDWARE SCHEDULE

- A. The following schedule is furnished for whatever assistance it may afford the Contractor; do not consider it as entirely inclusive. Should any particular door or item be omitted in any scheduled hardware heading, provide door or item with hardware same as required for similar purposes. Hardware supplier is responsible for handing and sizing all products as listed in the hardware heading. Quantities listed are for each pair of doors, or for each single door.
- B. Refer to Section 080671, Door Hardware Schedule, for hardware sets.

END OF SECTION 281300